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a b s t r a c t 

The goal of this paper is to define abstractions for multi-agent systems with feedback interconnection 

in their dynamics. In the proposed decentralized framework, we specify a finite or countable transition 

system for each agent which only takes into account the discrete positions of its neighbors. The dynamics 

of each agent consist of a feedback component which can guarantee certain system and network require- 

ments and induces the coupled constraints, and additional input terms, which can be exploited for high 

level planning. In this work, we provide sufficient conditions for space and time discretizations which 

enable the abstraction of the system’s behavior through a discrete transition system. Furthermore, these 

conditions include design parameters whose tuning provides the possibility for multiple transitions, and 

hence, the construction of transition systems with motion planning capabilities. 
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. Introduction 

High level task planning for multi-agent systems constitutes

n active area of research which lies in the interface between

omputer science and modern control theory. A challenge in

his new interdisciplinary direction constitutes the problem of

efining appropriate abstractions for continuous time multi-agent

ontrol systems, which can be used as a tool for the analysis and

ontrol of large scale systems and the synthesis of high level plans

25,26] . Robot motion planning and control constitutes a central

eld where this line of work is applied [11,14] . In particular, the

se of a suitable discrete system’s model allows the automatic

ynthesis of discrete plans that guarantee satisfaction of the high

evel specifications. Then, under appropriate relations between the

ontinuous system and its discrete analogue, these plans can be

onverted to low level primitives such as sequences of feedback

ontrollers, and hence, enable the continuous system to implement

he corresponding tasks. Such tasks in the case of multiple mobile

obots in an industrial workspace could include for example the

ollowing scenario. Robot 1 should periodically visit regions A , B ,

hile avoiding C and after collecting an item of type X from robot

 at location D , store it at location E . 

In order to synthesize high level plans, it is required to spec-

fy an abstraction of the original system, namely a system that

reserves some properties of interest of the initial system, while
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gnoring detail. Results in this direction for the nonlinear single

lant case have been obtained in the papers [30] and [42] , where

he notions of approximate bisimulation and simulation are ex-

loited for certain classes of nonlinear systems, under appropriate

tability, and completeness assumptions, respectively. The notion

f bisimulation, has its origin in computer science [5] , and guaran-

ees that if the initial system and its abstraction are bisimilar, then

he task of checking feasibility of high level plans for the origi-

al system reduces to the same task for its abstraction and vice

ersa. Bisimulation relations between transition system models of

iscrete or continuous time linear control systems with finite affine

bservation maps were explicitly characterized and constructed in

29] , providing also a generalization of the notion of state space

quivalence between continuous time systems [13] . Another ab-

traction tool for a general class of systems is the hybridization ap-

roach [4] , where the behavior of a nonlinear system is captured

y means of a piecewise affine hybrid system on simplices. Mo-

ion planing techniques for the latter case have been developed in

he recent works [15,16] , which are also based on the abstraction

nd controller synthesis framework provided in [20,21] , and fur-

her studied in [9] . Other abstraction techniques for nonlinear sys-

ems include [33] , where discrete time systems are studied in a be-

avioral framework, the sign based abstraction methodology intro-

uced in [40] , which is based on Lie-algebraic type conditions and

1] , where box abstractions are studied for polynomial and other

lasses of systems (for a literature survey on the subject see also

he monograph [38] ). Furthermore, certain of the aforementioned
rved. 
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approaches have been extended to switched [17,18] and networked

control systems [41] . 

In this work, we focus on single integrator continuous time

multi-agent systems and consider dynamics consisting of feed-

back terms, which induce the coupled constraints and additional

bounded input terms, which we call free inputs and provide the

ability for high level planning. The feedback interconnection be-

tween the agents can represent internal dynamics of the system, or

alternatively, a control design guaranteeing certain system proper-

ties (e.g., network connectivity or collision avoidance), which ap-

pears often in the multi-agent literature. The results of this pa-

per generalize our recent work [6] , where sufficient conditions for

well posed abstractions of the multi-agent system are derived for

the case where the agents’ workspace is R 

n . A well posed abstrac-

tion refers to a partition of the workspace into cells and the selec-

tion of a time step, which provide for each agent a discrete model

with at least one outgoing transition from each state. The exten-

sion in this work is twofold. First, the results on well posed space

and time discretizations in [6] , are now valid when the agents’

workspace is a general domain D of R 

n , provided that D is in-

variant for the dynamics of the system. Also, the corresponding

framework is extended for motion planning, and sufficient condi-

tions are provided which guarantee that each agent can perform

multiple transitions from each initial discrete state. It is noted that

compositional approaches for symbolic models of interconnected

systems have been studied recently in [12,28,31,32,34,35,39] . How-

ever, Refs. [12,31,32,39] are focused on discrete time systems and

require in most cases that the subsystems satisfy certain small-gain

criteria. For the continuous time case, the approach in [28] lever-

ages monotonicity of the dynamics and an assume guarantee rea-

soning for compositional synthesis, whereas in [34,35] , the authors

are focused on the construction of lower dimensional continuous

control systems and thus, of an infinite state space, with explicit

sufficient conditions provided in the linear case. Thus, the tech-

niques of the aforementioned works are not in general applicable

for the derivation of finite abstract models for the systems consid-

ered in this paper, where the assumptions on the interconnection

terms are global Lipschitz continuity and boundedness. Finally, we

note that the transitions of the discrete models are realized by con-

trol laws which navigate each agent from all points in its initial cell

to a common point in its successor cell, which in part relates to the

notion of In-Block Controllability [22, Definition 3.1] , that has been

introduced in [10] and explicitly characterized in the recent papers

[22,23] . 

The rest of the paper is organized as follows. Basic notation and

preliminaries are introduced in Section 2 . Section 3 is devoted to

the formulation of the problem and motivates the control design

that will be utilized for the derivation of the symbolic models. In

Section 4 , we define well posed abstractions for single integrator

multi-agent systems by means of hybrid feedback controllers and

prove that the latter provide solutions consistent with the design

requirement on the system’s free inputs. Section 5 is devoted to

specific properties of the control laws that realize the transitions of

the proposed discrete models. In Section 6 we quantify space and

time discretizations which provide transition systems with motion

planning capabilities. Section 7 describes how the results can be

utilized for control synthesis under high level specifications. The

framework is illustrated through an example in Section 8 including

simulation results. Finally, we conclude and indicate directions of

further research in Section 9 . 

2. Preliminaries and notation 

We use the notation | x | for the Euclidean norm of a vector x ∈
R 

n . For a subset A of R 

n , we denote by cl( A ), int( A ) and ∂A its clo-

sure, interior and boundary, respectively, where ∂A := cl( A ) �int( A ).
Please cite this article as: D. Boskos, D.V. Dimarogonas, Decentralized
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iven R > 0 and x ∈ R 

n , we denote by B ( R ) the closed ball with

enter 0 ∈ R 

n and radius R , namely B (R ) := { x ∈ R 

n : | x | ≤ R } and

 (x ; R ) := { y ∈ R 

n : | x − y | ≤ R } . For two nonempty sets A, B ⊂ R 

n

heir Minkowski sum is given as A + B := { x + y : x ∈ A, y ∈ B } . Also,

or a nonempty set A ⊂ R 

n its diameter is defined as diam (A ) :=
up {| x − y | : x, y ∈ A } . Given a measurable subset A of R 

n we de-

ote by Vol( A ) its Lebesgue measure (volume) and by β(n ) :=
ol (B ( 1 2 )) the volume of a ball with diameter 1 in R 

n . For a

eal number a ∈ R ≥0 , we use the notation � a � for its ceiling, i.e.,

 a � := min { n ∈ N : a ≤ n } , under the convention that 0 / ∈ N . Finally,

he cardinality of a set X is denoted by # X . 

Consider a multi-agent system with N agents. For each agent

 ∈ N := { 1 , . . . , N} we use the notation N i for the set of its neigh-

ors and N i := # N i for its cardinality. We also consider an ordering

f the agent’s neighbors which is denoted by j 1 , . . . , j N i , and define

he N i -tuple j(i ) = ( j 1 , . . . , j N i ) . Whenever it is clear from the con-

ext, the argument i in the latter notation will be omitted. Given

n index set I and an agent i ∈ N with neighbors j 1 , . . . , j N i ∈ N ,

efine the mapping pr i : I N → I N i +1 which assigns to each N -tuple

(l 1 , . . . , l N ) ∈ I N the N i + 1 -tuple (l i , l j 1 , . . . , l j N i 
) ∈ I N i +1 , i.e., the in-

ices of agent i and its neighbors. 

We proceed by providing a formal definition for the notion of a

ransition system (see for instance [5,29,30] ). 

efinition 2.1. A transition system is a tuple T S := (Q, Act, −→ ,

, H) , where: 

• Q is a set of states. 

• Act is a set of actions. 

• −→ is a transition relation with −→⊂ Q × Act × Q . 

• O is a set of outputs. 

• H : Q → O is an output map. 

The transition system is said to be finite, if Q and Act are fi-

ite sets. We also use the (standard) notation q 
u −→ q ′ to denote an

lement (q, u, q ′ ) ∈ −→ . The transition system is called determinis-

ic if for each q ∈ Q and u ∈ Act , q 
u −→ q ′ and q 

u −→ q ′′ implies that

 

′ = q ′′ . When no output set and map are specified, we will refer

o a transition system TS as a triple (Q, Act, −→ ) . 

efinition 2.2. Consider the transition systems T S a :=
(Q a , Act a , −→ a , O a , H a ) and T S b := (Q b , Act b , −→ b , O b , H b ) , with

 a = O b . A relation R ⊂ Q a × Q b is a simulation relation from TS a 
o TS b if the following three conditions hold: 

(S1) For every q a ∈ Q a , there exists q b ∈ Q b with (q a , q b ) ∈ R . 

(S2) For every (q a , q b ) ∈ R it holds that H a (q a ) = H b (q b ) . 

(S3) For every (q a , q b ) ∈ R and q a 
u a −→ q ′ a , there exists q b 

u b −→ q ′ 
b

such that (q ′ a , q ′ b ) ∈ R . 

. Problem formulation 

In this section we provide the agents’ dynamic models, describe

he main requirements of their discrete representations, and pro-

ide the control laws which enable the continuous system to im-

lement the discrete transitions. 

.1. Agent dynamics 

We focus on multi-agent systems with single integrator dynam-

cs 

˙ 
 i = f i (x i , x j ) + v i , i ∈ N . (3.1)

The dynamics of each agent are decentralized and consist of a

eedback term f i ( · ), which depends on i ’s state x i and the states

f its neighbors, which we compactly denote by x j (= x j(i ) ) :=
 abstractions for multi-agent systems under coupled constraints, 
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Sli xi

Slj1xj1

Slj2
xj2Sl′i

System (i):
ẋi=fi,(i)(xi,xj1 ,xj2) + vi,(i)

System (ii):
ẋi=fi,(ii)(xi,xj1 ,xj2) + vi,(ii)

Sli xi

Slj1xj1

Slj2
xj2

xi(δt) xi(δt)

Fig. 1. Illustration of a space-time discretization which is well posed for system (i) 

but non-well posed for system (ii). 
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(x j 1 , . . . , x j N i 
) (see Section 2 for the notation j ( i )), and an addi-

ional input term v i , which we call free input. We assume that

or each i ∈ N it holds x i ∈ D where D is a domain of R 

n and that

ach f i : D 

N i +1 → R 

n is locally Lipschitz. We also assume that the

eedback terms f i ( · ) are globally bounded, namely, there exists a

onstant M > 0 such that 

 f i (x i , x j ) | ≤ M, ∀ (x i , x j ) ∈ D 

N i +1 . (3.2)

Furthermore, we consider piecewise continuous free inputs v i 
hat satisfy the bound 

 v i (t) | ≤ v max , ∀ t ≥ 0 , i ∈ N . (3.3)

The coupling terms f i ( x i , x j ) are encountered in a large set of

ulti-agent protocols [27] , including consensus, connectivity main-

enance, collision avoidance and formation control. In addition,

3.1) may represent internal dynamics of the system as for instance

n the case of smart buildings (see e.g., [2] ), where the tempera-

ure T i , i ∈ N of each room evolves according to ˙ T i = 

∑ 

j∈N i a i j (T j −
 i ) + v i , with a ij representing the heat conductivity between rooms

 and j and v i the heating/cooling capabilities of the room. In the

ubsequent analysis, it is assumed that the maximum magnitude of

he feedback terms is higher than that of the free inputs, namely,

hat 

 max < M. (3.4) 

This assumption is motivated by the fact that we are primar-

ly interested in maintaining the property that the feedback is de-

igned for, and secondarily, in exploiting the free inputs in order to

ccomplish high level tasks. A class of multi-agent systems of the

orm (3.1) which justifies this assumption has been studied in our

ompanion work [7,8] . In particular, sufficient conditions are pro-

ided, which guarantee both connectivity of the network and for-

ard invariance of the system’s trajectories inside a given bounded

omain, for an appropriate selection of v max in (3.3) which neces-

itates v max to satisfy (3.4) . The latter forward invariance property

s formally stated in the Invariance Assumption (IA) below, which

e assume that the multi-agent system (3.1) satisfies for the rest

f the paper. 

(IA) For every initial condition x (0) ∈ D 

N and any piecewise

ontinuous input v = (v 1 , . . . , v n ) : R ≥0 → R 

Nn satisfying (3.3) , the

unique) solution of system (3.1) is defined and remains in D 

N for

ll t ≥ 0. 

It is noted that this assumption is always satisfied for a for-

ard complete system when D = R 

n . Recall that system (3.1) is

orward complete (see e.g., [3] ) if for each initial condition in

 

Nn and each measurable locally essentially bounded input v =
(v 1 , . . . , v n ) : R ≥0 → R 

Nn , its solution exists for all positive times.

n addition, due to the above bounds on the dynamics and the

ree input terms, system (3.1) is forward complete when D = R 

n .

inally, when D is bounded, as is the case in [8] , a finite partition

f the workspace will lead to a transition system which captures

he behavior of the continuous system through a finite number of

tates. 

