
Control Barrier Functions for Signal Temporal
Logic Tasks

Lars Lindemann, Student Member, IEEE, and Dimos V. Dimarogonas, Senior Member, IEEE

Abstract—The need for computationally-efficient control meth-
ods of dynamical systems under temporal logic tasks has recently
become more apparent. Existing methods are computationally
demanding and hence often not applicable in practice. Especially
with respect to multi-robot systems, these methods do not scale
computationally. In this work, we propose a framework that is
based on control barrier functions and signal temporal logic. In
particular, time-varying control barrier functions are considered
where the temporal properties are used to satisfy signal temporal
logic tasks. The resulting controller is given by a switching
strategy between a computationally-efficient convex quadratic
program and a local feedback control law.

Index Terms—Autonomous systems, constrained control, hy-
brid systems.

I. INTRODUCTION

THE classical objectives considered in automatic control
are stabilization and tracking. Robotic applications, how-

ever, have shown the need for more complex objectives such as
periodic, sequential, or reactive tasks that require new control
methods and planning. These complex objectives are typically
formulated in temporal logics [1]. Existing approaches that
use linear temporal logic (LTL) rely on abstracting the system
dynamics into a finite state transition system [2], [3]. This
transition system is then used to obtain a discrete plan,
which is subsequently executed by continuous-time control
laws. These abstraction-based approaches are subject to large
computational burdens due to the curse of dimensionality.
Computationally-efficient frameworks for LTL have been pre-
sented in [4], [5] by considering a game theory-based approach
and in [6] by considering a deductive proof system-based
approach. In the former approach, however, the dynamical
properties of the system need to be manually incorporated
into the planning stage. The latter approach establishes a
connection between discrete planning and continuous plan
execution by low-level control guarantees such as those given
by barrier functions. However, the focus in [6] is on deriving
a deductive proof system for LTL tasks. In this paper, we
also rely on low-level control guarantees, but without using
deductive proof systems and for signal temporal logic (STL)
tasks [7]. STL is interpreted over continuous-time signals and
allows to formulate complex tasks that can have, opposed

This work was supported in part by the Swedish Research Council (VR),
the European Research Council (ERC), the Swedish Foundation for Strategic
Research (SSF), the EU H2020 Co4Robots project, the SRA ICT TNG project
STaRT, and the Knut and Alice Wallenberg Foundation (KAW).

The authors are with the Department of Automatic Control, School of
Electrical Engineering and Computer Science, Royal Institute of Tech-
nology (KTH), 100 44 Stockholm, Sweden. llindem@kth.se (L.
Lindemann), dimos@kth.se (D.V. Dimarogonas)

to LTL, strict deadlines. The control of systems under STL
tasks is known to be difficult and has been considered in [8],
[9] where computationally demanding mixed-integer linear
programs are obtained. Reinforcement learning-based control
strategies for STL have been derived in [10].

Barrier functions guarantee forward invariance of a set with
respect to the system dynamics of an unforced system [11].
Control barrier functions [12], [13], [14], on the other hand,
consider systems with control inputs that are used to render a
set forward invariant. Multi-objective control barrier functions
have been considered in [15], [16]. Higher order and time-
varying control barrier functions are used in [17] to establish
forward invariance of a time-varying set.

In this paper, we consider systems under STL tasks. The
main contribution is a control strategy that offers a good
trade-off between computational efficiency and expressivity of
the STL fragment under consideration. The proposed control
strategy does not rely on an abstraction of the system and does
not result into a separation of planning and continuous plan
execution. In our previous work [18], we already proposed
continuous-time feedback control laws that account for the
aforementioned issues. In this paper, we continue along this
line of research; however, with a different control approach
that allows to formulate a broader range of complex tasks. In
a first step, we define time-varying control barrier functions
in a similar fashion as in [17]. In a second step, we use the
time-varying control barrier functions to satisfy STL tasks.
The temporal properties of the control barrier functions hence
need to be designed in a way that accounts for the STL
semantics. The resulting controller is given by a switching
strategy between a computationally-efficient convex quadratic
program and a local feedback control law.

Sec. II states preliminaries and the problem definition.
Sec. III presents our proposed solution, which is verified by
simulations in Sec. IV. Conclusions are given in Sec. V.

II. PRELIMINARIES AND PROBLEM DEFINITION

Scalars and column vectors are denoted by non-bold letters
x and bold letters x, respectively; R are the real numbers,
while Rn is the n-dimensional real vector space. The non-
negative and positive real numbers are R≥0 and R>0, respec-
tively. A class K function α : R≥0 → R≥0 is a continuous
and strictly increasing function with α(0) = 0. We denote by
0n the n-dimensional zero vector.

Let x ∈ Rn and u ∈ U ⊆ Rm be the state and input of a
nonlinear input-affine control system

ẋ = f(x) + g(x)u, (1)

where the functions f : Rn → Rn and g : Rn → Rn×m

are locally Lipschitz continuous. For a reason that becomes
apparent in Section III-B, we consider solutions to (1) with the
initial condition x(t0) over fixed and compact time intervals
[t0, t1] ⊂ R≥0. Given a control signal u : [t0, t1] → U , the
signal x : [t0, t1]→ Rn is a solution to (1) if x is absolutely
continuous and x(t) satisfies (1) for all t ∈ [t0, t1].

