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Abstract

In this paper we study a family of controllers that guarantees attitude synchronization for a network of agents in the unit sphere
domain, i.e., S2. We propose distributed continuous controllers for elements whose dynamics are controllable, i.e., control with
torque as command, and which can be implemented by each individual agent without the need of a common global orientation
frame among the network, i.e., it requires only local information that can be measured by each individual agent from its
own orientation frame. The controllers are constructed as functions of distance functions in S2, and we provide conditions
on those distance functions that guarantee that i) a synchronized network of agents is locally asymptotically stable for an
arbitrary connected network graph; ii) a synchronized network is asymptotically achieved for almost all initial conditions in a
tree network graph. When performing synchronization along a principal axis, we propose controllers that do not require full
torque, but rather torque orthogonal to that principal axis; while for synchronization along other axes, the proposed controllers
require full torque. We also study the equilibria configurations that come with specific types of network graphs. The proposed
strategies can be used in attitude synchronization of swarms of under actuated rigid bodies, such as satellites.

1 Introduction

Decentralized control in a multi-agent environment has
been a topic of active research for the last decade, with
applications in large scale robotic systems. Attitude syn-
chronization in satellite formations is one of those appli-
cations [Lawton and Beard, 2002], where the control goal
is to guarantee that a network of fully actuated rigid bod-
ies acquires a common attitude. Coordination of under-
water vehicles in ocean exploration missions can also be
casted as an attitude synchronization problem [Leonard
et al., 2007].

In the literature of attitude synchronization, different
solutions for consensus in the special orthogonal group
are found [Bondhus et al., 2005, Cai and Huang, 2014,
Dimarogonas et al., 2009, Krogstad and Gravdahl, 2006,
Lawton and Beard, 2002, Nair and Leonard, 2007, Sar-
lette et al., 2009, Song et al., 2015, Thunberg et al.,
2014], which focus on complete attitude synchroniza-
tion. In this paper, we focus on incomplete attitude syn-
chronization, which has not received the same attention:
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in this scenario, each rigid body has a main direction
and the global objective is to guarantee alignment of all
rigid bodies’ main directions; the space orthogonal to
each main direction can be left free of actuation or con-
trolled to accomplish some other goals. Complete atti-
tude synchronization requires more measurements when
compared to incomplete attitude synchronization, and
it might be the case that a rigid body is not fully ac-
tuated but rather only actuated in the space orthogo-
nal to a specific direction, in which case incomplete atti-
tude synchronization is still feasible. Incomplete attitude
synchronization is also denoted synchronization on the
sphere in [Dörfler and Bullo, 2014, Li and Spong, 2014,
Moshtagh and Jadbabaie, 2007, Olfati-Saber, 2006, Pa-
ley, 2009, Sarlette et al., 2008], where the focus has been
on kinematic or point mass dynamic agents, i.e., dynam-
ical agents without moment of inertia.

In [Dimarogonas et al., 2009], attitude control in a
leader-follower network of rigid bodies has been studied,
with the special orthogonal group being parametrized
with Modified Rodrigues Parameters. The proposed so-
lution guarantees attitude synchronization for connected
graphs, but it requires all rigid bodies to be aware of
a common and global orientation frame. In [Bondhus
et al., 2005, Krogstad and Gravdahl, 2006], a controller
for a single-leader single-follower network is proposed
that guarantees global attitude synchronization at the
cost of introducing a discontinuity in the control laws.
In [Cai and Huang, 2014], attitude synchronization in a
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leader-follower network is accomplished by designing a
non-linear distributed observer for the leader. In [Chung
et al., 2009, 2013], a combination of a tracking input and
a synchronization input is used; the tracking input adds
robustness if connectivity is lost and it is designed in the
spirit of leader-following, where the leader is a virtual
one and it encapsulates a desired trajectory; however,
this strategy requires all agents to be aware of a com-
mon and global reference frame. In another line of work,
in [Nair and Leonard, 2007, Sarlette et al., 2009], atti-
tude synchronization is accomplished without the need
of a common orientation frame among agents. Addition-
ally, in [Sarlette et al., 2009], a controller for switching
and directed network topologies is proposed, and local
stability of consensus in connected graphs is guaran-
teed, provided that the control gain is sufficiently high.
In [Lawton and Beard, 2002], attitude synchronization is
accomplished with controllers based on behavior based
approaches and for a bidirectional ring topology. The
special orthogonal group is parametrized with quater-
nions, and the proposed strategy also requires a common
attitude frame among agents. In [Mayhew et al., 2012], a
quaternion based controller is proposed that guarantees
a synchronized network of rigid bodies is a global equilib-
rium configuration, provided that the network graph is
acyclic. This comes at the cost of having to design discon-
tinuous (hybrid) controllers. A discrete time protocol for
complete synchronization of kinematic agents is found
in [Tron et al., 2012]. The authors introduce the notion
of reshaping function, and a similar concept is presented
in this manuscript. The protocol provides almost global
convergence to a synchronized configuration, which re-
lies on proving that all other equilibria configurations,
apart from the equilibria configuration where agents are
synchronized, are unstable. In [Thunberg et al., 2014],
controllers for complete attitude synchronization and for
switching topologies are proposed, but this is accom-
plished at the kinematic level, i.e., by controlling the
agents’ angular velocity (rather than their torque). This
work is extended in [Song et al., 2015] by providing con-
trollers at the torque level, and similarly to [Lawton and
Beard, 2002], stability properties rely of high gain con-
trollers.

