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Abstract

Symbolic models or abstractions are known to be powerful tools for the control design of cyber-physical systems (CPSs) with
logic specifications. In this paper, we investigate a novel learning-based approach to the construction of symbolic models for
nonlinear control systems. In particular, the symbolic model is constructed based on learning the un-modeled part of the
dynamics from training data based on state-space exploration, and the concept of an alternating simulation relation that
represents behavioral relationships with respect to the original control system. Moreover, we aim at achieving safe exploration,
meaning that the trajectory of the system is guaranteed to be in a safe region for all times while collecting the training data.
In addition, we provide some techniques to reduce the computational load, in terms of memory and computation time, of
constructing the symbolic models and the safety controller synthesis, so as to make our approach practical. Finally, a numerical
simulation illustrates the effectiveness of the proposed approach.
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1 Introduction

In cyber-physical systems (CPS), computational devices
are tightly integrated with physical processes. Embed-
ded computers monitor the behavior of the physical pro-
cesses through sensors, and usually control them through
actuators using feedback loops. Nowadays, CPSs are
ubiquitous in modern control engineering, including au-
tomobiles, aircraft, building control systems, chemical
plants, transportation systems, and so on. Many CPSs
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are safety critical or mission critical: it must ensure that
the system operates correctly meeting the satisfaction
of safety or some desired specifications. Formal meth-
ods are known to provide essential tools for the design
of CPSs, as they give theoretical or rigorous mathemat-
ical proofs that the system works correctly meeting the
desired specification [1]. While the formal methods have
been originally developed in software engineering that
aims at finding bugs or security vulnerabilities in the
software, the methodologies have been recently recog-
nized to be useful in other applications, including the
control design of CPSs. In particular, one of the most
successful methods that interface the formal methods
and the control design of CPSs is the so-called symbolic
control, see, e.g., [2]. The main objective of the sym-
bolic control is to design controllers for CPSs with logic
specifications (as detailed below). In such approaches,
symbolic models or abstractions are constructed based
on the original control systems. Roughly speaking, while
the original control system is represented in a continu-
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ous state (and input) space, the symbolic model is rep-
resented in a discrete state (and input) space, while pre-
serving the behavior of the original control system. As
such, controllers can be designed based on several algo-
rithmic techniques from supervisory control of discrete
event systems, such as a safety/reachability game [3].

The symbolic approach is known to be a powerful tool for
the control design of CPSs in the following three ways.
First, it allows us to synthesize controllers for general
nonlinear dynamical systems with state and input con-
straints. Second, by constructing the symbolic model, we
can take into account the constraints that are imposed
on the cyber part with regard to the digital platform,
such as a quantization effect. Third, it allows us to syn-
thesize controllers under various control specifications,
including safety, reachability, or more complex ones such
as those expressed by linear temporal logic (LTL) formu-
las or automata on infinite strings. As previously men-
tioned, symbolic models or abstractions are constructed
such that they are represented in a discrete state space
while preserving the behavior of the original control sys-
tem. More formally, behavioural relationships such as
the concept of approximate (bi-)simulation relation, see,
e.g., [3,4,5,6,7,8,9,10,11,12,13], are used to relate the be-
haviours of the original control system and its symbolic
model. For example, [5] employs an approximate bisimu-
lation relation to construct the symbolic model for non-
linear, incrementally asymptotically stable systems. [8]
employs an approximate alternating simulation relation,
so that the symbolic models can be constructed for gen-
eral (incrementally forward complete) nonlinear systems
without any assumption on stability. Moreover, [11,12]
characterize the notion of robustness for input-output
dynamically stable systems based on the concept of a
contractive approximate simulation relation.

In this paper, we focus on investigating the construc-
tion of symbolic models for nonlinear control systems. In
particular, we consider the case where the dynamics of
the plant includes state-dependent, un-modeled dynam-
ics. In contrast to the aforecited abstraction schemes,
we propose a learning-based solution to this problem, in
which the symbolic model is constructed based on learn-
ing the un-modeled dynamics from training data. More-
over, we aim at achieving safe-exploration, meaning that
the trajectory of the system stays inside a safe set for all
times while collecting the training data. Achieving safe
exploration is particularly useful for safety critical CPSs,
see, e.g., [14]. More technically, as a starting point of our
approach, we employ the Gaussian process (GP) regres-
sion [15] in order to estimate the un-modeled dynamics
from training data. As we will see later, it is shown that,
under some smoothness assumption on the un-modeled
dynamics, an error bound on the un-modeled dynamics
can be derived based on the result from [16]. Note that,
in contrast to previous approaches of learning-based con-
troller synthesis with the GP regression (e.g., [17,18])
that make use of an error (or regret) bound that involves

an information gain, here we will make use of a determin-
istic error bound that does not involve the information
gain, which has been also derived in [16] (for details, see
Lemma2 and Remark 2 in this paper). Based on this er-
ror bound and the concept of an approximate alternat-
ing simulation relation [8], we then provide an approach
to construct the symbolic model. To achieve the safe ex-
ploration, we also provide a safety controller synthesis
via a safety game [3]. Finally, we provide an overall al-
gorithm that collects the training data from scratch and
constructs the symbolic model. Along with this algo-
rithm, we provide several techniques to reduce the com-
putational load of constructing the symbolic model and
the safety controller synthesis. In particular, we provide
a lazy abstraction scheme, in which the transitions of
the symbolic model are updated only around the region
where the training data is collected.

(Related works): The approach presented in this paper is
related to previous literature in terms of symbolic con-
trol (or temporal logics) and controller synthesis for dy-
namical systems learned by training data. In what fol-
lows, we discuss how our approach differs from previous
works and highlight our main contributions.

As previously mentioned, there have been a wide va-
riety of symbolic control techniques for dynamical sys-
tems, e.g., [4,5,6,7,8,19,20,13]; however, most of the pre-
vious approaches typically assume that the dynamics of
the plant is completely known or they consider uniform
disturbance that is not learned from training data. The
learning-based approach is advantageous over the uni-
form disturbance-based approach in the following sense.
In the uniform disturbance-based approach, every tran-
sition of the symbolic model is defined by taking the
worst case effect of the un-modeled function, since the
un-modeled function will not be learned from data. On
the other hand, in the learning-based approach, the un-
modeled function will be learned and thus its uncertainty
will decrease as the state exploration progresses. Hence,
the symbolic model will have fewer redundant transi-
tions than the uniform disturbance-based approach, and
this leads to obtaining a larger region that guarantees
safety (i.e., controlled invariant set). To the best of our
knowledge, there are only few works of symbolic or tem-
poral logic control for a dynamical system that is par-
tially unknown and is learned by training data (e.g., by
the GP regression) [21,22]. In [21], the authors provided
away to obtain a finite abstraction using intervalMarkov
decision processes (IMDPs) with the unknown dynam-
ics learned by the GP regression. The abstraction has
been then utilized for safety verification. Our approach is
different from this previous work in the following sense:
first, while the proposed approach in [21] makes it pos-
sible to provide probabilistic guarantees, in this paper
we are able to provide deterministic guarantees. Second,
while in [21] the symbolic model is constructed to deal
with only safety specifications, in this paper, we are con-
structing the symbolic abstraction in the more general
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sense of alternating simulation relations, i.e., we can re-
fine a controller for the symbolic model into a controller
for the original system for any specification, and not just
safety. Finally, for the particular class of safety specifica-
tions, the authors in [21] provided a way of constructing
a symbolic model with given initial training data, and
they did not provide an approach to update the sym-
bolic model when new training data are collected online,
and which is the main issue in learning-based control,
since the objective is to exploit the new training data
collected online. In contrast, our approach provides a
new computationally efficient approach to collect new
training data while reducing the computation load to
update the symbolic model and to synthesize safety con-
trollers. In [22], the authors provided a way to detect
faults using signal temporal logic (STL) for partially un-
known dynamical systems and these are learned by the
GP regression. However, the problem setup considered
in [22] is different from the one considered in this paper.
Specifically, while [22] considered a monitoring scheme
in which they monitor behaviors of the system without
control inputs and check if a given STL formula is sat-
isfied, this paper considers a synthesis scheme in which
we find a controller to satisfy certain specifications (ex-
pressed by, e.g., temporal logic formulas). The proposed
approach is also different; while our approach aims at
constructing symbolic models from training data while
guaranteeing a given specification, the approach in [22]
provided a monitoring scheme by employing a robust-
ness degree of STL formulas.