A. Signal Temporal Logic (STL)

Signal temporal logic [7] is a predicate logic consisting of
predicates µ that are obtained after evaluation of a predicate

function h : Rn → R as µ :=

{
True if h(x) ≥ 0

False if h(x) < 0.
The STL syntax defines an STL formula φ and is given by

φ ::= True | µ | ¬φ | φ1 ∧ φ2 | φ1 U[a,b] φ2 ,

where φ1, φ2 are STL formulas and a, b ∈ R≥0 with a ≤ b.
The satisfaction relation (x, t) |= φ denotes if the signal x :
R≥0 → Rn, e.g., a solution of (1), satisfies φ at time t.

Definition 1 (STL Semantics): For a signal x : R≥0 → Rn,
the STL semantics [7] are recursively given by:

(x, t) |= µ ⇔ h(x(t)) ≥ 0

(x, t) |= ¬φ ⇔ ¬((x, t) |= φ)

(x, t) |= φ1 ∧ φ2 ⇔ (x, t) |= φ1 ∧ (x, t) |= φ2

(x, t) |= φ1 U[a,b] φ2 ⇔ ∃t1 ∈ [t+ a, t+ b] s.t. (x, t1) |= φ2

∧ ∀t2 ∈ [t, t1],(x, t2) |= φ1

(x, t) |= F[a,b]φ ⇔ ∃t1 ∈ [t+ a, t+ b] s.t. (x, t1) |= φ

(x, t) |= G[a,b]φ ⇔ ∀t1 ∈ [t+ a, t+ b],(x, t1) |= φ.

B. Time-varying Control Barrier Functions (CBF)

Similarly to [17], we consider time-varying control barrier
functions. Therefore, define the differentiable function b : D×
[t0, t1]→ R, where D ⊆ Rn, and the set

C(t) := {x ∈ D|b(x, t) ≥ 0},

which explicitly depends on time. Next, conditions are given
under which b(x, t) is a candidate control barrier function.

Definition 2 (Candidate Control Barrier Function): A dif-
ferentiable function b : D × [t0, t1] → R is a candidate
control barrier function if for each x0 ∈ C(t0), there exists
an absolutely continuous function x : [t0, t1] → Rn with
x(t0) := x0 such that x(t) ∈ C(t) for all t ∈ [t0, t1].

A time-varying candidate control barrier function implies
that C(t) is non-empty for each t ∈ [t0, t1], which is the
standard assumption for a time-independent function to be a
candidate control barrier function [12], [13]. For time-varying
candidate control barrier functions, however, the set C(t) needs
to be such that there exists a function x : [t0, t1] → Rn with
x(t) ∈ C(t) for all t ∈ [t0, t1]. This function x needs to be
absolutely continuous so that it may possibly be a solution to
(1) for a control signal u : [t0, t1]→ U .

Remark 1: The assumption of the existence of a function
x : [t0, t1] → Rn can be illustrated as follows. Assume that
C(t) is the union of two sets C1(t) and C2(t) that are not

connected for all t ∈ [t0, t1], i.e., C(t) := C1(t) ∪ C2(t) with
C1(t) ∩ C2(t) = ∅ for all t ∈ [t0, t1]. If now C1(t) shrinks so
that eventually C1(t) = ∅ for all t ≥ t′, where t′ ∈ (t0, t1] is
some constant, while C2(t) 6= ∅ for all t ∈ [t0, t1], then C(t)
is non-empty for all t ∈ [t0, t1]. If, however, x0 ∈ C1(t0),
there exists no solution x : [t0, t1] → Rn to (1) with initial
condition x(t0) = x0 so that x(t) ∈ C(t) for all t ∈ [t0, t1].

We now define the notion of a valid control barrier function.
Definition 3 (Valid Control Barrier Function): A candidate

control barrier function b(x, t) is a valid control barrier
function for (1) if there exists a locally Lipschitz continuous
class K function α such that, for all (x, t) ∈ C(t)× [t0, t1],

sup
u∈U

∂b(x, t)

∂x

T

(f(x) + g(x)u) +
∂b(x, t)

∂t
≥ −α(b(x, t)).

Definition 3 provides a first order condition, while [17,
Definition 1] provides a higher order condition that allows
b(x, t) to have a relative degree greater or equal than one.
Definition 3, however, provides a more general first order con-
dition by using a class K function α. Next, define Su(x, t) :=

{u ∈ U|∂b(x,t)∂x

T
(f(x)+g(x)u)+ ∂b(x,t)

∂t ≥ −α(b(x, t))} and
forward invariance of C(t) over the time interval [t0, t1].

