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Abstract—In this paper we present a hybrid feedback approach to
solve the navigation problem in the n—dimensional space containing
an arbitrary number of ellipsoidal obstacles. The proposed algorithm
guarantees both global asymptotic stabilization to a target position and
avoidance of the obstacles. The controller, exploiting hysteresis regions,
employs a Zeno-free switching between two modes of control: stabilization
and avoidance. Simulation results illustrate the performance of the
proposed approach for 2-dimensional and 3-dimensional scenarios.

I. INTRODUCTION

For decades, the obstacle avoidance problem has been an active
area of research in the robotics and control communities [1]. In a
typical robot navigation scenario, the robot is required to reach a
given goal (destination) while not colliding with a set of obstacle
regions in the workspace. Since the pioneering work by Khatib [2],
artificial potential fields have been widely used in the obstacle avoid-
ance problem since they offer the possibility to combine the solution
to the global find-path problem with a feedback controller for the
robot, thus, allowing the high-level planner to address more abstract
tasks. The idea is to generate an artificial potential field that renders
the goal attractive and the obstacles repulsive. Then, by considering
trajectories that navigate along the negative gradient of the artificial
potential field, one can ensure that the robot will reach the desired
target while avoiding to collide with the obstacles. However, artificial
potential field-based algorithms suffer from 1) the presence of local
minima preventing the successful navigation to the target point and
2) arbitrarily large repulsive potential near the obstacles, which is
in conflict with the inevitable actuator saturations. The navigation-
function approach, initiated by Koditscheck and Rimon [3] for sphere
worlds [3, p. 414], solves both problems. It allows obtaining artificial
potential fields with the nice property that all but one of the critical
points are saddles and the remaining critical point is the desired ref-
erence. Since then, the navigation function-based approach has been
extended in many different directions; e.g., for multi-agent systems
[4]-[6], for unknown sphere words [7], and for focally admissible
obstacles [8]. The major drawback of navigation functions is that
they are not correct by construction. In fact, navigation functions
are theoretically guaranteed to exist, but their explicit computation is
not straightforward since they require an unknown tuning of a given
parameter to eliminate local minima. Recently, Loizou [9] introduced
the navigation transform that diffeomorphically maps the workspace
to a trivial domain called the point world consisting of a closed ball
with a finite number of points removed. Once this transformation
is found, the navigation problem is solved from almost all initial
conditions without requiring any tuning. In addition, the trajectory
duration is explicitly available, which provides a timed-abstraction
solution to the motion-planning problem. Similarly, the recent work
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in [10] uses the so-called prescribed performance control to design
a time-varying control law that drives the robot, in finite time,
from all initial conditions to some neighborhood of the target while
avoiding the obstacles. Another approach to the navigation problem
is through barrier functions (see [1 1] and references therein), which
are developed for nonlinear systems with state-space constraints and
ensure safety. Model predictive control approaches have been also
used for reactive robot navigation, e.g., [12], [13].

However, by using any of the approaches described above, it
is not possible to ensure safety from all initial conditions in the
obstacle-free state space. As pointed out in [3], the appearance
of additional undesired equilibria is unavoidable when considering
continuous time-invariant vector fields. Furthermore, this problem
is more far-reaching since it is always possible to find arbitrarily
small adversarial (noise) signals acting on the vector field, such
that a set of initial conditions different from the target, possibly
of measure zero, can be rendered stable [14, Thm. 6.5]. To deal
with such limitations, the authors in [15] proposed a hybrid state
feedback controller, using Lyapunov-based hysteresis switching, to
achieve robust global asymptotic regulation in R? to a target while
avoiding a single obstacle. This approach has been exploited in [16]
to steer a planar vehicle to the source of an unknown but measurable
signal while avoiding an obstacle. In [17] and [18], a hybrid control
law was proposed to globally asymptotically stabilize a class of linear
systems while avoiding neighbourhoods of unsafe isolated points in
R™. Although such hybrid approaches are promising, they are still
challenged by constructing the suitable hybrid feedback for higher
dimensions and with more complex obstacles shapes.

In this work, we propose a hybrid control algorithm for the global
asymptotic stabilization of a point mass moving in an arbitrary
n—dimensional space while safely avoiding obstacles that have
generic ellipsoidal shapes, based on the preliminary treatment of
this problem for a single spherical obstacle in [19]. The ellipsoids
provide a tighter bounding volume than spheres, and in our scheme
this volume can be arbitrarily flat and close to the target, which leads
to a significant reduction in the level of conservatism compared,
e.g., to [20, Thm. 3] as we show in Section VI. Our proposed
hybrid algorithm employs a hysteresis-based switching between the
avoidance controller and the stabilizing controller to guarantee for-
ward invariance of the obstacle-free region (corresponding to safety)
and global asymptotic stability of the target position. We consider
trajectories in an n—dimensional Euclidean space and we resort to
tools from higher-dimensional geometry to provide a construction of
the flow and jump sets where the different modes of operation of
the hybrid controller are activated. Furthermore, the hybrid control
law guarantees a bounded control input, it matches the stabilizing
controller in arbitrarily large subsets of the obstacle-free region by
a suitable tuning of its parameters (hence qualifying as minimally
invasive), it can be readily extended to a non-point mass vehicle and
enjoys some level of inherent robustness to perturbations.

Structure. Preliminaries are in Section II. The navigation problem
is formulated in Section III. Our proposed hybrid control scheme
is discussed in Section IV. Section V presents the main results.
Numerical examples are in Section VI. An extended version and all
the proofs of the lemmas are in [21].



