A ROS Package for Human-In-the-Loop Planning and Control under
Linear Temporal Logic Tasks

Robin Baran, Xiao Tan, Peter Varnai, Pian Yu, Sofie Ahlberg, Meng Guo, Wenceslao Shaw Cortez
and Dimos V. Dimarogonas

Abstract— In this paper, we propose a ROS software package
for planning and control of robotic systems with a human-
in-the-loop focus. The software uses temporal logic specifica-
tions, specifically Linear Temporal Logic, for a language-based
method to develop correct-by-design high level robot plans. The
approach is structured to allow a human to adjust the high-level
plan online. A human may also take control of the robot (in a
low-level control fashion), but the software prevents the human
from implementing dangerous behaviour that would violate the
high-level task specification. Finally, the planner is able to learn
human-preferred high-level tasks by tracking human low-level
control inputs in an inverse learning framework. The proposed
approach is demonstrated in a warehouse setting with multiple
robot agents to showcase the efficacy of the proposed solution.

I. INTRODUCTION

In recent years, there has been an increased focus in
human-robot collaborations [1]. The use of robots and au-
tonomous systems alongside humans has reduced ergonomic
injuries in the workplace, while still improving safety and
productivity [1], [2]. A review of existing human-robot col-
laborative methods can be found in [3]. Despite the existing
research in human-robot collaborations, there is a need for
a planning and control framework with “programming-free
robot control” and adaptive/learning abilities that is able to
guarantee safety [3]. Programming-free robot control consists
of gesture, haptic, verbal, or other such input that does not
require skilled personnel to program commands to the robot.
Learning and adaptive abilities refer to the ability of the robot
system to adapt its plan based on human preference.

Linear Temporal Logic (LTL) offers ways to express
complex tasks and planning problems as formulas that can
be interpreted as natural language, and can be used for
example with speech-type commands [4]-[6].Those existing
methods can construct correct-by-design robot motion plans
that satisfy LTL specifications (e.g, coverage, safety). More-
over, humans can be further integrated with the autonomous
system using recently-developed human-in-the-loop (HIL)
features [7]. However the implementation of such temporal

This work was supported by the Swedish Research Council (VR), the
Swedish Foundation for Strategic Research (SSF), the Knut and Alice
Wallenberg Foundation (KAW) and the H2020-EU Research and Innovation
Programme under the GA No. 101016906 (CANOPIES). R. Baran, X.
Tan, P. Varnai, P. Yu, S. Ahlberg, W. Shaw Cortez, and D. V. Dimarog-
onas are with the School of EECS, KTH Royal Institute of Technology,
100 44 Stockholm, Sweden (Email: rbaran, xiaotan, varnai,
piany, sofa, wenscs, dimos@kth.se). M. Guo is with the
Bosch Center for Artificial Intelligence, 71272 Renningen, Germany (Email:
meng.guo2@de.bosch.com)

logic-based planners requires highly trained specialists to
apply the approach to a wide-range of robot applications.

There exist few all-encompassing software packages for
LTL planning. Most toolboxes only provide partial im-
plementations, as they, for example, only convert an LTL
specification into a Biichi automaton [8]. Furthermore, many
existing approaches are tailored to certain robot implementa-
tions such as robot motion (e.g., move from region A to B)
[71, [9]. However task specifications for robots are not solely
restricted to robot motion. For example, mobile robots must
also consider battery levels for re-charging. Other robots such
as robotic manipulators may require plans associated with
assembling and unloading/loading packages, which cannot be
described by simple motion plans. Adapting those methods to
more general implementations would require highly trained
personnel and ultimately reduces the usability and flexibility
of the approach. With the proposed software package, we
aim to bridge the gap between existing theoretical methods
in LTL-based planning and their implementation.