Apart from the use of symbolic control, various
learning-based controller synthesis techniques with
the GP regression have been proposed. Most of the
previous works aim at synthesizing controllers to
achieve stability/tracking [23,24,25,26], or to guaran-
tee safety [17,18,27,28,29,30,31,32,33]. Since we here
construct a safety controller to achieve a safe explo-
ration, our approach is particularly related to the
second category, i.e., [17,18,27,28,29,30,31,32,33]. For
example, the authors in [17] (resp. [18]) proposed an
approach to learn a region of attraction (ROA) us-
ing safety controllers for continuous-time systems:
ẋ(t) = f(x(t), u(t)) + g(x(t), u(t)) (resp. discrete-time
systems: x(k + 1) = h(x(k), u(k)) + g(x(k), u(k))),
where the function g(·) is unknown and it is learned by
the GP regression. The assumptions on the unknown
function g(·) that are made in [17] and [18] are the
same as the ones we are using in this paper, namely the
fact that the unknown function lies in the reproducing
kernel Hilbert space (RKHS). However, the authors in
[17,18] assumed the existence of a known Lyapunov
function for the nominal system ẋ(t) = f(x(t), u(t))
(x(k + 1) = h(x(k), u(k))), for which the computation
may be difficult for general nonlinear systems. The ap-
proach presented in this paper allows us to deal with
more general complex specifications (including safety)
without requiring the existence of a Lyapunov function.
The approaches presented in [30,31,32] used a control

barrier function and [29] used a Hamilton-Jacobi-Issac
(HJI) equation to synthesize safety controllers with the
GP regression. The proposed approach presented in this
paper is significantly different from [30,31,32,29] in the
following sense. First, note that while the goal of the
previous work is to derive a safety controller, our main
goal is to construct a symbolic model. Constructing the
symbolic model is beneficial since it allows not only to
compute a safety controller, but also controllers from
more general complex specifications, such as those ex-
pressed by temporal logic specifications and automata
on infinite strings. Moreover, while in [30,31] (resp.
[32]), the use of barrier functions makes it only possible
to deal with the class of polynomial dynamical systems
(resp. input affine systems), the proposed approach in
this paper makes it possible to deal with general non-
linear systems, and this is achieved by employing the
symbolic models. Besides, while solving the HJI equa-
tion generally requires a heavy computational load, [29]
did not provide a way of speeding up the computation
of solving the HJI equation when a new set of training
data is obtained. On the other hand, we here propose
a way of reducing the computation load to update the
symbolic model as well as synthesize safety controllers
even if a new set of training data is obtained online.

Due to page limitation, some detailed proofs, remarks,
and simulation results are given in the extended version
of this paper [34].

Notation. Let N, N≥a, N>a, Na:b be the sets of integers,
integers larger than or equal to a, integers larger than a,
and integers from a to b respectively. Let R, R≥a, R>a be
the sets of reals, reals larger than or equal to a and reals
larger than a, respectively. Given a, b ∈ R with a ≤ b,
let [a, b] be the interval set from a to b. Given a, b ∈ R≥0,
we let [a±b] = [a−b, a+b]. Denote by ∥x∥∞ the infinity
norm of a vector x. Given x ∈ Rn, ε ∈ R≥0, let Bε(x) ⊂
Rn be the ball set given by Bε(x) = {x ∈ Rn | ∥x∥∞ ≤
ε}. Given X ⊆ Rn and η > 0, denote by [X ]η ⊂ Rn

the lattice in X with the quantization parameter η, i.e.,
[X ]η = {x ∈ X | xi = aiη, ai ∈ N, i = 1, 2, . . . , n},
where xi ∈ R is the i-th element of x. Given x ∈ Rn,
X ⊆ Rn, denote by NearestX (x) the closest points in X
to x, i.e., NearestX (x) = argminx′∈X ∥x − x′∥∞. Given
X ⊂ Rn, we let Interiorε(X ) = {x ∈ X | Bε(x) ⊆ X}.

2 Preliminaries

In this section we recall some basic concepts of the Gaus-
sian Process (GP) regression [15], transition systems and
approximate alternating simulation relations [8].

2.1 Gaussian process regression

Consider a nonlinear function h : Rnx → R per-
turbed by additive noise as y = h(x) + v, where
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x ∈ Rnx is the input, y ∈ R is the output, and
v ∼ N (0, σ2) is the Gaussian distributed white
noise. Given m : Rnx → R and some kernel func-
tion k : Rnx × Rnx → R≥0, suppose that, for any
finite number of inputs X = [x1, . . . , xT ] (xt ∈ Rnx ,
t ∈ {1, . . . , T}), the joint probability distribution of
the corresponding outputs y = [y1, y2, . . . , yT ]

T follows
the multivariate Gaussian distribution: y ∼ N (M,K),
where M = [m(x1), . . . ,m(xT )] and Ktt′ = k(xt, xt′),
t, t′ ∈ {1, . . . , T} (Ktt′ denotes the (t, t′)-element
of K). Then, we say that the function h follows a
Gaussian process (GP) [15], and it is denoted by
h(x) ∼ GP(m(x), k(x, x′)).

In theGP regression problem, we start by assuming aGP
prior: h(x) ∼ GP(m(x), k(x, x′)). Let D = {xt, yt}Tt=1
denote a training data set. Then, using Bayes rule, the
posterior distribution of the output for an arbitrary
input x ∈ Rnx follows the Gaussian distribution, i.e.,
Pr(y|x,D) = N (µ(x;D), σ2(x;D)). Here, the mean
µ(x;D) and the variance σ2(x;D)) are given by

µ(x;D) = m(x) + k∗TT (x)(K + σ2I)−1(Y −M), (1)

σ2(x;D) = k(x, x)− k∗TT (x)(K + σ2I)−1k∗T (x), (2)

where I is the identity matrix of appropriate dimension,

and k∗T (x) = [k(x, x1), . . . , k(x, xT )]
T
.

2.2 Transition system, alternating simulation relation

We provide the notion of a transition system, which will
be useful to describe a control system formalized later
in this paper.

Definition 1 A transition system is a quadruple S =
(X , x0,U , G), where:

• X is a set of states;
• x0 ∈ X is an initial state;
• U is a set of inputs;
• G : X × U → 2X is a transition map. 2

Roughly speaking, we denote by x′ ∈ G(x, u) if and
only if the system evolves from x to x′ by applying the
control input u. The state x′ is called a u-successor of x.
Moreover, we denote by U(x) the set of all inputs u ∈ U ,
for which G(x, u) ̸= ∅.

Next, we shall recall the notion of an approximate al-
ternating simulation relation[7,8], which is a well-known
concept to represent behavioral relationships on the sim-
ilarity between two transition systems.

Definition 2 (ε-ASR) Let Sa = (Xa, xa0,Ua, Ga) and
Sb = (Xb, xb0,Ub, Gb) be two transition systems. Given
ε ∈ R≥0, a relation R(ε) ⊆ Xa × Xb is called an ε-
approximate Alternating Simulation Relation (or ε-ASR

for short) from Sa to Sb, if the following conditions are
satisfied:

(C.1) (xa0, xb0) ∈ R(ε);
(C.2) For every (xa, xb) ∈ R(ε), we have ∥xa−xb∥∞ ≤ ε;
(C.3) For every (xa, xb) ∈ R(ε) and for every ua ∈

Ua(xa), there exist ub ∈ Ub(xb), such that the fol-
lowing holds: for every x′b ∈ Gb(xb, ub), there exists
x′a ∈ Ga(xa, ua), such that (x′a, x

′
b) ∈ R(ε). 2

The transition system Sa serves as the abstract expres-
sion of Sb, in the sense that every transition of Sb can
be approximately simulated by those of Sa according to
(C.1)–(C.3) in Definition 2. The concept of an ε-ASR is
particularly useful to synthesize a controller for the tran-
sition system Sb, based on the controller for Sa. That is,
once we obtain Sa that guarantees the existence of an ε-
ASR from Sa to Sb, we can synthesize a controller for Sb

by refining a controller for Sa that can be synthesized
by algorithmic techniques from discrete event systems,
see, e.g., [3].

3 Problem formulation

In this section, we describe a control system that we seek
to consider, provide the notion of a controlled invariant
set, and describe the goal of this paper.

3.1 System description

Let us consider the following nonlinear systems:

xt+1 = f(xt, ut) + d(xt) + vt, (3)

x0 = x̄, ut ∈ U , vt ∈ V, (4)

for all t ∈ N≥0, where xt ∈ Rnx is the state, ut ∈ Rnu

is the control input, vt ∈ Rnx is the additive noise, and
x̄ ∈ Rnx is the initial state. Moreover, U ⊂ Rnu and
V ⊂ Rnx are the set of control inputs and the additive
noise, respectively. It is assumed that U is compact and
V is given by V = {v ∈ Rnx | ∥v∥∞ ≤ σv} for a given
σv > 0. Moreover, f : Rnx × Rnu → Rnx is the known
function that captures the modeled (or nominal) dynam-
ics, and d : Rnx → Rnx is the state-dependent, unknown
deterministic function that captures the un-modeled dy-
namics. Regarding the function f , we assume the follow-
ing Lipschitz continuity:

Assumption 1 The function f is Lipschitz contin-
uous in x ∈ Rnx , i.e., given Lf ∈ R≥0, ∥f(x1, u) −
f(x2, u)∥∞ ≤ Lf∥x1 − x2∥∞, ∀x1, x2 ∈ Rnx ,∀u ∈ U . 2

Regarding the unknown function di, i ∈ N1:nx , in this
paper we provide a certain smoothness assumption (see,
e.g., [17,18]):
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Assumption 2 For each i ∈ N1:nx
, let ki : Rnx×Rnx →

R≥0 be a given, continuously differentiable kernel func-
tion and Hki be the reproducing kernel Hilbert space
(RKHS) corresponding to ki with the induced norm de-
noted by ∥ · ∥ki . Then, for each i ∈ N1:nx , it is assumed
that di ∈ Hki . Moreover, an upper bound of the RKHS
norm ∥di∥ki ≤ Bi is available. 2

Assumption 2 implies that each di : Rnx → R is char-
acterized of the form di(x) =

∑∞
n=1 αnki(x, xn), where

xn ∈ Rnx , n ∈ N>0 are the representer points and αn ∈
R, n ∈ N>0 are the parameters that it is necessary to
decay sufficiently fast as n increases. The induced norm
is given by ∥di∥2ki =

∑∞
n=1

∑∞
n′=1 αnαn′ki(xn, xn′). In

general, obtaining a large enough, yet not too conser-
vative bound for ∥di∥ki is hard; nevertheless, there ex-
ist several ways to compute an upper bound of ∥di∥ki
(see, e.g., [35]). The overview of how to compute an up-
per bound of ∥di∥ki is given in Appendix A of [34], and
we refer the interested reader to [35] for a more detailed
discussion.