In [Moshtagh and Jadbabaie, 2007, Olfati-Saber, 2006],
incomplete synchronization of kinematic agents on the
sphere is studied, with a constant edge weight func-
tion for all edges. In particular, in [Moshtagh and Jad-
babaie, 2007], incomplete synchronization is used for ac-
complishing a flocking behavior, where a group of agents
moves in a common direction. In [Paley, 2009], dynamic
agents, which move at constant speed on a sphere, are
controlled by a state feedback control law that steers
their velocity vector so as to force the agents to attain
a collective circular motion; since the agents are mass
points, the effect of the moment of inertia is not stud-
ied. In [Li and Spong, 2014], dynamic point mass agents,
constrained to move on a sphere, are controlled to form
patterns on the sphere, by constructing attractive and

repelling forces; in the absence of repelling forces, syn-
chronization is achieved. Also, the closed-loop dynamics
of these agents are invariant to rotations, or symmetry
preserving, as those in [Moshtagh and Jadbabaie, 2007,
Olfati-Saber, 2006], in the sense that two trajectories,
whose initial condition – composed of position and ve-
locity – differs only on a rotation, are the same at each
time instant apart from the previous rotation. In our
framework this property does not hold, since our dy-
namic agents have a moment of inertia, unlike the agents
in [Li and Spong, 2014, Moshtagh and Jadbabaie, 2007,
Olfati-Saber, 2006], which is another novelty of the pa-
per in hand.

We propose a distributed control strategy for synchro-
nization of elements in the unit sphere domain. The
controllers for accomplishing synchronization are con-
structed as functions of distance functions (or reshaping
functions as denoted in [Tron et al., 2012]), and, in or-
der to exploit results from graph theory, we impose a
condition on those distance functions that will restrict
them to be invariant to rotations of their arguments. As
a consequence, the proposed controllers can be imple-
mented by each agent without the need of a common
orientation frame. We restrict the proposed controllers
to be continuous, which means that a synchronized net-
work of agents cannot be a global equilibrium configura-
tion, since S2 is a non-contractible set [Liberzon, 2003].
Our main contributions lie in proposing for the first
time a controller that does not require full torque when
performing synchronization along a principal axis, but
rather torque orthogonal to that axis; in finding con-
ditions on the distance functions that guarantee that a
synchronized network is locally asymptotically stable for
arbitrary connected network graphs, and that guarantee
that a synchronized network is achieved for almost all
initial conditions in a tree graph; in providing explicit
domains of attraction for the network to converge to a
synchronized network; and in characterizing the equilib-
ria configurations for some general, yet specific, types
of network graphs. A preliminary version of this work
was submitted to the 2015 IEEE Conference on Deci-
sion and Control [Pereira and Dimarogonas, 2015]. With
respect to this preliminary version, this paper presents
significantly more details on the derivation of the main
theorems and provides additional results. In particular,
the concept of cone has been modified, with a clearer in-
tuitive interpretation; the proof for the proposition that
supports the result on local stability of the synchronized
network has been simplified; further details on the con-
dition imposed on the distance functions are provided;
additional examples on possible distance functions, and
their properties, are presented; and supplementary sim-
ulations are provided which further illustrate the theo-
retical results. The remainder of this paper is structured
as follows. In Section 3, the problem statement is de-
scribed; in Section 4, the proposed solution is presented;
in Sections 5 and 6, convergence to a synchronized net-
work is discussed for tree and arbitrary graphs, respec-
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tively; and, in Section 7, simulations are presented that
illustrate the theoretical results.

2 Notation

0n ∈ Rn and 1n ∈ Rn denote the zero column vector
and the column vector with all components equal to 1,
respectively; when the subscript n is omitted, the dimen-
sion n is assumed to be of appropriate size. In ∈ Rn×n

stands for the identity matrix, and we omit its sub-
script when n = 3. The matrix S (·) ∈ R3×3 is a skew-
symmetric matrix and it satisfies S (a) b = a×b, for any
a,b ∈ R3. The map Π : {x ∈ R3 : xTx = 1} 7→ R3×3, de-
fined as Π (x) = I−xxT , yields a matrix that represents
the orthogonal projection operator onto the subspace
perpendicular to x. We denote the Kronecker product
between A ∈ Rm×n and B ∈ Rs×t by A ⊗ B ∈ Rms×n t.
GivenA1, · · · , An ∈ Rm×m, for some n,m ∈ N, we denote
A = A1 ⊕ · · · ⊕ An ∈ Rnm×nm (direct sum of matrices)
as the block diagonal matrix with block diagonal entries
A1 to An. Given a,b ∈ Rn, a = ±b⇔ a = b ∨ a = −b;
additionally, we say a 6= 0 and b 6= 0 have the same di-
rection if there exists λ ∈ R such that b = λa. We say
a function f : Ω1 7→ Ω2 is of class Cn, or equivalently
f ∈ Cn(Ω1,Ω2), if its first n+1 derivatives (i.e., f (0), f (1),
· · · , f (n)) exist and are continuous on Ω1. Finally, given
a setH, we use the notation |H| for the cardinality ofH.

3 Problem Statement

We consider a group of N agents, indexed by the set
N = {1, · · · , N}, operating in the unit sphere domain,
i.e., in S2 = {x ∈ R3 : xTx = 1}. The agents’ network is
modeled as an undirected static graph, G = {N , E}, with
N as the vertices’ set indexed by the teammembers, and
E as the edges’ set. For every pair of agents (i, j) ∈ E ,
that are aware of and can measure each other’s relative
attitude, we say that agent j is a neighbor of agent i,
and vice-versa; also, we denote Ni ⊂ N as the neighbor
set of agent i.