We propose an LTL-based ROS (Robot Operating System)
software package for human-aware planning and control.
The software is highly modular and allows for general
robot states and actions, including those in continuous-time
(e.g., robot motion) and in discrete-time (e.g., pick/drop,
charged/uncharged). Using this software, a human speci-
fies an LTL specification using commands that are close
to natural language, and the planner generates a plan to
satisfy the human’s task. The proposed package contains two
main HIL modalities. First, the software provides a mixed-
initiative control framework that allows humans low-level
remote control of the robots, but prevents violation of the
high-level task to enforce safety. Second, an inverse-learning
algorithm is provided that allows a human (via the mixed-
initiative controller) to alter the high-level plan according
to the human’s preference in a safe manner. Although there
exist many works [10], [11] on robot learning trajectories by
human demonstration, the proposed approach is integrated
with the LTL specifications and focuses on learning human
preference of the high-level plan. The proposed approach is
demonstrated in a multi-robot warehouse scenario.

II. PRELIMINARIES
A. Linear Temporal Logic
An LTL formula over a set of atomic propositions AP is

recursively defined as

pu=true|al iAoz | 20| Op | p1Ups,

where a € AP and () (next), U (until). The Boolean con-
nector disjunction V, and temporal operators ¢ (eventually)
and [(always) can be defined as @1 V po = —(—p1 A
=), QO := TUp and O¢ := —O—¢. LTL formulas are
interpreted over infinite words made of subsets of AP, i.e.,
over (247)¥. The full semantics and syntax of LTL are
omitted here due to space limitations, see e.g., [12].

Definition 1. [13] A nondeterministic Biichi automaton
(NBA) is a tuple B = (S, Sy, 247, 6, F), where

e S is a finite set of states,

e Sp C S is the set of initial states,

o 247 is the input alphabet,

e §:5 x 24F 4 95 ig the transition function, and

e F' C S is the set of accepting states.

An infinite run s of a NBA is an infinite sequence of
states s = sps;1... generated by an infinite sequence of
input alphabets o = ogoy... € (247)%, where 5o € S
and sp11 € 0(sk,0k),Vk > 0. An infinite run s is accepted
by B if and only Inf(s) N F' # 0, where Inf(s) is the set of
states that appear in s infinitely often.

Definition 2 ([9]). A wFTS is a tuple 7; = (Qi, X;, —
,qb, AP;, L, W;) where Q; = {q1,...,qn} is the finite set
of states; XJ; is the set of actions, —;C Q; X X; X @Q; is the
transition function; qf) is the set of initial states; AP; is the
set of atomic propositions for 7;; L; : Q; — 24% is the
labeling function; W; : Q; x 3; x @Q; — RT is the weight
function as cost of transition in —;.

B. Mixed Initiative Controller

The mixed initiative controller (MIC) is a low-level control
scheme, which mixes the human input (e.g., from a joystick)
with the planner input. One instance of this is:

u 2 up(z) + k(x)un(t), (1)

where w,.(x) is the planner input at state z, k(z) € [0,1] is
a smooth function to be designed, and uy(t) is the human
input, which is unknown to the robot. In [7], a MIC is
designed for the navigation of single-integrator dynamics.

C. Robot tasks

The robot is assigned a task ¢, which is expressed as an
LTL formula and is specified with the following structure:

0= Spha'rd A (psoft (2)

hard soft

where ¢ and ¢ are respectively the hard task and
soft task LTL formulas that define the high level task. The
hard task "*"¢ defines specifications that should strictly be
satisfied, such as safety requirements. The soft task (°f*
could include optional tasks for which satisfaction is less
stringent and could be violated if incompatible with the hard
task. Human preference can also affect the enforcement of
the soft task (see Section [[II-D).

III. HUMAN-IN-THE-LOOP PLANNING AND CONTROL
SOFTWARE

We propose an automata-based LTL planning package
within the ROS (Robot Operating System) framework [14].

A. Software Architecture

ROS consists of a node-based architecture within which
the proposed planner is integrated (see Fig. [T). The LTL
(core) planner node computes the plans for each robot
agent based on the LTL specification, the agent model,
and its environment. The agent model is represented as a
weighted finite transition system (WFTS) (see Definition [2)).
The planner node uses the wFTS state from the agent node to
either update the plan or output the next action command to
be executed. Each agent has a specific node to communicate
with the planner node and convert the high level plan to
agent-specific low-level commands.