Definition 4 (Forward Invariance): A set C(t) is forward
invariant for a given control law u if for each x0 ∈ C(t0)
there exists a unique solution x : [t0, t1] → Rn to (1) with
x(t0) = x0 such that x(t) ∈ C(t) for all t ∈ [t0, t1].

The following lemma from [15] will be used later.
Lemma 1: Let α : R≥0 → R≥0 be a locally Lipschitz

continuous class K function and η : [t0, t1] → R be an
absolutely continuous function. If η̇(t) ≥ −α(η(t)) for every
t ∈ [t0, t1], and η(t0) ≥ 0, then η(t) ≥ 0 for all t ∈ [t0, t1].

C. Problem Formulation

In this paper, the following STL fragment is considered

ψ ::= > | µ | ¬µ | ψ1 ∧ ψ2 (2a)
φ ::= G[a,b]ψ | F[a,b]ψ | ψ1 U[a,b] ψ2 | φ1 ∧ φ2 (2b)

where ψ1, ψ2 are formulas of class ψ given in (2a), whereas
φ1 and φ2 are formulas of class φ given in (2b). To guarantee
bounded trajectories, we pose the following assumption.

Assumption 1: For the formula φ in (2b), there exists a
C ≥ 0 such that (x, 0) |= φ implies ‖x(t)‖ ≤ C for all t ≥ 0.

Note that the above assumption is not restrictive in practice
and rather desired since a given formula φtask can always be
combined with φAss.1 := G[0,∞)(‖x‖ ≤ C) for an arbitrarily
large C so that φ := φtask ∧φAss.1 satisfies Assumption 1. The
problem under consideration is now given as follows.

Problem 1: Consider the dynamical system in (1) and an
STL formula φ as in (2b). Derive a control law u(x, t) so
that the solution x : R≥0 → Rn to (1) with initial condition
x(0) is such that (x, 0) |= φ.

III. CONTROL APPROACH

In this section, we show that time-varying control barrier
functions can be used to satisfy STL formulas by leveraging
the temporal properties of b(x, t). Our first result follows a
similar proof as in [15] and is in line with the results of [17].

Theorem 1: Assume that u(x, t) ∈ Su(x, t) is locally
Lipschitz continuous in x and piecewise continuous in t and
that the (consequently) unique solutions to (1) are defined over
[t0, t1]. Then the set C(t) is forward invariant for the control
law u(x, t) if b(x, t) is a valid control barrier function.

Proof: Assume that x(t0) ∈ C(t0), which implies that
b(x(t0), t0) ≥ 0. By assumption b(x, t) is a valid control
barrier function and hence u(x, t) ∈ Su(x, t) 6= ∅ results in
a solution x to (1) with initial condition x(t0) that satisfies
ḃ(x(t), t) ≥ −α(b(x(t), t)) for all t ∈ [t0, t1]. Note that the
solution x : [t0, t1] → Rn exists by assumption. Now, let
η(t) := b(x(t), t). Using Lemma 1, it can be concluded that
η(t) ≥ 0 for all t ∈ [t0, t1]. It hence holds that C(t) is forward
invariant since b(x(t), t) ≥ 0 implies x(t) ∈ C(t).

A. Control Barrier Functions for STL Tasks
Time-varying control barrier functions can now be used to

satisfy STL tasks. We first pose the following assumption,
which makes the system (1) feedback equivalent to ẋ = u.

Assumption 2: Let U := Rm and g(x) in (1) be such that
g(x)g(x)

T is positive definite for all x ∈ D.
The main idea is next demonstrated in two examples.
Example 1: Consider the formula φ := F[5,15](‖x −[

10 0
]T ‖ ≤ 5) and let t0 := 0 and t1 := 15. Note

that the corresponding predicate function is h(x) := 5 −
‖x−

[
10 0

]T ‖. Also consider, without loss of generality, an
initial condition x(0) :=

[
0 0

]T
. For the candidate control

barrier function b(x, t) := γ(t) − ‖x −
[
10 0

]T ‖ with
γ(t) := − 5

15 t + 10, it holds that b(x(0), 0) = 0 and hence
x(0) ∈ C(0). If there exists a control law u(x, t) so that the
solution to (1) satisfies b(x(t), t) ≥ 0 for all t ∈ [t0, t1],
e.g., when b(x, t) is a valid control barrier function, then
(x, 0) |= φ follows. Note therefore that γ(t1) = 5 and hence
b(x, t1) = 5 − ‖x −

[
10 0

]T ‖ = h(x). This means that
b(x(t1), t1) ≥ 0 implies that ‖x(t1)−

[
10 0

]T ‖ ≤ 5, which
yields (x, 0) |= φ according to Definition 1.