Assumption 2 allows us to show the following result:

Lemma 1 Suppose that Assumption 2 holds. Then, it
follows that |di(x1)− di(x2)| ≤ Li

√
∥x1 − x2∥∞, for all

x1, x2 ∈ X , where Li = Bi

√
2∥∂ki/∂x∥∞. 2

For the proof, see [34].

Remark 1 (On selecting ki) Assumption 2 implies that
the kernel function ki should be chosen apriori. Poten-
tial candidates of this kernel function are: ki(x, y) =

e−a∥x−y∥2

, ki(x, y) = (b + ∥x − y∥2)−a, where a, b are
positive constants. A useful property of employing these
kernel functions is the universal approximation property,
i.e., the RKHSs are dense in the space of all continuous
functions over any compact set (see, e.g., [36]). Hence, if
the kernel function is selected as above, any continuous
function can be estimated arbitrarily well by a function
that lies in the RKHS. Note that there are indeed other
kernels satisfying the universal approximation property,
which may also be useful to be employed (see, e.g., [36]).

2

3.2 Controlled invariant set and safety controller

A sequence x0, x1, x2, . . . ∈ Rnx is called a trajectory
of the system (3), if there exist u0, u1, u2, . . . ∈ U ,
v0, v1, v2, . . . ∈ V such that x0 = x̄, xt+1 = f(xt, ut) +
d(xt) + vt, ∀t ∈ N≥0. Moreover, a controller is defined
as a set-valued mapping from each state onto the set of
control inputs, i.e., C : Rnx → 2U . Given C, a controlled
trajectory is defined as any trajectory of the system (3),
x0, x1, x2, . . . ∈ Rnx with ut ∈ C(xt), ∀t ∈ N≥0.

Now, denote by X ⊂ Rnx a safe set, in which the tra-
jectory of the system (3) must stay for all times. It is

assumed that X is compact and can be either convex or
non-convex, and that x̄ ∈ X . Based on the above, we
define the notion of a controlled invariant set (see, e.g.,
[37]) and the safety controller as follows:

Definition 3 A set XS ⊆ X is called a controlled in-
variant set in X , if there exists a controller CS : Rnx →
2U such that the following holds: for every x ∈ XS ,
there exists u ∈ CS(x) such that for every v ∈ V,
f(x, u) + d(x) + v ∈ XS . The controller CS is called a
safety controller. 2

That is, XS is called a controlled invariant set if there ex-
ists a controller CS such that every controlled trajectory
induced by CS (starting from anywhere in XS) stays in
XS for all times.

3.3 The goal of this paper and overview of the approach

The goal of this paper is to construct a symbolic model of
the control system (3), which indicates an abstract ex-
pression of (3). In particular, due to the existence of the
unknown function d, we here propose a learning-based
approach, in which the symbolic model is constructed
by learning the unknown function d from training data.
Towards this end, we first provide an approach to con-
struct a symbolic model for given training data (Sec-
tion 4). The symbolic model is constructed based on the
GP regression and the concept of an ε-ASR; for details,
see Section 4. Based on the symbolic model, we proceed
by developing an overall algorithm that aims at collect-
ing the training data from scratch and constructing the
symbolic model (Section 5). In particular, we propose a
safe exploration algorithm, in which the trajectory of the
system (3) must stay in X for all times while collecting
the training data and constructing the symbolic model.
As we will see later, this is achieved by iteratively up-
dating the symbolic model, controlled invariant set and
the safety controller after each step of the state-space
exploration; for details, see Section 5.

4 Constructing symbolic models with Gaussian
processes

In this section, we provide an approach to construct a
symbolic model based on a given set of training data.
In Section 4.1, we provide an approach to learn di with
the GP regression as well as a useful error bound on
di based on Assumption 2. In Section 4.2, we provide a
way of how to construct a symbolic model from a given
set of training data. In Section 4.3, we provide a safety
controller synthesis, which will be useful to achieve the
safe exploration provided in the next section.

4.1 Learning d with the GP regression

In this paper, we estimate each element of d, i.e., di,
i ∈ N1:nx

(d = [d1, d2, . . . , dnx
]T) by the GP regression
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with the kernel function ki. To this end, for each i ∈
N1:nx let DT,i = {XT , YT,i} be the set of input-output
training data in order to estimate di, given by XT =
[x1, x2, . . . , xT ], YT,i = [y1,i, y2,i, . . . , yT,i]

T, where T ∈
N>0 is the number of training data points and yt,i =
xt+1,i − fi(xt, ut), ∀t ∈ N1:T are the training outputs,
with xt,i and fi(xt, ut) being the i-th element of xt and
f(xt, ut), respectively. Note that we have yt,i = xt+1,i−
fi(xt, ut) = di(xt) + vt,i, where vt,i denotes the i-th
(i ∈ N1:nx

) element of vt with |vt,i| ≤ σv. Hence, yt,i
represents the noisy output of di(xt) with the additive
noise bounded by σv. As above, the realization of the
additive noise sequence is uniformly bounded by σv, i.e.,
|vt,i| ≤ σv, t ∈ N≥0. When learning the unknown func-
tion, on the other hand, it is approximated that the addi-
tive noise is drawn independently fromN (0, σ2

v), aiming
at employing the GP regression. Moreover, it is assumed
for simplicity that the mean function for the GP prior
is zero (i.e., m(x) ≡ 0 for all x in Section 2.1). Thus,
the mean and the variance for the GP model of di with
an arbitrary input x ∈ Rnx , denoted as µi(x;DT,i) and
σ2
i (x;DT,i), are computed by

µi(x;DT,i) = k∗TT,i(x)(KT,i + σ2
vI)

−1YT,i, (5)

σ2
i (x;DT,i) = ki(x, x)

− k∗TT,i(x)(KT,i + σ2
vI)

−1k∗T,i(x), (6)

where KT,i denote the covariance matrix for the kernel

function ki and k∗T,i(x) = [ki(x, x1), . . . , ki(x, xT )]
T
.

Now, recall that the unknown function di lies in the
RKHS corresponding to ki (Assumption 2). Using this
assumption, we can derive an error bound on di, repre-
senting how the GP posterior mean µi differs from the
ground truth di:

Lemma 2 Suppose that Assumption 2 holds, and let
DT,i = {XT , YT,i} be the training data for di withXT =
[x1, x2, . . . , xT ] and YT,i = [y1,i, y2,i, . . . , yT,i]

T for T ∈
N>0. Then, for all x ∈ Rnx and T ∈ N>0, it follows that
di(x) ∈ Qi(x;DT,i), where

Qi(x;DT,i) = [µi(x;DT,i)± βT,iσi(x;DT,i)] (7)

with βT,i =
√
B2

i − Y T
T,i(KT,i + σ2

vI)
−1YT,i + T . 2

For the proof, see [34]. Lemma2 means that di(x) is
shown to be in the interval set Qi(x;DT,i), which can be
computed based on the training data for di.

Remark 2 Note that the previous methods of learning-
based controller synthesis with the GP regression (e.g.,
[17,18]) make use of the probabilistic error bound char-
acterized by the notion of an information gain; see The-
orem 3 in [16]. For example, [17] employs the following

error (or regret) bound:

di(x) ∈[µi(x;DT,i)

±
√

2∥di∥2ki + 300γT log3(T/δ)σi(x;DT,i)] (8)

which holds for all T ∈ N≥0 with probability at least
1− δ (0 < δ < 1), where γT , T ∈ N≥0 denote the infor-
mation gain. In contrast to this bound, in this paper we
provide the error bound in the deterministic form as in
Lemma2. Note that this bound is a direct consequence
from computing the upper bound of the RKHS norm of
the error µi(·;DT,i) − di(·) with respect to the kernel
kT,i(x, x

′) = ki(x, x
′)− kTT,i∗(x)(KT,i + σ2

vI)
−1kT,i∗(x

′),

which has been derived in the proof of Lemma 7.2 in [16]
(in particular, see the first equation in the left column
of page 3261 in [16]), and see also Appendix C in [34].
The probabilistic error bound (8) is more conservative
than the deterministic one of Lemma2 in the following
sense. Note that (8) achieves a deterministic bound by
setting δ → 0. However, setting δ → 0 in (8) implies
di(x) ∈ [−∞,∞] for all T ∈ N>0, which leads to an
unbounded interval R (and is thus not useful for con-
structing a symbolic model). On the other hand, the er-
ror bound obtained in Lemma 2 is deterministic and al-
ways bounded (i.e., di(x) ∈ Qi(x;DT,i) ⊂ R holds for all
T ∈ N>0). Such conservativeness might arise due to the
fact that, in [16] the probabilistic error bound (8) has
been derived as a sufficient condition to the determinis-
tic one given in Lemma2 (or Lemma 7.2 in [16]). To see
this, note that the error bound obtained in Lemma 7.2 of
[16] was further upper bounded by using the information
gain γT (see the second to the third inequality in the top
of the right column of page 3261 in [16]), as well as the
concentration inequalities (see the second to the third in-
equality in the bottom of the right column of page 3261).
Hence, from the above upper boundings, the probabilis-
tic error bound has been obtained as the sufficient con-
dition to the deterministic one given in Lemma2. In
this paper, we will make use of the deterministic error
bound in Lemma2 instead of the probabilistic one, since
it allows us to derive an error bound that can get smaller
as the number of the training data increases (see below
for details). Such a property is useful to show that the
controlled invariant set can enlarge as the number of
training data increases, and, moreover, we can provide
some computationally efficient algorithms for updating
the symbolic models and the safety controller synthesis
(see Section 5.1). 2