II. PRELIMINARIES

N, R and R> denote, respectively, the set of nonnegative integers,
reals and nonnegative reals. R™ is the n-dimensional Euclidean space
and S™ is the n-dimensional unit sphere embedded in R™ ™. Given
the column vectors v1 € R™ and v2 € R™2, (v1,v2) denotes the
stacked vector [vf Vg ]T. The Euclidean norm of =z € R" is
defined as ||z|| :== VT z. For an arbitrary matrix A € R™*"™, X;(A)
denotes the i-th eigenvalue of A. If A is a symmetric matrix, then
Amin(A) and Amax(A) denote, respectively, the smallest and largest
eigenvalue of A. The closure, interior and boundary of a set A C R"
are denoted as A, .A° and 0.A, respectively. The relative complement
of a set B C R™ with respect to a set A is denoted by A\B and
contains the elements of A which are not in B. The tangent cone
to a set K C R™ at a point x € R", denoted Tk (z), is defined as
in [22, Def. 5.12 and Fig. 5.4]. For z € R™\{0}, we define the three
projection maps

T T

N
l(2) = 2, 7 (2) === 2, p(2) =T =285 (1)

where I,, is the n x n identity matrix. The map 7/ (-) is the parallel
projection map, 7TJ'(-) is the orthogonal projection map [23], and
p(+) is the reflector map (also called Householder transformation).
For v # 0, r > 0, 20 € [0, 7] and E positive definite, we define the
next geometric subsets of R™:

e line Lc,v) ={zeR":z=c+I,AER}, (2
e hyperplane P(c,v) :={z € R" :v' (z —¢) = 0}, ©)
e sphere S(e,r) :i={z eR" : |lx — ¢|| =}, 4)

E(,B):={zeR": |[E@z—-0o|*=1}, ()
Clew,0,E):={z € R™
cos(0)||Ev||||E(z — ¢)|| :vTEQ(m —c)}. (6)

e cllipsoid

® cone

In (3)-(6), we add subscripts < or > to refer to the set obtained by
substituting the = with < or >. E.g., P<(c,v) and P>(c,v) are the
two closed sets into which the hyperplane P(c,v) divides R”™.
Definition 1: Two ellipsoids E<(c1,E1) and E<(c2, E2) are
weakly disjoint if E<(c1,E1) N E<(c2, E2) = 0, and are strongly
disjoint if (Amin(F1)) ™" 4+ Amin (E2)) ™" < |ler — c2|-
Strong disjointness means that the two smallest spherical balls
containing the ellipsoids are disjoint and is more conservative than
weak disjointness. We use hybrid dynamical systems [22], i.e.,

{X cF(X), XecF,

XteJX), XeJ, @

where X € R" is the state, the (set-valued) flow map F : R" =2
R™ and jump map J : R = R™ govern continuous and discrete
evolution, which can occur respectively in the flow set F C R™ and
the jump set J C R™. The notions of solution ¢ to a hybrid system,
its hybrid time domain dom ¢, maximal and complete solution are,
respectively, as in [22, Def. 2.6, Def. 2.3, Def. 2.7, p. 30].

III. PROBLEM FORMULATION

We consider a point mass vehicle moving in the n-dimensional
Euclidean space containing I € N obstacles denoted by O1,--- , Oy.
For each ¢ € {1,---,1} =: I, the obstacle O; has an ellipsoidal
shape such that O; := E<(c;, E;), for some center ¢; € R™ and
some positive definite matrix F; € R™*™ defining the shape of the
obstacle. The free workspace is then defined by the closed set

W= ()€ (ci, Bi). ®)

i€l

The vehicle is moving according to the dynamics
T =u, (C)]

where x € R™ is the state and v € R"™ is the control input. The
vehicle is required to stabilize its position to a target position while
avoiding the obstacles. Without loss of generality we consider the
target position to be the origin x = 0.

Assumption 1: n > 2.
We consider n > 2 since for n = 1 (i.e., the state space is a line),
global asymptotic stabilization with obstacle avoidance is infeasible.

Assumption 2: For all i € 1, |F;c;|| > 1.
Assumption 2 requires that the target position z = 0 is not inside
any of the obstacle regions O;, otherwise the considered navigation
problem would be infeasible.

Assumption 3: {O;};c1 are weakly pairwise disjoint.
In Assumption 3 we impose that there is no intersection region be-
tween any two obstacles. Otherwise, the union of the two intersecting
obstacles forms another region which can have a different shape than
an ellipsoid. Our objectives in designing a control strategy are:

i) the obstacle-free region W in (8) is forward invariant,
ii) the target x = 0 is globally asymptotically stable.

Objective 1) guarantees that all solutions of the closed-loop system
are safely avoiding the obstacles by remaining in the free workspace
W while objective ii) corresponds to global stabilization of the target.

IV. HYBRID CONTROL FOR OBSTACLE AVOIDANCE

In this section, we propose a hybrid controller that switches
suitably between a stabilizing and an avoidance controller.

A. Control Input

In this section we propose the feedback law for the control input
u in (9). We define a discrete variable

m € {—1,0,1} =: M.

The value m = 0 corresponds to the activation of the stabilizing
controller and the values m = —1, m = 1 correspond to the
activation of one of the two configurations of the avoidance controller.
The proposed control input u depends on the state x € R", the
obstacle ¢ € I and the control mode m € M as

u = k(z,i,m) (10

| —kow, m =0,
O =k BT N (Bi(@ — ) Ei(x — ply,), moe {=1,1},

where k_1, ko, k1 > 0 are the control gains for each control mode
m € M and the points p, € R", m € {-1,1} and ¢ € I, are
design parameters defined below. In the stabilization mode (m = 0),
the control input in (10) steers = towards the origin through state
feedback. In the avoidance mode depicted in Fig. 1, the control input
minimizes the distance to the auxiliary attractive point pi, while
maintaining a constant distance to the obstacle O;. Indeed, the time
derivative of ||E;(z — ¢;)||* along solutions of & = r(x,%,m) for
m € {—1,1} and ¢ € I, is zero. Then, if we activate the avoidance
mode sufficiently away from the obstacle, the avoidance feedback
u = k(x,1,m) guarantees that the vehicle does not hit the obstacle.
Whereas the logic variable i corresponds to obstacle O;, the logic
variable m is selected according to a hybrid mechanism that exploits a
suitable construction of flow and jump sets, detailed in Section IV-B.