Each agent i has its own orientation frame (w.r.t. an un-
known inertial orientation frame), represented by Ri ∈
SO(3). Let the unit vector ni ∈ S2 be a direction along
agent’s i orientation, i.e., ni = Rin̄i, where n̄i ∈ S2 is
a constant unit vector, specified in the agent’s i body
orientation frame, and known by agent i and its neigh-
bors. In this paper, the goal of attitude synchronization
is not that all agents share the same complete orienta-
tion, i.e., thatR1 = · · · = RN , but rather that all agents
share the same orientation along a specific direction, i.e.,
that n1 = · · · = nN ⇔ R1n̄1 = · · · = RN n̄N . For ex-
ample, in a group of N satellites that must align their
principal axis associated to the smallest moment of in-
ertia, it follows that, for each i ∈ N , n̄i ∈ S2 : ∃λi > 0 :
Jin̄i = λin̄i with Ji as the satellite’s moment of inertia
and with λi as the smallest eigenvalue of Ji; and that
the desired synchronized network of satellites satisfies
R1n̄1 = · · · = RN n̄N . Figure 1 illustrates the concept of
incomplete synchronization. Notice that agent i is not

n3 ≡ R3n̄3

R3u1

R3u2

R3u3

R2u2

n2 ≡ R2n̄2

R2u1

R2u3

n1 ≡ R1n̄1

R1u2

R1u1

R1u3

Fig. 1. Rigid bodies 1 and 3 are synchronized with each other,
but not with rigid body 2. In incomplete synchronization, n
rigid bodies, indexed by i = {1, · · · , n}, synchronize the unit
vectors ni = Rin̄i, where n̄i is fixed in rigid body i. In this
figure, n̄1 = −n̄2 = −n̄3 = 1√

3
[1 1 1]T (u1,u2 and u3 stand

for the canonical basis vectors of R3).

aware of ni, since this is specified w.r.t. an unknown in-
ertial orientation frame; instead, agent i is aware of its
own direction n̄i – fixed in its own orientation frame –
and the projection of its neighbors directions onto its
own orientation frame.

Consider then any agent i ∈ N , with rotation ma-
trix Ri : R≥0 7→ SO(3), unit vector ni : R≥0 7→ S2

where ni(·) = Ri(·)n̄i, body-framed angular velocity
ωi : R≥0 7→ R3, moment of inertia Ji ∈ R3×3 (Ji > 0),
and body frame torque Ti : R≥0 7→ R3. The rotation
matrix Ri : R≥0 7→ SO(3) evolves according to

Ṙi(t) = fR(Ri(t),ωi(t)), (3.1)
where fR : SO(3)×R3 7→ R3×3 is defined as fR(R,ω) =
RS (ω); while each unit vector ni : R≥0 7→ S2

evolves according to ṅi(t) = fni(t,ni(t),ωi(t)), where
fni : R≥0 × S2 × R3 7→ R3 is defined as fni(t,n,ω) =
S (Ri(t)ω)n. The previous result follows from the fact
that ni(·) = Ri(·)n̄i for some constant n̄i ∈ S2, and
therefore Ṙi(t)n̄i = S (Ri(t)ωi(t))Ri(t)n̄i ⇒ ṅi(t) =
S (Ri(t)ωi(t))ni(t). Finally, the body-framed angular
velocity ωi : R≥0 7→ R3 evolves according to the dynam-
ics

ω̇i(t) = J−1

i (−S (ωi(t)) Jiωi(t) + Ti(t)) , (3.2)
and therefore ω̇i(t) = fωi(ωi(t),Ti(t)), where fωi : R3 ×
R3 7→ R3 is defined as

fωi (ω,T) = J−1

i (−S (ω) Jiω + T) . (3.3)

Definition 3.1 Two unit vectors (n1,n2) ∈ (S2)2 are
diametrically opposed if nT1 n2 = −1, and synchronized if
nT1 n2 = 1. A group of unit vectors (n1, · · · ,nN) ∈ (S2)N

is synchronized if nTi nj = 1 for all i, j ∈ {1, · · · , N}.
Problem 3.1 Given a group of rotation matrices
(R1, · · · ,RN) : R≥0 7→ SO(3)N , with angular veloci-
ties (ω1, · · · ,ωN) : R≥0 7→ R3 and moments of inertia
J1, · · · , JN satisfying (3.1) and (3.2), design distributed
control laws for the torques {Ti : R≥0 7→ R3}i∈N ,
in the absence of a common inertial orientation
frame, that guarantee that the group of unit vectors
(n1, · · · ,nN) : R≥0 7→ (S2)N is asymptotically synchro-
nized.

For the purposes of analysis, we consider the state x :=
(n,ω) := ((n1, · · · ,nN), (ω1, · · · ,ωN)) : R≥0 7→ (S2)N×

3



(R3)N , and the control input T := (T1, · · · ,TN) :
R≥0 7→ (R3)N ; where x(·) evolves according to
ẋ(t) = fx(t,x(t),T(t)) where
fx(t,x,T) = (fn(t,n,ω), fω(ω,T)) ∈ R3N × R3N , (3.4)

with fn(t,n,ω) = (fn1
(t,n1,ω1), · · · , fnN (t,nn,ωN)) ∈

(R3)N and fω(ω,T) = (fω1
(ω1,T1), · · · , fωN (ωN ,TN)) ∈

(R3)N .

4 Proposed Solution

4.1 Preliminaries

Wefirst present some definitions and results from graph
theory that are used in later sections [Godsil et al., 2001].
A graph G = {N , E} is said to be connected if there
exists a path between any two vertices inN . G is a tree if
it is connected and it contains no cycles. An orientation
on the graph G is the assignment of a direction to each
edge (i, j) ∈ E , where each edge vertex is either the tail
or the head of the edge. For brevity, we denote N = |N |,
M = |E| andM = {1, · · · ,M}. Consider the injective
function κ̄ : {(i, j) ∈ E : j > i} 7→ M and the surjective
function κ : E 7→ M, which satisfy κ(i, j) = κ(j, i) =
κ̄(i, j) for j > i; i.e., κ(i, j) provides the edge number
formed by neighboring agents i and j. The incidence
matrix B ∈ RN×M of G is such that, for every k ∈ M
and for (i, j) = κ̄−1(k), Bik = 1, Bjk = −1 and Blk = 0
for all l ∈ N\{i, j}. Finally, for each edge k ∈ M and
(i, j) = κ̄−1(k), we denote kn := ni and k̄n := nj, i.e.,
we identify an agent by its node index but also by its
edges’ indexes (kn if ni is the tail of edge k, and k̄n if ni
is the head of edge k). If G is connected but not a tree,
then the null space of the incidence matrix, i.e., N (B),
is non-empty, and it corresponds to the cycle space of
G (Lemma 3.2 in [Guattery and Miller, 2000]). Let us
now characterizeN (B) for some specific network graphs
with cycles.