Now, for every T ∈ N>0, it follows from Lemma 2 that
di(x) ∈ Qi(x;Dt,i) for all t ∈ N1:T . Thus, for every

T ∈ N>0, we have di(x) ∈
⋂T

t=1Qi(x;Dt,i). Therefore,
for every T ∈ N>0, we have di(x) ∈ Ri(x;DT,i), where

Ri(x;DT,i) =
⋂T

t=1Qi(x;Dt,i). From the definition of
Ri(x;DT,i), it follows that Ri(x;D1,i) ⊇ Ri(x;D2,i) ⊇
Ri(x;D3,i) ⊇ · · · . Let ri(x;DT,i), ri(x;DT,i) ∈ R be
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given by

ri(x;DT,i) = max{r ∈ R | r ∈ Ri(x;DT,i)}, (9)

ri(x;DT,i) = min{r ∈ R | r ∈ Ri(x;DT,i)}. (10)

Since Ri(x;D1,i) ⊇ Ri(x;D2,i) ⊇ · · · , it follows that
ri(x;DT,i) and ri(x;DT,i) are non-increasing and non-
decreasing with respect to T (for fixed x), respectively.
Thus, di(x) ∈ Ri(x;DT,i) implies that the error bound
on di never grows or potentially gets smaller as the num-
ber of the training data increases. Note also that di(x) ∈
Ri(x;DT,i) implies |di(x) − d̂i(x;DT,i)| ≤ ∆i(x;DT,i),
where

d̂i(x;DT,i) = 0.5 (ri(x;DT,i) + ri(x;DT,i)) , (11)

∆i(x;DT,i) = 0.5 (ri(x;DT,i)− ri(x;DT,i)) . (12)

4.2 Constructing symbolic models from training data

Let us now construct a symbolic model of the system (3)
provided that the training data is obtained. We start by
showing that the system (3) can be described within the
class of a transition system (Definition 1) as follows:

Definition 4 A transition system induced by the sys-
tem (3) is a quadruple S = (Rnx , x0,U , G), where:

• Rnx is a set of states;
• x0 ∈ Rnx is an initial state;
• U ⊂ Rnu is a set of inputs;
• G : Rnx × U → 2R

nx
is a transition map, where x+ ∈

G(x, u) iff there exists v ∈ V such that x+ = f(x, u)+
d(x) + v. 2

Based on the transition system S, a symbolic model of
S is constructed by discretizing the state and the input
spaces, whose transitions are defined based on the train-
ing data DT,i, i ∈ N1:nx

. More specifically, the symbolic
model is constructed with a tuple q = (DT , ηx, ηu, ε),
where

• DT = {DT,1, . . . ,DT,nx
} is the set of training data;

• ηx ∈ R>0 is the discretization parameter for the state
space Rnx ;
• ηu ∈ R>0 is the discretization parameter for the input
space U ;
• ε ∈ R>0 is the parameter for the precision.

The corresponding symbolic model is denoted as Sq and
formally defined as follows:

Definition 5 Let S = (Rnx , x0,U , G) be the tran-
sition system induced by the system (3). Given
q = (DT , ηx, ηu, ε), a symbolic model of S is defined as
a quadruple Sq = (Xq, xq0,Uq, Gq), where

• Xq = [Rnx ]ηx
is a set of states;

• xq0 ∈ Xq is an initial state satisfying xq0 ∈
NearestXq(x0);

• Uq = [U ]ηu is a set of inputs;
• Gq : Xq × Uq → 2Xq is a transition map, where x+q ∈
Gq(xq, uq) iff x

+
q,i ∈ [hi(xq, uq;DT,i), hi(xq, uq;DT,i)],

∀i ∈ N1:nx , where x
+
q,i is the i-th element of x+q , and

hi(xq, uq;DT,i) =ri(xq;DT,i) + fi(xq, uq) + σv

+
(
Lfε+ Li

√
ε+ ηx

)
(13)

hi(xq, uq;DT,i) =ri(xq;DT,i) + fi(xq, uq)− σv
−

(
Lfε+ Li

√
ε+ ηx

)
. (14)

Recall that Lf is the Lipschitz constant for the function
f , and Li is defined in Lemma1. Moreover, ri, ri are
defined in (9) and (10), respectively. As shown in Def-
inition 5, the symbolic model provides an abstract ex-
pression of S, in the sense that it considers the transi-
tions only among the discretized points in the state and
the input spaces. The following result indeed shows that
there exists an ε-ASR from Sq to S:

Proposition 1 Suppose that Assumptions 1,2 hold,
and let S = (Rnx , x0,U , G). Moreover, given q =
(DT , ηx, ηu, ε) with ε ≥ ηx, let Sq = (Xq, xq0,Uq, Gq) be
the symbolic model of S in Definition 5. Then,

R(ε) = {(xq, x) ∈ Xq × Rnx | ∥xq − x∥∞ ≤ ε} (15)

is an ε-ASR from Sq to S. 2

The proof follows in the same way to [8] and is given in
[34]. In addition to the above, we also have the following
result:

Lemma 3 Let DT,i = {XT , YT,i}, i ∈ N1:nx be
the training data with XT = [x1, x2, . . . , xT ] and
YT,i = [y1,i, y2,i, . . . , yT,i]

T for all T ∈ N>0, and let
DT = {DT,1, . . . ,DT,nx}, T ∈ N>0. Moreover, for any
T1, T2 ∈ N>0 with T1 ≤ T2, let q1 = (DT1

, ηx, ηu, ε)
and q2 = (DT2

, ηx, ηu, ε) and let Sq1 and Sq2 be the cor-
responding symbolic models according to Definition 5.
Then, the relation

R = {(xq, x′q) ∈ Xq ×Xq | xq = x′q} (16)

is a 0-ASR from Sq1 to Sq2 . 2

PROOF. Let the two symbolic models be given by
Sq1 = (Xq1 , xq10,Uq1 , Gq1), Sq2 = (Xq2 , xq20,Uq2 , Gq2).
Note that Xq1 = Xq2 = [Rnx ]ηx

, xq10 = xq20 and Uq1 =
Uq2 = [U ]ηx

, since we use the same discretization pa-
rameters ηx, ηu for both q1 and q2. Hence, the con-
dition (C.1) in Definition 2 holds. The condition (C.2)
holds from the definition of R (16). To show the con-
dition (C.3), let us recall that for every xq ∈ [Rnx ]ηx ,
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ri(xq;DT,i) (resp. ri(xq;DT,i)) is non-increasing (resp.
non-decreasing) with respect to T . Hence, for every xq ∈
[Rnx ]ηx and uq ∈ [U ]ηu , we have

[hi(xq, uq;DT2,i), hi(xq, uq;DT2,i)]

⊆ [hi(xq, uq;DT1,i), hi(xq, uq;DT1,i)], (17)

or in other words, Gq2(xq, uq) ⊆ Gq1(xq, uq). This di-
rectly means that the condition (C.3) in Definition 2
holds. Therefore, it is shown that the relation (16) is a
0-ASR from Sq1 to Sq2 .

Lemma3 implies that, since Gq2(xq, uq) ⊆ Gq1(xq, uq)
for every xq ∈ [Rnx ]ηx and uq ∈ [U ]ηu , the redundant
transitions that are present in the symbolic model can be
removed by increasing the number of the training data.
This is due to the fact that the uncertainty (or the error
bound) on the unknown function d can be smaller as the
training data increases (see Section 4.1).

4.3 Synthesizing a safety controller

Given q = (DT , ηx, ηu, ε), suppose that the symbolic
model Sq is obtained according to Definition 5. Based on
the symbolic model, we can find a controlled invariant
set XS in X and the corresponding safety controller CS

by employing a safety game, see, e.g., [3]. The algorithm
of the safety game is illustrated in Algorithm1. In the
algorithm, the operator PreSq : 2Xq → 2Xq is called a
predecessor operator and is defined by

PreSq(Q) = {xq ∈Q | ∃uq ∈ Uq : Gq(xq, uq) ⊆ Q}, (18)

for a given Q ⊆ Xq. That is, PreSq(Q) is the set of all
states in Q, for which there exists a control input in
Uq such that all the corresponding successors are inside
Q. The controlled invariant set XS is computed based
on the fixed point set of Qℓ (i.e., XS,q). In particular, if
XS,q is non-empty, the controlled invariant set is com-
puted based on the ε-ASR R(ε) (line 9). On the other
hand, if XS,q is empty, it indicates that the controlled
invariant set is not found (and so we set XS ← ∅ as
shown in line 13). Roughly speaking,CS,q (line 10) serves
as a safety controller for the symbolic model Sq, and
the safety controller CS for S is refined based on the
ε-ASR R(ε) (line 11). Note that Algorithm1 is guaran-
teed to terminate after a finite number of iteration, since
[Interiorε(X )]ηx and [U ]ηu are both finite. The following
result is an immediate consequence from the fact that
R(ε) is the ε-ASR from Sq to S and thus the proof is
omitted (see, e.g., [3]).

Lemma 4 Suppose that for given Sq and X , Algo-
rithm1 is implemented and XS ̸= ∅. Then, XS is a con-
trolled invariant set in X , and CS is the corresponding
safety controller. 2

Algorithm 1 SafeCon(Sq,X ) (safety controller synthe-
sis).