We note that we later provide a control law u(x, t) so that
the solution to (1) satisfies b(x(t), t) ≥ 0 for all t ∈ [t0, t1].
Further note that b(x, t) is associated with h(x) and ensures
a temporal behavior that leads to satisfaction of φ. In order
to use conjunctions as in the semantics in (2), while at the
same time avoiding nonsmooth analysis as in [15], [16], a
smooth under-approximation of the min-operator is used. For
p candidate control barrier functions bi(x, t), note that

min
i∈{1,...,p}

bi(x, t) ≈ − ln
(p∑

i=1

exp(−bi(x, t))
)
,

which satisfies some useful properties as shown next.
Lemma 2: Consider a conjunction of p candidate control

barrier functions bi(x, t). Then, it holds that

− ln
(p∑

i=1

exp(−bi(x, t))
)
≤ min

i∈{1,...,p}
bi(x, t).

Proof: From [19, p.72], we know that

max
i∈{1,...,p}

ζi ≤ ln
(p∑
i=1

exp(ζi)
)

for ζ1, . . . , ζp ∈ R. By substituting ζi := −bi(x, t) and since
maxi∈{1,...,p} ζi = −mini∈{1,...,p}(−ζi), the result holds.

Lemma 2 is useful for the following reason: let b(x, t) :=
− ln

(
exp(−b1(x, t)) + exp(−b2(x, t))

)
, then b(x, t) ≥ 0

implies b1(x, t) ≥ 0 and b2(x, t) ≥ 0. In other words, the
conjunction operator can be encoded by using the smooth
approximation. This idea is illustrated next.

Example 2: Consider φ := φ1∧φ2 with φ1 := F[5,15](‖x−[
10 0

]T ‖ ≤ 5) and φ2 := G[5,15](‖x −
[
10 5

]T ‖ ≤ 10)

with predicate functions h1(x) := 5 − ‖x −
[
10 0

]T ‖
and h2(x) := 10 − ‖x −

[
10 5

]T ‖. Let again t0 := 0,
t1 := 15, and assume, without loss of generality, that
x(0) :=

[
0 0

]T
. Select the candidate control barrier function

b(x, t) := − ln
(
exp(−b1(x, t)) + exp(−b2(x, t))

)
where

b1(x, t) := γ1(t) − ‖x −
[
10 0

]T ‖ and b2(x, t) :=

γ2(t) − ‖x −
[
10 5

]T ‖ with γ1(t) := −t + 20 and
γ2(t) := 11 exp(−0.4796t) + 9. It holds that b(x(0), 0) ≥ 0,
b1(x, t1) = 5 − ‖x −

[
10 0

]T ‖ = h1(x), and b2(x, t
′) ≤

h2(x) for all t′ ∈ [5, 15]. If there exists a control law
u(x, t) so that the solution to (1) satisfies b(x(t), t) ≥ 0
for all t ∈ [t0, t1], e.g., when b(x, t) is a valid control
barrier function, then (x, 0) |= φ. According to Lemma 2
it follows that b1(x(t1), t1) ≥ 0 and b2(x(t

′), t′) ≥ 0 for all
t′ ∈ [5, 15], which implies that ‖x(t1)−

[
10 0

]T ‖ ≤ 5 and
‖x(t′) −

[
10 5

]T ‖ ≤ 10 for all t′ ∈ [5, 15]. This leads to
(x, 0) |= φ due to the STL semantics in Definition 1.

We next formulate conditions that the function b(x, t) has
to satisfy to account for the semantics of an STL formula φ in
the fragment (2). These conditions on b(x, t) are discussed
in three steps (Step A, B, and C) and it always needs to
hold that b(x, t) is such that b(x(0), 0) ≥ 0. For negations
on predicates ¬µ as in (2a), let the corresponding predicate
function be −h(x). Furthermore, let h1(x), h2(x), h3(x), and
h4(x) correspond to µ1, µ2, µ3, and µ4, respectively.

Step A) Let us investigate single temporal operators (always,
eventually, and until) in (2b) that do not contain conjunctions
in the arguments, i.e., G[a,b]µ1, F[a,b]µ1, and µ1 U[a,b] µ2.
For G[a,b]µ1, select b(x, t) so that b(x, t′) ≤ h1(x) for all
t′ ∈ [a, b] (see Example 2). For F[a,b]µ1, select b(x, t) so that
b(x, t′) ≤ h1(x) for some t′ ∈ [a, b] (see Example 1 and
2). For µ1 U[a,b] µ2, select b(x, t) := − ln

(
exp(−b1(x, t)) +

exp(−b2(x, t))
)

so that b2(x, t′) ≤ h2(x) for some t′ ∈ [a, b]
and b1(x, t

′′) ≤ h1(x) for all t′′ ∈ [a, t′]. Note that the
conditions on b(x, t) for an until operator are a conjunction
of the conditions on b1(x, t) and b2(x, t) for an always and
an eventually operator, respectively.