In order to clear the obstacle while approaching the desired target
position at the origin, we select the points p% and p’ ; in the region
between the obstacle and the origin, see Fig. 1. More precisely, for



pie”

Fig. 1. Illustration of the projection-based avoidance controller. The vehicle
is attracted to an auxiliary point p?,, while sliding on a neighbouring ellipsoid.

0; > 0 (which will be further bounded in Lemma 3), the points pi
and p’, are selected as

pi € Clci, —ci, i, Bi)\{ci},
pLi = —E; 'p(Eici)Eip.

(11a)
(11b)

By (11), p"_; opposes p} diametrically with respect to the cone axis
(for E; = I,,, p*; is obtained by an orthogonal reflection) and also
belongs to C(c;, —c¢i, 05, Ei)\{c;i} as shown in the next lemma.
Lemma 1: p* | € C(ci, —ci,0i, BE)\{ci}.

Note that the results of the paper hold for any selection of the point
ph as long as it lies on the surface of the cone as in (11a). An explicit
guided choice for the points p} is given in Section VI for the 2D and
3D cases. The motivation for the choice of the avoidance controller
mode in (10) is that the avoidance task is analogous (up to a linear
transformation) to a stabilization problem on the unit sphere S"~*.
Therefore, as pointed out for instance in [24], global asymptotic
stabilization cannot be accomplished by only one continuous time-
invariant controller, but it can be by a hybrid feedback with at least
two configurations. For this reason, we consider two avoidance modes
with m = —1 and m = 1 and, hence, the points p} and p® ; must be
distinct. Finally, further motivation for this construction is detailed in
Section IV-B and, in particular, in Lemma 2, which is important for
the construction of flow and jump sets.

B. Geometric Construction of the Flow and Jump sets

In this section we construct explicitly the flow and jump sets where
the stabilization and avoidance controllers are activated.

1) Safety Helmets: Our proposed construction of flow and jump
sets is based on regions that have the shape of a helmet, whose
construction is now motivated. In the stabilization mode m = 0,
the closed-loop system should nor flow when: 1) z is close enough
to any of the obstacle regions £< (c;, E;) and 2) the vector field —kox
points inside £<(c;, E;). Otherwise, the vehicle ends up hitting the
obstacle 4. Indeed, by computing the time derivative of || E; (x —c;)||?
along solutions of the vector field —kox, we obtain

sallEi(e —e)l® = kol Eici)|* (1 — || Bs(z — &)1*)
where ¢; := ¢;/2 and E; := 2E;/(||Eic:||). (12) implies that the
distance function || E;(x — ¢;)||? decreases for all z in the closed set
&> (Ci, E;). Consider now Fig. 2 for a sketch of the next sets. For
obstacle ¢, define the helmet-shaped set

'H: e S(Ci,Ei) N Sz(éi,Ei).

12)

13)

H; is the set of all points that lie on the boundary of the obstacle O;
and are associated with a vector field pointing towards the obstacle.
Then, for obstacle 7, we define the safety helmet as:

Hi(67 I/) = SS (Ci, EE»;) N 52 (Ci7 Ez) N 52 (Ei, I/E»L) (14)

for some parameters €, v > 0. € and v determine the thickness of
the safety helmet by tuning the dilation/shrinking of the ellipsoids
E(ci, E;) and E(¢;, E;), thereby generating a dilated version of H,;.

Hi

E(Ci,EEZ‘)

Fig. 2. The helmet H7 in (13) (red) corresponds to all boundary points where
the stabilization vector field is pointing inside the obstacle (grey). The safety
helmet #; (€, v) in (14) (green) corresponds to a dilated version of Hy.

The safety helmet #;(e, ) constitutes the main ingredient of our
following constructions.

2) Stabilization Mode m = 0: Consider Fig. 3 from now on for
a visualization of the sets we are introducing in our construction.
In stabilization mode (m = 0), we create around each obstacle
O; a safety helmet H;(e;, v;) that adds a safety layer to the given
obstacle. The controller mode must be switched to the avoidance
mode whenever the vehicle reaches this safety helmet. Specifically,
we define for each 7 € I, a jump set

joz = Hi(q, V»L') N W,
where €; € (0,1) dilates E<(cs, Ei) to E<(ci, & E;), vi € (1,00)

shrinks &> (&, F;) to £ (G, viE;), and W is the free workspace
defined in (8). We emphasize that we consider the intersection with
W in (15) for convenience, but later we tune the parameters such
that H; (e;, v;) C W, which implies J¢ will equal to H;(e;, v;). The
selection of J¢ in (15) leads naturally to the next set (corresponding
to the closed complement of J¢ in the free workspace)

(15)

Fi= (Ez(ci, ¢ E) U E< (s, uiEi)) AW, (16)

which we use for the flow set of the stabilization mode. Finally,
from (15) and (16), we take all the obstacles into account and define
the flow and jump sets for the stabilization mode as

Fo = (ano) X1,  Jo:i= (LEJHJO) x 1.

Indeed, the stabilization mode will be selected when the state x
belongs to the intersection of the sets F¢, and a jump to the avoidance
mode will occur when the state = belongs to the union of the sets j&.
In other words, if during the stabilization mode the vehicle reaches
any one of the safety helmets, then the controller jumps to one of
the avoidance modes with m equal to —1 or 1.