Input: Sq (symbolic model of S), X (safe set);
Output: XS (if ∅ ̸= XS , it yields a controlled invariant set

in X ), CS (if ∅ ̸= XS , it yields a safety controller);
1: ℓ← 0;
2: Qℓ ← [Interiorε(X )]ηx ;
3: repeat
4: ℓ← ℓ+ 1;
5: Qℓ ← PreSq(Qℓ−1);
6: until Qℓ−1 = Qℓ

7: XS,q ← Qℓ;
8: if ∅ ̸= XS,q then
9: XS ← {x ∈ X|∃xq ∈ XS,q, (xq, x) ∈ R(ε)};

10: CS,q(xq)← {uq ∈ Uq|Gq(xq, uq) ⊆ XS,q}, ∀xq ∈ XS,q;
11: CS(x)← {CS,q(xq)|(xq, x) ∈ R(ε)}, ∀x ∈ XS ;
12: else
13: XS ← ∅, CS(x) ← ∅, ∀x ∈ X (which indicates that

the controlled invariant set and safety controller are
not found);

14: end if

In addition to the above, we also have the following re-
sult:

Lemma 5 Let DT,i = {XT , YT,i}, i ∈ N1:nx
be

the training data with XT = [x1, x2, . . . , xT ] and
YT,i = [y1,i, y2,i, . . . , yT,i]

T for all T ∈ N>0, and let
DT = {DT,1, . . . ,DT,nx}, T ∈ N>0. Moreover, for any
T1, T2 ∈ N>0 with T1 ≤ T2, let q1 = (DT1 , ηx, ηu, ε)
and q2 = (DT2 , ηx, ηu, ε) and let Sq1 and Sq2 be the
corresponding symbolic models according to Defini-
tion 5. In addition, let XS1

,XS2
be the resulting con-

trolled invariant sets by executing SafeCon(Sq1 ,X ) and
SafeCon(Sq2 ,X ), respectively. Then, XS1

⊆ XS2
. 2

In essence, Lemma5 means that the controlled invari-
ant set does not shrink or can be enlarged by increasing
the number of training data. As previously mentioned,
this is due to that the symbolic model becomes more
and more accurate (i.e., the redundant transitions are
removed) as the training data increases, since the error
bound on d can be smaller as the training data increases.
While Lemma5 might trivially follow from the existence
of a 0-ASR from Sq1 to Sq2 (see Lemma3), we here pro-
vide a detailed proof below, since the proof procedure
will be useful to provide an approach to reduce the com-
putational load for the safety controller synthesis (for
details, see Section 5.1).

PROOF. Let the two symbolic models be given by
Sq1 = (Xq1 , xq10,Uq1 , Gq1), Sq2 = (Xq2 , xq20,Uq2 , Gq2).
Then, from the proof of Lemma3, it follows that
Gq2(xq, uq) ⊆ Gq1(xq, uq) for every xq ∈ [Rnx ]ηx and
uq ∈ [U ]ηu . Now, let Q1,ℓ, Q2,ℓ, ℓ = 0, 1, . . . be the
sets of Qℓ obtained by executing SafeCon(Sq1 ,X ) and
SafeCon(Sq2 ,X ), respectively. Note that Q1,0 = Q2,0.
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Algorithm 2 Learning-based symbolic abstractions
with safe exploration (overall, main algorithm).

Input: x0 (initial state), CS,init (initial safety controller),
ηx, ηu, ε (some parameters for the symbolic model),
Texp ∈ N>0 (number of training data collected for each
iteration of safe exploration);

Output: SqN (symbolic model);
1: D0,i ← ∅, ∀i ∈ N1:nx ;
2: D0 ← {D0,1, . . . ,D0,nx};
3: T1 ← Texp;
4: {xT1 ,DT1} ← SafeExp(x0, Texp, CS,init,D0);
5: q1 ← {DT1 , ηx, ηu, ε};
6: Sq1 ← (Xq1 , xq10,Uq1 , Gq1) (Definition 5);
7: {XS,1, CS,1} ← SafeCon(Sq1 ,X ) (Algorithm1);

8: if ∅ ̸= XS,1 then
9: repeat

10: TN+1 ← TN + Texp;
11: {xTN+1 ,DTN+1} ← SafeExp(xTN , Texp, CS,N ,DTN )
12: N ← N + 1;
13: qN ← {DTN , ηx, ηu, ε};
14: SqN ← (XqN , xqN0,UqN , GqN ) (Definition 5);
15: {XS,N , CS,N} ← SafeCon(SqN ,X ) (Algorithm1);
16: until XS,N−1 = XS,N

17: end if

Hence, it follows that

Gq1(xq, uq) ⊆ Q1,0 =⇒ Gq2(xq, uq) ⊆ Q2,0. (19)

Thus, we obtain PreSq1
(Q1,0) ⊆ PreSq2

(Q2,0). Hence,
from the fact thatQ1,0 = Q2,0 and line 5 in Algorithm1,
it follows that Q1,1 ⊆ Q2,1. By recursively applying the
same reasoning as above, it then follows that Q1,ℓ ⊆
Q2,ℓ, ℓ = 0, 1, . . .. In other words, we have XS1,q ⊆ XS2,q

and namely, XS1
⊆ XS2

.

5 Learning-based safe symbolic abstractions

In this section we present an overall algorithm that aims
at collecting the training data from scratch and con-
structing the symbolic model while achieving the safe
exploration. Before providing the algorithm, we need to
make the following assumption:

Assumption 3 There exists a known safety controller
CS,init : X → 2U such that any trajectory induced by
CS,init stays in the safety set X for all times. 2

Assumption 3 implies the existence of an initial safety
controller, so that the training data can be collected
at the initial phase. The initial safety controller CS,init

may be obtained by employing an expert or heuristically
based on the nominal model f(xk, uk); for details, see
Remark 5 in [34].

The overall learning algorithm is shown in Algorithm2
and the details are described as follows. The algorithm
starts by initializing the training data by applying the

Algorithm 3 SafeExp(xTN
, Texp, CS,N ,DTN

) (safe ex-
ploration).

Input: xTN (current state), Texp (number of training data
collected for each iteration of safe exploration), CS,N

(safety controller),
DTN (current training data);

Output: xTN+1 ,DTN+1 (updated current state and training
data after the exploration);

1: X ← ∅;
2: Yi ← ∅, i ∈ N1:nx(initialize the new training data);
3: for t = TN : TN + Texp − 1 do
4: Compute ut ∈ CS,N (xt) by (21),(22);
5: Apply ut and measure the next state: xt+1 =

[xt+1,1, . . . , xt+1,nx ]
T;

6: For all i ∈ N1:nx , set the training data as follows:

X ← [X, xt], Yi ← [Yi, xt+1,i − fi(xt, ut)]; (20)

7: end for
8: TN+1 ← TN + Texp;
9: DTN+1,i ← DTN ,i ∪ {X,Yi}, i ∈ N1:nx ;

10: DTN+1 ← {DTN+1,1, . . . ,DTN+1,nx};

initial safety controller and then updating the controlled
invariant set and the safety controller (line 1–line 7).
Then, if ∅ ̸= XS,1 (i.e., XS,1 is a controlled invariant
set in X ), we move on to the iteration (lines 9–16). In
the iteration, we first update TN+1 (line 10). Roughly
speaking, TN , N ∈ N≥0 indicate the number of training
data that has been collected until the N -th iteration
of Algorithm2. The algorithm proceeds by executing a
safe exploration algorithm SafeExp (line 11), which aims
at collecting the new training data while guaranteeing
safety. In detail, the safe exploration algorithm is shown
in Algorithm3. In the algorithm, the control input ut
(line 4) is computed as follows:

ut =


select arbitrarily from CS,N (xt), (if N = 0), (21)

argmax
u∈CS,N (xt)

nx∑
i=1

σ2
i (x̂

+
i ;DTN ,i), (if N > 0), (22)

where x̂+ = f(xt, u) + d̂(xt;DTN
) with d̂(xt;DTN

) =

[d̂1(xt;DTN ,1), ..., d̂nx
(xt;DTN ,nx

)]T. Recall that σ2
i and

d̂i are defined in (6) and (11), respectively. That is, we se-
lect the control input randomly from CS,N for the initial
exploration, and, otherwise, select from CS,N such that
the corresponding (predictive) next state has the largest
variance on d. By doing so, the system actively explores
the state-space so as to reduce the uncertainty on d and
enlarge the controlled invariant set while guaranteeing
safety. The exploration is given until it collects the new
Texp training data, and it outputs the new training data
DTN+1

and the current state xTN+1
after the exploration.

Afterwards, the symbolic model SqN is updated with
the new training data according to Definition 5 (line 13,
line 14 in Algorithm2), and the controlled invariant set
XS,N and the safety controller CS,N are updated by
SafeCon (line 15 in Algorithm2). The above procedure is
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iterated until the controlled invariant set converges, i.e.,
XS,N−1 = XS,N (see line 12 in Algorithm 2). Note that
XS,N is computed by refining the set of discretized states,
i.e., XS,N = {x ∈ X | ∃xq ∈ XS,qN , (xq, x) ∈ R(ε)} (see
line 8 in Algorithm 1). Hence, we have XS,N−1 = XS,N

if and only if XS,qN = XS,qN−1
. Since XS,qN−1

and XS,qN
are both finite and XS,qN−1

⊆ XS,qN (for details, see
the proof of Theorem 1 below), the condition XS,qN =
XS,qN−1

can be checked in a finite time (i.e., check if ev-
ery xq ∈ XS,qN is contained in XS,qN−1

).