Denote by C ⊆ {1, · · · ,M} the set of indices corre-
sponding to the edges that form a cycle. Consider a net-
work graph with n ∈ N cycles, {Ci}i={1,··· ,n}. We say
that a cycle Ci is independent if Ci ∩ Cj = ∅ for all j ∈
{1, · · · , n}\{i}. Additionally, we say that two cycles C1

andC2 share only one edge when |C1∩C2| = 1 andC1∪C2

contains edges from only the following three cycles (in
{Ci}i={1,··· ,n}): C1, C2 and C3 = C1∪C2\{C1∩C2}, with
|C3| = |C1|+ |C2| − 2. Figure 5(c) presents a graph with
two cycles that share only one edge.

Proposition 4.1 Consider a graph G with n1 inde-
pendent cycles, {Ci}i={1,··· ,n1}, and n2 pairs of cycles
that share only one edge, {(C1

i , C
2
i )}i={1,··· ,n2}. Then

the null space of B ⊗ In is given by N (B ⊗ In) =
{(e1, · · · , eM) ∈ (Rn)M : ek = ±el,∀k, l ∈ Ci, i =
{1, · · · , n1}}∪{(e1, · · · , eM) ∈ (Rn)M : ek = ±el,∀k, l ∈
C1
i \{C1

i ∩ C2
i }, ep = ±eq,∀p, q ∈ C2

i \{C1
i ∩ C2

i }, i =
{1, · · · , n2}}.
Notice that for an incidence matrix B ⊗ In, with B ∈
RN×M , there are M edges and each edge belongs to an
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Fig. 2. Three unit vectors n1, n2 and n3 in a 30◦-cone asso-
ciated to the unit vector n?.
n-dimensional space. With that in mind, and under the
conditions of Proposition 4.1, it follows that the null
space of B ⊗ In is the space where all edges of an inde-
pendent cycle have the same direction and norm (or are
all zero); and all edges of pairs of cycles that share only
one edge, except the one that is shared, have the same
direction and norm (or are all zero). A proof of Propo-
sition 4.1, including examples that illustrate its results,
is found in [Pereira and Dimarogonas, 2016]. Propo-
sition 4.1 is useful in a later section, where we prove
that for network graphs that satisfy the conditions of
the Proposition, the agents converge to a configuration
where all unit vectors belong to a common plane.

We now present a definition and some results that will
prove useful in a later section.

Definition 4.1 We say that a group of unit vectors n =
(n1, · · · ,nN) ∈ (S2)N belongs to an open (closed) α ∈
[0, π] cone, denoted by n ∈ C(α) (n ∈ C̄(α)), if there
exists a unit vector n? ∈ S2 such that n?Tni > cos(α)
(n?Tni ≥ cos(α)) for all i ∈ N .

The concept of α cone is exemplified in Fig. 2, with three
unit vectors n1, n2 and n3 contained in a 30◦ cone formed
by a unit vector n?. In fact, any group of unit vectors
contained in the sphere surface region marked in bold is
contained in a 30◦ cone associated to the unit vector n?.

Proposition 4.2 If n = (n1, · · · ,nN) ∈ C(α), for some
α ∈ [0, π2 ], then max(i,j)∈N2(1− nTi nj) < 1− cos(2α).

Proposition 4.3 If, given n = (n1, · · · ,nN) ∈ (S2)N ,
max(i,j)∈N2(1 − nTi nj) ≤ 1 − cos( 2

3α) holds for some
α ∈ [0, π], then n ∈ C̄(α).

Proofs of Propositions 4.2 and 4.3 are found in [Pereira
and Dimarogonas, 2016].

4.2 Distance in S2

Definition 4.2 Consider a function f ∈ C2((0, 2),R>0),
satisfying i) f ′(s) > 0∀s ∈ (0, 2), ii) lims→0+ f(s) =
0, and iii) lim sups→0+ f ′(s), f ′′(s) < ∞. Denote f2 :=
lims→2− f(s) and f ′0 := lims→0+ f ′(s). We say that: 1)
f ∈ P0 if f ′0 = 0 and f ∈ P0̄ if f ′0 6= 0; 2) f ∈ P∞
if f2 = ∞, and f ∈ P∞̄ if f2 < ∞; 3a) f ∈ P0 if
f ∈ P∞̄ ∧ lims→2− f

′(s)
√

2− s = 0; 3b) f ∈ P 0̄ if f ∈
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lim
s!2−

f(s) = 1

lim
s!2−

f(s) 2 R≥0 lim sup
s!2−

f 0(s) 2 R≥0

lim sup
s!2−

f 0(s) = 1

lim
s!2−

f 0(s)
p
2 � s = 0

lim
s!2−

f 0(s)
p
2 � s 6= 0

f 2 P0

f 2 P 0̄

f 2 P1̄

f 2 P1

Fig. 3. Relation between properties of f(·) and the classes it
belongs to.

P∞̄ ∧ lims→2− f
′(s)
√

2− s 6= 0; 4) f ∈ P̄ if f(·) is of any
of the previous classes.