Step B) Let us now consider single temporal opera-
tors (always, eventually, and until) in (2b) that do contain
conjunctions in the arguments, i.e., G[a,b]ψ1, F[a,b]ψ1, and
ψ1 U[a,b] ψ2 where ψ1 and ψ2 may contain a conjunction
of predicates as in (2a). Assume, without loss of generality,
ψ1 := µ1 ∧ µ2 and ψ2 := µ3 ∧ µ4. For G[a,b]ψ1, select
b(x, t) := − ln

(
exp(−b1(x, t)) + exp(−b2(x, t))

)
so that

b1(x, t
′) ≤ h1(x) and b2(x, t

′) ≤ h2(x) for all t′ ∈
[a, b]. For F[a,b]ψ1, select b(x, t) := − ln

(
exp(−b1(x, t)) +

exp(−b2(x, t))
)

so that b1(x, t
′) ≤ h1(x) and b2(x, t

′) ≤

h2(x) for some t′ ∈ [a, b]. For ψ1 U[a,b] ψ2, select b(x, t) :=
− ln

(∑4
i=1 exp(−bi(x, t))

)
so that b3(x, t

′) ≤ h3(x) and
b4(x, t

′) ≤ h4(x) for some t′ ∈ [a, b] and b1(x, t
′′) ≤ h1(x)

and b2(x, t
′′) ≤ h2(x) for all t′′ ∈ [a, t′].

Step C) Consider conjunctions of temporal operators
as discussed in Step A and B. For instance, consider
(G[a1,b1]ψ1) ∧ (F[a2,b2]ψ2) ∧ (ψ3 U[a3,b3] ψ4). Let b(x, t) :=

− ln
(∑3

i=1 exp(−bi(x, t))
)

where b1(x, t), b2(x, t), and
b3(x, t) are associated with one temporal operator each and
constructed as in Step A and B. Note that the available freedom
in designing b(x, t) according to the above conditions results
in a non-unique constructive procedure. We omit specific con-
struction rules of the functions bi(x, t) due to space limitations
and refer to Examples 1 and 2 instead.

B. A Hybrid Deletion Mechanism to overcome Conservatism

The function b(x, t) obtained in the previous section has the
general form b(x, t) := − ln

(∑p
i=1 exp(−bi(x, t))

)
where

we denote by p the number of functions bi(x, t) that arise
due to the steps A, B, and C. Note that each bi(x, t) with
i ∈ {1, . . . , p} corresponds to either an always, eventually,
or until operator with a corresponding time interval [ai, bi].
However, the function b(x, t) may be overly conservative and
hence not a candidate control barrier function due to a large
number of conjunctions. For instance, consider the formula
φ := F[5,15](‖x‖ ≤ 10)∧G[55,60](‖x−

[
100 100

]T ‖ ≤ 10),
where b1(x, t) and b2(x, t) are associated with the eventu-
ally and always operator, respectively. Clearly, the function
b(x, t) := − ln

(
exp(−b1(x, t)) + exp(−b2(x, t))

)
can not

be a candidate control barrier function since C(t) = ∅ for
all t ≥ 55 when b1(x, t)) is designed as in Example 1
with a decreasing function γ1(t). However, if b(x, t) :=
− ln

(
exp(−b1(x, t))+ exp(−b2(x, t))

)
is considered within

t ∈ [0, 15] and b(x, t) := b2(x, t) is considered for t ∈
[15, 60], then each function can be constructed so that they
are candidate control barrier functions for the intervals [0, 15]
and [15, 60], respectively.

To make the approach less conservative, we hence deactivate
the functions bi(x, t) when they are not needed anymore, i.e.,
when the corresponding temporal operators are satisfied. For
each temporal operator, the associated bi(x, t) is deactivated at
t = bi. The function b(x, t) := − ln

(∑p
i=1 exp(−bi(x, t))

)
is now piecewise continuous in t with switches at exactly those
times where single barrier functions bi(x, t) are deactivated,
hence inducing a switching sequence, which we denote by
{t0 := 0, t1, t2, . . .}. This switching sequence defines a hybrid
time domain as in [20, Chapter 2.2] and justifies the choice of
solutions over [t0, t1] that we have adopted in the beginning.
Note that this switching sequence is known in advance due
to knowledge of [ai, bi]. In other words, at time t ≥ tj the
next switch occurs at tj+1 := argminbi∈{b1,...,bp}ζ(bi, t) where
ζ(bi, t) := bi − t if bi − t > 0 and ζ(bi, t) :=∞ otherwise.

C. Efficient Solutions via Convex Quadratic Programming

Similarly to [12], [13], we now formulate a quadratic
program that renders C(t) forward invariant when b(x, t) is a

valid control barrier function. Therefore, consider

min
û∈U

ûTQû (3a)

s.t.
∂b(x, t)

∂x

T

(f(x) + g(x)û) +
∂b(x, t)

∂t
≥ −α(b(x, t))

(3b)

where Q ∈ Rm×m is a positive semi-definite matrix and
where, for instance, α(r) := r2. This optimization problem is
always feasible if b(x, t) is a valid control barrier function and
needs to be solved in a sampled-data fashion. The optimization
problem is convex and only depends on m decision variables.