Regarding the overall algorithm, we can conclude the
following result:

Theorem 1 Suppose that Assumptions 1–3 hold and
Algorithm2 is implemented. Then, Algorithm2 termi-
nates after a finite number of iteration. Moreover, the
relation R(ε) = {(xq, x) ∈ Xq × Rnx | ∥xq − x∥∞ ≤ ε}
is an ε-ASR from SqN to S for all N ∈ N>0 until Algo-
rithm2 terminates. In addition, the safe exploration is
achieved, i.e., during the implementation of Algorithm3,
it is shown that the trajectory of the system (3) stays in
the safe set X for all times. 2

PROOF. Let us first show that Algorithm2 terminates
after a finite number of iteration. Given N ∈ N>0, let
XS,qN be the set ofXS,q in Algorithm1 (line 7) computed
by executing SafeCon(SqN ,X ). Since TN+1 ≥ TN , and
from the proof of Lemma5, we obtain XS,qN ⊆ XS,qN+1

.
In general, it follows that XS,q0 ⊆ XS,q1 ⊆ XS,q2 ⊆ · · · .
Note that XS,qN ⊆ [Interiorε(X )]ηx for all N ∈ N>0

and that [Interiorε(X )]ηx is finite. Hence, there exists an
N ′ ∈ N>0 such that XS,qN′ = XS,qN′+1

. This in turn im-
plies that XS,N ′ = XS,N ′+1, and, therefore, Algorithm2
terminates after a finite number of iteration. The fact
thatR(ε) is an ε-ASR from SqN to S for allN ∈ N>0 (un-
til Algorithm2 terminates) trivially holds from Propo-
sition 1. Moreover, we can achieve the safe exploration,
since control inputs are always chosen from the safety
controller CS,N .

Note that, in order to make the implementation of Al-
gorithm2 tractable, it is only necessary to construct the
symbolic model within the state-space [X ]ηx

. Specifi-
cally, the update of the symbolic model (line 14 in Algo-
rithm2) is replaced by defining a new symbolic model
SD,qN :

SD,qN ← (XD,qN , xD,qN0,UD,qN , GD,qN ), (23)

where XD,qN = [X ]ηx
, xD,qN0 = xqN0, UD,qN = UqN ,

and GD,qN : XD,qN × UD,qN → 2XD,qN , with x+q ∈
GD,qN (xq, uq) if and only if x+q ∈ GqN (xq, uq) and

GqN (xq, uq) ⊆ [X ]ηx (i.e., if GD,qN (xq, uq) ⊈ [X ]ηx then
uq /∈ UD,qN (xq)). It can be easily shown that the relation
R = {(xq, x′q) ∈ [X ]ηx × [Rnx ]ηx | xq = x′q} is a 0-ASR

from SD,qN to SqN . From this and the fact that the
relation R(ε) = {(xq, x) ∈ Xq × Rnx | ∥xq − x∥∞ ≤ ε}
is the ε-ASR from SqN to S, it is shown that the rela-
tion RD(ε) = {(xq, x) ∈ [X ]ηx

× Rnx | ∥xq − x∥∞ ≤ ε}
is an ε-ASR from SD,qN to S (see, e.g., [8] for a detailed
discussion). Hence, any controller synthesized for the
symbolic model SD,qN can be refined to a controller for
the original system S satisfying the same specification.

5.1 Some approaches to efficient computation

Since the symbolic model needs to be updated for ev-
ery N , the whole re-computation of this abstraction (as
well as the safety controller synthesis) for every iteration
clearly leads to a heavy computational load. Therefore,
in this section we provide some techniques to reduce the
computational load so as to make our approach more
practical. Specifically, we propose the following two ap-
proaches to speed up the abstraction and controller syn-
thesis procedures:

• (Lazy abstraction): It should be expected that, the
transitions are necessary to be updated only for the
states where the uncertainty (or the variance) on d
is sufficiently reduced by collecting the new training
data. Hence, we propose a lazy abstraction scheme,
in which, starting from the initial abstraction, transi-
tions from states in [X ]ηx

are then updated only when
the reduction of the variance on d is large enough. The
update of the transitions allows to reduce the redun-
dant transitions and hence and the abstraction be-
comes less conservative. In the proposed procedure,
we do not have to recompute the abstraction for the
whole states in [X ]ηx , but only for the states on which
new training data is collected.
• (Speeding up the computation of predecessors): It
should be expected that the main source of the heavy
computation for the safety controller synthesis is the
predecessor operator PreSq(Qℓ) (see (18)); clearly,
checking for every state in Qℓ if there exists a control
input such that all the corresponding successors are
in Qℓ requires a heavy computation, as this opera-
tion needs to be done for every ℓ and N . Therefore,
we propose an approach to reduce the computational
load of computing this predecessor operator, in or-
der to speed up the safety controller synthesis. In
particular, we eliminate redundant computations of
the predecessor operator by making use of the earlier
computed predecessors.

Regarding the first approach in the above, the update of
the symbolic model (line 14 in Algorithm2) is replaced

by defining a new symbolic model S̃D,qN :

S̃D,qN ← (XD,qN , xD,qN0,UD,qN , G̃D,qN ), (24)

for all N ∈ N≥1, where G̃D,qN is the transition map that
is (newly) constructed by applying Algorithm4. The
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Algorithm 4Derivation of G̃D,qN for allN ∈ N≥1 (lazy
abstraction).

Input: DT1:N (training data), ρ ∈ R>0 (threshold to up-

date transitions in G̃D,qN ), G̃D,qN−1(transition map of

S̃D,qN−1 (if N > 1));

Output: G̃D,qN (transition map of S̃D,qN );
1: if N = 1 (initial execution of Algorithm4) then
2: X c

q ← ∅;
3: end if
4: for each xq ∈ X c

q do
5: for each uq ∈ [U ]ηu do

6: G̃D,qN (xq, uq)← G̃D,qN−1(xq, uq);
7: end for
8: end for

9: for each xq ∈ [X ]ηx\X c
q do

10: for each uq ∈ [U ]ηu do
11: X+

q ← {x+q ∈ [Rnx ]ηx | x+q,i ∈
[hi(xq, uq;DTN ,i), hi(xq, uq;DTN ,i)], ∀i ∈ N1:nx};

12: if X+
q ⊆ [X ]ηx then

13: G̃D,qN (xq, uq)← X+
q ;

14: if ∆i(xq;DTN ,i) < ρ for all i ∈ N1:nx then
15: X c

q ← X c
q ∪ {xq};

16: end if
17: end if
18: end for
19: end for

core element of Algorithm4 is the set X c
q . This set is de-

fined as the empty set at the initial execution of Algo-
rithm4 (N = 1), i.e., X c

q = ∅ and then it is updated for
N > 1 (as detailed below). Note that since X c

q = ∅ for
the initial execution, the procedure of line 4–line 8 is not
implemented for N = 1. As shown in line 9–line 19, for
each state in [X ]ηx

\X c
q and each input in [U ]ηu

, the cor-

responding transitionmap G̃D,qN (xq, uq) is updated (see
lines 11 and 13). More importantly, as shown in lines 14
and 15, if ∆i(xq;DTN ,i) < ρ holds for all i ∈ N1:nx , then
xq is added to X c

q (ρ denotes a user-defined threshold).
Recall that ∆i(xq;DTN ,i) represents the length of the
confidence interval, or uncertainty for di(xq) given the
training data DTN ,i (see (12)). Hence, if the uncertainty
of the state xq becomes small enough, then xq is added
to X c

q . As shown in line 4 to 8, if xq is added to X c
q , the

transitions from xq is kept the same as the previous it-
eration afterwards (see line 6). That is, the transitions
from xq are no more updated once the corresponding un-
certainty becomes small enough. This is reasonable be-
cause the states having small uncertainties will not have
redundant transitions and so it is no longer necessary to
update the transition map. Moreover, this will indeed
speed up the construction of the transition map, since
the transitions from some of the states are not necessary
to be updated once their uncertainties become small.

In summary, the symbolic model is given by (24), where

the corresponding transition map G̃D,qN is computed
by executing Algorithm4 for all N ∈ N≥1 (until Algo-

rithm2 terminates). The computational complexity of
Algorithm4 is provided as follows. For the initial exe-
cution of Algorithm4 (N = 1), we have X c

q = ∅ and
thus the transition map GD,qN is computed for all states
in [X ]ηx and all inputs in [U ]ηu . Hence, the computa-
tional complexity of constructing the transition map is
O(|[X ]ηx

| |[U ]ηu
|c(TN )), where c(TN ) denotes the com-

putational complexity of the one-step reachable states
(line 11 in Algorithm4). Here, the computational com-
plexity of the one-step reachable states depends on the
data size TN , since the computations of hi(xq, uq;DTN ,i)

and hi(xq, uq;DTN ,i) involve the computations of the
GPmean and variance. For example, standard computa-
tion of the GP mean/variance requires a cubic complex-
ity O(T 3

N ) due to the inversion of the TN × TN matrix.
Note that the construction of the symbolic model for
the known dynamics requiresO(|[X ]ηx

| |[U ]ηu
|), because

we need to define the transition maps for every pair of
the state and the control input (xq, uq) ∈ [X ]ηx × [U ]ηu .
Hence, the computational complexity of our approach
additionally requires the multiplication of c(TN ) (in con-
trast to the one of the abstraction schemewith the known
dynamics). This is clear because the dynamics is here
estimated by a non-parametric (or, GP) model based on
training data. Now, consider N > 1. As shown in Algo-
rithm4, if xq ∈ [X ]ηx

\X c
q , transitions are re-computed

for all uq ∈ [U ]ηu
(line 9–line 19), and otherwise, tran-

sitions from xq are directly set as the previous ones of
N−1 (line 4–line 8). Hence, the computational complex-
ity of Algorithm4 is

O
(
(|[X ]ηx | − |X c

q |) · |[U ]ηu | · c(TN )︸ ︷︷ ︸
line 9−line 19

+ |X c
q | · |[U ]ηu |︸ ︷︷ ︸

line 4−line 8

)

= O
(
|[X ]ηx

| · |[U ]ηu
| · c(TN )− |X c

q | · |[U ]ηu
|
(
c(TN )− 1

))
.