Figure 4 illustrates the different classes introduced in
Definition 4.2 while Fig. 3 illustrates how the properties
that f(·) satisfies affects the classes it belongs to (see Re-
mark G.1 in [Pereira and Dimarogonas, 2016]). In [Tron
et al., 2012], the notion of reshaping function is intro-
duced, whose definition is within the same spirit as that
of Definition 4.2. For the rest of this manuscript, we as-
sume that, for each edge k ∈M, there exists a function
dk : S2×S2 7→ R≥0 defined as dk(n1,n2) = fk(1−nT1 n2)

and where fk ∈ P̄; in particular, f ′k(·) plays the role of
an edge weight. In e.g. [Moshtagh and Jadbabaie, 2007,
Olfati-Saber, 2006], fk(s) = aks and f ′k(s) = ak, for all
k ∈ M (ak is the weight of edge k and it is denoted by
aij in [Olfati-Saber, 2006], where (i, j) = κ̄−1(k)). De-
note also ΩD

n = {n ∈ (S2)N : kn
T
k̄n 6= −1,∀fk ∈ P∞}

and D : ΩD
n 7→ R≥0 defined as

D(n) =
∑k=M

k=1
dk(kn, k̄n) =

∑k=M

k=1
fk(1− kn

T
k̄n),(4.1)

named, hereafter, total distance function of the net-
work of unit vectors. Note that D(n) = 0 ⇔ ∃n? ∈
S2 : n = (1N ⊗ n?), which means Problem 3.1 is
solved, if along a trajectory x(·) of the closed loop
system, limt→∞D(n(t)) = 0. Additionally, denote
Ωek

n = {(n1,n2) ∈ (S2)2 : nT1 n2 6= −1 if fk ∈ P 0̄} and
ek : Ωek

n 7→ R3 defined as
ek(n1,n2) = f ′k(1− nT1 n2)S (n1)n2, (4.2)

to be the error of edge k, and for each k ∈ M. And,
finally, denote Ωe

n = {n ∈ (S2)N : kn
T
k̄n 6= −1,∀fk ∈

P 0̄} and e : n = (n1, · · · ,nN) ∈ Ωe
n 7→ R3M defined as

e(n) =
[
eT1 (1n, 1̄n) · · · eTM(Mn, M̄n)

]T
. (4.3)

If follows that
∂D(n)

∂n

T

fn(t,n,ω) = ωTR(t)T (B ⊗ I)e(n). (4.4)

where R(·) = R1(·) ⊕ · · · ⊕ RN(·) (see Notation),
which plays a role when studying the time derivative
of (4.1) along a solution of the system with the vector
field (3.4). Note that ek(n1,n2) is well defined for all
(n1,n2) ∈ (S2)2 if fk ∈ P0, and if fk ∈ P 0̄, note that
lim

n2→n1

ek(n1,n2) = lim
s→2−

f ′k(s)
√
s(2− s) lim

n2→n1

S(n1)n2

‖S(n1)n2‖

does not exist. Note that the total distance function (4.1)
depends on fk(·), for all k ∈ M, while (4.3) depends on
f ′k(·), for all k ∈ M. As such, a distance function may
or may not be defined when two unit vectors are dia-
metrically opposed, depending on whether f ∈ P∞ or
f ∈ P∞̄; similarly, an edge error may or may not be de-
fined when two unit vectors are diametrically opposed,

0 1 2

min = 0

↑ ∞

f ∈ P0
and f ∈ P0̄

f ∈ P 0̄
and f ∈ P∞̄

and f ∈ P0̄

f ∈ P∞
and f ∈ P0̄

f ∈ P0
and f ∈ P0

Fig. 4. Functions belonging to different classes as introduced
in Definition 4.2: (from top to bottom in legend) f(s) = s,
f(s) = π−2 arccos2(1 − s), f(s) = tan2 (0.5 arccos(1− s))
and f(s) = 0.25(

√
s(2− s)(s− 1) + arccos(1− s)).

depending on whether f ∈ P0 or f ∈ P 0̄. The domains
of (4.1) and of (4.3) depend on the classes fk(·) belongs
to, for all k ∈M, and we emphasize that Ωe

n ⊆ ΩD
n , since

fk ∈ P∞ ⇒ fk ∈ P 0̄ (see Fig. 3). These domains play a
role later on, since D(·) is used in constructing a Lya-
punov function, while e(·) is used in constructing the
control law. As such, the Lyapunov function can be well
defined, while the control law is not, while if the control
law is well defined, so is the Lyapunov function. Conse-
quently, it is important to guarantee that along trajec-
tories of the closed-loop system, the control law is well
defined. Additionally, notice that (4.2) provides some
insight on why we denote ek(·, ·) as edge error of edge k.
Indeed, if fk ∈ P̄,∀k ∈M, it follows that ek(kn, k̄n) = 0
implies that kn = ±k̄n, i.e., it implies that the neigh-
bors that form edge k are either synchronized or dia-
metrically opposed. Moreover, if fk ∈ P̄ ∀k ∈ M, the
distance between unit vectors is supremum when two
unit vectors are diametrically opposed, i.e., for each
k ∈M, (denote Ω = {(n1,n2) ∈ S2 ×S2 : nT1 n2 = −1})
sup(n1,n2)∈Ω fk(1 − nT1 n2) = lims→2− fk(s) =: dmax

k . For
convenience, denote

dmin := mink∈M dmax

k , (4.5)
which plays an important role in this and the following
sections.

Proposition 4.4 Consider the total edge error in (4.3)
and the total distance function in (4.1). Consider Ω′n :

R≥0 7→ 2ΩDn defined as Ω′n(D̄) = {n ∈ ΩD
n : D(n) ≤

D̄}, where Ω′n(D̄) is compact for all positive D̄. Then,
it follows that ∀D̄ < dmin ,maxn∈Ω′n(D̄) ‖e(n)‖ <∞, and
that there are no diametrically opposed neighbors, i.e.,
|{q ∈ M : ∀n ∈ Ω′n(D̄), qn

T
q̄n = −1}| = 0. If fk ∈

P0 for all k ∈ M, it follows that maxn∈Ωe
n
‖e(n)‖ =

maxn∈(S2)N ‖e(n)‖ <∞; moreover, given D̄ < pdmin for
some p ∈ M, it follows that there are at most p − 1
diametrically opposed neighbors, i.e., |{q ∈ M : ∀n ∈
Ω′n(D̄), qn

T
q̄n = −1}| ≤ p− 1.