.2. Discretization requirements 

In what follows, we consider a cell decomposition of the state

pace D (which can be regarded as a partition of D ) and a time

tep δt > 0. We will refer to this selection as a space and time dis-

retization. For the definition of a cell decomposition we adopt a

odification of the corresponding definition from [19, p 129-called

ell covering] . 

efinition 3.1. Let D be a domain of R 

n . A cell decomposition S =
 S l } l∈I of D , where I is a finite or countable index set, is a family

f nonempty connected sets S l , l ∈ I, such that sup { diam (S l ) , l ∈
} < ∞ , int (S l ) ∩ int (S ˆ ) = ∅ for all l � = ̂

 l and ∪ l∈I S l = D . 

l 

Please cite this article as: D. Boskos, D.V. Dimarogonas, Decentralized
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Given a cell decomposition S = { S l } l∈I of D , we use the nota-

ion l i = (l i , l j 1 , . . . , l j N i 
) ∈ I N i +1 to denote the cells where agent

 and its neighbors belong at a certain time instant and call it

he cell configuration of agent i . Similarly, we use the notation

 = (l 1 , . . . , l N ) ∈ I N to specify the indices of the cells where all the

 agents belong at a given time instant and call it the cell con-

guration (of all agents). Thus, given a cell configuration l , it is

ossible to determine the cell configuration of agent i as l i = pr i ( l )

see Section 2 for the definition of pr i ( · )). 

Through the space and time discretization we aim at captur-

ng reachability properties of the original continuous time system,

y means of a discrete state transition system. Informally, we con-

ider for each agent i , its individual transition system with state

et the cells of the state partition, actions determined through the

gent’s control capabilities and its cell configuration, i.e., the or-

ered N i + 1 -tuple corresponding to the cells of i and its neighbors,

nd transition relation specified as follows. Given the initial cells of

gent i and its neighbors, it is possible for i to perform a transition

o a final cell, if for all states in its initial cell there exists a free in-

ut satisfying the constraint ( 3.3 ), such that its trajectory will reach

he final cell at time δt , for all possible initial states of its neighbors

n their cells, and irrespectively of their corresponding evolution dur-

ng the transition interval . In order to synthesize high level plans,

e will require the discretization to be well posed, in the sense

hat for each agent and any initial cell it is possible to perform a

ransition to at least one final cell. 

We next provide an illustrative example of a well posed space-

ime discretization. Both well posed discretizations and the asso-

iated individual transition systems of the agents will be formally

efined in the next section. Consider a cell decomposition as de-

icted in Fig. 1 and a time step δt . The arrows in the figure rep-

esent trajectories of agent i from the depicted initial conditions

n cell S l i . Also, the circles centered at the tips of the arrows con-

ain the agent’s reachable states at δt from the corresponding ini-

ial states. In both cases in the figure we focus on agent i and con-

ider the same cell configuration for i and its neighbors. However,

e consider different dynamics for Cases (i) and (ii). In Case (i),

e observe that for the three distinct initial positions in cell S l i , it

s possible to drive agent i to cell S l ′ 
i 

at time δt . We assume that

his is possible for all initial conditions in this cell and irrespec-

ively of the initial conditions of i ’s neighbors in their cells and

he inputs they choose. We also assume that this property holds

or all possible cell configurations of i and for all the agents of the

ystem. Thus, we have a well posed discretization for system (i).

n the other hand, for the same cell configuration and system (ii),

e observe that for three distinct initial conditions of i the cor-

esponding reachable sets at δt lie in different cells. Thus, given

his cell configuration of i it is not possible to find a cell in the

ecomposition which is reachable from every point in the initial
 abstractions for multi-agent systems under coupled constraints, 
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Fig. 2. Consider any point x inside the ball with center χ i ( δt ). Then, for each initial 

condition x i 0 in the cell S l i , the feedback law (3.12) ensures that the endpoint of 

agent’s i trajectory x i ( · ) coincides with the endpoint of the curve z i ( · ), which is 

precisely x , and lies in S l ′ 
i 
, namely, x i (δt) = z i (δt) = x = χi (δt) + δtw i ∈ S l ′ 

i 
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cell and we conclude that the discretization is not well posed for

system (ii). 

3.3. Associated control laws 

In order to enable each agent of system (3.1) to perform its

desired transitions under the effect of the f i ( · ) terms, we design

appropriate hybrid control laws in place of the free inputs v i . We

next provide the specific feedback laws that are utilized therefore

in the paper. In particular, these control laws guarantee that for

well posed discretizations, as the latter are described above, each

agent can reach a final cell form a given cell configuration at the

end of the transition step. The formal definition of well posed dis-

cretizations and their concise relation to the selected controllers

will be the subject of the later sections. Consider first a cell de-

composition S = { S l } l∈I of D . For each agent i ∈ N and cell config-

uration l i = (l i , l j 1 , . . . , l j N i 
) of i select an arbitrary N i + 1 -tuple of

reference points 

(x i,G , x j,G ) ∈ S l i × (S l j 1 
× · · · × S l j N i 

) , (3.5)

define 

F i, l i (x i ) := f i (x i , x j,G ) , x i ∈ D, (3.6)

and let χ i ( · ) be the solution of the initial value problem 

˙ χi = F i, l i (χi ) , χi (0) = x i,G . (3.7)

We also denote as [0, T max ), with T max ∈ (0, ∞ ], the maximum

right interval on which χ i ( · ) is defined and remains inside D . The

reference trajectory of i is obtained by “freezing” agent i ’s neigh-

bors at their corresponding reference points through the feedback

term 

v i = k i, l i , 1 (x i , x j ) := f i (x i , x j,G ) − f i (x i , x j ) , (3.8)

in place of the agent’s free input v i . It is noted that this controller

selection will impose restrictions on the admissible discretizations,

since the magnitude of the term evaluated along the solution of

the system, needs to respect the bound (3.3) on the available con-

trol. Next, consider also a time step δt < T max and select a vector

w i from the set 

 := B (λv max ) , λ ∈ (0 , 1) . (3.9)

By considering the modification z i (·)(= z i (·; w i )) of the refer-

ence trajectory, defined as 

z i (t) := χi (t) + tw i , t ∈ [0 , T max ) , (3.10)

and informally assuming that we can move along z i ( · ) by an ap-

propriate control law, it is possible to reach the point x = χi (δt) +
δtw i inside the dashed ball at time δt from the reference point x i , G ,

as depicted in Fig. 2 . The parameter λ in (3.9) stands for the part

of the free input that is used to increase the degree of freedom in

the transition choices. In a similar way, it is possible to reach any
Please cite this article as: D. Boskos, D.V. Dimarogonas, Decentralized
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oint inside the dashed ball by a different selection of w i . This ball

as radius 

 := λv max δt, (3.11)

amely, the distance that the agent can cross in time δt by ex-

loiting the part of the free input that is available for reachability

urposes. For the abstraction, we require the ability to reach each

oint inside the ball at time δt from every initial state in cell S l i by

 suitable control law. Therefore, it is possible to perform a transition

o each cell which has nonempty intersection with B ( χ i ( δt ); r ) (this

ill be verified for system (3.1) through the establishment of con-

ition (6.17) in Theorem 6.3 for appropriate space-time discretiza-

ions). In order to enable these transitions we use an appropriate

odification of the control law in (3.8) . In particular, consider the

amily of feedback laws k i, l i : [0 , T (x i 0 , w i )) × D 

N i +1 → R 

n parame-

erized by x i 0 ∈ S l i , w i ∈ W and defined as 

 i = k i, l i (t, x i , x j ; x i 0 , w i ) := k i, l i , 1 (x i , x j ) 

+ k i, l i , 2 (x i 0 ) + k i, l i , 3 (t; x i 0 , w i ) , (3.12)

ith k i, l i , 1 (·) as given in (3.8) and 

 i, l i , 2 
(x i 0 ) := 

1 

δt 
(x i,G − x i 0 ) , (3.13)

 i, l i , 3 
(t; x i 0 , w i ) := F i, l i (χi (t)) + w i − F i, l i (χi (t) + tw i 

+ (1 − t 
δt 

)(x i 0 − x i,G )) , (3.14)

 (x i 0 , w i ) := sup { t ∈ [0 , T max ) : χi (s ) + sw i 

+ 

(
1 − s 

δt 

)
(x i 0 − x i,G ) ∈ D, ∀ s ∈ [0 , t] } , 

t ∈ [0 , T (x i 0 , w i )) , (x i , x j ) ∈ D 

N i +1 , x i 0 ∈ S l i , w i ∈ W. 

(3.15)

The time T (x i 0 , w i ) in (3.15) is the right endpoint of the maxi-

al right interval for which the designated modification of the ref-

rence trajectory that depends on x i 0 and w i remains inside the do-

ain D (recall that T max is given after (3.7) ). By selecting a param-

ter w i from (3.9) and leveraging the control law k i, l i (·) in (3.12) ,

gent i can reach the point x = χi (δt) + δtw i in Fig. 2 and hence,

he cell S l ′ 
i 

at time δt , from any initial condition x i 0 ∈ S l i . This is

ossible through the extra terms k i, l i , 2 (·) and k i, l i , 3 (·) , which en-

orce the agent to move with the velocity of the reference tra-

ectory plus two constant velocity terms, one analogous to the

isplacement between the agent’s initial state and the reference

oint, and the other analogous to the difference between x and

he endpoint of χ i ( · ). Specifically, these extra velocity terms of

ach such trajectory x i ( · ) are k i, l i , 2 (·) , and w i from k i, l i , 3 (·) , re-

pectively, with the remaining terms in k i, l i , 3 (·) guaranteeing that

he agent will evolve according to x i ( · ) through the suggested con-

rol scheme. It is noted that due the term k i, l i , 1 (·) in the feedback

aw (3.12) , the transition is possible irrespectively of i ’s neighbors’

volution on [0, δt ], which are initially located in the correspond-

ng cells of the configuration l i . This evolution can be appropriately

uantified through the size of the cells and the transition duration,

y using the agents’ dynamics’ bounds. Therefore, the derivation of

ell posed discretizations will be based on the choice of cell decompo-

itions and associated time steps δt which can ensure that the mag-

itude of the feedback law apart from the term w i in k i, l i , 3 (·) does

ot exceed (1 − λ) v max during the transition interval. Thus, due to

 3.9 ), which implies that | w i | ≤ λv max , it follows that the total mag-

itude of the applied control law will be consistent with assumption

 3.3 ) on the free inputs’ bound. Notice also that due to the assump-

ion v max < M in (3.4) , it is in principle not possible to cancel the

nterconnection terms. Furthermore, the control laws k i, l i (·) are de-

entralized, since they only use information of agent i ’s neighbors
 abstractions for multi-agent systems under coupled constraints, 
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note that Post ( l ) � = ∅ . 
tates and they depend on the cell configuration l i , through the

eference points (x i,G , x j,G ) which are involved in (3.8), (3.13) , and

3.14) . 

. Abstractions for multi-agent systems 

In this section we formalize the discussion in Section 3 , by ex-

loiting a class of hybrid feedback laws containing the ones intro-

uced in (3.12) . One reason for employing the subsequent analysis

n an abstract framework is that the control laws in (3.8), (3.13),

3.14) are not the only possible choice, which provides the flexibil-

ty for alternative control designs. In the sequel, given a time step

t and the bounds M and v max on the feedback and input terms

rovided by (3.2) and (3.3) , respectively, it is convenient to intro-

uce the following lengthscale 

 max := δt(M + v max ) . (4.1)

It follows from (3.1), (3.2), (3.3) , and (4.1) that R max is the max-

mum distance an agent can travel within time δt . 

Before defining the notion of a well posed space-time dis-

retization we define the class of hybrid feedback laws which are

ssigned to the free inputs v i in order to obtain the discrete tran-

itions. For each agent, these control laws are parameterized by

he agent’s initial conditions and a set of auxiliary parameters be-

onging to a nonempty subset W of R 

n . These parameters, as dis-

ussed in the previous section, are exploited to increase the transi-

ion choices of the abstract model. In particular, for every agent

 , each vector w i ∈ W is in a one-to-one correspondence with a

oint inside a reachable ball for i , and the agent can reach this

oint by selecting the control law corresponding to the specific

arameter w i . The latter provides the possibility for the agent to

erform transitions to different cells, namely, all cells which have

onempty intersection with that ball. Furthermore, we note that in

ccordance to the control laws introduced in (3.12) for each agent

 , the feedback laws in the following definition depend on the se-

ection of the cells where i and its neighbors belong. One basic

equirement for this class of controllers consists of conditions that

uarantee well posed solutions for the system (condition (P1) in

efinition 4.1 , below). We also impose the consistency requirement

condition (P2) in Definition 4.1 ) that their magnitude does not ex-

eed the maximum bound on the free inputs (3.3) , when the states

f the agent and its neighbors lie in an appropriate overapproxima-

ion of their reachable states over the time interval [0, δt ]. 

efinition 4.1. Given a cell decomposition S = { S l } l∈I of D , a time

tep δt and a nonempty subset W of R 

n , consider an agent i ∈
 and a cell configuration l i = (l i , l j 1 , . . . , l j N i 

) of i . Also, consider

 mapping k i, l i (·; x i 0 , w i ) : [0 , T (x i 0 , w i )) × D 

N i +1 → R 

n , parameter-

zed by x i 0 ∈ S l i and w i ∈ W . We say that k i, l i (·) satisfies Property

P) , if the following conditions are satisfied. 

(P1) For each x i 0 ∈ S l i and w i ∈ W, the mapping k i, l i (·; x i 0 , w i ) is

ocally Lipschitz continuous. 

(P2) It holds 

| k i, l i (t, x i , x j ; x i 0 , w i ) | ≤ v max , 

∀ t ∈ [0 , δt] ∩ [0 , T (x i 0 , w i )) , x � ∈ (S l � + B (R max )) ∩ D, 

� ∈ N i ∪ { i } , x i 0 ∈ S l i , w i ∈ W, (4.2) 

ith v max as given in (3.3) and R max as in (4.1) . 