This implies that Algorithm4 becomes faster as the car-
dinality of X c

q becomes larger, i.e., the number of states
having small uncertainties is larger. Therefore, it is ex-
pected that the execution time of Algorithm4 will be
shorter as the state-space exploration progresses and the
uncertainty on the unknown function d becomes smaller.

The following result shows that the existence of an ε-

ASR is still guaranteed from S̃D,qN to S.

Theorem 2 Suppose that Assumptions 1–3 hold
and Algorithm2 is implemented, in which the sym-
bolic model is given by (24) whose transition map

G̃D,qN is computed by executing Algorithm4 for all
N ∈ N≥1. Then, for every N ∈ N>0, the relation
RD(ε) = {(xq, x) ∈ [X ]ηx

× Rnx | ∥xq − x∥∞ ≤ ε} is an
ε-ASR from S̃D,qN to S. 2

PROOF. The result follows by induction. For N = 1,

RD is the ε-ASR from S̃D,qN to S, since S̃D,qN = SD,qN
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andRD is the ε-ASR from SD,qN to S (see the discussion
after Theorem 1). For a givenN ∈ N>1, assume thatRD

is the ε-ASR from S̃D,qN to S, and suppose that, at the

next iteration N + 1, G̃D,qN+1
is given by Algorithm4.

In what follows, it is shown that there exists a 0-ASR

from S̃D,qN to S̃D,qN+1
. From the derivation of G̃D,qN+1

in Algorithm4, for every xq ∈ [X ]ηx
, uq ∈ [U ]ηu

with

G̃D,qN (xq, uq) ̸= ∅, it follows either G̃D,qN+1
(xq, uq) =

G̃D,qN (xq, uq), or G̃D,qN+1
(xq,uq)= {x+q ∈ [X ]ηx

|x+q,i ∈
[hi(xq, uq;DTN+1,i), hi(xq, uq;DTN+1,i)],∀i ∈ N1:nx

}.
Note that for the latter case, we have

[hi(xq, uq;DTN+1,i), hi(xq, uq;DTN+1,i)]

⊆ [hi(xq, uq;DTN′ ,i), hi(xq, uq;DTN′ ,i)],

for all N ′ ≤ N , since TN ′ ≤ TN (see the proof of
Lemma 3). Hence, for every xq ∈ [X ]ηx

, uq ∈ [U ]ηu
with

G̃D,qN (xq, uq) ̸= ∅, it follows that G̃D,qN+1
(xq, uq) ⊆

G̃D,qN (xq, uq). This implies that the relation R ={
(xq, x

′
q) ∈ [X ]ηx

× [X ]ηx
| xq = x′q

}
is a 0-ASR from

G̃D,qN to G̃D,qN+1
. Thus, from the assumption that RD

is the ε-ASR from S̃D,qN to S, RD is the ε-ASR from

S̃D,qN+1
to S. Therefore, it is inductively shown that

RD is the ε-ASR from S̃D,qN to S for all N ∈ N>0.

Hence, any controller synthesized for the symbolic model

S̃D,qN can be refined to a controller for the original sys-
tem S satisfying the same specification.

Remark 3 S̃D,qN can have more (redundant) transi-

tions than SD,qN , since the transitions of S̃D,qN are up-
dated only for some states, while in SD,qN these are up-
dated for all states in [X ]ηx

. From Lemma5, this im-
plies that using SD,qN may result in a larger controlled

invariant set than using S̃D,qN , which may be a draw-

back of using S̃D,qN . Nevertheless, as will be illustrated
in the numerical example in the next section (Section 6),

constructing S̃D,qN should be more practical and useful
than constructing SD,qN , since it achieves a significant
reduction of the computational load. 2

Remark 4 Let us mention that the use of lazy ap-
proaches has been previously used in the symbolic con-
trol literature (see the approaches proposed in [38,39,40]
and a review of the lazy techniques in [41]). In these ap-
proaches, the refinement of the abstraction is done for
the regions that are not able to achieve the safety spec-
ification (either by using finer discretizations or lower
inputs). In this paper, the criteria of the refinement are
different, since we are refining on the regions where we
are able to collect new data. Moreover, the method of
refinement is also different since we conserve the same
discretizations, the same input, but we benefit from the

Algorithm 5 Derivation of Pre
S̃D,qN

(QN,ℓ) for all N ∈
N≥1, ℓ ∈ N≥0 (speeding up the computation of the pre-
decessors).

Input: S̃D,qN , QN,ℓ, and QN−1,ℓ+1 (available if N > 1);
Output: PreS̃D,qN

(QN,ℓ);

1: if N = 1 then
2: Q ← ∅, QN−1,ℓ+1 ← ∅;
3: else
4: Q ← QN−1,ℓ+1;
5: end if
6: for each xq ∈ QN,ℓ\QN−1,ℓ+1 do
7: for each uq ∈ [U ]ηu do

8: if G̃D,qN (xq, uq) ⊆ QN,ℓ then
9: Q ← Q∪ {xq};

10: end if
11: end for
12: end for
13: PreS̃D,qN

(QN,ℓ)← Q;

supplementary knowledge on the un-modeled dynamics
to reduce the redundant transitions. 2

Let us now proceed by reducing the computational load
of the predecessor operator Pre

S̃D,qN

in order to speed

up the safety controller synthesis. To this end, let QN,ℓ,
ℓ = 0, 1, . . . denote the sequence of setsQℓ, ℓ = 0, 1, . . . in

Algorithm1 by executing SafeCon(S̃qN ,X ). Then, it fol-
lows from TN ≥ TN−1 for all N ∈ N>0 that QN−1,ℓ+1 ⊆
QN,ℓ+1 = Pre

S̃D,qN

(QN,ℓ), for all N ∈ N>0 and ℓ ∈ N>0

(see the proof of Lemma5). Hence, when we aim at com-
puting Pre

S̃D,qN

(QN,ℓ), it is known thatQN−1,ℓ+1 is the

subset of Pre
S̃D,qN

(QN,ℓ). This implies that all states in

QN−1,ℓ+1 can be directly added to the predecessors for
QN,ℓ without checking the existence of a control input
such that all successors are in QN,ℓ according to (18).

Based on the above observation, we propose Algorithm5
so as to speed up the computation of Pre

S̃D,qN

(QN,ℓ).

In the algorithm, Q represents the set of predeces-
sors for QN,ℓ which are mainly updated according to
line 6–line 12. For N = 1, Q is initialized by the empty
set (line 2). In other words, all states in QN,ℓ (since
QN,ℓ\QN−1,ℓ+1 = QN,ℓ) are evaluated to check the ex-
istence of a control input such that all the successors
are in QN,ℓ according to line 6 to line 12. For N > 1,
on the other hand, Q is initialized by QN−1,ℓ+1 (line 4).
This is due to the fact that it is already known that
QN−1,ℓ+1 is a subset of the predecessors for QN,ℓ (i.e.,
QN−1,ℓ+1 ⊆ Pre

S̃D,qN

(QN,ℓ)). Hence, only the states in

QN,ℓ\QN−1,ℓ+1 (instead of QN,ℓ) are necessary to be
evaluated to check the existence of a control input such
that all the successors are inQN,ℓ according to line 6–12.

In summary, during execution of SafeCon(S̃qN ,X )
(line 15 inAlgorithm2) for allN ∈ N≥1, PreS̃D,qN

(QN,ℓ),
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ℓ = 0, 1, ... are computed by Algorithm5. The computa-
tional complexity of computing predecessors according
to Algorithm5 for N = 1 is O

(
|QN,ℓ| |[U ]ηu |

)
. For

N > 1, we have O
(
|QN,ℓ\QN−1,ℓ+1| |[U ]ηu

|
)
. Hence,

the computation of the predecessors becomes faster
as the cardinality of QN,ℓ\QN−1,ℓ+1 becomes smaller,
or in other words, QN,ℓ is closer to QN−1,ℓ+1, i.e.,
QN,ℓ ≈ QN−1,ℓ+1. Note that we have QN,ℓ = QN−1,ℓ+1

if the controlled invariant set converges XS,N−1 = XS,N

(i.e., QN,ℓ = QN−1,ℓ, ∀ℓ ∈ N≥0) and QN,ℓ = QN,ℓ+1

(i.e., QN,ℓ converges to a fixed point). Hence, it is ex-
pected that Algorithm5 becomes faster as both the
controlled invariant set andQN,ℓ get closer to their fixed
points. Thememory requirement isO(|[Interiorε(X )]ηx

|),
since it needs to store the set QN,ℓ ⊆ [Interiorε(X )]ηx

.