The function b(x, t) has a relative degree greater than one
if ∂b(x,t)

∂x

T
g(x) = 0m

T for some (x, t) ∈ C(t) × [t0, t1].
This implies that the constraint (3b) is only satisfied when
∂b(x,t)

∂t

T
f(x) + ∂b(x,t)

∂t ≥ −α(b(x, t)), which may in general

not hold. Note that ∂b(x,t)
∂x

T
g(x) = 0m

T if and only if
g(x)

T ∂b(x,t)
∂x = 0m. It holds that rank(g(x)T)=rank(g(x))=

n due to Assumption 2 and consequently the nullspace of
g(x)

T is empty due to the rank-nullity theorem. This means
that ∂b(x,t)

∂x

T
g(x) = 0m

T if and only if ∂b(x,t)
∂x = 0n.

Therefore, we next pose an assumption on b(x, t) via the set
C(t) to still be able to use the quadratic program in (3).

Assumption 3: For tj ≤ t ≤ tj+1, the set C(t) is either non-
decreasing, i.e., C(t1) ⊆ C(t2) for tj ≤ t1 < t2 ≤ tj+1, or
non-increasing, i.e., C(t1) ⊇ C(t2) for tj ≤ t1 < t2 ≤ tj+1. In
the latter case, it additionally holds that ∂b(x,t)

∂x 6= 0n for all
(x, t) ∈ C(t) \ C(tj+1) × [tj , tj+1], which means that b(x, t)
is only allowed to have critical points in C(tj+1).

We next state the main theorem of this paper.
Theorem 2: Assume that the formula φ as given in (2b) is

encoded in b(x, t) by following the conditions given in Step
A, B, and C in Section III-A (as applied in Examples 1 and
2) and that Assumptions 1 – 3 hold. If b(x, t) is a candidate
control barrier function for each time interval [tj , tj+1], then

u(x, t) :=

−g(x)T

(
g(x)g(x)

T)−1
f(x),

if ∂b(x(t′),t′)
∂x = 0n for some t′ ∈ [tj , t]

û from (3), otherwise

for tj ≤ t < tj+1 leads to (x, 0) |= φ.
Proof: According to the assumptions, b(x, t) is a

candidate control barrier function for each time inter-
val [tj , tj+1]. Note that at switches and by deleting sin-
gle control barrier functions bi(x, t) from b(x, t) :=
− ln

(∑p
i=1 exp(−bi(x, t))

)
, the set C(t) is non-decreasing

at these switches. Hence, if b(x(tj+1), tj+1) ∈ C(tj+1),
then b+(x(tj+1), tj+1) ∈ C+(tj+1) where the superscript
+ indicates the values after the switch. This implies that
it is sufficient to ensure forward invariance of C(t) for
each [tj , tj+1] separately. If then ∂b(x,t)

∂x 6= 0n for all
(x, t) ∈ C(t) × [tj , tj+1], then u(x, t) = û from (3)
renders C(t) forward invariant for [tj , tj+1]. Note therefore
that (3) is always feasible since there always exists a control
input g(x)T

(
g(x)g(x)

T)−1
(−f(x) + v) that leads to the

closed-loop dynamics ẋ = v where v allows full actua-
tion. Hence, b(x, t) is a valid control barrier function for

the time interval [tj , tj+1]. Note also that U := Rm and
that −g(x)T

(
g(x)g(x)

T)−1 is always well-defined due to
Assumption 2. Furthermore, [12, Theorem 3] guarantees that
u(x, t) is locally Lipschitz continuous in x and piecewise
continuous in t and, due to Assumption 1, x(t) will remain
in the compact set {x ∈ D|‖x‖ ≤ C} ensuring solutions
over [tj , tj+1] so that Theorem 1 can be applied. If, however,
∂b(x(t′),t′)

∂x = 0n for some (x(t′), t′) ∈ C(t′) × [tj , tj+1], the
quadratic program in (3) may not be feasible. In this case,
the controller switches to the local control law u(x, t) :=

−g(x)T
(
g(x)g(x)

T)−1
f(x) for all t ∈ [t′, tj+1] so that

ẋ(t) = 0n. This situation, however, only occurs for the two
cases stated in Assumption 3 and hence C(t) is rendered
forward invariant. This follows since x(t′) already fulfills
x(t′) ∈ C(t) for all t ∈ [t′, tj+1], i.e., no more motion is re-
quired, and since u(x, t) = û from (3) rendered C(t) forward
invariant for [tj , t

′). Consequently, the closed loop trajectory
results in (x, 0) |= φ due to the condition on b(x, t) in Section
III-A that are in line with the STL semantics in Definition 1.
Note that at most one control switch occurs within [tj , tj+1]
so that chattering is avoided [21]. Assumption 1 guarantees
complete solutions in the sense of [20, Chapter 2.2].

Remark 2: The second case in Assumption 3, i.e., the fact
that ∂b(x,t)

∂x 6= 0n for all (x, t) ∈ C(t) \ C(tj+1) × [tj , tj+1],
does not allow formulas like φ := G[0,15](‖x−

[
50 50

]T ‖ ≥
15) ∧ F[5,15](‖x −

[
90 90

]T ‖ ≤ 10) since it holds that
∂b(x,t)

∂x = 0n for some (x, t) ∈ C(t) \ C(tj+1) × [tj , tj+1].
At these points, (3) may not be feasible. For the above
formula, this happens for some t ∈ [0, 15] when the state
x(t) lies on a line connecting

[
50 50

]T
and

[
90 90

]T
.