(P3) It holds T (x i 0 , w i ) > δt, for all x i 0 ∈ S l i , w i ∈ W . 

The motivation for considering the time interval [0 , T (x i 0 , w i ))

n Definition 4.1 comes from the maximal right interval on which

he modification of agent’s i reference trajectory in (3.15) remains

nside the domain D . We next provide an extra Condition (C)

or the feedback laws provided in the above definition, which is

eeded in order to define well posed discretizations. 
Please cite this article as: D. Boskos, D.V. Dimarogonas, Decentralized
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efinition 4.2. Consider a cell decomposition S = { S l } l∈I of D , a

ime step δt and a nonempty subset W of R 

n . Given an agent i ∈ N ,

 cell configuration l i of i , a control law 

 i = k i, l i (t, x i , x j ; x i 0 , w i ) (4.3)

s in Definition 4.1 that satisfies Property (P), a vector w i ∈ W, and

 cell index l ′ 
i 
∈ I, we say that k i, l i (·) , w i , l 

′ 
i 

satisfy Condition (C) , if

he following hold. For each initial cell configuration l = (l 1 , . . . , l N )

ith pr i ( l ) = l i and feedback laws 

 � = k �, pr � ( l ) 
(t, x � , x j(� ) ; x � 0 , w � ) , � ∈ N \ { i } , (4.4)

hat satisfy Property (P), the solution of the closed-loop system

3.1), (4.3) - (4.4) is well defined on [0, δt ] and satisfies x i (δt, x (0)) ∈
 l ′ 
i 
, for all initial conditions x (0) ∈ D 

N with x i (0) = x i 0 ∈ S l i , x � (0) =
 � 0 ∈ S l � , � ∈ N \ { i } and w � ∈ W, � ∈ N \ { i } . 

Notice that when Condition (C) is satisfied, agent i will have

eached cell S l ′ 
i 

at time δt under the feedback law k i, l i (·) corre-

ponding to the given parameter w i in the definition. In particular,

ondition (C) ensures that the latter holds for any choice of feed-

ack laws in place of the other agents’ free inputs, as long as these

ontrol laws satisfy Property (P). We next provide the definition of

 well posed space-time discretization. This definition formalizes

ur discussion on the possibility to assign a feedback law to each

gent, in order to enable a transition from any initial discrete con-

guration to at least one successor cell. 

efinition 4.3. Consider a cell decomposition S = { S l } l∈I of D , a

ime step δt and a nonempty subset W of R 

n . We say that the

pace-time discretization S − δt is well posed (for system (3.1) ), if for

ach agent i ∈ N and cell configuration l i of i , there exist a control

aw k i, l i (·) satisfying Property (P), a vector w i ∈ W and a cell index

 

′ 
i 
∈ I such that k i, l i (·) , w i , l 

′ 
i 

satisfy Condition (C) of Definition 4.2 .

Assume a well posed space-time discretization S − δt is given.

ased on Definition 4.3 , it is possible to provide a discrete transi-

ion system for each agent, which serves as an abstract model for

ts behavior. In particular, for each i ∈ N and cell configuration l i 
f i we pick a control law k i, l i (·) which generates at least one tran-

ition , i.e., such that k i, l i (·) , w i , l ′ 
i 

satisfy Condition (C) for certain

 i ∈ W and l ′ 
i 
∈ I (this is always possible since the discretization is

ell posed) and define for all l ∈ I

 w i ] ( l i ,l) := { w ∈ W : k i, l i (·) , w, l satisfy Condition (C) } . (4.5)

Note that [ w i ] ( l i ,l) represents the set of all parameters in W un-

er which the control law k i, l i (·) can drive agent i to the successor

ell l at δt , according to Condition (C). By exploiting (4.5) , we next

rovide the individual transition system of each agent. 

efinition 4.4. Consider a well posed space-time discretization

nd select for each agent i and cell configuration l i a control law

 i, l i 
(·) which generates at least one transition. Then, the individual

ransition system T S i := (Q i , Act i , −→ i ) of each agent i is defined as

ollows 

• Q i := I
• Act i := I N i +1 × 2 W 

• l i 
( l i , [ w i ]) −→ i l ′ 

i 
iff [ w i ] = [ w i ] ( l i ,l ′ i ) 

and [ w i ] ( l i ,l ′ i ) 
� = ∅ , for each l i , l 

′ 
i 
∈

Q i , l i = (l i , l j 1 , . . . , l j N i 
) ∈ I N i +1 and [ w i ] ∈ 2 W , with [ w i ] ( l i ,l ′ i ) 

as

defined in (4.5) . 

In addition, let 

Post i ( l i ) := { l ′ i ∈ I : ∃ [ w i ] ∈ 2 

W with l i 
( l i , [ w i ]) −→ i l ′ i } , (4.6)

which provides all successor cells from cell configuration l i and
i i 
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From Definition 4.4 it follows that agent’s i transitions from a

given cell are affected by the discrete positions of i and its neigh-

bors, and the parameters w i which tune its corresponding control

law, resulting in tuples ( l i , [ w i ]) as actions. This is also in accor-

dance with the control design introduced in Section 3 , since the

cell configuration l i of the agent affects the endpoint of its refer-

ence trajectory, and the parameters [ w i ] enable the transition to a

cell which intersects the ball around this endpoint. 

Remark 4.5. 

(i) Note that due to (4.5) , for any transition of an agent, the

action term [ w i ] ∈ 2 W is uniquely determined by the agent’s

successor cell and represents all the parameters under which

the transition can be enabled by tuning accordingly the spe-

cific control law. In addition, it follows that the cardinality

of the [ w i ] ’s that are included in the actions from a cell con-

figuration does not exceed the cardinality of the agents’ cor-

responding successor cells. 

(ii) The transition system of each agent i is not necessarily

uniquely defined, since the transitions in TS i are associated

to the specific controller selection for the cell configuration.

In particular, given an agent i and a cell configuration l i , it

might be possible to perform different transitions by choos-

ing an alternative control law. For example, it is possible

for the control laws considered in (3.12) to obtain a differ-

ent reference trajectory in (3.7) by selecting another set of

points (x i,G , x j,G ) and hence, reach a ball which intersects

different cells (see Fig. 2 ). 

(iii) If we additionally assume that the cell decomposition { S l } l∈I 
of D forms also a partition of D , i.e., it holds that S l ∩ S ˆ l = ∅
and not necessarily only that int (S l ) ∩ int (S ˆ l ) = ∅ , for each

l, ̂  l ∈ I with l � = ̂

 l , then the transition system TS i of each

agent is also deterministic. In the general case, nondeter-

ministic transitions may “unlikely” occur from a given cell

configuration l i , if the parameters [ w i ] enable the agent to

reach the common boundary of two distinct cells S l ′ and S ˆ l ′ 
at δt . However, nondeterminism is interpreted as the prop-

erty that the same action can drive the agent to both cells

simultaneously, precisely due to the fact that they are not

disjoint, and not as any uncertainty with respect to the cell

that can be reached. 

Notice that according to Definition 4.3 , a well posed space-time

discretization requires the existence of an outgoing transition for

each agent from any discrete position. A transition is guaranteed

for every agent i individually and is based on the selection of an

appropriate feedback controller for i satisfying Property (P), and

the requirement that the control laws of the other agents also sat-

isfy (P). From the definition of the agents’ individual transition sys-

tems and Condition (C), it follows rather directly that for any initial

cell configuration of the team and corresponding individual transi-

tion selection for every agent, it is possible to choose a feedback

law for each, so that the resulting closed-loop system will guaran-

tee all these transitions. This is summarized in the following re-

mark. 

Remark 4.6. Consider a cell decomposition S of D , a time step

δt , a nonempty subset W of R 

n and assume that the space-time

discretization S − δt is well posed for system (3.1) . Also, con-

sider for each agent i and cell configuration l i a control law

k i, l i (·) which generates at least one transition, implying by virtue

of Definition 4.4 that Post i ( l i ) � = ∅ . Then, given a cell configura-

tion l = (l 1 , . . . , l N ) and any l 
′ = (l ′ 

1 
, . . . , l ′ 

N 
) ∈ Post 1 ( pr 1 ( l )) × · · · ×

Post N ( pr N ( l )) , there exist w 1 , . . . , w N ∈ W, such that for each ini-

tial condition x (0) ∈ D 

N with x i (0) = x i 0 ∈ S l , i ∈ N , the solution of

i 

Please cite this article as: D. Boskos, D.V. Dimarogonas, Decentralized
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he closed-loop system (3.1) with 

 i = k i, pr i ( l ) 
(t, x i , x j ; x i 0 , w i ) , i ∈ N , (4.7)

s well defined on [0, δt ] and satisfies 

 i (δt, x (0)) ∈ S l ′ 
i 
, ∀ i ∈ N . (4.8)

The result of the following proposition guarantees that the se-

ection of the controllers introduced in Definition 4.1 provides well

osed solutions for the closed-loop system on the time interval

0, δt ]. Furthermore, it is shown that the magnitude of the hybrid

eedback laws does not exceed the maximum allowed magnitude

 max of the free inputs on [0, δt ], as required by (3.3) . In addi-

ion, it follows that every solution of the closed-loop system on [0,

t ] is identical to a solution of the original system (3.1) , generated

y the same initial condition and an open loop control signal u ( · )

hat satisfies | u i (t) | ≤ v max , for all t ≥ 0 and i ∈ N . Finally, in order

o verify that the control laws introduced in (3.12) satisfy prop-

rty (P3) for appropriate selections of the time step δt in the next

ection, it is convenient to obtain the first result of the proposi-

ion for feedback laws that only satisfy Properties (P1) and (P2) of

efinition 4.1 . 

roposition 4.7. Consider a cell decomposition S of D , a time step δt

nd a nonempty subset W of R 

n . Let l = (l 1 , . . . , l N ) be an initial cell

onfiguration and consider any feedback laws of the form 

 i = k i, pr i ( l ) 
(t, x i , x j ; x i 0 , w i ) , i ∈ N (4.9)

ssigned to the agents that satisfy Properties (P1) and (P2). Then: 

(i) For each w i ∈ W, i ∈ N and initial condition x (0) ∈ D 

N with

 i (0) = x i 0 ∈ S l i , i ∈ N , the solution of the closed-loop system (3.1) ,

4.9) is defined and remains in D 

N for all t ∈ [0, τ ), where 

:= min { δt, min { T (x i 0 , w i ) : i ∈ N }} (4.10)

and 

lim 

→ τ−
x (t) ∈ D 

N . (4.11)

Assume additionally that (P3) also holds, namely, that (P) is satis-

ed. Then: 

(iia) The solution x ( t ) of (3.1) , (4.9) above remains in D 

N for all

 ∈ [0, δt ] and satisfies 

 k i, pr i ( l ) 
(t, x i (t) , x j (t) ; x i 0 , w i ) | ≤ v max , ∀ t ∈ [0 , δt] , i ∈ N , (4.12)

which provides the desired consistency with the design require-

ent (3.3) on the v i ’s. 

(iib) There exists an open loop control signal given by a piece-

ise continuous function u = (u 1 , . . . , u N ) : [0 , ∞ ) → R 

Nn and satis-

ying | u i (t) | ≤ v max , ∀ t ≥ 0, i ∈ N , such that the solution x ( · ) above

nd the solution ξ ( · ) of (3.1) , with the same initial condition as x ( · )

nd input u ( · ), coincide on [0, δt ] . 

roof. The proof is given in the Appendix . �

emark 4.8. Note that the result of part (i) of

roposition 4.7 holds for any selection of feedback laws

 i = k i, pr i ( l ) 
(·) that satisfy Properties (P1) and (P2). Respec-

ively, the results of parts (iia) and (iib) hold for all selections of

eedback laws v i = k i, pr i ( l ) 
(·) that satisfy Property (P). 

Given a well posed space-time discretization and the agents’

ndividual abstract models, we next define their product transi-

ion system, which captures the coupled behavior of the team. To

btain meaningful transitions in the product model, we require

hat the agents’ actions ( l i , [ w i ]) are compliant in their first argu-

ent, which corresponds to their cell configurations. This is due

o the fact that each global discrete state, i.e., cell configuration
 abstractions for multi-agent systems under coupled constraints, 
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1 Strict causality refers to the property that the value of the solution ξ ( t , x ; u ) de- 

pends only on the values of the input u ( · ) on [0, t ) (see e.g., [24, Chapter 1] or [36, 

Chapter 2] ) 
 = (l 1 , . . . , l N ) of all agents, automatically also fixes the cell con-

guration l i = pr i ( l ) of each agent i through the projection oper-

tor pr i ( · ). Therefore, for each transition from a global cell con-

guration, the agents’ actions are formed by the N -tuples of their

ndividual control parameters, which enable them to reach syn-

hronously their successor cells at the end of time step. 

efinition 4.9. 

(i) Consider a well posed space-time discretization S − δt, and

for each agent i ∈ N , its individual transition system TS i 
as provided by Definition 4.4 . The product transition system

T S P := (Q P , Act P , −→ P ) is defined as follows: 

• Q P := I N (all possible cell configurations) 

• Act P := { [ w 1 ] × · · · × [ w N ] : [ w i ] ∈ 2 W , i ∈ N } 
• l 

[ w ] −→ P l 
′ 
, where l = (l 1 , . . . , l N ) , l 

′ = (l ′ 
1 
, . . . , l ′ 

N 
) , and

[ w ] = [ w 1 ] × · · · × [ w N ] , iff l i 
( pr i ( l ) , [ w i ]) −→ i l ′ 

i 
, ∀ i ∈ N , for each

l , l 
′ ∈ I N , [ w ] ∈ Act P . 