6 Simulation results

In this section we illustrate the effectiveness of the pro-
posed approach through a simulation of an adaptive
cruise control (ACC) [42,43,44]. The simulation has
been conducted on Windows 10, Intel(R) Core(TM)
2.40GHz, 8GB RAM. The state vector is given by
x = [x1, x2, x3]

T ∈ R3, where x1 is the velocity of the
leading vehicle, x2 is the velocity of the following vehi-
cle, and x3 is the distance between the lead vehicle and
the following vehicle. Moreover, the input vector indi-
cates the acceleration of the following car u ∈ R. The
dynamics is given by

xt+1 =xt +∆


0

ut

x1,t − x2,t


︸ ︷︷ ︸

f(xt,ut)

+∆


al,t

0

0


︸ ︷︷ ︸

vt

+∆


0

−(ν0 + ν1x2,t + ν2x
2
2,t)/M

0


︸ ︷︷ ︸

d(xt)

,

where M is the weight of the following vehicles, ∆ rep-
resents the sampling time, al,t is the acceleration of the
lead vehicle that is assumed to be the additive noise,
and ν0, ν1, ν2 are the constants for the aerodynamic drag
force, whose function (i.e., (ν0 + ν1x2,t + ν2x

2
2,t)/M)

is assumed to be unknown apriori. It is assumed that
∆ = 1,M = 1000, ν0 = 60, ν1 = 1.2, ν2 = 1.0. More-
over, we assume that the velocity of the lead vehicle
fulfills 15 ≤ x1,t ≤ 25 for all t ∈ N≥0, and its ac-
celeration is bounded as |al,t| ≤ 0.2 for all t ∈ N≥0.
The safe set is given by X = Z\O, where Z = {x ∈
R3 | 15 ≤ x1 ≤ 25, 15 ≤ x2 ≤ 25, 30 ≤ x3 ≤ 80},
O = {x ∈ R3 | 2x2 ≤ x3}. The input constraint set is
U = {u ∈ R | |u| ≤ 1.0}. The initial state is given by

Fig. 1. The left figure illustrates the trajectories of x1 and x2
by Algorithm2. The right figure illustrates the phase portrait
in x2, x3 (the white region indicates the safe set X ).

Fig. 2. The computed controlled invariant set XS,N forN = 1
(upper left), N = 4 (upper right), N = 7 (lower left) and
N = 10 (lower right).

x̄ = [20, 20, 60]T, and ηx = ε = 0.2, ηu = 0.2, Texp = 30.
Moreover, during the implementation of Algorithm2, we
incorporate Algorithm4 and Algorithm5 with ρ = 0.01
so as to reduce the computational load of abstractions
and the safety controller synthesis. We used a squared-
exponential k(xt, xt′) = exp(−α|xt − xt′ |) with α = 1.
The computed upper bound of the RKHS norm was
∥d2∥k ≤ 2.0 (for details on how to obtain this bound, see
[34]).

For comparisons, we have also computed a symbolic
model and a controlled invariant set by regarding
d2(x2,t) = ν0 + ν1x2,t + ν2x

2
2,t/M as the uniform dis-

turbance (i.e., the aerodynamic drag force will not be
learned from data). We assume that the uniform dis-
turbance satisfies 0.30 ≤ d2(x2,t) ≤ 0.71, ∀t ∈ N, since
minx2∈[15,25] d2(x2) = 0.30 and maxx2∈[15,25] d2(x2) =
0.71. These lower and the upper bounds of d2 have
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been utilized to construct the symbolic model and the
controlled invariant set by following the abstraction
procedure given in previous work, e.g., [45].

Fig. 1 shows the trajectories of x1, x2 by applying the
proposed approach Algorithm2 and the phase portrait
of x2, x3. The figure illustrates that the trajectories are
always inside X (white region), showing the achieve-
ment of the safe exploration. The algorithm terminates
at N = 10. The computed controlled invariant sets for
N = 1, 4, 7, 10 are illustrated in Fig. 2. The figure shows
that the volume of the controlled invariant set is enlarged
by collecting the training data according to Algorithm2.

Fig. 3 shows the controlled invariant set finally obtained
by applying the proposed approach (which is equivalent
to the lower right of Fig. 2) and the uniform disturbance-
based approach as described above. In addition, Fig. 4
shows |[XS,N ]ηx

| (i.e., the cardinality or the number of
states contained in [XS,N ]ηx

) by applying the proposed
approach against the number of iterations (blue dot-
ted line) and the uniform disturbance-based approach
(green dotted line). Note that the size of the controlled
invariant set under the uniform disturbance-based ap-
proach is constant for all the iterations, since the un-
known function is not learned. The figure shows that
the controlled invariant set obtained by the proposed
approach becomes larger than the uniform disturbance-
based approach afterN = 6. This is because, by applying
the proposed algorithm, the uncertainty of the unknown
function becomes smaller as the iteration progresses,
which results in reducing redundant transitions of the
symbolic model (and thus enlarge the controlled invari-
ant set); on the other hand, the uniform disturbance-
based approach always considers the worst case effect
of the disturbance, and thus the redundant transitions
will not be removed. Moreover, for further comparisons,
we also implemented Algorithm2 neither by employing
Algorithm4 (i.e., SD,qN in (23) is constructed for each
N) nor by employing Algorithm5 for the safety con-
troller synthesis, and the results are also plotted (red
dotted lines). The right figure illustrates the total ex-
ecution time to construct the symbolic model and the

Fig. 3. The controlled invariant set finally obtained by ap-
plying the proposed approach (left) and the uniform distur-
bance-based approach (right).

Fig. 4. The left figure indicates |[XS,N ]ηx | with Algorithm 4
and 5 (blue solid), uniform disturbance-based approach
(green dotted) and without Algorithm 4 and 5 (red dotted
line). The right figure illustrates the total execution time to
implement line 14 and line 15 in Algorithm2.

safety controller (i.e., the execution time to implement
line 14 and line 15 for eachN in Algorithm2). The figure
implies that the controlled invariant set by constructing

the symbolic model S̃D,qN is smaller than by construct-
ing SD,qN . As stated in Remark 3, this is due to the fact
that in the former case the transitions are updated only
for some states, while in the latter case these are up-
dated for all states in [X ]ηx

. On the other hand, the to-
tal execution time (right figure in Fig. 4) by employing
the former approach is shown to be significantly smaller
than the latter approach, which illustrates the benefits
of employing Algorithms 4 and 5.

Now, using the learned symbolic model S̃D,qN , we can
synthesize a controller satisfying complex control spec-
ifications, such as temporal logic formulas. Following a
correct-by-construction approach [42], we encode the re-
quirements for the ACC by the linear temporal logic
(LTL). First, consider two modes, called set-speed mode
and time-gap mode. If the mode is in set-speed mode,
the following vehicle must keep a given desired speed
x∗2 with some accuracy, i.e., |x2 − x∗2| ≤ ϵ1. If the mode
is in time-gap mode, the following vehicle must achieve
a desired time headway ω∗ with some accuracy, i.e.,
|x3/x2 − ω∗| ≤ ϵ2. Let mode1, mode2 be atomic propo-
sitions, such that mode1 (resp. mode2) is satisfied if the
mode is in set-speed mode (resp. the time-gap mode). It
is assumed that mode1 (resp. mode2) is satisfied if the
state is included in the set X1 = {x ∈ X | x3 ≤ 60}
(resp. X2 = X1\X1). Let spec1, spec2 be the atomic
propositions, such that spec1 (resp. spec2) is satisfied if
|x2 − x∗2| ≤ ϵ1 (resp. |x3/x2 − ω∗| ≤ ϵ2). Moreover, let
safe be the atomic proposition, such that it is satisfied if
the state is included in X . Then, we encode the control
specification by the LTL formula as follows:

ψ = 2safe ∧2 ∧2i=1 (modei =⇒ ⃝⃝ speci), (25)

14



Fig. 5. The upper figures illustrate the trajectories of x1
and x2 (upper left) and the corresponding phase portrait in
x2, x3 (upper right), by applying the synthesized controller
satisfying ψ. The lower figures illustrate the absolute errors
|x2,t−x∗2| (lower left) and |x3,t/x2,t−ω∗| (lower right) with
x∗2 = 22, ω∗ = 2.4.

where 2 and ⃝ are so-called the “always” and “next”
temporal operators, respectively (see, e.g., [46]). In
words, the state x must always stay in the safe set X ,
and if the mode is in set-speed mode (resp. time-gap
mode), the following vehicle must achieve the desired
speed in two time steps (resp. the desired time head-
way in two time steps). Note that the controller for the
safety specification 2safe has been already obtained af-
ter the implementation of Algorithm2. The controller
for the remaining part 2 ∧2i=1 (modei =⇒ ⃝⃝ speci)
can be synthesized by a fixed point algorithm (see, e.g.,
[42]). The upper figures of Fig. 4 indicate the state tra-
jectories by employing the synthesized controller with
x∗2 = 22, ω∗ = 2.4 and ϵ1 = 0.2, ϵ2 = 0.2. Moreover, the
lower figures indicate the sequences of the error |x2−x∗2|
and |x3/x2 − ω∗|. It can be verified that the formula
ψ is satisfied by applying the synthesized controller,
showing the effectiveness of the proposed approach.

7 Conclusions and future works

In this paper, we propose a learning-based approach to-
wards symbolic abstractions for nonlinear control sys-
tems. The symbolic model is constructed by learning
the un-modeled dynamics from training data, and the
concept of an ε-approximate alternating simulation re-
lation. Moreover, the safe exploration has been achieved
by iteratively updating the controlled invariant and the
safety controller, employing the safety game. In addition,
we provide several techniques to alleviate the compu-
tational load to construct the symbolic models and the
controlled invariant set. Finally, we illustrate the effec-
tiveness of the proposed approach through a simulation
example of an adaptive cruise control.

In our problem setup, it is of great importance to com-

pute the upper bound of the RKHS norm ∥di∥ki ≤ Bi

since it has been utilized to construct the symbolic mod-
els. Hence, as described in Section 6, obtaining a large
enough, yet not too conservative bound for ∥di∥ki should
be further investigated in the future. In addition, since
there exist no outliers in our problem setup, investigat-
ing how these can affect (if they exist) the estimation
accuracy of the unknown function as well as how to de-
tect them should be further pursued in future work.
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