3) Avoidance Mode m € {—1,1}: We consider now the construc-
tion of flow and jump sets for the avoidance modes m € {—1,1}
and the specific obstacle ¢ € I with the aid of Fig. 3. To highlight
their motivation, we first define such flow sets and state later in (20)
the corresponding jump sets. For each ¢ € I and m € {—1, 1}, the
avoidance flow set is

amn

]:;1 = Hi((si,ﬂi)mcz(ciaci_pinad]hEi)mW (18)

with §; € (07 Ei) dilating 5§ (Ci, EiEz') to ES (Ci, (SzEl), Wi € (l/i7 OO)
shrinking gz(éi,I/iEi) to 52(61-,#1-1_?1-), and ¢; € (0,7/2]. In
the two configurations m € {—1,1} of the avoidance of obstacle
1 € I, we want the vehicle to slide on the safety helmet H;(d;, 1:)
while maintaining a constant distance to the obstacle. By selecting
0; € (0,€;) and p; € (v, 00), one obtains a dilated version of
Hi(ei,v;i) used in J¢ and, thus, creates a hysteresis region useful to
prevent infinitely many consecutive jumps (Zeno behavior). However,
the avoidance vector field x(x,¢,m) in (10) has some undesirable



Fig. 3. 2D illustration of flow and jump sets considered in Sections IV-
V corresponding to obstacle O; (in the presence of a second obstacle Oj).
The stabilization-mode jump set J; (hatched red) is constructed by using the
helmet #; (¢;, v;), while the corresponding flow set J is the complement of
Jg in the free workspace. For the avoidance mode we select pj and p* ; to
lie on the cone C(c;, —ci, 0;, E;) (solid brown line). The avoidance flow set
Fi,, with m € {—1,1}, corresponds to the helmet H;(8;, 11;) deprived of
the interior of the the cone region defined by C(c;, ¢; — pi,, ¥4, E;) (solid
purple line for m = —1 and solid orange line for m = 1). The corresponding
jump set J;}, is the complement of F7, in the free workspace.

equilibria, which we need to rule out from the flow sets 7} and F*,
and we characterize in the next lemma.

Lemma 2: Let ¢ € R™, p € R"\{c} and E € R™*" positive

definite. For each x € R™\{c}, 7~ (E(z — ¢))E(z — p) = 0 if and
only if x € L(c,p — ¢).
For each m € {—1,1}, ¢ € I, we want solutions to eventually leave
the set F:, of the avoidance mode, so it is necessary to select point
ph, and flow set F:, such that L£(c;,pt, — ¢i) N Fi, = () based
on Lemma 2, otherwise solutions could stay in avoidance mode
indefinitely. This motivates the intersection with the cone in (18),
and the next lemma.

Lemma 3: For each i € 1, define the quantities

8, = | Bicil| 72 (19)
i(6:) = (1 — 40°(1 — 82/5%)) 2 (19b)
5 82 1 1

0 (05, pi) := arccos 52 + o2 1-— F (19¢)

and select the parameters 0i, ji;, 0i,; as in Table I so that i (8;)
and 0;(8;, i) are well-defined. Then, for each m € {-1,1},

TABLE I
SELECTION OF THE DESIGN PARAMETERS OF (22), WITH 7 € I

Parameter Selection Parameter Selection

d; ;1) € (6:,1)

Hi (1, 3 (3:)) v; (1, ps)

0; (0,0: (s, i) | i (0,0;)

ko, k1, k—1 (0, +OO) ’QD_Z‘ _ (0, ’tpb)
pi. Pt as in (11)

L(ci,pl, — i) N Fe, = 0.

From the flow set in (18), we suitably define the jump set for
the avoidance mode, of an obstacle ¢ € I with configuration m €
{—1,1}, to be the closed complement of F;, in the free workspace.
For i € Tand m € {—1,1},

TE = (52 (ci, 6iEs) U E< (s, i ) (20)
UC<(cs, ci—pim i, EL)) nw.
Finally, the avoidance mode has overall flow and jump sets
= (Fx),  a=Uxa), e
i€l i€l
Foa=J (J—‘i1 X {i}) . Ta=J (Jil X {i}) . (1b)
i€l i€l

where Fi, and J, (m € {—1,1}) are defined in (18) and (20).
Indeed, each obstacle i gives rise, for the avoidance mode, to a
specific flow (jump) set with two configurations Fi and F, (J;
and J*,), as we motivated in this section.

C. Hybrid Mode Selection

In this section we define the hybrid switching strategy that permits
a Zeno-free transition between the different control modes. The
hybrid selection of the logical variables ¢ € I and m € M is
implemented in the hybrid system

& = k(z,i,m)
'? =0 (z,i,m) e F (22a)
m =0

zt =2

; )1, € 22b
[’i}EL(x,i,m) (@3,m) € J (22b)

where x(x, %, m) is the control input defined in (10) and the flow and

jump sets are given by
Fi=J (Fnx{m}),

meM

with F,,, and J,, being defined in (17) for m = 0 and in (21a)-

(21b) for m € {—1,1}. We define now the (set-valued) jump map

L in (22b). To this end, for ¢ € I and m € {—1, 1}, define the sets

Ct, as

J = (Fmx{m}) (@2

meM

Crn = Cx(ci, €i — Piny Y, Ei),

which corresponds to the region outside the cone with vertex at c;,
axis ¢; —p;, and aperture 2v);, where 1); is a design parameter selected
below. The jump map L for m € {—1,1} is then defined as

L(z,i,—1) :== L(z,,1) .= {[{]},

(22d)

(22¢)

i.e., when jumping to stabilization mode, the obstacle index ¢ is not
used in the control law « in (10) and consequently is not updated.
The jump map L for m =0 is

L(z,i,0) := {[m] cxe gl m e M(x,i’)} (226)



where M is defined, based on (22d), as

{-1} T € Ci_l\C{
{1} T € C{\Cil
{-1,1} zeC i nCi.