(ii) Given an initial cell configuration l 
0 ∈ I N , a path originating

from l 
0 

in T S P , is an infinite sequence of states l 
0 
l 
1 
l 
2 
. . . such

that l 
i [ w ] −→ P l 

i +1 
for all i ∈ N ∪ { 0 } . 

emark 4.10. Given a well posed space-time discretization S −
t and an initial cell configuration l 

0 ∈ I N , it follows from

efinitions 4.4 and 4.9 that there exists at least one path l 
0 
l 
1 
l 
2 
. . .

n T S P originating from l 
0 
. 

Additionally, consider also an output set O which contains de-

irable attributes of the coupled system, as for instance labels

f regions to be reached, or safe/unsafe parts of the workspace.

y assigning an appropriate output map H : D 

N → O we can es-

ablish behavioral inclusion of the product abstract model by the

oupled continuous system through a suitable simulation relation.

n particular, consider a well posed discretization S − δt and as-

ume that the output map H is compliant with S, i.e., for every

 = (l 1 , . . . , l N ) ∈ I N and x , y ∈ D 

N with x, y ∈ S l 1 × · · · × S l N it holds

hat H(x ) = H(y ) . Also, consider the transition systems with out-

uts T S O P and T S O 
δt 

, corresponding to the product discrete model

nd the sampled continuous system, respectively, which are pro-

ided in the following definition. 

efinition 4.11. 

(i) The product transition system with outputs T S O P is the 5-tuple

(Q P , Act P , −→ P , O P , H P ) , with Q P , Act P , and −→ P as given

in T S P , O P = O, where O is give above, and H P : Q P → O

defined as H P ( l ) = H(x ) for some x ∈ S l 1 × · · · × S l N , for any

l = (l 1 , . . . , l N ) ∈ Q P . 
(ii) The δt - sampled system with outputs T S O 

δt 
is the 5-tuple ( Q δt ,

Act δt , −→ δt , O δt , H δt ) with 

• Q δt := D 

N (all possible initial states of the continuous sys-

tem) 

• Act δt := { piecewise continuous u = (u 1 , . . . , u N ) : 

[0 , δt] → R 

Nn : | u i (t) | ≤ v max , ∀ i ∈ N , t ∈ [0 , δt] } 
• x 

u −→ δt x 
′ iff x ′ = ξ (δt, x ; u ) , with ξ ( δt , x ; u ) denoting the

solution of (3.1) at δt with initial condition x and input

u ( · ). 

• O δt := O , H δt := H , with O and H as given above. 

By exploiting Remark 4.6 and Proposition 4.7 , we obtain the fol-

owing result which establishes that T S O P is simulated by T S O 
δt 

. 

roposition 4.12. Consider the transition systems T S O P , T S 
O 
δt 

, and the

elation R ⊂ Q P × Q δt (= I N × D 

N ) given as ( l , x ) ∈ R , iff x ∈ S l 1 ×· · × S l N , where l = (l 1 , . . . , l N ) . Then, R is a simulation relation from

 S O P to T S O 
δt 

. 

roof. In order to prove the result, we need to show that prop-

rties (S1), (S2), and (S3) of a simulation relation are satisfied.
Please cite this article as: D. Boskos, D.V. Dimarogonas, Decentralized
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roperty (S1) follows directly from the definition of R and the

act that the cells are subsets of D . For (S2), it suffices to re-

all that the output map is compliant with S, which implies by

he definition of R that for any ( l , x ) ∈ R it holds that H P ( l ) =
 δt (x ) . Finally, in order to show (S3), let ( l , x ) ∈ R and assume that

 

[ w ] −→ P l 
′ 
. Since ( l , x ) ∈ R , with l = (l 1 , . . . , l N ) and x = (x 1 , . . . , x N ) ,

e have that x i ∈ S l i , for all i ∈ N . Thus, given that l 
[ w ] −→ P l 

′ 
, with

 

′ = (l ′ 
1 
, . . . , l ′ 

N 
) , we deduce from Definition 4.9 and Remark 4.6 that

here exist feedback laws k i, pr i ( l ) 
(·) as in (4.7) which satisfy Prop-

rty (P), and w 1 , . . . , w N ∈ W such that (4.8) holds. Hence, it fol-

ows from Proposition 4.7 (iib) and strict causality 1 of the solutions

f (3.1) that there exists a piecewise continuous input u : [0 , δt] →
 

Nn satisfying | u i (t) | ≤ v max , ∀ t ∈ [0, δt ], i ∈ N and such that x ′ 
i 

:=
i (δt, x ; u ) ∈ S l ′ 

i 
for all i ∈ N . Hence, we derive that x ′ = (x ′ 

1 
, . . . , x ′ 

N 
)

atisfies x ′ = ξ (δt, x ; u ) which implies that x 
u −→ δt x 

′ . Finally, since

 

′ 
i 
∈ S l ′ 

i 
for all i ∈ N , we get that ( l ′ , x ′ ) ∈ R , which establishes (S3)

nd the proof is complete. �

It is noted that due to the fact that T S O 
δt 

is deterministic, a sat-

sfying plan or discrete controller that is synthesized for T S O P can

e refined to a corresponding sequence of transitions or controller

or T S O 
δt 

. Further details on the exploitation of the abstractions for

ynthesis purposes are provided in Section 7 . 

. Time domain properties of the control laws 

In this section we use the results of Section 4 in order to prove

ertain useful properties of the reference trajectory χ i ( · ) and the

ime domain [0 , T i (x i 0 , w i )) of the control laws (3.12) as specified

y (3.15) . For the sequel, we additionally assume that the f i terms

n (3.1) are globally Lipschitz functions. Furthermore, in order to

chieve more accurate bounds for the dynamics of the feedback

ontrollers in (3.12) that are assigned to the free inputs v i , we as-

ume Lipschitz constants L 1 , L 2 > 0 such that 

 f i (x i , x j ) − f i (x i , y j ) | ≤L 1 | (x i , x j ) − (x i , y j ) | , (5.1) 

| f i (x i , x j ) − f i (y i , x j ) | ≤ L 2 | (x i , x j ) − (y i , x j ) | , 
∀ x i , y i ∈ D, x j , y j ∈ D 

N i , i ∈ N . (5.2) 

In particular, the constant L 1 is exploited to bound the feed-

ack term (3.8) which compensates for the deviation of agent’s i

ynamics from its corresponding dynamics along the reference tra-

ectory, due to the time evolution of its neighbors’ states. On the

ther hand, it follows from (3.6) that the constant L 2 is utilized to

ound the feedback term (3.14) which compensates for the devia-

ion of the agent’s desired trajectory with respect to its reference

rajectory. 

Based on the global Lipschitz assumption, we establish unique-

ess of the reference trajectory χ i ( · ) and provide a lower bound

or the right endpoint T max of its maximal interval of existence,

hich is independent of the selection of (x i,G , x j,G ) in (3.5) . 

emma 5.1. For each tuple of reference points (x i,G , x j,G ) as in (3.5) ,

he initial value problem (3.7) has a unique solution which is defined

nd remains in D on the right maximal interval [0, T max ) . Further-

ore, it holds 

 max > 

v max 

2 ML 1 max { √ 

N i : i ∈ N } . (5.3) 

roof. The proof is given in the Appendix . �
 abstractions for multi-agent systems under coupled constraints, 
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By exploiting Lemma 5.1 , it will be shown in the next section

that T max is always greater than the maximum possible selection

of the time step δt for a well posed discretization. The latter in

conjunction with the result of Lemma 5.2 below enables us to

prove that in this case the control law k i, l i , 3 (·) and hence also

k i, l i (·) are well defined on [0, δt ]. 

Lemma 5.2. Consider a cell decomposition S of D , a time step δt and

select an agent i ∈ N and a cell configuration l i = (l i , l j 1 , . . . , l j N i 
) of

i. Also, consider a tuple of reference points (x i,G , x j,G ) as in (3.5) and

the control law k i, l i (·) in (3.12) . We assume that k i, l i (·) satisfies Prop-

erties (P1) and (P2) of Definition 4.1 , and that the right endpoint T max 

of the interval where the reference trajectory (3.7) is defined, satisfies

T max > δt. Then, for all x i 0 ∈ S l i and w i ∈ W, the time T (x i 0 , w i ) sat-

isfies T (x i 0 , w i ) > δt, which implies that k i, l i (·) also satisfies Property

(P3) of Definition 4.1 . 

Proof. Indeed, let x i 0 ∈ S l i and w i ∈ W . By defining 

X i (t) := z i (t) + 

(
1 − t 

δt 

)
(x i 0 − x i,G ) , t ∈ [0 , T max ) , (5.4)

with z i (t) = χi (t) + tw i as given in (3.10) , and taking into account

the definition of T (x i 0 , w i ) in (3.15) , we want to show that X i ( · )

remains in D for more than time δt . By virtue of our assumption

that T max > δt , the latter is meaningful to verify and implies that

T (x i 0 , w i ) > δt . We next show that X i ( · ) coincides on a suitable

time interval with the i th component of the solution of (3.1) by

choosing appropriate initial conditions and feedback laws that sat-

isfy (P1) and (P2). 

Let x i 0 ∈ S l i , w i ∈ W, consider an arbitrary initial cell configu-

ration l with pr i ( l ) = l i , l = (l 1 , . . . , l N ) , and assign the feedback

law k i, pr i ( l ) 
= k i, l i (as the latter is given by (3.12) ) to i and the

feedback laws k �, pr � ( l ) 
:= 0 to the rest of the agents � ∈ N \ { i } . It

also follows from the assumptions of the lemma for i , and triv-

ially for the other agents, that the feedback laws satisfy Properties

(P1) and (P2). Thus, we can use the result of Proposition 4.7 (i).

By selecting an initial condition x (0) ∈ D 

N with x i (0) = x i 0 and

x � (0) ∈ S l � , � ∈ N \ { i } , and recalling that w i ∈ W, we get from

Proposition 4.7 (i) that the i th component of the solution satisfies 

x i (t) ∈ D, ∀ t ∈ [0 , τ ) , τ := min { δt, T (x i 0 , w i ) } , (5.5)

lim 

→ τ−
x i (t) ∈ D. (5.6)

We proceed by showing that x i (t) = X i (t) , for all t ∈ [0, τ ), with

τ as given in (5.5) , or equivalently, that 

x i (t) = χi (t) + tw i + 

(
1 − t 

δt 

)
(x i 0 − x i,G ) , ∀ t ∈ [0 , τ ) (5.7)

Indeed, from (3.10), (3.7), (3.1), (3.12), (3.8) , and (3.6) we

have that ˙ z i (t) = F i, l i (χi (t)) + w i , ˙ x i (t) = F i, l i (x i (t)) + k i, l i , 2 (x i 0 ) +
k i, l i , 3 (t; x i 0 , w i ) . By recalling that z i (0) = x i,G , x i (0) = x i 0 , and

that due to (3.15) and (5.5) it holds τ ≤ T (x i 0 , w i ) ≤ T max ,

and thus χ i ( · ), x i ( · ) and k i, l i , 3 (·) are well defined on [0,

τ ), it follows from (3.13), (3.14) , and (3.10) that x i (t) −
z i (t) = x i 0 − x i,G + 

∫ t 
0 [ F i, l i (x i (s )) − F i, l i (χi (s )) + k i, l i , 2 (x i 0 ) + k i, l i , 3 

(s ; x i 0 , w i ) − w i ] ds = (1 − t 
δt 

)(x i 0 − x i,G ) + 

∫ t 
0 [ F i, l i (x i (s )) − F i, l i (z i (s ) +

(1 − s 
δt 

)(x i 0 − x i,G ))] ds, ∀ t ∈ [0 , τ ) . Hence, we get from (A.14) that

for all t ∈ [0, τ ) it holds | x i (t) − z i (t) −
(
1 − t 

δt 

)
(x i 0 − x i,G ) | ≤ ∫ t 

0 

L 2 
∣∣x i (s ) − z i (s ) −

(
1 − s 

δt 

)
(x i 0 − x i,G ) 

∣∣ds . Application of the Gron-

wall Lemma to the continuous function t �→ | x i (t) − z i (t) −(
1 − t 

δt 

)
(x i 0 − x i,G ) | , t ∈ [0, τ ) implies that x i (t) − z i (t) −(

1 − t 
δt 

)
(x i 0 − x i,G ) = 0 on [0, τ ). Hence, from (3.10) and the

fact that τ ≤ T max , i.e., that z i (t) = χi (t) + tw i for all t ∈ [0, τ ) we

derive that x i (t) − χi (t) − tw i −
(
1 − t 

δt 

)
(x i 0 − x i,G ) = 0 on [0, τ ).