A proof is found in [Pereira and Dimarogonas, 2016].

4.3 Solution to Problem 3.1

In this section, we present the controllers for the
torques of each agent. For each agent i ∈ N , we design
a controller that is a function of |Ni| + 1 measure-
ments: |Ni|measurements corresponding to the distance
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measurements between agent i and its |Ni| neighbors,
and 1 measurement corresponding to the body frame
angular velocity. More specifically, we assume that,
at each time instant t ≥ 0, each agent i measures
RT
i (t)nj(t) = RT

i (t)Rj(t)n̄j for each j ∈ Ni; physically,
this means that agent i knows n̄j (the constant unit
vector that it is required to synchronize with), and that
it can measure the projection of this unit vector on its
orientation frame; each agent i must also measure ωi(t),
which does not require an inertial reference frame. For
convenience denote Ni = {i1, · · · , i|Ni|}, and, given
n̄i ∈ S2, denote Ωni = {(ni1 , · · · ,ni|Ni|) ∈ (S2)|Ni| :

n̄Ti nil 6= −1,∀l ∈ {1, · · · , |Ni|} ∧ fκ(i,il)
∈ P 0̄} which

provides the domain where the control law for agent i
is well defined (recall that if fk ∈ P 0̄, for some k ∈ M,
then (4.2) is not defined when two unit vectors are di-
ametrically opposed). We then propose, for each agent
i ∈ N , the decentralized control law Tcl

i : (νi,ωi) =
((RT

i ni1 , · · · ,RT
i ni|Ni|

),ωi) ∈ Ωni×R3 7→ R3 defined as

Tcl
i (νi,ωi) = −σ(ωi)−

∑l=|Ni|
l=1

eκ(i,il)

(
n̄i,RT

i nil
)
,(4.6)

withσ : R3 7→ R3 such that ∃σ ∈ C1(R>0,R>0) : σ(x) =
σ(‖x‖) x

‖x‖ with σ(0) = 0. The timed control laws for
each agent i ∈ N are then Ti : R≥0 7→ R3 given by

Ti(t) = Tcl
i ((RT

i (t)nj1(t), · · · ,RT
i (t)nj|Ni|

(t)),ωi(t)). (4.7)

The proposed torque control law exhibits the following
properties. The controller function in (4.7) is decentral-
ized in the sense that it does not depend on the mea-
surement of the global state. Also, (4.7) can be imple-
mented without the knowledge of an inertial orientation
frame, since measuringRT

i (t)Ril
(t)n̄il , at every time in-

stant t ≥ 0 and for all l ∈ {1, · · · , |Ni|}, requires only
the measurement of the projection of n̄il in agent’s i
body orientation frame; while ωi(t) is also measured in
agent’s i body orientation frame. Finally, notice that
‖Ti(·)‖ ≤ σmax + |Ni|maxj∈Ni sup0<s<2 f

′
κ(i,j)(s) (σmax =

supx∈R3 ‖σ(x)‖ ≤ ∞). As such, the proposed control
law, for each agent i, can be implemented with bounded
actuation provided that σmax < ∞ and that fκ(i,j) ∈
P0 for all j ∈ Ni. Notice that

∑
k∈M′⊆M ‖ek(·, ·)‖ ≤∑

k∈M ‖ek(·, ·)‖ ≤
√
M‖e(·)‖, and, therefore, for any

Ri ∈ SO(3), and for all x ∈ Ωe
n × R3N ,

‖Tcl
i ((RT

i ni1 , · · · ,RT
i ni|Ni|

),ωi)‖ ≤ σ′max‖ωi‖+
√
M‖e(n)‖,(4.8)

which is made use of later in this section. By combin-
ing (4.6) for all i ∈ N , we obtain the complete control
law Tcl : (t,x) = (t, (n,ω)) ∈ R≥0× (Ωe

n×R3N) 7→ R3N ,
which is given by

Tcl(t,x) = −Σ(ω)−RT (t)(B ⊗ I)e(n), (4.9)
where R(·) = R1(·) ⊕ · · · ⊕ RN(·) (see Notation), and
Σ(ω) = [σT (ω1) · · · σT (ωN)]T . For the remainder of
this paper, we dedicate efforts in studying the equilibria
configurations induced by this control law (for different
types of graphs), their stability, and what is the effect
of the chosen distance functions. Notice that (4.9) is de-
fined onR≥0×Ωe

n×R3N . As such, when fk ∈ P0 ∀k ∈M,

Ωe
n = (S2)N , and the analysis is simpler; when, however,
∃k ∈M : fk ∈ P 0̄, then Ωe

n ⊂ (S2)N (where Ωe
n is open),

and it is necessary to guarantee that a trajectory x(·)
of ẋ(t) = fx(t,x(t),Tcl(t,x(t))) never approaches the
boundary of Ωe

n × R3N .

4.4 Constrained Torque

A natural constraint in a physical system is to require
the torque provided by agent i to be orthogonal to n̄i. In
satellites, thrusters that provide torque along n̄i might
be unavailable; also, controlling the space orthogonal to
n̄i can be left as an additional degree of freedom, in order
to accomplish some other control objectives. However,
the control laws proposed in (4.6) require full torque ac-
tuation, in particular, (4.6) requires each agent to pro-
vide torque on the plane orthogonal to n̄i. Indeed, since
nT1 ek(n1, ·) = 0, ∀n1 ∈ S2,∀k ∈ M (see (4.2)), it fol-
lows that, for all i ∈ N , n̄Ti Tcl

i (·,ωi) = n̄Ti σ(ωi) for all
ωi ∈ R3, which is not necessarily 0. In short, previously,
we provided control laws Tcl

i : Ωni ×R3 7→ R3 which re-
quire full torque by each agent i ∈ N , and in this section
we provide constrained control laws T̄cl