M(z, i) = (22¢)

L(-,-,0) captures that when jumping from the stabilization mode
m = 0, the suitable avoidance mode of obstacle i’ € I with
configuration m’ € {—1, 1} is selected based on the position x of the
vehicle (m/, in particular, is selected based on whether z is within
the cone region Ci_/l or Cf/). A necessary condition to implement our
hybrid controller is that the jump map is nonempty, for which we
have the next lemma.

Lemma 4: Select the parameters 1@ and ; as in Table I. Then,
the set L(x,i,m) is nonempty for all (xz,i,m) € J.
For compact notation, we write flow and jump maps as

(z,i,m) — F(z,i,m) := (k(x,i,m),0,0) (22h)
(z,i,m) = J(z,i,m) := (z,L(z,i,m)), (22i)

and the overall state of the hybrid system as
€:=(z,i,m) € R" x I x M. (22)

This completes the description of the hybrid controller in (22). The
selections we made in this section for the parameters of (22) are
summarized in Table 1.

V. MAIN RESULTS

In this section, we show that the hybrid controller achieves forward
invariance and global asymptotic stability, as well as some comple-
mentary properties. The mild regularity conditions satisfied by the
hybrid system (22), as in the next lemma, allows us to invoke useful
results on hybrid systems for proving our results.

Lemma 5: The hybrid system with data (F,F¥,J,J) satisfies the
hybrid basic conditions in [22, Assumption 6.5].

A. Forward invariance

Since the state x must evolve always within the free workspace
W in (8) regardless of the logic variables ¢ and m, we seek forward
invariance of the set /C defined as:

K :=()E€>(ci,B:) x Ix M =W x I x M.

i€l

(23)

The next lemma shows that the union of flow and jump sets covers
exactly the obstacle-free state space /C and that solutions cannot leave
K through jumps.

Lemma 6: FUJ =K and J(J) C K.

Forward invariance of K holds by the next theorem, proven in the
Appendix.

Theorem 1: Under Assumptions 1-3, consider the hybrid sys-

tem (22) with parameters selected as in Table I. Assume also
that the controller parameters §; are tuned so that the ellipsoids
{E<(ci, 6:E;) Yict are weakly pairwise disjoint. Then, the obstacle-
free set K in (23) is forward invariant.
The existence of tuning parameters d1,...,d; satisfying the weak
pairwise disjointness of the sets {E<(c;, §: F;) }ier is guaranteed by
Assumption 3, which implies that weak pairwise disjointness holds
when d; = 1 for all ¢ € 1. Hence, by a continuity argument, we can
always tune each ¢; sufficiently close to 1 in order to guarantee the
weak pairwise disjointness of the dilated obstacles {E< (cs, 0 Fs ) }ier.
Algebraic tests of weak pairwise disjointness (in [25, Thm. 6] for
n = 2 and in [26, Thm. 8] for n = 3) can be used for this tuning.

B. Global asymptotic stability

We show that from all initial conditions in the free workspace,
all solutions converge asymptotically to the origin. To this end, we
define the notion of sufficient disjointness of a set of ellipsoids, which
is slightly stronger than weak disjointness but less conservative than
strong disjointness, and guarantees that each obstacle is avoided at
most one time. The motivation behind the assumption of sufficient
disjointness is that the ellipsoids considered here can be arbitrarily
large and flat, which might lead to long avoidance-mode detours
that take the vehicle far away from the origin. In this case, specific
configurations of the obstacles exist such that from a set of initial
conditions, the vehicle does not converge to the origin although
it remains safe. Similarly, in the Bug 0 planning algorithm [27],
termination (i.e., convergence to the target) is not always guaranteed
since the algorithm is designed to “walk toward the target whenever
you can” [27]. Our hybrid feedback shares a similar philosophy since
the vehicle jumps from avoidance to stabilization mode whenever the
stabilization controller generates a vector field not pointing towards
the obstacle, see (12). To proceed, the next lemma characterizes the
intersection of two ellipsoids of interest.

Lemma 7: Consider an arbitrary i € 1. For §,, 6 — [i;(0) and
(8, 1) = 0;(3, p) defined in (19), let § € [§;,1], u € [1, i:(3)] and
9:(0, 1) be such that

1 — cos(6:(5, 1))

cos(¥: (0, u)) = . (24)
V(122 - 628
The expression in (24) is well-defined and positive, and
E(ci, 6Ei) NE(Es, pEi) € C(0, ¢, 9:(6, ), Es). (25)

Let us consider for each obstacle ¢ € I the sphere S(0, 7;) with center
at the origin and radius 7; defined by the next quadratic optimization
problem

77 o= min{||z|®: z € H} (26)

where H; is the helmet defined in (13). The radius 7; defines the
minimum distance from the helmet H; to the origin. Let  be a
point belonging to the intersection of the two ellipsoids &£(c;, E;)
and £(¢;, E;). Taking § and u equal to 1 in Lemma 7, one obtains
x € C(O, Ci, ’Lgi, EL) with

cos(9;) := cos(9;(1,1)) = /1 — || Eici|| =2,

from (24), (19¢) and (19a). Now, let us define the set

27

R = C(0,¢i,0i, Bi) NS> (0,7) N E> (s, Bi) N E<(@i, Ei), (28)

whose geometry is sketched in Fig. 4. In particular, it is contained
in the set of points on the cone C(0, ¢;,¥;, E;) that have a distance
to the origin greater than the distance 7; of the helmet H; to the
origin. The idea is that the vehicle should not start avoiding another
obstacle while it is still in R}, otherwise there is no guarantee that
the number of times the vehicle avoids obstacles is bounded and that
global attractivity holds. This leads to the next definition.