Thus, (5.7) holds. 
Please cite this article as: D. Boskos, D.V. Dimarogonas, Decentralized
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We are now in position to prove that T (x i 0 , w i ) > δt . Indeed,

uppose on the contrary that T (x i 0 , w i ) ≤ δt, which by virtue of

he assumption that T max > δt and (5.5) , implies that T (x i 0 , w i ) <

 max and τ = T (x i 0 , w i ) . From the latter, together with (5.4),

5.5), (5.6) , and continuity of X i ( · ), we get that X i (T (x i 0 , w i )) =
im t→ T (x i 0 ,w i ) 

− X i (t) = lim t→ T (x i 0 ,w i ) 
− x i (t) ∈ D . Hence, from the de-

uction that T (x i 0 , w i ) < T max and continuity of X i ( · ), it follows

rom (5.4) that there exists ε ∈ (0 , T max − T (x i 0 , w i )] such that

 i ( t ) ∈ D for t ∈ [ T (x i 0 , w i ) , T (x i 0 , w i ) + ε) . Consequently, we get

rom (5.4) and (3.10) that χi (t) + tw i + 

(
1 − t 

δt 

)
(x i 0 − x i,G ) ∈ D for

 ∈ [ T (x i 0 , w i ) , T (x i 0 , w i ) + ε) which contradicts (3.15) . Thus, we

onclude that T (x i 0 , w i ) > δt, which establishes (P3). �

. Well posed space-time discretizations 

In this section, we exploit the controllers introduced in (3.12) to

rovide sufficient conditions for well posed space-time discretiza-

ions. Consider again system (3.1) , a cell decomposition S = { S l } l∈I 
f D , a time step δt and let 

 max := sup { diam (S l ) , l ∈ I} , (6.1)

hich due to Definition 3.1 is well defined. We will call d max the

iameter of the cell decomposition. Our goal is to determine suf-

cient conditions relating the Lipschitz constants L 1 , L 2 , the bounds

 , v max for the system’s dynamics, as well as the space and time

cales d max and δt , which guarantee that the discretization S − δt

s well posed . According to Definition 4.3 , establishment of a well

osed discretization is based on the selection of appropriate feed-

ack laws which guarantee outgoing transitions for all agents and

heir possible cell configurations. For each agent i ∈ N and cell

onfiguration l i = (l i , l j 1 , . . . , l j N i 
) of i let (x i,G , x j,G ) be a tuple of

eference points as in (3.5) . We consider the family of feedback

aws given in (3.8), (3.13), (3.14) , and parameterized by x i 0 ∈ S l i 
nd w i ∈ W . The function F i, l i (·) is given in (3.6) , and χ i ( · ) is the

eference solution of the initial value problem (3.7) , defined on

0, T max ). Recall that the parameter λ in (3.9) provides the part

f the free input that is exploited in order to increase the states

hat the agent can reach at the end of the transition interval. We

lso introduce an additional parameter μ which imposes a design

equirement on the minimum number of transitions from each

gent’s cell configuration. Specifically, in Corollary 6.5 we show

hat the increasing integer valued function θ : R ≥0 → N , given as

(μ) = � μn � , is a lower bound for the number of possible suc-

essor cells in terms of μ. Thus, the parameters λ and μ provide

 quantifiable tuning of the control design in terms of the input

agnitude that is chosen for reachability purposes and the num-

er of successor cells that are required from each configuration,

espectively. Before proceeding to the desired sufficient conditions

or well posed discretizations and their reachability properties, we

rove the auxiliary Propositions 6.1 and 6.2 . Proposition 6.1 below

rovides bounds on the hybrid control laws k i, l i (·) in (3.12) . 

roposition 6.1. Consider a cell decomposition S of D with diameter

 max and a time step δt. Also, for each agent i ∈ N and cell config-

ration l i = (l i , l j 1 , . . . , l j N i 
) of i let (x i,G , x j,G ) be a tuple of reference

oints as in (3.5) and consider the feedback law k i, l i (·) in (3.12) . Then,

ts components k i, l i , 1 (·) , k i, l i , 2 (·) , and k i, l i , 3 (·) as given in (3.8) , (3.13) ,

nd (3.14) , respectively, satisfy the bounds 

 k i, l i , 1 (x i , x j ) | ≤ L 1 
√ 

N i (R max + d max ) , ∀ x i ∈ D, 

 j m ∈ (S l j m + B (R max )) ∩ D, m = 1 , . . . , N i , (6.2)

 k i, l i , 2 (x i 0 ) | ≤ 1 

d max , ∀ x i 0 ∈ S l i , (6.3)
 abstractions for multi-agent systems under coupled constraints, 
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Fig. 3. Feasible d max − δt regions. 
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 k i, l i , 3 (t; x i 0 , w i ) | ≤ L 2 (δtλv max + d max ) + λv max , 

 t ∈ [0 , δt] ∩ [0 , T (x i 0 , w i )) , x i 0 ∈ S l i , w i ∈ W. (6.4) 

ith R max as given in (4.1) . 

roof. Indeed, in order to show (6.2) let x j ∈ D 

N i sat-

sfying x j m ∈ (S l j m 
+ B (R max )) ∩ D, m = 1 , . . . , N i . Then,

or each m = 1 , . . . , N i there exists y j m ∈ S l j m 
with

 y j m − x j m | ≤ R max . Hence, from the latter together with

3.8) and (5.1) , we get that | k i, l i , 1 (x i , x j ) | ≤ L 1 | (x j 1 −

 j 1 ,G 
, . . . , x j N i 

− x j N i ,G 
) | ≤ L 1 ( 

∑ N i 
m =1 

(| x j m − y j m | + | y j m − x j m ,G | ) 2 ) 
1 
2 ≤

 1 ( 
∑ N i 

m =1 
(R max + d max ) 

2 ) 
1 
2 = L 1 

√ 

N i (R max + d max ) , which estab-

ishes (6.2) . Furthermore, by recalling that x i,G ∈ S l i , it follows

irectly from (3.13) that | k i, l i , 2 (x i 0 ) | = 

1 
δt 

| x i 0 − x i,G | and hence,

hat (6.3) is satisfied. Finally, for k i, l i , 3 (·) we get from (3.14) and

A.14) that | k i, l i , 3 (t; x i 0 , w i ) | ≤ L 2 | (χi (t) + tw i + 

(
1 − t 

δt 

)
(x i 0 −

 i,G )) − χi (t) | + | w i | , which due to (3.9) implies (6.4) . �

Based on the result of Proposition 6.1 we next provide con-

itions on d max and δt which guarantee that the feedback laws

 i, l i 
(·) satisfy Property (P). Additionally, it is shown that the ra-

ius r introduced in (3.11) satisfies a design requirement which is

elated later in Corollary 6.5 to a lower bound on the number of

ossible transitions through the parameter μ. 

roposition 6.2. Consider a cell decomposition S of D with diameter

 max , a time step δt , the parameters λ∈ (0, 1), μ≥ 0 and define 

 := max { 3 L 2 + 4 L 1 
√ 

N i , i ∈ N } , (6.5)

ith L 1 and L 2 as given in (5.1) and (5.2) . We assume that λ, μ, d max 

nd δt satisfy the following restrictions, as provided by the three cases

elow (see also Fig. 3 ): 
Please cite this article as: D. Boskos, D.V. Dimarogonas, Decentralized
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Case I. 0 ≤ μ ≤ 2 λ
1 −λ

. 

 max ∈ 

(
0 , 

(1 − λ) 2 v 2 max 

4 ML 

]
, (6.6) 

δt ∈ 

[ 

(1 − λ) v max −
√ 

(1 − λ) 2 v 2 max − 4 MLd max 

2 ML 
, 

(1 − λ) v max + 

√ 

(1 − λ) 2 v 2 max − 4 MLd max 

2 ML 

] 

. (6.7) 

Case II. 2 λ
1 −λ

< μ < 

4 λ
1 −λ

. 

 max ∈ 

(
0 , 

2(λ(1 − λ) μ − 2 λ2 ) v 2 max 

μ2 ML 

]
, (6.8) 

t ∈ 

[ 

μ

2 λv max 
d max , 

(1 − λ) v max + 

√ 

(1 − λ) 2 v 2 max − 4 MLd max 

2 ML 

] 

, 

(6.9) 

or 

 max ∈ 

(
2(λ(1 − λ) μ − 2 λ2 ) v 2 max 

μ2 ML 
, 
(1 − λ) 2 v 2 max 

4 ML 

]
(6.10) 

nd δt satisfies (6.7) . 

Case III. μ ≥ 4 λ
1 −λ

. d max and δt satisfy (6.8) and (6.9) , respectively.

Then, the intervals in Cases I, II, III are well defined, and for each

gent i ∈ N , cell configuration l i = (l i , l j 1 , . . . , l j N i 
) of i , and tuple of

eference points (x i,G , x j,G ) as in (3.5) the solution χ i ( t ) of (3.7) is

efined and remains in D for all t ∈ [0, δt ] . In addition, the feedback

aw k i, l i (·) in (3.12) satisfies property (P) and the distance r as defined

n (3.11) satisfies the design requirement 

 ≥ μ
d max . (6.11) 
2 
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Proof. The proof of the fact that the intervals in Cases I, II, III

are well defined follows from elementary calculations. In addition,

we deduce from Lemma 5.1 that for any tuple of reference points

(x i,G , x j,G ) as in (3.5) the solution χ i ( t ) of (3.7) is defined and re-

mains in D for all t ∈ [0, T max ), and by virtue of (5.3) and the as-

sumed bounds on δt in Cases I, II, III, that 

T max > δt, (6.12)

establishing thus that χ i ( t ) ∈ D for all t ∈ [0, δt ]. We break the sub-

sequent proof in the following steps. 

STEP 1: Verification of Properties (P1) and (P2) for the feed-

back law ( 3.12 ) for d max − δt as given by Cases I, II, III, in con-

junction with the design requirement ( 6.11 ). In this step we prove

that the proposed feedback law (3.12) satisfies Properties (P1) and

(P2). Verification of (P1) is straightforward. Thus, we proceed to

show that (4.2) holds, which implies (P2), and simultaneously, that

(6.11) is fulfilled. By taking into account (3.12) and the result of

Proposition 6.1 , namely, (6.2), (6.3) , and (6.4) , we need to prove

that 

L 1 
√ 

N i (R max + d max ) + 

1 

δt 
d max + L 2 (δtλv max + d max ) 

+ λv max ≤ v max . (6.13)

By recalling (4.1), (3.4) and the fact that λ∈ (0, 1) we get

that δtλv max ≤ R max 
2 . Also, from the fact that d max and δt are

selected according to the Cases I, II, III, it is not hard to de-

duce that d max ≤ R max . Hence, it suffices instead of (6.13) to show

that (2 L 1 
√ 

N i + 

3 
2 L 2 ) R max + 

1 
δt 

d max ≤ (1 − λ) v max , which by virtue

of (4.1) is equivalent to 

(M + v max ) 
(

2 L 1 
√ 

N i + 

3 

2 

L 2 

)
δt 2 − (1 − λ) v max δt + d max ≤ 0 . 

(6.14)

By taking into account (3.4) , it suffices instead of (6.14) to

show that M(3 L 2 + 4 L 1 
√ 

N i ) δt 2 − (1 − λ) v max δt + d max ≤ 0 which

by virtue of (6.5) follows from 

MLδt 2 − (1 − λ) v max δt + d max ≤ 0 . (6.15)

It then follows from elementary calculations that for all Cases I,

II, and III as in the statement of the proposition the requirements

(6.11) and (6.15) are satisfied and hence, that (P2) holds. 

STEP 2: Verification of Property (P3). In order to show (P3), it

suffices to prove that for the given selection of λ∈ (0, 1), μ≥ 0,

d max and δt as provided by Cases I, II, III, the agent i , and the cell

configuration l i it holds T (x i 0 , w i ) > δt, for all x i 0 ∈ S l i and w i ∈ W .

The latter follows directly from Lemma 5.2 , by taking into account

(6.12) and that due to Step 1, the feedback law k i, l i (·) in (3.12) sat-

isfies Properties (P1) and (P2). �

We are now in position to state our main result on sufficient

conditions for well posed abstractions. 

Theorem 6.3. Consider a cell decomposition S of D with diameter

d max , a time step δt , the parameters λ∈ (0, 1), μ≥ 0 and assume

that λ, μ, d max and δt satisfy the restrictions of Proposition 6.2 . Then,

the space-time discretization is well posed for the multi-agent system

(3.1) . In particular, by selecting for each agent i ∈ N and cell configu-

ration l i = (l i , l j 1 , . . . , l j N i 
) of i a tuple of reference points (x i,G , x j,G )

as in (3.5) and the corresponding control law k i, l i (·) in (3.12) , it

holds Post i ( l i ) � = ∅ . In addition, each corresponding reference trajec-

tory χ i ( · ) of i as given by (3.7) satisfies 

B (χi (δt) ; r) ⊂ D (6.16)

and it holds 

Post ( l ) = { l ∈ I : S ∩ B (χ (δt) ; r) � = ∅} , (6.17)
i i l i 
l  

Please cite this article as: D. Boskos, D.V. Dimarogonas, Decentralized

European Journal of Control (2018), https://doi.org/10.1016/j.ejcon.2018.
here r is defined in (3.11) . Furthermore, for each i , l i and l ∈ I the

et of parameters [ w i ] ( l i ,l) in (4.5) for the specification of the transi-

ions in TS i is given as 

 w i ] ( l i ,l) = 

{
x − χi (δt) 

δt 
: x ∈ S l ∩ B (χi (δt) ; r) 

}
. (6.18)

roof. For the proof, pick i ∈ N , l i = (l i , l j 1 , . . . , l j N i 
) , (x i,G , x j,G ) as

n (3.5) and notice that by virtue of Proposition 6.2 , the refer-

nce trajectory χ i ( · ) is well defined on [0, δt ]. In addition, con-

ider the control law k i, l i (·) in (3.12) . Then, it follows again from

roposition 6.2 that the latter satisfies Property (P). Next, notice

hat by virtue of (3.9) and (3.11) it holds w i ∈ W ⇐⇒ χi (δt) +
tw i ∈ B (χi (δt) ; r) , which implies that 

 (χi (δt) ; r) � x �→ w i := 

x − χi (δt) 

δt 
∈ W is a bijection . (6.19)

In order to prove the theorem, we need to verify that (6.16),

6.17) , and (6.18) are fulfilled. 

Proof of ( 6.16 ). In order to show (6.16) , pick x ∈ B ( χ i ( δt ); r ), w i

s in (6.19) and recall that the control law k i, l i (·) satisfies Prop-

rty (P). Then we have from (6.19) that w i ∈ W and thus, we get

rom Property (P3) applied with x i 0 = x i,G and the selected param-

ter w i that T (x i,G , w i ) > δt . From the latter and (3.15) we obtain

hat χi (δt) + δtw i ∈ D, which by virtue of (6.19) implies that x ∈ D

nd establishes validity of (6.16) . 

Proof of ( 6.17 ). Note that due to Definition 4.4 , it holds that

ost ( l i ) = { l ∈ I : ∃ w i ∈ W such that k i, l i (·) , w i , l satisfy Condition

C) } . Hence, in order to show (6.17) , it suffices to prove that 

∃ w i ∈ W s.t. k i, l i (·) , w i , l satisfy Condition (C) 

⇐⇒ S l ∩ B (χi (δt) ; r) � = ∅ . (6.20)

In order to prove (6.20) we first establish the following claim. 