Separating the LTL core planner from the agent-specific
node facilitates integration on a wide range of robot plat-
forms, including mobile robots and multi-DOF robot ma-
nipulators. The planner relies on a finite Biichi automaton
translation of the LTL specification and outputs high-level
commands (string type) to the agent node. These high-
level commands are converted into low-level inputs for the
specific agent. State monitors then map the agent physical
state to the abstract wFTS state. The associated documenta-
tion provides information on how the LTL formula and the
agent model wFTS are defined with example code [15].

The wFTS is shared as a ROS parameter and accessible
by any ROS node (see Figure[T)) [14]. A plugin functionality
allows additional code to run within the planner node,
providing a modular way of implementing new features,
including the HIL features of Section [[II-D}

ROS Parameters

- Agent model transition system

\ Agent-level

- LTL specifications

/

low-level
LTL Planner |« TS state commands
node action Agent node
command agent
; feedback
Plugins
State monitors
State 1 monitor
State 1 node
State n monitor
State n node

Fig. 1: LTL automaton stack node graph

Example. To illustrate the proposed solution, we introduce
the following example. A differential-drive Turtlebot2 robot,
simply called turtlebot hereafter, can navigate in a grid-
discretized workspace composed of six regions r;, j €
{1,...,6}, see Fig.[2 Tt is tasked with “picking up a package
at region r and delivering it to region 75, while avoiding the
hazardous region r4”. As an optional requirement, the robot
is tasked with “visiting region r3 once it has picked up the

package for a visual inspection before delivery”. These tasks
are cast as LTL formulas as in the next section. A video of
this example can be found at [16].

Fr--=== qgEm———— I'"""i
! i i :
: : : !
101 02 !r03 |
] | : 1
1 1 I :
i i i :
1104 ___ir05___ ir06 __ !

Fig. 2: Turtlebot2 robot (left) on its grid workspace (right)
B. LTL Core & Planner

The core package contains the general planner that is not
agent-specific. The planner node takes as input an LTL task
¢ in the form of (2)), as well as an agent model wFTS.

1) LTL to NBA: First, the hard and soft LTL formulas
herd and @°ft are used to generate the respective NBAs
Byhara and Bsore via the LTL2BA software [8]. Then,
the planner generates a combined Biichi automaton B, :=
Bhara % Bgsose = (5,850,247 6, F) using the safety-
ensured product automaton developed in [17]. As part of this
safety-ensured product automaton, we implement the design
parameter 3 € R>(, which adds a penalty for violating the
soft task. Setting a higher value will help enforcing the soft
task. We note that /3 is dynamic and can be updated online.
The plan is published on a ROS topic, which is further
described in the documentation [15].

2) Agent Model: The agent model consists of a dis-
cretization of the agent’s workspace into regions along with
allowable transitions between regions, and other types of
actions that can be performed (e.g., pick/drop). Recall that
agent modelling is based on the wFTS from Definition [2]

We note that while the previous approach [9] provides
some modularity by separating the physical workspace from
the agent’s action map, that approach is still limited to a
2D motion model and a simple action model. We extend
that work to address multi-dimensional motion models, and
more complex action models for a more general framework.
This is accomplished by combining N € N motion/action
models together via the intersection of wFTSs (see Defini-
tion 3). Guard functions G; are used to identify allowable
transitions between each wFTS. This approach allows for
region-specific actions. We will refer to the ith motion /action
model as the wFTS 7;. The agent model is thus constructed
from the intersection of all wFTS 7;, i € {1,..,N}.

Definition 3. The wFTS intersection is defined by:
D= 71 X 75 X ... X TN = (QP72P7*>P3QOaAP7LP7WP)

where QF = Q1 x Q2 x ... x Qu is the set of states;
vF = Uf\il Y Qo = q1.0 X q2,0 X ... X gn,o is the set
of initial states; where AP = ngl APy; Lp : Qq X
Q2 % . x Qn = 247, LP (g, qn) = UL, Lila:)

is the labelling function, Wp is the weight function, and
—pC QF x P x QF is the transition function where
((q1,92, -1 qN), 0a, (4], G5, s ¢)) €= p if and only if
o i€ [1,2, ,N] S.t. (qi,aa,qg) E—,
o Vj#1i,q; = ¢qj, and
e Gi(q1,q2,...,qN,04) is true, i.e. the guard associ-
ated with the transition is satisfied at state ¢ =
(q1,42,---,qn). Here, the guard function is defined as:

Gi Q1 xXQ2%...x QN xX; = {true, false}.