Definition 2: The ellipsoids {E(c;, E;)}ic1 are sufficiently pair-
wise disjoint if they are weakly pairwise disjoint and

Vi i’ € Twithi#4', R;NE<(cy,Ey)=10. (29)

Now, let us introduce the ingredients for a dilated version of R; as
in (31) below and refer to Fig. 5. First, consider the escape annulus
cone where solutions escape from the avoidance mode by applying
the stabilization vector field. This region lies between the two cones
C(0, ¢i,94(1, ps), E;) and C(0, ¢, 9:(0, 1), E;) which are related,

according to Lemma 7, to the intersections &(c;, E;) N E(Ci, i Es)

and &(c;, 0; £;)NE(Cs, pi B3 ), respectively. Second, consider for each
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Fig. 4. Different types of disjointness introduced in the paper with set R

(orange) in (28). For global attractivity, sufficient disjointness is asked.

Fig. 5. Safety helmet H;(d;, i) (green) and the corresponding escape region
Ri(;, i) (orange). The region R;(d;, ;) must not intersect with any other
jump set joil, i’ # 4, to avoid starting another avoidance while the distance
to the target has not decreased yet.

obstacle ¢ € I the ball S>(0,7;) where the radius r; is defined by
the quadratic optimization problem

7 = min{||z|®: © € Hi(d, i)} (30)

Note the following on (30). 1) The safety helmet #;(d;, ;) is
nonempty and compact; hence, a solution to (30) exists. 2) For
each i € I, r; > 0. Indeed, for each ¢ € I, ||0;Eici|| =
6&;2 > 51@;1 > 1 by Assumption 2 and the selection of §; in
Table 1, so that 0 ¢ E<(ci, d;E;) and in turn O ¢ H;(ds, ps) since
Hi(0i, i) C E<(ci,0;E;). Finally, we can define the considered
“dilated” version of R as

Rl(él, /,Li) = SZ (0, 7“1-) N 52 (Ci, 51E1) N 5§ ((_Zi, Ez)

NCx(0, ¢, 9i (1, i), Bs) N C<(0, ¢iy ¥4(8iy 1), £i).  (31)

Lemma 8: Assume that the obstacles {O;}ict are sufficiently

pairwise disjoint. Then, for each i € 1, there exist 67, u; such that
for all 6; € (67,1) and p; € (1, 1), we have

Vi/7 il, S ]L il ;é i//7 Ri/ ((51/ s ﬂz/) N gs (Ci//7 5il/EiN) = @ 32)

Property (32) of Lemma 8 is used to show global attractivity.
Intuitively, we require that after avoiding an obstacle, the distance
||| to the target decreases before the vehicle reaches the proximity
of another obstacle. Although the bounds §; and p; are not defined
explicitly for generic ellipsoids, the parameters d; and p; can be
tuned offline. Next is our main result for this section, proven in the
Appendix.

Theorem 2: Consider the hybrid system (22) under the same
assumptions as Theorem 1. Assume also that the obstacles {O;}ict
are sufficiently pairwise disjoint, and the 0;’s and p;’s are tuned
so that (32) holds. Then, the set A := {0} x I x M is globally
asymptotically stable for (22) and the number of jumps is bounded.
For spherical obstacles, we show next that the extra tuning of the
parameters to satisfy (32) is not needed. The proof is in [21].

Theorem 3: (Spherical obstacles) Let F; = M\ I, for all i € 1.
Under the same assumptions as Theorem 1, the set A := {0} xIxM
is globally asymptotically stable for (22) and the number of jumps
is bounded.

C. Complementary properties

1) Bounded Control: First, solutions initialized within a certain
compact ball always remain there. Indeed, let S< (0, r3,), with 7, > 0,
be the smallest ball containing all the dilated ellipsoids &(c;, 0; E;)
(which must exist since these ellipsoids are compact). During stabi-
lization mode the distance ||z is decreasing and during avoidance
mode the vehicle stays within the dilated ellipsoids £(c¢;, d; E;). Then,
it is guaranteed that from all 2(0,0) € S<(0,74), all solutions
satisfy x(t,j) € S<(0,rp) for all (¢,5) € domz. Moreover,
since the projection matrix 7 (E;(z — ¢;)) has eigenvalues in
0 and 1, it follows that we can upper bound the control input
in (10) by |lu|| < ka(ry + p) where k& = max{ki, ko, k-1},
a = maxier(Amax(Ei)/Amin(E;)) and p = max;er ||pi|. The
control gains can then be tuned to satisfy the inherent practical
saturation of the actuators.

2) Semiglobal Preservation: This property [17, §II] is desirable
when the original controller parameters are optimally tuned and the
controller modifications imposed by the presence of the obstacles
should be as minimal as possible. Such a property is also accounted
for in the quadratic programming formulation of [28, IIL.A]. In our
case we have the next proposition, proven in the Appendix.

Proposition 1: Let € € (0,1) and We := (¢, E>(ci, €Ey). There
exist controller parameters such that the control law matches, in Ve,
the stabilization feedback v = —kox (ko > 0) used in the absence
of obstacles.