Claim II. Consider the control law k i, l i (·) above and pick any

 i ∈ W . Then, for any initial cell configuration l with pr i ( l ) = l i and

election of feedback laws in (4.4) which satisfy (P) the follow-

ng hold. The solution of the closed-loop system (3.1), (3.12), (4.3),

4.4) , with the selected parameter w i for k i, l i (·) , is well defined on

0, δt ] and satisfies 

 i (δt)(:= x i (δt, x (0))) = χi (δt) + δt w i = z i (δt ) , (6.21)

or all x (0) ∈ D 

N with x m 0 ∈ S l m , m ∈ N and w m 

∈ W, m ∈ N \ { i } ,
ith z i ( · ) as given by (3.10) (see also Fig. 2 in Section 3). 

Proof of Claim II. Let k i, l i (·) and w i as in the statement of

laim II. We first note that due to Proposition 4.7 (iia), the so-

ution of the closed-loop system is defined and remains in D 

N 

n the whole interval [0, δt ]. In addition, the fact that x i (δt) =
 i (δt) follows directly if we show that x i (t) = z i (t) + 

(
1 − t 

δt 

)
(x i 0 −

 i,G ) , ∀ t ∈ [0 , δt] . The proof of the latter is based precisely on the

rguments used for the proof of (5.7) in Lemma 5.2 and is there-

ore omitted. Hence, we conclude that x i (δt) = z i (δt) and the proof

f Claim II is complete. 

From Claim II we deduce for any cell configuration l i with cor-

esponding control law k i, l i (·) , vector w i ∈ W and cell index l ∈ I
hat 

 i, l i 
(·) , w i , l satisfy Condition (C) ⇐⇒ χi (δt) + δtw i ∈ S l . (6.22)

In order to verify (6.22) assume that k i, l i (·) , w i , l satisfy Con-

ition (C), which implies that for each cell configuration l with

r i ( l ) = l i and selection of feedback laws in (4.4) which satisfy (P)

he solution of (3.1), (3.12), (4.3), (4.4) satisfies x i ( δt ) ∈ S l . In addi-

ion, from Claim II, (6.21) holds, and hence, χi (δt) + δtw i ∈ S l . Con-

ersely, assume that for l i , w i , l it holds χi (δt) + δtw i ∈ S l . Then,

iven the corresponding control law k i, l i (·) and the vector w i , it

ollows from Claim II that for each cell configuration l with pr i ( l ) =
 and selection of feedback laws in (4.4) which satisfy (P) the
i 
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olution of (3.1), (3.12), (4.3), (4.4) satisfies x i (δt) = χi (δt) + δtw i .

ence, we obtain that x i ( δt ) ∈ S l which completes the proof of

6.22) . 

In order to show (6.20) , assume that there exists w i ∈ W such

hat k i, l i (·) , w i , l satisfy Condition (C). Then, it follows from

6.22) that χi (δt) + δtw i ∈ S l . In addition, since w i ∈ W, we get

rom (6.19) that also χi (δt) + δtw i ∈ B (χi (δt) ; r) and hence, that

 l ∩ B ( χ i ( δt ); r ) � = ∅ . Conversely, assume that S l ∩ B ( χ i ( δt ); r ) � = ∅ and

ick x ∈ S l ∩ B ( χ i ( δt ); r ) � = ∅ . Let w i as given by (6.19) and note that

i (δt) + δtw i = x ∈ S l . Thus, we obtain from (6.22) that k i, l i (·) , w i ,

 satisfy Condition (C), which also verifies the inverse implication

f (6.20) . 

Proof of ( 6.18 ). In order to show (6.18) , note that due to

efinition 4.4 it holds that Post i ( l i ) = { l ∈ I : [ w i ] ( l i ,l) � = ∅} . Thus,

orm (6.17) , we get that 

 w i ] ( l i ,l) � = ∅ ⇐⇒ S l ∩ B (χi (δt) ; r) � = ∅ , (6.23)

hich directly implies (6.18) for the case where S l ∩ B (χi (δt) ; r) =
 . Next, assume that S l ∩ B ( χ i ( δt ); r ) � = ∅ and let w i ∈ [ w i ] ( l i ,l) .

hen, it follows from (4.5) that k i, l i (·) , w i , l satisfy Condition (C)

nd thus, from (6.22) , that x := χi (δt) + δtw i ∈ S l . Also, due to

6.19) it holds x ∈ B ( χ i ( δt ); r ). Thus we get that w i ∈ { x −χi (δt) 

δt 
: x ∈

 l ∩ B (χi (δt) ; r) } . Conversely, assume that w i = 

x −χi (δt) 

δt 
for certain

 ∈ S l ∩ B ( χ i ( δt ); r ), implying that χi (δt) + δtw i = x ∈ S l . Then, it fol-

ows from (6.22) that k i, l i (·) , w i , l satisfy Condition (C), which

y virtue of (4.5) implies that w i ∈ [ w i ] ( l i ,l) . The proof is now

omplete. �

emark 6.4. Given a well posed discretization and a transition

 i 

( l i , [ w i ]) −→ i l ′ 
i 

of agent i , the set [ w i ] = [ w i ] ( l i ,l ′ i ) 
of parameters which

nable this transition through the control law k i, l i (·) can be geo-

etrically visualized with the aid of Fig. 2 . Specifically, [ w i ] is the

ubset of W = B (λv max ) given by the depicted intersection of the

all B ( χ i ( δt ); r ) and the successor cell S l ′ 
i 

in Fig. 2 , being translated

y −χi (δt) and then dilated by 1 
δt 

. 

The following corollary provides a lower bound for the mini-

um number of cells each agent can reach in time δt , depending

n the selection of the design parameter μ for the space-time dis-

retization. 

orollary 6.5. Consider a cell decomposition S of D with diameter

 max , a time step δt , and parameters λ∈ (0, 1), μ≥ 0 such that the

ypotheses of Theorem 6.3 are fulfilled. Then, for each agent i ∈ N and

ach cell configuration of i , there exist at least θ ( μ) := � μn � possible

iscrete transitions. 

roof. The proof is given in the Appendix . �

. Exploitation of the abstractions for control synthesis 

In this section, we clarify how the results of the paper can be

everaged for controller synthesis under high level specifications

ssigned to the agents of system (3.1) . We also discuss how the

ndividual discrete models of the agents can reduce the computa-

ional burden of centralized solutions in specific cases. 

For the general case, assume that certain tasks have been as-

igned to the agents. Then, the proposed abstractions can be uti-

ized for the derivation of satisfying plans and their execution via

equences of feedback controllers through the following procedure:

Step 1. Given the Lipschitz constants L 1 , L 2 and the bounds M , v max 

on the agents’ dynamics, pick design parameters λ, μ and

select a well posed space-time discretization S − δt for the

multi-agent system based on Theorem 6.3 . 

tep 2. Fix a reference point for each cell S l of the decomposition

{ S l } l∈I . Then, derive the transition system TS i of each agent
Please cite this article as: D. Boskos, D.V. Dimarogonas, Decentralized
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i as follows. For each cell configuration l i = (l i , l j 1 , . . . , l j N i 
)

compute the endpoint χ i ( δt ) of the reference trajectory

(3.7) at time δt , corresponding to the reference points

x i,G , x j 1 ,G , . . . , x j N i ,G 
of the cells S l i , S l j 1 

, . . . , S l j N i 
, as selected

at the beginning of Step 2. Then, specify the cells which

have nonempty intersection with B ( χ i ( δt ); r ), in order to

obtain all the transitions l i 
( l i , [ w i ]) −→ i l ′ 

i 
to the cells in (6.17) ,

where [ w i ] = [ w i ] ( l i ,l ′ i ) 
is given by (6.18) . Also, recall that ac-

cording to Remark 4.5 (i) each action term [ w i ] of a transi-

tion is uniquely determined through the agent’s successor

cell and note that it does not need to be explicitly specified,

as will be clarified in Step 4. 

tep 3. Find a path l 
0 
l 
1 
l 
2 · · · in the product transition system T S P 

of Definition 4.9 which satisfies the plan and project it

for each agent i to a sequence of transitions l 0 
i 

( l 0 i , [ w i ] 
0 )−→ i 

l 1 
i 

( l 1 i , [ w i ] 
1 ) −→ i l 2 

i 
. . . . 

tep 4. Select the control laws to implement the individual transi-

tions by the continuous system as follows. For each tran-

sition l m 

i 

( l m i , [ w i ] 
m ) −→ i l m +1 

i 
pick any w i ∈ [ w i ] 

m = [ w i ] ( l m i ,l m +1 
i 

) 
,

with the latter as given by (6.18) , and apply the control law

(3.12) with the selected parameter w i . Note that according

to (6.18) , a desired w i can be obtained by any convenient

selection of a point x in the intersection of B ( χ i ( δt ); r ) and

the successor cell S 
l m +1 
i 

. 

We next provide certain cases where due to the network struc-

ure or the nature of the tasks, it is either required to compose

 strict subset of subsystems, or to exploit the individual discrete

odels in a sequential manner. Thus, it is possible to avoid their

lobal composition and reduce the memory and time resources re-

uired for the derivation of satisfying plans. 

As a first case, assume that the agents’ network forms an acyclic

raph and without any loss of generality that it is a directed tree,

ith agent i as the root, which has no couplings in its dynamics.

hen, we can first select the set of discrete paths of i which satisfy

ts specification and as a next step, use all these paths as actions

or the transition systems of i ’s children in order to determine the

aths which satisfy their plans. Proceeding analogously, we use for

ach descendant of i , the selected paths of its ancestor in order

o derive all the satisfying paths of its specification. This approach

an reduce significantly the memory storage that is required for

he transitions compared to the centralized case and lead to a lin-

ar complexity of task verification with respect to the number of

gents. 

Assume next the case where a task assigned to agent i needs

o be verified within a few number of time steps, as for instance a

hort term reachability goal. For a large network, this implies that

or most agents, their distance in the graph from i will be larger

han the number of time steps required for the verification of the

ask, which are e.g., κ ∈ N . Notice next, that by using the transition

ystems of the agent and its neighbors, we can find all the one

tep successor cells of i and their corresponding one step actions,

.e., the possible successor cells of its neighbors. Then, by taking all

ombinations of the one step successor cells and their correspond-

ng actions, it is possible to evaluate the agent’s reachable cells in

wo time steps. This approach can be recursively applied up to κ
ime steps ahead and requires the discrete positions of the agents

ith distance up to κ in the network from i . Hence, it provides a

artially decentralized framework, suitable to address motion plan-

ing problems from a bottom up perspective, i.e., at the agent level

y leveraging local network information. 
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The above cases are only two examples of when the pro-

posed distributed abstractions’ scheme can be used for high level

multi-agent task planning and yield guaranteed reduced compu-

tational complexity with respect to the centralized approach that

utilizes the full product composition. Investigating the full spec-

trum of high level specification classes that can be treated with

guaranteed reduced complexity under the proposed distributed

framework is a topic of ongoing work. 

8. Example and simulation results 

As an illustrative example we consider a system of four

agents whose states x 1 , x 2 , x 3 , x 4 lie inside the circular domain

int (B (R ))(= { x ∈ R 

2 : | x | < R } ) with center zero and radius R > 0.

Their dynamics are given as: 

˙ x 1 = sat ρ (x 2 − x 1 ) + g(x 1 ) + v 1 , 
˙ x 2 = g(x 2 ) + v 2 , 
˙ x 3 = sat ρ (x 2 − x 3 ) + g(x 3 ) + v 3 , 
˙ x 4 = sat ρ (x 3 − x 4 ) + g(x 4 ) + v 4 , (8.1)

where the function sat ρ : R 

2 → R 

2 is defined as sat ρ ( x ) := x if

| x | ≤ρ; sat ρ (x ) := 

ρ
| x | x, if | x | > ρ . The agents’ neighbors’ sets in this

example are N 1 = { 2 } , N 2 = ∅ , N 3 = { 2 } , N 4 = { 3 } and specify the

corresponding network topology. The constant ρ > 0 in (8.1) satis-

fies ρ ≤ R and represents a bound on the distance between agents

1, 2, and agents 2, 3, that we will require the system to satisfy

during its evolution. The function g : int (B (R )) → R 

2 is defined as

g(x ) := 

⎧ ⎨ 

⎩ 

0 , if | x | < R − ρ
2 

− ε, 

((R − ρ
2 

− ε) − | x | ) x 
| x | , if R − ρ

2 
− ε ≤ | x | < R − ε, 

− ρ
2 

x 
| x | , if R − ε ≤ | x | < R 

(8.2)

for certain ε <ρ and determines for each agent a repulsive vector

field from the boundary of int( B ( R )). Then, by selecting v max = 

ρ
2 ,

it can be deduced (along the lines of the corresponding result in

[7] ) that the circular domain remains invariant for the dynamics of

the system. 