The ability to combine any type of discretizable state-
space in the agent model (e.g., 3D motion, 6-DoF manipu-
lator configuration, battery state, pick/drop state) allows the
planner to be used with any type of agent as long as the state-
space can be described as a finite transition system. It is im-
portant to note that whatever the combination of 7;, the LTL
planner yields a sequence of actions such that each action is
performed one-at-a-time. Also, by executing one action, we
assume that only one dimensional state changes. This is not
restrictive in general as different 7; describe different aspects
of the robot state (e.g., pose, battery, loaded/unloaded).

Example (Continued). In the turtlebot example, the turtlebot
model WFTS in Fig. [3] is a combination of two individ-
val wFTS: the “region” wFTS with a grid-discretized 2D
workspace and the “load” wFTS. A guard on the “pick”
and “drop” actions restricts these actions to specific regions
and therefore defines a picking station and a delivery station
without the need to include it in the LTL specifications.
Indeed on the combined graph the “pick” transition only
exists in “r1” and the “drop” transition only exists in “r5”.
We note that here we use two individual wFTSs to build our
wFTS intersection for readability. However, our framework
accomodates an arbitrary number of wFTSs.

Thanks to this guard function, the task can be succinctly
expressed as the following hard and soft task LTL specifi-
cations: "4 = (O0loaded) A (OOQunloaded) A (O-ry),
@*oft = OO (loaded A r3) In the hard task, the turtlebot
agent must infinitely often (always eventually) be loaded (i.e.
pick up the package), infinitely often (always eventually)
be unloaded (i.e. deliver the package) and always avoid
(always not) region 74. The soft task requires the turtlebot to
infinitely often visit region r3, while loaded with the package
to exemplify a package inspection point for quality control
that is optional in the high level task.

3) Product Automaton & Plan Generation: The planner
node uses the previously obtained NBA B, and the wFTS
intersection D to generate a discrete plan. The code for plan
generation is based on previous work [18]. A product Biichi
automaton (PBA) Ap is defined as a tuple:

Ap =B, ® D = (Sp,dp,Sp,0, Fp, Wp)

where Sp = S xQF’; transition relation ({s, ¢), (s’,q')) € dp
iff 30 € §,5" € 6(s,0) and 3o, € BT, (q,04,q") €—p; the
set of initial states Spg = Sy x Qo; the set of accepting
states Fp = (F x QF); the weight function Wp : dp —

Region transition system

Self-loop on each node
but not included in
visual representation

Load transition system
drop, LTL guard: “r5”
@

] pick, LTL guard: “r1”
r4, loaded - rl, loaded

TATe T
O ° O o
3|48 s (|l8
=) =] — (=2} o
ﬂ e/
15, loaded r2, loaded
-

©
=

rl, unloaded

r2, unloaded

«Q
=]
=
o
-
o

=]
=
o
o

r3, unloaded

goto_r3

Combined transition system

Fig. 3: Turtlebot combined transition system

Rt Wp((s,q),(s',¢")) = Wp(q,q'). From this PBA, we
can find an optimal run and project it back to the wFTS
intersection D using model-checking methods [19].

Accepting runs have the following prefix-suffix structure:
rp = Po,p1- Pk(Pry1 PnPr)”, where po € Sppo
and p, € Fp. The output word has two distinct parts: a
finite prefix part that is executed only once from the initial
state po to an accepting state p; and a suffix part that is
repeated infinitely from the accepting state py, to itself [19].
Additionally, the optimal accepting run minimizes a cost
function based on transition weights. A design parameter
v € Ry¢ adds weight on the cost of the suffix. A higher
value for ~y will therefore favor accepting runs with shorter
suffixes. We refer to [17] for more details.