i : Ωni × R3 7→
{z ∈ R3 : zT n̄i = 0}, i.e., control laws which do not re-
quire torque along n̄i. Let us anticipate a future result
by announcing that the constrained control law can only
be used by agent i ∈ N when the unit vector to be syn-
chronized by agent i ∈ N , namely n̄i, is a principal axis
of that agent (i.e., when n̄i is an eigenvector of Ji). Con-
sider then T̄cl

i : (νi,ωi) = ((RT
i ni1 , · · · ,RT

i ni|Ni|
),ωi) ∈

Ωni × R3 7→ {z ∈ R3 : zT n̄i = 0} defined as (see Nota-
tion for definition of Π (·))
T̄cl

i (νi,ωi) = Π (n̄i)T
cl

i (νi,ωi)
(4.6)
= −σ(Π (n̄i)ωi)−

∑l=|Ni|

l=1
eκ(i,il)

(
n̄i,RT

i nil
)
.(4.10)

Additionally, consider a partition of N , i.e., L̄ ∪ L = N
with L̄ ∩ L = ∅; where L̄ is a subset (possibly empty) of
the agents whose unit vector to synchronize is an eigen-
vector of their moment of inertia, i.e., L̄ ⊆ {i ∈ N :
∃λi s.t. Jin̄i = λin̄i}. Then we propose the complete con-
trol law T̄cl : (t,x) ∈ R≥0 × (Ωe

n × R3N) 7→ R3N defined
as{

(ei ⊗ 13)
T T̄cl(t,x) = T̄cl

i ((RT
i (t)ni1 , · · · ,RT

i (t)ni|Ni|
),ωi) ∀i ∈ L̄,

(ei ⊗ 13)
T T̄cl(t,x) = Tcl

i ((RT
i (t)ni1 , · · · ,RT

i (t)ni|Ni|
),ωi) ∀i ∈ L,

(4.11)

i.e., for agents whose unit vector to synchronize is a prin-
cipal axis, either control law (4.6) or (4.10) is chosen,
and, for all other agents, control law (4.6) is chosen. As
such, agents whose unit vector to synchronize is a princi-
pal axis have an option between using full torque control
or constrained torque control. The disadvantage with
the control law in (4.10) is that, along a trajectory of the
closed-loop system, and for all i ∈ L̄, limt→∞ n̄Ti ωi(t) is
not guaranteed to exist and be 0; i.e., an agent that opts
for (4.10) can asymptotically spin, with non-zero angu-
lar velocity, around n̄i (nonetheless, we can guarantee
that supt≥0 ‖ωi(t)‖ < ∞ ⇒ supt≥0 |n̄Ti ωi(t)| < ∞, i.e.,
if an agent applies (4.10) it never spins infinitely fast
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around its principal axis n̄i).

4.5 Lyapunov Function

In addition to the total distance function of the net-
work (4.1), let us also define the total rotational kinetic
energy of the networkH : ω = (ω1, · · · ,ωN) ∈ (R3)N 7→
R≥0 as

H(ω) =
1

2

∑i=N

i=1
ωTi Jiωi, (4.12)

which satisfies ∂H(ω)
∂ω

T

fω(ω,T) =
∑i=N

i=1
ωTi Jifωi(ωi,Ti) =

ωTT, for all (ω,T) ∈ (R3N)2. Combining (4.1)
and (4.12), consider then the Lyapunov function
V : x = (n,ω) ∈ ΩD

n × R3N 7→ R≥0 defined as

V (x) = D(n) +H(ω), (4.13)
and the functionW : ω = (ω1, · · · ,ωN) ∈ (R3)N 7→ R≥0

defined as
W (ω) =

∑
i∈L

ωTi σ(ωi) +
∑
j∈L̄

ωTj Π (n̄j)σ(ωj). (4.14)

It follows that, along a trajectory x(·) of ẋ(t) =

fx(t,x(t),Tcl(t,x)), V̇ (x(t)) = Ḋ(n(t))+Ḣ(ω(t))
(4.4),(4.9)

=
−W (ω(t)) ≤ 0,∀t ≥ 0. Moreover, along that same
trajectory x(·), it follows that

|Ẇ (ω(t))| ≤
i=N∑
1=1

(σs + σ′max)
T ‖ωi(t)‖f∞ωi(x(t)), (4.15)

(σs = supx∈R3\{0}
‖σ(x)‖
‖x‖ <∞ and σ′max = supx∈R3 ‖∂σ(x)∂x ‖ <

∞), where, for every i ∈ N ,

‖fωi(ωi,Tcl
i (·))‖

(3.3)

≤ 1
λmin(Ji)

(
Tcl
i (·) + λmax(Ji) ‖ωi‖2

)
(4.8)

≤ 1
λmin(Ji)

(
σ′max‖ωi‖+

√
M‖e(n)‖+ λmax(Ji) ‖ωi‖2

)
=: f∞ωi(x).(4.16)

It also follows that, along that same trajectory, and for
every i ∈ N (we omit the time dependencies below)
ω̈i = −J−1

i (S (ω̇i) Jiωi + S (ωi) Jiω̇i +Dσ(ωi)ω̇i) +

J−1
i RT

i S (ni)
∑
j∈Ni

(f ′(·)I− f ′′(·)njnTi )S (nj) (Riωi −Rjωj).(4.17)

It follows from (4.15), (4.16) and (4.17) that if
supt≥0 ‖e(n(t))‖ < ∞ and supt≥0 ‖ωi(t)‖ < ∞, then
supt≥0 |Ẇ (ω(t))| < ∞ and supt≥0 ‖ω̈i(t)‖ < ∞;
this in turn implies that W (ω(·)) and ω̇i(·) are uni-
formly continuous, which plays a role in proving that
limt→∞W (ω(t)) = 0 and that limt→∞ ω̇i(t) = 0.