We next show that if the initial distances between agents 1 and

2 (and similarly for agents 2 and 3) is less than ρ , it will also re-

main less than ρ for all positive times, for an appropriate bound

on the magnitude of the free input terms v i . By selecting the en-

ergy function V (x 1 , x 2 ) := 

1 
2 | x 1 − x 2 | 2 and evaluating its derivative

along the right hand side of (8.1) , we obtain that 

˙ V ≤ −(ρ − 2 v max ) | x 1 − x 2 | + 〈 x 1 − x 2 , g(x 1 ) − g(x 2 ) 〉 , 
if | x 1 − x 2 | ≥ ρ (8.3)

where 〈 · , · 〉 denotes the inner product in R 

2 . By recalling that

v max = 

ρ
2 , we get from (8.3) that 

˙ 
 ≤ 〈 x 1 − x 2 , g(x 1 ) − g(x 2 ) 〉 , if | x 1 − x 2 | ≥ ρ (8.4)

In addition, from the definition of g ( · ), we have for any

x , y ∈ int( B ( R )) with | x | ≥ | y |, that g(x ) = −ax, g(y ) = −by for

some a ≥ b ≥ 0. Thus, we obtain that 〈 x − y, g(x ) − g(y ) 〉 =
〈 x − y, −ax + by 〉 = 〈 x − y, −(a − b) x − b(x − y ) 〉 = −b| x − y | 2 −
(a − b)(| x | 2 − 〈 x, y 〉 ) ≤ −(a − b)(| x | 2 − | x || y | ) ≤ 0 . Consequently,

it follows from (8.4) that ˙ V ≤ 0 when | x 1 − x 2 | ≥ ρ, which

implies that | x 1 (t) − x 2 (t) | ≤ ρ for all positive times, given

that | x 1 (0) − x 2 (0) | ≤ ρ . Analogously, by considering the func-

tion V (x 2 , x 3 ) := 

1 
2 | x 2 − x 3 | 2 it follows that the same holds for

| x 2 (t) − x 3 (t) | . Finally, we obtain from (8.1) and (8.2) the following

dynamics bounds and Lipschitz constants in (3.2), (5.1) and (5.2) ,

respectively: M = 

3 ρ, L 1 = 1 , L 2 = 2 . Thus, it follows that system
2 

Please cite this article as: D. Boskos, D.V. Dimarogonas, Decentralized

European Journal of Control (2018), https://doi.org/10.1016/j.ejcon.2018.
8.1) satisfies all requirements for the derivation of well posed

iscretizations. 

In this example, it is also assumed that the reference point

f each cell of the square partition is the center of the square.

his enables us to obtain the following improved bounds on the

eedback laws in (3.12) , for their corresponding values of t , x i ,

 j and w i : | k i, l i , 1 (x i , x j ) | ≤ L 1 ((M + v max ) δt + 

d max 
2 ) , | k i, l i , 2 (x i 0 ) | ≤

d max 
2 δt 

, | k i, l i , 3 (t; x i 0 , w ) | ≤ L 2 (λv max δt + 

d max 
2 ) + λv max . Thus, in order

o verify Property (P2), we need to select d max and δt satisfy-

ng L 1 ((M + v max ) δt + 

d max 
2 ) + 

d max 
2 δt 

+ L 2 (λv max δt + 

d max 
2 ) + λv max ≤

 max . Equivalently, by virtue of the selected bound on v max ,

he bound on the system’s feedback terms and the correspond-

ng Lipschitz constants, it is required that d max ≤ ρ (1 −λ) δt−4 δt 2 

3 δt+1 
.

ence, by elementary calculations we obtain the time δ̄t =
−2+ 

√ 

4+3(1 −λ) 
6 , corresponding to the maximum possible diameter

 ̄max = ρ (1 −λ) ̄δt −4 ̄δt 
2 

3 ̄δt +1 
. 

For the simulation results, we select the distance ρ = 10 , ε =
 . 01 and the radius of the circular domain R = 10 . We also assume

hat the agents 1, 2, 3 and 4, are initially located at x 10 = (5 , −3) ,

 20 = (5 , 3) , x 30 = (0 , 6) and x 40 = (−4 , 6) , respectively. Thus, it

ollows that agents 1, 2, and 2, 3, satisfy the requirement on their

nitial relative distance. In the sequel we will focus on the behav-

or of the system for times t ∈ [0, 2]. Given this time interval and a

election of the planning parameter λ∈ (0, 1), we choose the time

tep δt as the largest possible time step not exceeding δ̄t above,

n such a way that the number of time steps NT := 

2 
δt 

is a posi-

ive integer. We also choose the largest possible cell diameter d max 

orresponding to δt and consider a square grid in R 

2 . Each square

as side length d , where d is the largest number not exceeding√ 

2 
2 d max , such that the quotient 2 R 

d 
is an integer. Thus, we can form

 cell decomposition of the circular domain D by defining as a cell

ach square in the grid which has nonempty intersection with D .

n Figs. 4 and 5 we have plotted (half of) the grid lines, in order

o illustrate how the grid is affected by the choice of λ. We next

onsider two cases for the motion of agent 2, which is unaffected

y the coupled constraints. 

Case I: It holds v 2 (t) = v 2 c , ∀ t ∈ [0, 2], with v 2 c = (−3 , −3) . 

ase II: It holds v 2 (t) = v 2 c + v 2 d (t) , ∀ t ∈ [0, 2], with v 2 c as above

and v 2 d ∈ U d , where U d is the set of all piecewise

continuous functions ˜ v : [0 , 2] → R 

2 that satisfy ˜ v (t) =
γ (t)( 

√ 

2 
2 , −

√ 

2 
2 ) , with −1 ≤ γ (t) ≤ 1 for all t ∈ [0, 0.9] and

γ (t) = 0 , for all t ∈ (0.9, 2]. 

Notice that in Case I we consider a pre-specified path for agent

, by selecting a constant control, whereas in Case II we allow for

he possibility to modify this path and superpose a motion perpen-

icular to it (up to certain bound) over the time interval [0,0.9].

urthermore, in both cases the magnitude of v 2 (·) is bounded by

 max (= 5) . 

For Case I, we assign reachability goals to agents 1, 3 and 4

hich should be fulfilled at the end of the time interval [0,2], given

he selected path for agent 2. Specifically, we want agents 1, 3 and

 to reach the corresponding boxes in the workspace that are de-

icted in Fig. 4 . First, we sample the trajectory of 2 at the time

nstants κδt , κ = 0 , 1 . . . , NT and specify the sequence l 0 
2 

l 1 
2 

. . . l NT 
2 

orresponding to the cells S l κ
2 

with x 2 (κδt, x 20 ) ∈ S l κ
2 

. Then, we ex-

loit the individual transition systems of agents 1 and 3, in order

o determine their reachable cells for the given sampled trajectory

f agent 2. In particular, by denoting as l 0 
1 

the index of the cell

here the initial state x 10 of agent 1 belongs, we can evaluate the

ndices of its reachable cells at time κδt as Q 

κ
1 

= Post 1 (Q 

κ−1 
1 

, l κ−1 
2 

) ,

= 0 , 1 , . . . , NT , where Q 

0 
1 

:= { l 0 
1 
} and we have used the nota-

ional convention Post 1 (Q 1 , l 2 ) := ∪ l 1 ∈ Q 1 Post 1 (l 1 , l 2 ) (recall that ( l 1 ,

 ) stands for a cell configuration of agent 1). The approach fol-
 abstractions for multi-agent systems under coupled constraints, 
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Fig. 4. Reachable cells of the agents for (i) λ = 0 . 2 and (ii) λ = 0 . 3 . Agents 1, 3 and 4 are initially located at the bottom right, top center, and top left of the illustrated 

workspace, and their reachable cells are depicted with cyan, blue, and yellow, respectively. The circles denote the sampled trajectory of agent 2 as determined by Case I and 

the boxes the corresponding target sets of agents 1, 3 and 4. The union of all discrete paths of agent 3 which end in its target box are highlighted within the union of its 

reachable cells. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Reachable cells of the agents for (i) λ = 0 . 3 and (ii) λ = 0 . 4 . Agents 1, 3 and 4 are initially located at the bottom right, top center and top left of the illustrated 

workspace, and their reachable cells are depicted with cyan, blue, and yellow, respectively. The circles denote the nominal sampled trajectory of agent 2 and their nearby 

red cells represent the cells where agent 2 can lie at the sampling times, for all possible inputs of Case II. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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lowed in this case is possible because agent 2 is decoupled from

the other agents and the individual transition system of agent 1

depends only on the cell indices of agent 2. Similarly, we can eval-

uate the reachable cells of agent 1 and check whether it fulfills its

reachability task. Next, by computing the reachable cells of agent

3 which lie in its target box at the final time step NT , we calcu-

late the backward reachable cells of the agent in order to encode

the discrete trajectories which fulfill its reachability goal, which are

depicted with the red cells in Fig. 4 . Then, we exploit the individ-

ual transition system of agent 4 in order to determine its reach-

able cells for all the possible trajectories of agent 3 that satisfy

its reachability task. The corresponding simulation results are de-

picted in Fig. 4 for λ = 0 . 2 (left) and λ = 0 . 3 (right). The figure also

illustrates the effect of the parameter λ in the accomplishment of

the reachability goals, since for λ = 0 . 2 only agent 3 reaches its tar-

get box, whereas for λ = 0 . 3 all agents achieve their corresponding

task. 

Remark 8.1. It is noted that for Case I, the reachability goals of

agents 1 and 3 can also be computed by exploiting existing reacha-

bility tools. However, one main advantage of exploiting the derived

distributed symbolic models comes from the evaluation of the cor-

responding cells for agent 4. For this agent, the reachable cells are

specified for all possible paths of agents 3 which lead to its target

box. These paths are determined by exploiting agent’s 3 individual

transition system and their union is depicted through the red cells

in Fig. 4 . Thus, they provide enhanced reachability capabilities to

agent 4 compared to the case where only one continuous trajec-

tory of 3 which satisfies its task would have been used. In addi-

tion, for every selection of a discrete path, the controllers that re-

alize the corresponding continuous trajectory can be designed in a

straightforward way based on the four step procedure of Section 6 .

Finally, the same approach can be followed if we assume that there

are more agents in the network and that the latter has still a tree

structure (as in this example where agent 2 is the root). In that

case, the complexity of determining the corresponding analogous

reachability goals will be linear and not exponential to the num-

ber of agents in the network. 

For Case II, we exploit the individual transition system of

agents 1, 3 and 4 in order to obtain (an underapproximation

of) the cells these agents can reach, irrespectively of the choice

of v 2 d for the free input of agent 2. In particular, we define

the finite cell sequence { Q 

κ
2 
} κ∈{ 0 , 1 , ... ,NT } as Q 

κ
2 

= { l ∈ I : ∃ v 2 ,d ∈
U d with x 2 (κδt, x 20 ; v 2 c + v 2 d (·)) ∈ S l } , which is depicted with the

red cells in Fig. 5 . Also, we inductively define for κ = 0 , 1 , . . . , NT 

the sets Q 

κ
1 

= ∪ 

l 1 ∈ Q κ−1 
1 

∩ 

l 2 ∈ Q κ−1 
2 

Post 1 (l 1 , l 2 ) , Q 

κ
3 

= ∪ 

l 3 ∈ Q κ−1 
3 

∩ 

l 2 ∈ Q κ−1 
2 

Post 3 (l 3 , l 2 ) and Q 

κ
4 

= ∪ 

l 4 ∈ Q κ−1 
4 

∩ 

l 3 ∈ Q κ−1 
3 

Post 4 (l 4 , l 3 ) , with Q 

0 
1 

=
{ l 0 

1 
} , Q 

0 
3 

= { l 0 
3 
} and Q 

0 
4 

= { l 0 
4 
} (we use the same notational conven-

tion as above for the operators Post i ( · ), and the notation l 0 
i 

for the

initial cells of the agents i = 1 , 3 , 4 ). Next, consider any selection of

sequences l 0 
1 

l 1 1 · · · l NT 
1 , l 0 

3 
l 1 3 · · · l NT 

3 and l 0 
4 

l 1 4 · · · l NT 
4 , of agents 1, 3 and

4, that satisfy l κ
1 

∈ Q 

κ
1 

, l κ
3 

∈ Q 

κ
3 

and l κ
4 

∈ Q 

κ
4 

, respectively. Then, by

taking into account the definition of the sets Q 

κ
i 

, i = 1 , 3 , 4 , the

definition of the individual transition systems of agents 1, 3, 4, and

the particular coupling between the agents in this example, we ar-

rive at the following conclusion. For each agent 1, 3 and 4, it is

possible to assign a sequence of control laws, such that each cor-

responding agent will reach the cells with indices l κ
1 
, l κ

3 
and l κ

4 
at

time κδt , respectively, for any selection of the input v 2 d of agent 2.

In Fig. 5 we illustrate the union of the reachable cells of agents 1,

3 and 4 for λ = 0 . 3 and λ = 0 . 4 , respectively. Notice that the un-

derapproximation of agents’ 1 and 3 reachable cells increases with

the selection of the larger parameter λ, namely, with the exploita-

tion of a larger part of the free input for planning. However, the

same observation does not necessarily hold for the reachable cells
Please cite this article as: D. Boskos, D.V. Dimarogonas, Decentralized

European Journal of Control (2018), https://doi.org/10.1016/j.ejcon.2018.
f agent 4. The reason why the area covered by the reachable cells

f agent 4 remains approximately the same, is that the correspond-

ng area increases for agent 3 for larger values of λ. Thus, although

he reachability properties of agent 4 are improved, this is com-

ensated by the fact that each illustrated transition of agent 4 to a

ertain cell needs to be possible for an increasing number of dif-

erent positions of agent 3. 

The code for the simulation results has been implemented in

ATLAB and the worst case running time for the illustrated results

s of the order of 45 min, on a PC with an Intel(R) Core(TM) i7-

600U CPU @ 2.10 GHz processor. 

. Conclusions 

We have provided a decentralized abstraction methodology for

ulti-agent systems and quantified space and time discretizations

n order to obtain for each agent an individual transition system

ith multiple transition possibilities. The abstraction framework is

ased on the design of hybrid feedback control laws that take into

ccount the agents’ coupled constraints and guarantee the imple-

entation of the discrete transitions by the continuous system. 