The optimal accepting run has an associated input word,
i.e., an action sequence, for the agent to execute to satisfy its
specifications. This plan is also in the prefix-suffix structure.
The planner node keeps track of the execution of the plan
and outputs the next action command to the agent node.

Example (Continued). Following with our turtlebot example
(see [16] for reference), for the parameters 8 = 10, v = 10
and initial condition zp o = (rl,unloaded), the planner
outputs the following plan: prefix: [pick, gotor2], suffix:
[goto_rb, drop, goto_r2, goto_rl, pick, goto_r2]. The turtle-
bot will execute the prefix once, which consists of picking

up the package (while in r1) and moving to region ro. It
will then repeat the suffix in an infinite loop, i.e., go to
region 73, drop the package, go to region 7y, go to region 71,
pick up the package, go to region ro, and so forth. Notice
in [16] that the low [value causes the soft task not to
be fulfilled. Indeed region r3 is never visited in this action
sequence. Increasing 3 sufficiently (e.g., we set 5 = 1000)
will enforce the soft task and result in the following plan:
prefix: [pick, gotor2], suffix: [gotor3, gotor2, goto_rs,
drop, goto_r2, goto_rl, pick, gotor2]. Now region rs is
visited while loaded, satisfying the soft task.

C. Agent-level Software

The agent-level nodes (see Fig. [T)) are agent-specific (or
even scenario-specific). The agent node is in charge of
interpreting the action command (of string type) and
sending the appropriate low-level commands to the physical
system. We denote by the low-level control u,, € R the
action to be implemented in the transition —; for m; € N
and ¢ € {1,..., N}. Additionally, state monitors (working as
independent nodes or integrated within the agent node) track
the physical system configurations and relate them to states
in the respective 7;. The agent node then aggregates these
states to a TS state and publishes it to the planner node.

A few “standard” state monitors (2D pose regions, 6-DoF
joint space regions) are included in the software package for
convenience. Code for different types of agents is also pro-
vided (holonomic Nexus robot, differential-drive Turtlebot2,
HEBI 6-DoF manipulator).

Example (Continued). The turtlebot can navigate in a 2D
plane with discretized regions and pick/drop a package.
The navigation action goto_region is converted to a velocity
command by the agent node and the default ROS turtlebot
navigation stack, and the robot position is mapped to a region
r; of the workspace by the 2D region state monitor. In a
similar manner, the pick and drop actions are themselves con-
verted by the agent-node to more complex low-level action
sequences involving all the steps necessary for transporting
the package. We note that the use of the ROS navigation
stack to convert the action to low-level velocity command
is specific to the turtlebot and other agent types may use
different nodes. The proposed software applies to general
systems and is agnostic to the low-level implementation.

D. Human-In-the-Loop and Inverse Reinforcement Learning

Our software implementation includes two HIL features:
MIC and inverse reinforcement learning (IRL) [7]. The MIC
mixes the human input and planner input without violating
the hard task specifications. The IRL feature allows the agent
to learn the human preference by satisfying or neglecting the
soft task according to the run executed by the human.

1) MIC: The MIC ensures that the hard task @pqrq i
being respected at all time. The violation of the hard task
occurs if the agent enters a PBA state, called a frap state,
that prevents the hard task from being fulfilled. Trap states
are PBA states from which the Biichi acceptance condition
cannot be fulfilled, i.e., states that cannot reach accepting

states that appear infinitely often. The set of all trap states is
denoted O;. In general, a distance metric is required to track
the proximity of the current state to the trap state set O;. The
definition of such a distance metric and the associated mixed-
initiative controller is system- and 7;-specific. For instance,
the mixed initiative navigation controller proposed in [7]
guarantees that the single-integrator system never reaches a
trap state no matter what human input is provided.