3) Non-point Mass Vehicles: There is no loss of generality in
considering a point-mass vehicle in this work. In fact, let us consider
a vehicle with some volume, e.g., bounded by S< (z,7v). Then, in
a feasible navigation scenario, the radius r, of the vehicle needs to
be smaller than the smallest distance between the obstacles, i.e., for
all ’i,i/ e I with ¢ # i,y < diSt((‘:S(Ci,Ei),SS(CZ-/,EZ-/)) =
inf{|z — &'|: = € E<(ci, Ei), 2’ € E<(cir, Eyr)}. For safety of the
whole volume of the vehicle, the selection €; < (14 Amax (Fi)ry)
is sufficient (in addition to Table I) to guarantee that the vehicle in
stabilization mode starts the avoidance mode away from the obstacle.
Indeed, under this condition, it is easy to show that for all x &
E>(ci, €. E;) (i.e., the vehicle center is outside the dilated ellipsoid
E(ci, €.E;)) and for all o’ € S<(z,ry), one has ' € E>(ci, Ei),
which guarantees safety of the whole volume of the vehicle.

4) Robustness: The constructed hybrid controller guarantees some
level of robustness to perturbations (e.g., in the form of measurement
noise). Hysteresis switching is one of the typical ways to ensure
robustness to measurement noise, and hysteresis switching is indeed
behind the designed hybrid feedback, in particular the hysteresis re-
gions of flow and jump sets in Section IV-B and the logical selections
of the jump sets in Section IV-C. More generally, fundamental results
in [22, Chap. 7] guarantee structurally that global asymptotic stability
of A in Theorem 2 is also uniform (by [22, Thm. 7.12]) and robust (by
[22, Thm. 7.21]) with respect to perturbations since A is a compact
set and the hybrid basic conditions are satisfied as per Lemma 5.

VI. SIMULATIONS

We illustrate the effectiveness of the proposed hybrid control strat-
egy through two simulation scenarios. The first scenario considers 9
obstacles in 2D as in Fig. 6 while the second one considers 5 obstacles
in 3D as in Fig. 7. For both cases, Table I provides a suitable order
to choose the parameters for each i € I, as follows.

1) For g, in (19a), select d; and €; so that §, < &; < € < 1;

2) For §; and ji;(d;) in (19b), select v; and p; so that 1 < v; <
wi < f1;(8;), possibly iterating steps 1) and 2) so that §; and u;
satisfy (32);
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Fig. 6. Plot (at times ¢ = 0.5 and ¢ = 30 seconds) of the 2-dimensional
trajectory of the vehicle starting at different initial conditions.

3) For 6&;, pi and ;(8;, ;) in (19¢), select v;, 1; and 6; so that
0< 1/11 < ’l/)l <0; < 91’(51'7[“)-

Any parameter selection according to this guideline guarantees our
results, and can be carried out keeping in mind the physical interpre-
tation illustrated in Section IV-B for these parameters. The gains are
ko = k1 = k—1 = 1/4 and determine the speed of convergence of
the scheme. By (11a), the point pi can be selected arbitrarily as long
as it is on C(c¢;, —¢i, 0;, E;)\{ci}. A suitable choice is given by

pi = ﬂL(E,rlR(Qi)Eici)Ci (33)

where R(6;) is the standard 2 X 2 rotation matrix with angle 6; or
the standard 3 x 3 axis-angle rotation matrix with angle 6; and an
arbitrary vector of S as axis. The idea behind (33) is to project ¢; on
the plane orthogonal to a rotated version of ¢;, in order to obtain the
point lying on the cone and closest to the origin. Having all points
pt, close enough to the origin is an effective way so that ko, k1, k_1
can take the same values and yield comparable speeds for avoidance
and stabilization, independently of the obstacles.

Figs. 6 and 7 show that the solutions generated by the closed-loop
hybrid system avoid the 2D and 3D obstacles and converge to the
origin. The respective complete simulation videos can be found at
https://youtu.be/CnXJlhzlzd8, https://youtu.be/4mzTXPR6DIY.

Finally, we note that for the very obstacle configuration of the 2D
scenario, the state-of-the-art approach of navigation functions [3],
[20] cannot be applied since the condition [20, Thm. 3, Eq. (23)] is
violated for all obstacles except obstacle Os, where [20, Eq. (23)]
intuitively corresponds to the fact that obstacles are not too flat
and not too close to the target position. [20, Eq. (23)] is violated
for all obstacles of the 3D scenario. Moreover, navigation function
approaches require tuning a parameter sufficiently large, namely &
in [20, Eq. (17) and Remark 5] and this may conflict with actuator
limitations. Instead, our approach provides a clear tuning guideline
for all parameters (given in this section) and actuator limitations can
be taken into account (see Section V-CI).

VII. CONCLUSIONS

We proposed a novel hybrid feedback on R™ to solve the obstacle
avoidance problem for generic ellipsoidal obstacles, in particular flat
and close to the target. Our control strategy ensures global asymptotic
stabilization to the target and safety (thus, successful navigation
from all initial conditions) while guaranteeing a Zeno-free switching
between the avoidance and stabilization modes. Moreover, the control
input remains bounded (also in arbitrary proximity to obstacles) and
matches semi-globally in the free-state space the nominal feedback
used in the absence of obstacles. Future work will be devoted to
considering more complex vehicle dynamics (e.g., under-actuated
and second-order dynamics) and more generic obstacle shapes (e.g.,
convex obstacles). Further, although our scheme considers static
obstacles to obtain formal guarantees for global asymptotic stability

Fig. 7. Plot (at time ¢t = 30 seconds) of the 3-dimensional trajectory of the
vehicle starting at different initial conditions.

and safety, extending this approach to unknown environments is an
interesting research direction we aim at pursuing in the future.