Ongoing work includes the improvement of the acceptable

hoices of d max and δt in order to obtain coarser abstractions and

educe the size of each agent’s transition system. Another possi-

le direction for complexity reduction is the modification of the

urrent framework by considering event based online abstractions

ith updated choices of d max and δt . Finally, it should be noted

hat while this paper provides informal indicators of how the re-

ults can be used for planning, we are currently formalizing a dis-

ributed planning methodology from high level specifications that

uilds on the derived abstractions. 
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ppendix 

In the Appendix we provide the proofs of Proposition 4.7,

emma 5.1 and Corollary 6.5 . 

roof of Proposition 4.7. Proof of (i). Let w i ∈ W, i ∈ N and

 (0) ∈ D 

N with x i (0) ∈ S l i , i ∈ N be the initial condition of the

losed-loop system. Then, it follows from the local Lipschitz prop-

rty on the functions f i ( · ) and the corresponding property on the

appings k i, pr i ( l ) 
(·; x i 0 , w i ) provided by (P1), that the dynamics of

he closed-loop system are given by a locally Lipschitz function on

 

N . Hence, there exists a unique solution x (·) = x (·, x (0)) to the

nitial value problem, which is defined and remains in D 

N for all

imes in its right maximal interval of existence [0, T max ). We pro-

eed by proving that each component x i ( · ), i ∈ N of the solution

atisfies 

 i (t) ∈ (S l i + B (R max )) ∩ D, ∀ t ∈ [0 , min { T max , τ } ) . (A.1)

Indeed, suppose on the contrary that (A.1) is violated, and

ence, by taking into account that x i ( t ) ∈ D for all t ∈ [0, T max ), that

here exists ι ∈ N and a time T with 

 ∈ (0 , min { T max , τ } ) and x ι(T ) / ∈ S l ι + B (R max ) . (A.2)

By recalling that x i (0) ∈ S l i , i ∈ N , we may define 

0 := max { t ∈ [0 , T ] : x i (s ) ∈ cl (S l i + B (R max )) , ∀ s ∈ [0 , t] , i ∈ N } . 
(A.3)
 abstractions for multi-agent systems under coupled constraints, 
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Then, it follows from (4.10), (A .2) , and (A .3) that there exists

 ∈ N such that 

 � (τ0 ) ∈ ∂(S l � + B (R max )) (A.4)

nd that 

0 ≤ T < τ ≤ δt. (A.5) 

It also follows from (A.3), (4.10), (A.5) , and Property (P2) that

or all t ∈ [0, τ 0 ] it holds 

 k �, pr � ( l ) 
(t, x � (t) , x j(� ) (t) ; x � 0 , w � ) | ≤ v max (A.6) 

Hence, we get from (3.1), (4.1), (4.9), (A .6) , and (A .5) , which im-

lies that τ 0 < δt , that 

 x � (τ0 ) − x � 0 | ≤
∫ τ0 

0 

(| f � (x � (s ) , x j(� ) (s )) | 
+ | k � , pr � ( l )(s, x � (s ) , x j(� ) (s ) ; x � 0 , w � ) | ) ds 

≤
∫ τ0 

0 

(M + v max ) ds < δt(M + v max ) = R max . (A.7) 

In order to finish the proof of (A.1) we exploit the following

lementary fact. 

Fact I. Consider a nonempty set S ⊂ R 

n and a constant R > 0.

hen for every x ∈ ∂(S + B (R )) it holds | x − y | ≥ R, ∀ y ∈ S. 

Proof of Fact I. Indeed, suppose on the contrary that there ex-

sts ȳ ∈ S with | x − ȳ | ≤ R − ε for certain ε > 0. Then for all x̄ ∈
nt (B (x ; ε)) we have 

 ̄x − ȳ | ≤ | ̄x − x | + | x − ȳ | < ε + R − ε = R, 

nd hence, x̄ ∈ S + B (R ) for all x̄ ∈ int (B (x ; ε)) , which implies that

 / ∈ ∂(S + B (R )) and contradicts our statement. 

By exploiting Fact I with S = S l � , R = R max , y = x � 0 and x =
 � (τ0 ) we deduce from (A.7) that x � (τ0 ) / ∈ ∂(S l � + B (R max )) which

ontradicts (A.4) , and provides validity of (A.1) . 

We now prove the following claim: 

Claim I. It holds T max ≥ τ . 

Proof of Claim I. Indeed, suppose on the contrary that 

 max < τ. (A.8) 

For each i ∈ N let u i : [0 , ∞ ) → R 

n be a piecewise continuous

unction satisfying 

 i (t) = k i, pr i ( l ) 
(t , x i (t ) , x j (t ) ; x i 0 , w i ) , ∀ t ∈ [0 , T max ) . (A.9)

Notice that due to (4.10) and (A.8) we have that T max <

in { δt, min { T (x i 0 , w i ) : i ∈ N }} , and thus, we get from (A.1) and

P2) that | u i (t) | ≤ v max , ∀ t ∈ [0, T max ). Hence, we may select u i ( · )

o satisfy | u i (t) | ≤ v max , ∀ t ≥ 0 (select for instance u i (t) = 0 for

 ≥ T max ). Thus, if we denote by ξ ( · ) the solution of (3.1) with free

nputs u i ( · ), i ∈ N and the same initial condition with x ( · ), it fol-

ows from the Invariance Assumption (IA) that ξ ( t ) is defined and

emains in D 

N for all t ≥ 0. Furthermore, it follows from standard

rguments from the theory of ODEs that ξ (t) = x (t) , ∀ t ∈ [0 , T max ) .

ence, since ξ ( t ) belongs to a compact subset of D 

N for all t ∈ [0,

 max ], the same holds for x ( t ) on [0, T max ). The latter contra-

icts maximality of [0, T max ) since by (A.8) and (4.10) it holds

 max < τ ≤ min { T (x i 0 , w i ) : i ∈ N } and the mappings k i, pr i ( l ) 
(·) are

efined for t ∈ [0 , min { T (x i 0 , w i ) : i ∈ N } ) . Hence, we have shown

laim I. 

From Claim I, it follows that x ( t ) is defined and remains in D 

N 

or all t ∈ [0, τ ) and that (A.1) holds for all t ∈ [0, τ ). Thus, by ap-

lying the same arguments with those in the proof of Claim I, we

an determine a continuous function ξ ( · ) with ξ (t) = x (t) for all

 ∈ [0, τ ) and ξ ( τ ) ∈ D 

N , which establishes (4.11) . 

Proof of (iia). In the case where (P3) also holds, and hence by

4.10) we have that τ = δt, it follows from part (i) of the propo-

ition and standard arguments, that the solution x ( · ) is defined

n [0, T max ), with T max > δt . From the latter, we conclude that
Please cite this article as: D. Boskos, D.V. Dimarogonas, Decentralized
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 ( t ) ∈ D 

N for all t ∈ [0, δt ]. Moreover, since T max > δt = τ, it follows

hat (A.1) is satisfied for all t ∈ [0, δt ). The latter, by virtue of (P2),

P3) and continuity of x ( · ) implies (4.12) . 

Proof of (iib). By exploiting the result of part (iia) of the propo-

ition and defining u i (t) = k i, pr i ( l ) 
(t , x i (t ) , x j (t ) ; x i 0 , w i ) , ∀ t ∈ [0, δt )

e can extend u i ( · ) to a piecewise continuous function on [0, ∞ )

hich satisfies (3.3) . Hence, by applying the same arguments with

hose in the proof of Claim I, we conclude that the solutions x ( · )

f (3.1), (4.9) and ξ ( · ) of (3.1) (with input u ( · )) coincide on [0,

t ]. �

roof of Lemma 5.1. For the proof of the lemma we exploit the

esult of Proposition 4.7 . In particular, we show that the solu-

ion χ i ( · ) of (3.7) coincides on a suitable time interval with the

 th component of the solution of the multi-agent system (3.1) un-

er an appropriate selection of the initial conditions and feedback

ontrollers for the v i ’s. Hence, by implicitly exploiting the Invari-

nce Assumption (IA) that leads to the result of Proposition 4.7 (iia),

hich is valid for any choice of feedback laws that satisfy Property

P), we will verify that (5.3) is fulfilled. 

In order to proceed with the proof, let (x i,G , x j,G ) be a tuple of

eference points as in (3.5) , corresponding to a cell decomposition

 S l } l∈I of D and a cell configuration l i of agent i , and consider an-

ther cell decomposition { ̄S 
l̄ 
} 

l̄ ∈ ̄I of D and an initial cell configura-

ion l̄ = ( ̄l 1 , . . . , ̄l N ) ∈ Ī N with pr i ( ̄l ) = ( ̄l i , ̄l j 1 , . . . , ̄l j N i 
) , such that 

 i,G ∈ S̄ 
l̄ i 

and S̄ 
l̄ j κ

= { x j κ ,G } , κ = 1 , . . . , N i . (A.10)

We have selected the auxiliary cell decomposition { ̄S 
l̄ 
} 

l̄ ∈ ̄I with

he sets S̄ 
l̄ j κ

consisting of a single element, because this slightly

implifies the subsequent analysis and also allows obtaining a

reater uniform lower bound for the time T max . Next, define the

ime step 

t̄ := 

v max 

2 ML 1 max { √ 

N i : i ∈ N } (A.11) 

nd consider the feedback laws k 
i, pr i ( ̄l ) 

: D 

N i +1 → R 

n given by 

 

i, pr i ( ̄l ) 
(x i , x j ) := f i (x i , x j,G ) − f i (x i , x j ) = F i, l i (x i ) − f i (x i , x j ) , 

(A.12) 

ith F i, l i (·) as in (3.6) and k 
�, pr � ( ̄l ) 

: D 

N � +1 → R 

n for � ∈ N \ { i }
iven by 

 

�, pr � ( ̄l ) 
(x � , x j(� ) ) := 0 . (A.13)

Note that the feedback laws k 
�, pr � ( ̄l ) 

(·) for � ∈ N \ { i } satisfy

roperty (P) by default, with the auxiliary cell decomposition

 ̄S 
l̄ 
} 

l̄ ∈ ̄I and the selected time step δ̄t in (A.11) (if viewed as map-

ings R ≥0 × D 

N � +1 � (t, x � , x j(� ) ) �→ k 
�, pr � ( ̄l ) 

(t, x � , x j(� ) ; x � 0 , w � ) ∈ R 

n 

arameterized by x � 0 ∈ S̄ �̄ , w � ∈ W, with any ∅ � = W ∈ R 

n and be-

ng independent of t , x � 0 and w � ). Hence, in order to invoke

roposition 4.7 (iia), we show that k 
i, pr i ( ̄l ) 

(·) also satisfies (P). Prop-

rty (P3) is obvious, since k 
i, pr i ( ̄l ) 

(·) is independent of t . Property

P1) follows from the corresponding Lipschitz property for f i ( · ) and

 i, l i 
(·) , since by virtue of (5.2) and (3.6) , the latter satisfies the Lip-

chitz condition 

 F i, l i (x ) − F i, l i (y ) | ≤ L 2 | x − y | , ∀ x, y ∈ D. (A.14)

In order to show (P2), notice that due to (A.11) we get 

 max ≥ 2 M δ̄t L 1 
√ 

N i , for all i ∈ N . (A.15)

Hence, we get from (4.1), (5.1), (3.4), (A.10) and (A.15) that

or every x i ∈ ( ̄S 
l̄ i 

+ B (R max )) ∩ D and x j κ ∈ B (x j κ ,G , R max ) ∩ D, κ =
 , . . . , N i , it holds | k 

i, pr i ( ̄l ) 
(x i , x j ) | ≤ L 1 | x j − x j,G | = L 1 ( 

∑ N i 
κ=1 

(x j κ −
 abstractions for multi-agent systems under coupled constraints, 
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x j κ ,G ) 
2 ) 

1 
2 ≤ L 1 

√ 

N i δ̄t (M + v max ) < 2 M ̄δt L 1 
√ 

N i ≤ v max , with R max

corresponding to the selected time step δ̄t . Thus, (P2) holds as

well, since k 
i, pr i ( ̄l ) 

(·) is independent of t , x i 0 and w i . Then, it follows

from Proposition 4.7 (iia) that the solution x ( t ) of the closed-loop

system (3.1), (A.12) - (A.13) with initial condition x (0) ∈ D 

N satisfying

x i (0) = x i,G , x j 1 (0) = x j 1 ,G , . . . , x j N i 
(0) = x j N i ,G 

(and the initial state

of each other agent � belonging to S̄ 
l̄ � 

) is defined and remains in

D 

N for all t ∈ [0 , δ̄t ] . Hence, the i th component of the solution x ( · )

satisfies 

x i (t) ∈ D, ∀ t ∈ [0 , δ̄t ] , (A.16)

and by virtue of (3.1) and (A.12) , it holds 

˙ x i (t) = F i, l i (x i (t)) , ∀ t ∈ [0 , δ̄t ] , x i (0) = x i,G . (A.17)

Hence, it follows from (A.17) that x i ( · ) coincides with the

unique solution χ i ( · ) of (3.7) on [0 , δ̄t ] ∩ [0 , T max ) , which in con-

junction with (A.16) implies that χ i ( t ) remains in a compact sub-

set of D for t ∈ [0 , δ̄t ] ∩ [0 , T max ) . From the latter, we deduce that

T max > δ̄t . Indeed, otherwise χ i ( t ) would remain in a compact sub-

set of D for t ∈ [0, T max ), contradicting maximality of [0, T max ).

Thus, we conclude that (5.3) is satisfied. �

Proof of Corollary 6.5. In order to prove the result, we need by

virtue of (6.17) to show that 

# { l ∈ I : S l ∩ B (χi (δt) ; r) � = ∅} ≥ � μn � (A.18)

(recall that that # denotes the cardinality of a set). In addition,

it follows from (6.1) and the iso-diametric inequality (see e.g., [37] )

that for each l ∈ I it holds 

Vol (S l ) ≤ Vol 

(
B 

(
d max 

2 

))
= d n max β(n ) =: S max , (A.19)

(recall that Vol( · ) denotes volume and that β(n ) := Vol (B ( 1 2 )) ).

It then follows from (6.16) , namely, that B ( χ i ( δt ); r ) ⊂ D , (A.19) and

the fact that due to Definition 3.1 it holds ∪ l∈I S l = D, that 

# { l ∈ I : S l ∩ B (χi (δt) ; r) � = ∅} ≥
⌈

Vol ( B (χi (δt) ; r) ) 

S max 

⌉
. (A.20)

By taking into account (6.11) and (A.19) , we get that
Vol ( B (χi (δt) ;r) ) 

S max 
≥ (μd max ) n β(n ) 

d n max β(n ) 
= μn . Thus, (A.18) is a direct conse-

quence of the latter and (A.20) . The proof is now complete. �

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.ejcon.2018.10.002 . 
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