In addition to the mixed initiative navigation controller in
[7], we further define a MIC for the wFTSs (e.g., the load
transition system in Fig. [3). The MIC is given by:

, , /
uk(2F p,0,) 2 {“: if (p,p’) € 6p and p’' ¢ O,

i

. 3)
otherwise,

where k£ € N denotes the discrete time step and ¢ € N
corresponds to 7; of D, p,p’ are states in the PBA Ap,
up, is the human input and u,’i is the autonomous control
command at time step k.

This MIC feature is implemented in the software (see Fig.
through an additional mixed-initiative node that takes in
the low-level commands and human inputs, and outputs the
mixed commands. According to a 7;-specific distance metric,
the monitoring node provides both the “closest” state and the
distance to this state. In addition, the planner node offers a
ROS service to check if a transition system state is a trap
state via its HIL plugin. This modular approach facilitates in-
tegration of other mix-initiative controllers based on different
dynamics by simply updating the mixed-initiative node.

Example (Continued). Both types of mixed-initiative con-
trollers ((I) and (3)) can be used with the turtlebot. The
high-level goto_region command is converted to a velocity
command via the default ROS navigation stack. The human
controls the turtlebot by sending velocity commands via
joystick. These two control commands are mixed in a similar
manner in [7]. As a result, the human will have shared control
with the planner unless the robot approaches the hazardous
region r4. In addition, the human can command the pick and
drop actions at the push of a button, but this command is
only valid when the robot is in the regions r; or 75, as the
pick/drop actions are restricted to these regions (see Fig. [3).
We note that the commands are sent through a joystick in
this example but the proposed software accepts any inputs
that can be converted to a ROS topic.

2) IRL: The IRL plugin allows the planner to learn the
human preference regarding the satisfaction of the soft task.
The IRL algorithm adapts to human preference by adjusting
B (the weight determining the priority of satisfying the
soft constraints). The adaptation of g is dependent on the
resulting path the robot takes as a result of the low-level
human input implemented via the mixed-initiative controller.
The combination of the mixed-initiative control law and the
IRL algorithm allows for safe learning of human preference.
Furthermore, the IRL algorithm is only dependent on the
robot path, and not on the robot dynamics, making the
approach applicable to a wide-range of systems. The details
of the IRL algorithm can be found in [7].

LTL Planner teaching trigger

node
IRL plugin 44

trap state
check service

Trap state
check plugin i

human input

action

low-level
command,

A
TS state

commands

}

HIL MIC node

Agent node

closest

state mixed

commands
State monitor |

node KA;ent

agent
feedback

state

Agent-level

Fig. 4: HIL with Inverse Reinforcement Learning node graph

The IRL feature is implemented in a plugin of the LTL
planner as shown in Fig.] An external input triggers the
teaching phase, wherein the agent runs are recorded. The
trigger signal is sent using a ROS topic and can therefore be
linked to any interface. In the teaching phase, the human
may demonstrate his/her preference by sending low-level
commands to the agents, in a MIC manner (Section [[II-D.T).
The recorded runs are then used for updating 3, with which
a new plan is constructed to satisfy/negate the soft task.

Example (Continued). Let’s consider a case where the initial
[is too small for the soft task to be in the plan, i.e, 5 = 10:
the turtlebot does not go to 73 after picking. If, during the
run, the human drives the turtlebot to 3 while being loaded,
the soft task is executed. In this case, the resulting robot path
is used by the IRL algorithm to update the value of 5. With
a sufficient large (3, re-planning yields a plan with the soft
task being satisfied. Similarly, the human could negate the
soft task by using the mixed-initiative controller to drive the
turtlebot away from r3 while loaded.

IV. MULTI-AGENT HARDWARE DEMONSTRATION

In this section we present a demonstration of the soft-
ware in a multi-agent setup. The multi-agent demonstration
exemplifies a factory packaging station where packages are
assembled and transported for shipping. Humans assemble
the packages, while the robots, i.e. the nexusbots (holonomic
mobile robots), Hebi arm (a 6-DOF robot manipulator), and
turtlebot, transport the package to a shipping station.