The intuition is that the two temporal operators in φ exert
a force in exactly the opposite directions with the same
magnitude so that ∂b1(x,t)

∂x = −∂b2(x,t)
∂x . The level curves for

this specific example and an appropriately designed candidate
control barrier function are shown in Fig. 1. However, a broad
range of formulas can still be expressed as will be shown
in the simulation section. Example 2 also shows the case
where ∂b(x,t)

∂x = 0n for some (x, t) ∈ C(15) × [5, 15] so
that Theorem 2 can be applied since Assumption 3 still holds.

IV. SIMULATIONS

Consider a team of M := 5 omnidirectional robots,
where each robot is denoted by vi with i ∈ {1, . . . ,M}
and modeled as in [22]. The state of each robot is de-
noted by xi :=

[
pi

T xi,3
]T ∈ R3 where pi :=[

xi,1 xi,2
]T

indicates the robot’s position and where xi,3
indicates the robot’s orientation with respect to the first
coordinate. Next, the states of all robots are stacked into
x :=

[
x1

T . . . xM
T
]T ∈ R3M . We further include a col-

lision avoidance mechanism into the dynamics of each robot

by using f(x) :=
[
f1(x)

T
. . . fM (x)

T
]T
∈ R3M with

fi(x) :=
[
fi,1(x) fi,2(x) 0

]T
where, for i ∈ {1, . . . ,M},

fi,1(x) :=

M∑
j=1,j 6=i

ki
xi,1 − xj,1

‖pi − pj‖+ 0.000001

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

x1

x
2

b(x, 1.2)

−40

−20

0

20

40

Fig. 1: Level curves of b(x, t) at t = 1.2 showing a critical
point at x1 = x2 ≈ 38.

fi,2(x) :=
M∑

j=1,j 6=i

ki
xi,2 − xj,2

‖pi − pj‖+ 0.000001

with ki > 0. Note that f(x) is locally Lipschitz continuous
as required. The dynamics for each robot are now given by

ẋi = fi(x) +

cos(xi,3) − sin(xi,3) 0
sin(xi,3) cos(xi,3) 0

0 0 1

(BT
i

)−1
Riui

= fi(x) + gi(xi)ui

where ui is the angular velocity of the wheels, Ri := 0.02 is

the wheel radius, and Bi :=

 0 cos(π/6) − cos(π/6)
−1 sin(π/6) sin(π/6)
Li Li Li

describes geometric constraints with Li := 0.2 be-
ing the radius of the robot body. By setting g(x) :=

diag
(
g1(x1), . . . , gM (xM)

)
and u :=

[
u1

T . . . uM
T
]T

,
the dynamics in (1) are obtained.

Consider the formula φ := φ1 ∧ φ2 ∧ φ3 ∧ φ4 where
φ1 := F[10,30](‖p1−p2‖ ≤ 10)∧F[25,50](‖p1−

[
50 75

]T ‖ ≤
10)∧ ‖p2 −

[
50 65

]T ‖ ≤ 10)∧F[10,90](‖p1 − p2‖ ≤ 10)∧
‖p1−

[
70 70

]T ‖ ≤ 10), i.e., φ1 requires robots v1 and v2 to
meet within some time intervals, e.g., to collaboratively work
on a task, and also to be at specific locations within some time
intervals for individual tasks. Let φ2 := (‖p3−

[
40 10

]T ‖ ≤
20)U[5,25] |x3,3 − 90| ≤ 10) ∧ F20,50(‖p2 − p3‖ ≤ 15) ∧
G[70,90](‖p3 −

[
50 50

]T ‖ ≤ 10) define collaborative and
individual tasks for robot v3 including requirements on its
orientation. Furthermore, let φ3 := (‖p4 −

[
90 10

]T ‖ ≤
10 ∧ |x4,3 − 135| ≤ 10)U[10,50] (‖p5 −

[
90 10

]T ‖ ≤ 10 ∧
|x4,3− 135| ≤ 10)∧F[50,90](‖p4−

[
60 10

]T ‖ ≤ 10) define
collaborative tasks for robot v4 and v5; φ3 means that robot
v4 is doing a task until robot v5 can take care of this task so
that v4 can move on to its next individual task. The task φ4 :=

G[0,90](‖
[
p1

T p2
T p3

T p4
T
]T − [5010

]T ‖∞ ≤ 50) is
merely a safety task to remain within the workspace.

Fig. 2a shows the robot trajectory and as can be seen, φ is
satisfied. Fig. 2b shows the time evolution of b(x, t) where
jumps occur due to the switching mechanism at the switching

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

v2

v1

v3

v4

v5

x1

x
2

(a) Robot trajectories where the triangles denote the orientation.

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8

9

Time (s)

b(x(t), t)

(b) Control barrier function b(x(t), t).