APPENDIX

imal solutions ¢ to 5 = (F,F,J,J) with ¢(0,0) € K. Each
¢ € S (K) has range rge¢p C K F U J by Lemma 6
and the definition of hybrid solution [22, p. 124], so K is forward
pre-invariant [29, Def. 3.3]. The set K is in fact forward invariant
[29, Def. 3.3] if for each £ € K there exists one solution and
each ¢ € S (K) is complete, which we show in the rest of
the proof through [22, Prop. 6.10]. In the rest of the proof, let
Fg = ﬂie]l}—é’jo* = UiGHJS‘

Lemma 9: Under the assumptions of Theorem 1, we have for each
t€land m e {—-1,1}

1) Proof of Theorem 1: Define S #(K) as the set of all max-
w

Jo = Hilei,vi), (34a)
OFN\Ts < | (Elei, Ei)\Ex (@, En)), (340)
iel
OF T, CE(ciy B\ (E< (@, pi B
W CE(eis B\ (< (60 piE) )
U CS (Ci7 Ci—Pm; w’h EZ)) .
First, let us show that the viability condition
F(z,i,m) N Tx(z,i,m) #0 (35)

holds for all (z,4,m) € F\J. Let (x,i,m) € F\J, which implies
by (22¢) that (x, 1) € Fn\Tm for some m € M, and divide into the
cases m = 0 and m € {—1,1}. When m = 0, from (17) there exists
i € I'such that x € Fo\Jg'. If z € (F5)°\Jo (hence, x is in the
interior of ), then Txx (z) = R", so that T#(§) = R™ x {0} x{0}
and (35) holds. If z € 0F5\Jy, which satisfies the set inclusion
(34c), the weak pairwise disjointness of {€(c;, E;)}icr yields:

z€&(ci,E), 1€l

‘ 2 (36)
Tr(z,i,0) =P>(0,E; (x — ¢;)) x {0} x {0}.
By (12) and = ¢ £>(&;, E;) by (34c), we obtain
—kox B} (x—c;) = kol|Eic||* (1~ || Ei(z — &)|*) >0,  37)

hence, x(,4,0) € P> (0, B} (z — ¢;)) in (36), and (35) holds for
m = 0. When m € {—1,1}, we have ¢ € I and z € 0F;,\T .
which satisfies the set inclusion (34d), and so

Tx(x,i,m) = P>(0, B} (x — ¢i)) x {0} x {0}.  (38)



k(z,3,m) € P>(0, EZ(x — ¢;)) in (38) because

—km(z —ph) "Bt (Bi(z — ¢))Ei(x — ¢i) =0, (39)

so the viability condition (35) holds for m € {—1,1} as well.

Second, we apply [22, Prop. 6.10]. By it and (35), there exists
a nontrivial solution to /7 from each initial condition in /C. Finite
escape times can only occur through flow. They can neither occur
for x in the set F*; UF} because F’; and F? are bounded by their
definitions in (18), nor for x in the set F; because they would make
x "2 grow unbounded, and this would contradict that %(:ET.Z') <0
by the definition of x(x,,0) and by (22a). So, all maximal solutions
do not have finite escape times. By Lemma 6, J(J) C K = FU J.
Hence, by [22, Prop. 6.10], all maximal solutions are complete.

2) Proof of Theorem 2: We prove global asymptotic stability of A
by [22, Def. 7.1]. For each i € I, ||§; Fici|| = 6:8; % > 6:9; ' > 1 by
Assumption 2 and the selection of §; in Table I, so 0 ¢ E<(c;, 0; E;).
As a consequence, there exists ¢ > 0 such that the ball S<(0,e")
does not intersect with any of the dilated obstacles £< (ciy0:E;). Tt
can be shown easily that for each € € [0,£7], the set S := S<(0, ¢) x
I x M is forward invariant because S<(0, ) is disjoint from 75 and
the component x of solutions evolves, after at most one jump, with
the stabilization mode # = —kox. Thanks to forward invariance of
S, stability of A for (22) is immediate from [22, Def. 7.1]. Let us
prove global attractivity of .A. Before that, we need the next result.

Lemma 10: There exists o > 0 such that for all solutions £ =
(z,1,m) with £(t,5) € Fi X {1} for some | € {—1,1} and (t,7) €
dom &, there exists (s,£) € dom & such that (s,£) = (t,7) and

llz(s, Ol < llz(t, 5)I - o

Now, for each solution & to (22), there exists a finite time (7', J) >
(0,0) after which the solution does not evolve with the avoidance
controller any longer, i.e., m(¢,j) = 0 for all (¢,5) = (T, J). Oth-
erwise, there would exist a sequence of hybrid times {(tx, jx)} oo
such that &(t, jx) € Fu,, X {lx} with I € {—1,1} and this would
imply by Lemma 10 that ||z (tx+1, je+1)|| < ||z(te, jr)|| — o for all
k € N. This is indeed a contradiction as it would lead to ||z(-,-)]|
becoming negative. Then, the solution £ enters the stabilizing mode
m = 0 after (T, J) and its flow map & = —kox guarantees in turn
global attractivity. Moreover, J is the maximum number of jumps of
the hybrid system since any extra jump will cause m to take values
in {—1, 1}, which is not possible after (7', J).

3) Proof of Proposition 1: Note preliminarily that thanks to € <
1, We C W in (8). It is sufficient to show that the closed loop
system under the proposed hybrid feedback cannot flow except with
stabilization mode m = 0 when = € W,. Indeed, if in Table I we
further constrain d; as ; € (max(d,,¢), 1) for all ¢ € I, then we have
]'—Tln C 7‘[(51,/11) C 5§.(Ci,5iEi) C 5§(Ci,EE¢'), 8§(ci,5iEi) 75
E<(ci,eF;), and thus F,, "W, =0 forall s € Tand m € {—1,1}.
This implies that solutions cannot flow in avoidance mode when x
belongs to W, and must flow in stabilization mode.

(40)
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