The demonstration setup is shown in Figure 5] For brevity,
we refer to the documentation [20] for the exact definitions
of each agent’s wFTS model. The nexusbots are tasked
with transporting assembled packages to the delivery region,
while remaining inside the workspace. The nexusbots cannot
leave the delivery region until the Hebi arm has confirmed
that it has picked up the package. The nexusbots must also
await confirmation from the human that a package is ready
for delivery. We note that low level collision avoidance is
implemented to prevent collisions between the nexusbots.
The Hebi arm is tasked with picking up a package from a

nexusbot only when a nexusbot is in the delivery region.
Once the Hebi arm (via an electromagnet) picks up the
package, it will transport the package to the drop region
only if the turtebot is awaiting delivery. When no pick-
up/drop-off task is being executed, the Hebi arm waits in
a stand-by configuration. Finally, the turtlebot is tasked with
transporting the package from the Hebi arm only once the
Hebi arm has confirmed that the package has been loaded
onto the turtlebot. Once loaded, the turtlebot must avoid
obstacles, while transporting the package to the human. Once
the human confirms the package is delivered, the robot will
return to the pick-up region and wait for a new package from
the Hebi arm. Finally, the turtlebot is tasked with re-charging
whenever its battery levels are low. When low battery is
detected, the turtlebot must return to the charging station
until its batteries are charged, and then resume the transport
task. We note that the wFTS model and agent tasks are
constructed to prevent collisions between all heterogeneous
agents and each agent does not require knowledge of the
other agents to complete the task.

In [21], a time-lapse of the entire scenario is shown
including the packages being assembled and transported. At
time 07:58, a human operator needs to change the high level
plan to inspect the turtlebot package. The human activates
the teaching trigger via joystick and uses the MIC to navigate
the turtlebot to satisfy the soft task. The turtlebot learns that
the human wishes to satisfy the soft task via the IRL and the
new plan ensures the package enters the inspection site.

Human
worker 3

turtlebot
charging
station

turtlebot|
delivery
station

nexus
assembly

line \

Human
worker 1]

Human @
worker 2 E

!
I

[N e ——
1 nexus
1 delivery
1 station

——
turtlebot
pickup
station

———-I.———i———-l.———-
ey

——
visual
inspection
/Al region

Fig. 5: Factory setting demonstration

HEBI Robotics
manipulator
table

V. CONCLUSION

In this paper, we presented a ROS software package for
robot planning and control with HIL features. The software
allows humans to define a high-level task (composed of a
hard and soft task) in the form of LTL specifications. The
software allows for general descriptions of a robot’s motion
and action models and provides a correct-by-design plan to
satisfy the high level tasks. The HIL features include mixed-
initiative control to allow a human low-level control of the

robot, while always respecting the hard task. Furthermore,
an inverse reinforcement learning plugin is provided so that
the robot can adapt the high level plan to satisfy human-
preference. Future work consider multi-modal human inputs
and multiple human-preferred soft task specifications.

REFERENCES

[1] A. Cherubini, R. Passama, A. Crosnier, A. Lasnier, and P. Fraisse,
“Collaborative manufacturing with physical human—robot interaction,”
Robotics and Computer-Integrated Manufacturing, vol. 40, pp. 1-13,
2016.

[2] J. Kriiger, T. K. Lien, and A. Verl, “Cooperation of human and
machines in assembly lines,” CIRP Annals, vol. 58, no. 2, pp. 628—
646, 2009.

[3] L. Wang, R. Gao, J. Vincza, J. Kriiger, X. V. Wang, S. Makris, and
G. Chryssolouris, “Symbiotic human-robot collaborative assembly,”
CIRP Annals, vol. 68, no. 2, pp. 701-726, 2019.

[4] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “From structured
english to robot motion,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2007, pp. 2717-2722.

[5] H. Kress-Gazit and G. J. Pappas, “Automatically synthesizing a plan-
ning and control subsystem for the darpa urban challenge,” in /EEE
International Conference on Automation Science and Engineering,
2008, pp. 766-771.

[6] P. Schillinger, S. Garcia, A. Makris, K. Roditakis, M. Logothetis,
K. Alevizos, W. Rei, P. Tajvar, P. Pelliccione, A. Argyros, K. J.
Kyriakopoulos, and D. V. Dimarogonas, “Adaptive heterogeneous
multi-robot collaboration from formal task specifications,” 2021, to
be published.