Fig. 2: Robot trajectories and time evolution of the control barrier function.

times t1 = 25, t2 = 30, and t3 = 50. Simulations have been
performed on a two-core 1, 8 GHz CPU with 4 GB of RAM
and a sampling frequency of 100 Hz. On average, solving (3)
with the MATLAB quadprog function took 5 ms.

V. CONCLUSION

We proposed a computationally-efficient framework for con-
trol synthesis under signal temporal logic tasks. In particular,
we established a link between time-varying control barrier
functions and the semantics of signal temporal logic. The
control barrier functions are designed such that they under-
approximate the predicate functions of the signal temporal
logic task in an appropriate way at some appropriately chosen
points in time. The resulting control law is a switching
controller between a convex quadratic program and a local
feedback control law. In the future, we plan to derive robust
results for the proposed method. Next steps are also to extend
the proposed framework to decentralized multi-agent systems
and to perform experiments. In this paper, sufficient condi-
tions on the control barrier functions were provided without
generically constructing them. Therefore, we plan to present
a general construction procedure in the future that constructs
the control barrier functions explicitly.

REFERENCES

[1] C. Baier and J.-P. Katoen, Principles of Model Checking, 1st ed.
Cambridge, MA: The MIT Press, 2008.

[2] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343–352, 2009.

[3] M. Kloetzer and C. Belta, “Automatic deployment of distributed teams
of robots from temporal logic motion specifications,” IEEE Transactions
on Robotics, vol. 26, no. 1, pp. 48–61, 2010.

[4] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive (1) designs,”
in Proceedings of the International Workshop on VMCAI, Charleston,
SC, 2006, pp. 364–380.

[5] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based
reactive mission and motion planning,” IEEE transactions on robotics,
vol. 25, no. 6, pp. 1370–1381, 2009.

[6] R. Dimitrova and R. Majumdar, “Deductive control synthesis for
alternating-time logics,” in Proceedings of the 14th Int. Conference on
Embedded Software, New Delhi, India, October 2014, p. 14.

[7] O. Maler and D. Nickovic, “Monitoring temporal properties of con-
tinuous signals,” in Proceedings of the International Conference on
FORMATS-FTRTFT, Grenoble, France, September 2004, pp. 152–166.

[8] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in Proceedings of Conference on Decision
and Control, Los Angeles, CA, December 2014, pp. 81–87.

[9] S. Sadraddini and C. Belta, “Robust temporal logic model predictive
control,” in Proceedings of the 53rd Annual Allerton Conference on
Communication, Control, and Computing, Monticello, IL, September
2015, pp. 772–779.

[10] D. Aksaray, A. Jones, Z. Kong, M. Schwager, and C. Belta, “Q-
learning for robust satisfaction of signal temporal logic specifications,”
in Proceedings of the Conference on Decision and Control, Las Vegas,
NV, December 2016, pp. 6565–6570.

[11] K. P. Tee, S. S. Ge, and E. H. Tay, “Barrier lyapunov functions for the
control of output-constrained nonlinear systems,” Automatica, vol. 45,
no. 4, pp. 918–927, 2009.

[12] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2017.

[13] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs with application to adaptive cruise control,” in
Proceedings of the Conference on Decision and Control, Los Angeles,
CA,, December 2014, pp. 6271–6278.

[14] M. Z. Romdlony and B. Jayawardhana, “Stabilization with guaranteed
safety using control lyapunov–barrier function,” Automatica, vol. 66, pp.
39–47, 2016.

[15] P. Glotfelter, J. Cortés, and M. Egerstedt, “Nonsmooth barrier functions
with applications to multi-robot systems,” IEEE control systems letters,
vol. 1, no. 2, pp. 310–315, 2017.

[16] L. Wang, A. D. Ames, and M. Egerstedt, “Multi-objective compositions
for collision-free connectivity maintenance in teams of mobile robots,”
in Proceedings of the Conference on Decision and Control, Las Vegas,
NV, December 2016, pp. 2659–2664.

[17] X. Xu, “Constrained control of input–output linearizable systems using
control sharing barrier functions,” Automatica, vol. 87, pp. 195–201,
2018.

[18] L. Lindemann, C. K. Verginis, and D. V. Dimarogonas, “Prescribed per-
formance control for signal temporal logic specifications,” in Proceed-
ings of the Conference on Decision and Control, Melbourne, Australia,
December 2017, pp. 2997–3002.

[19] S. Boyd and L. Vandenberghe, Convex optimization, 1st ed. New York,
NY: Cambridge university press, 2004.

[20] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical Systems:
modeling, stability, and robustness, 1st ed. Princeton, NJ: Princeton
University Press, 2012.

[21] D. Liberzon, Switching in systems and control, 1st ed. New York, NY:
Springer Science & Business Media, 2003.

[22] Y. Liu, J. J. Zhu, R. L. Williams, and J. Wu, “Omni-directional
mobile robot controller based on trajectory linearization,” Robotics and
Autonomous Systems, vol. 56, no. 5, pp. 461–479, 2008.