[7] M. Guo, S. Andersson, and D. V. Dimarogonas, ‘“Human-in-the-loop
mixed-initiative control under temporal tasks,” in IEEE International
Conference on Robotics and Automation, 2018, pp. 6395-6400.

[8] D. Oddoux and P. Gastin, “Ltl 2 ba : fast translation from It
formulae to biichi automata.” [Online]. Available: http://www.Isv.fr/
~gastin/ItI2ba/

[9] M. Guo, K. H. Johansson, and D. V. Dimarogonas, “Motion and
action planning under 1tl specifications using navigation functions and
action description language,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems:, 2013, pp. 240-245.

[10] P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal, “Online
movement adaptation based on previous sensor experiences,” in 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2011, pp. 365-371.

[11] I. Havoutis and S. Calinon, “Learning assistive teleoperation behaviors
from demonstration,” 10 2016, pp. 258-263.

[12] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[13] J. R. Biichi, “On a decision method in restricted second order
arithmetic,” in The Collected Works of J. Richard Biichi. Springer,
1990, pp. 425-435.

[14] Stanford Artificial Intelligence Laboratory et al., “Robotic operating
system.” [Online]. Available: https://www.ros.org

[15] R. Baran, M. Guo, X. Tan, P. Varnai, and W. S.
Cortez, “Itl"automaton core.” [Online]. Available: https://github.com/
KTH-DHSG/Itl_automaton_core

[16] R. Baran, X. Tan, P. Varnai, P. Yu, S. Ahlberg, M. Guo, W. Shaw
Cortez, and D. V. Dimarogonas. A human-in-the-loop, Itl planning
and control ros package - turtlebot example demonstration. Youtube.
[Online]. Available: https://youtu.be/9juAhYtq7aw

[17] M. Guo and D. V. Dimarogonas, ‘“Multi-agent plan reconfiguration
under local 1tl specifications,” The International Journal of Robotics
Research, vol. 34, no. 2, pp. 218-235, 2015.

[18] S. L. Smith, J. Tamov4, C. Belta, and D. Rus, “Optimal path planning
for surveillance with temporal-logic constraints,” The International
Journal of Robotics Research, vol. 30, no. 14, pp. 1695-1708, 2011.

[19] C. Belta, B. Yordanov, and E. A. Gol, Formal Methods for Discrete-
Time Dynamical Systems. Springer-Verlag GmbH, Mar. 2017.

[20] R. Baran, M. Guo, X. Tan, P. Varnai, and W. S. Cortez,
“Coin ms4 factory demonstration.” [Online]. Available: https:
//github.com/KTH-DHSG/coin-ms4_demo

[21] R. Baran, X. Tan, P. Varnai, P. Yu, S. Ahlberg, M. Guo, W. Shaw
Cortez, and D. V. Dimarogonas. A human-in-the-loop, 1tl planning
and control ros package - factory setting demonstration. Youtube.
[Online]. Available: https://youtu.be/Gd-rqX040dU

http://www.lsv.fr/~gastin/ltl2ba/
http://www.lsv.fr/~gastin/ltl2ba/
https://www.ros.org
https://github.com/KTH-DHSG/ltl_automaton_core
https://github.com/KTH-DHSG/ltl_automaton_core
https://youtu.be/9juAhYtq7aw
https://github.com/KTH-DHSG/coin_ms4_demo
https://github.com/KTH-DHSG/coin_ms4_demo
https://youtu.be/Gd-rqX04OdU

	Introduction
	Preliminaries
	Linear Temporal Logic
	Mixed Initiative Controller
	Robot tasks

	Human-in-the-Loop Planning and Control Software
	Software Architecture
	LTL Core & Planner
	LTL to NBA
	Agent Model
	Product Automaton & Plan Generation

	Agent-level Software
	Human-In-the-Loop and Inverse Reinforcement Learning
	MIC
	IRL

	Multi-Agent Hardware Demonstration
	Conclusion
	References