Proposition 4.5 Consider the vector field (3.4), the
control law (4.11), and a trajectory x(·) of ẋ(t) =
fx(t,x(t), T̄cl(t,x(t))). If x(0) ∈ Ω0

x = {x ∈ ΩD
n × R3N :

V (x) < dmin}, then limt→∞(B ⊗ I)e(n(t)) = 0,
limt→∞ ωi(t) = 0 for i ∈ L and limt→∞Π (n̄j)ωj(t) = 0
for j ∈ L̄. Moreover, supt≥0 |n̄Tj ωj(t)| <∞ for j ∈ L̄.

Proof For brevity, we say f : R≥0 7→ Rn is bounded,
if supt≥0 ‖f(t)‖ < ∞; we say f : R≥0 7→ Rn converges
to a constant, if ∃f∞ ∈ Rn : limt→∞ f(t) = f∞. Let us
provide a brief summary for the proof. First, we prove

that, along a trajectory x(·), ‖ω(·)‖ and ‖e(n(·))‖ are
bounded. This, in turn, guarantees uniform continuity of
V̇ (x(·)) and of ω̇(·). And finally, since both V (x(·)) and
ω(·) converge to a constant, we invoke Barbalat’s lemma
(see [Slotine and Li, 1991], Lemma 4.2) to conclude that
e(n(·)) converges to the null space of B ⊗ I.

Recall then the functions in (4.13) and (4.14).
Since V̇ (x(·)) ≤ −W (ω(·)) ≤ 0, it follows that
V (x(·)) ≤ V (x(0)) < dmin. Therefore D(n(·)) < dmin

and H(ω(·)) < dmin. From D(n(·)) < dmin, it follows,
with the help of Proposition 4.4, that e(n(·)) is bounded;
while from H(ω(·)) < dmin, it follows that ω(·) is also
bounded. From boundedness of e(n(·)) and ω(·), it fol-
lows that T̄cl(·,x(·)) is bounded (see (4.11) and (4.9));
that ‖ω̇i(·)‖ ≤ f∞ωi(x(·)) is bounded (see (4.16)); that
|V̈ (x(·))| = |Ẇ (ω(·))| is bounded (see (4.15)); and,
finally, that ω̈i(·) is bounded (see (4.17)). The pre-
vious conclusions imply that V̇ (x(·)) and that ω̇(·)
are both uniformly continuous. Since V (·) ≥ 0 and
V̇ (x(·)) ≤ −W (ω(·)) ≤ 0, it follows that V (x(·)) con-
verges to a constant; by Barbalat’s lemma, uniform con-
tinuity of V̇ (x(·)) then implies that V̇ (x(·)) = −W (ω(·))
converges to 0. As such, it follows from (4.14), that
ωi(·) converges to 0, for all i ∈ L, while Π (n̄j)ωj(·)
converges to 0, for all j ∈ L̄; also, notice that
lim
t→∞

Π (n̄j)ωj(t) = 0⇒ lim
t→∞

(ωj(t)− n̄j(n̄
T
j ωj(t))) = 0.(4.18)

Let us now study agents in L and L̄ separately. Also,
for convenience, and with some abuse of notation, de-
note Tcl

i (t) = (ei ⊗ 13)
T T̄cl(t,x(t)), for i ∈ L, and

T̄cl
j (t) = (ej ⊗ 13)

T T̄cl(t,x(t)), for j ∈ L̄. For i ∈ L (for
which (4.6) is the chosen control law), and again by Bar-
balat’s lemma, convergence of ωi(·) to 0 and uniform
continuity of ω̇i(·) imply that ω̇i(·) = fωi(ωi(·),Tcl

i (·))
converges to 0; since ωi(·) converges to 0, so does
Tcl
i (·,x(·)) (see 3.3). Now, for j ∈ L̄ (for which (4.10) is

the chosen control law), and once again by Barbalat’s
lemma, convergence of Π (n̄j)ωj(·) to 0 and uniform
continuity of d

dt (Π (n̄j)ω(t)) = Π (n̄j) ω̇(t) implies that
Π (n̄j) ω̇(·) converges to 0, and therefore
lim
t→∞

Π (n̄j) ω̇j(t) = 0⇒ lim
t→∞

(ω̇j(t)− n̄j(n̄
T
j ω̇j(t))) = 0,(4.19)

Now, recall (3.2) where Jjω̇j(t) = −S (ωj(t)) Jjωj(t) +
T̄cl
j (t), and, from (4.18) and (4.19), it follows that

lim
t→∞

(
Jjn̄j(n̄

T
j ω̇j(t)) + S (n̄j) Jjn̄j(n̄

T
i ωj(t))

2 − T̄cl
j (t)

)
= 0

Jj n̄j=λj n̄j⇒ lim
t→∞

(
λjn̄j(n̄

T
j ω̇j(t))− T̄cl

j (t)
)

= 0 (4.20)

If we take the inner product of (4.20) with n̄j, and since
T̄cl
j (·) ⊥ n̄j, it follows that limt→∞(n̄Tj ω̇i(t)) = 0. As

such, it follows from (4.20) that T̄cl
j (·) converges to 0

for all j ∈ L̄. Now to summarize, recall that, for all
i ∈ L, both ωi(·) and Tcl

i (·,x(·)) converge to 0, which
implies, from (4.6), that

∑l=|Ni|
l=1

eκ(i,il)

(
n̄i,Ri(·)Tnil(·)

)
converges to 0. On the other hand, for all j ∈ L̄, both
Π (n̄j)ωj(·) and T̄cl

j (·,x(·)) converge to zero, which im-
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plies, from (4.10), that
∑l=|Nj |

l=1
eκ(j,jl)

(
n̄j,Rj(·)Tnjl(·)

)
converges to 0. All together, it implies that (B⊗I)e(n(·))
converges to 0. Finally, supt≥0 |n̄Tj ωj(t)| <∞ since ω(·)
is bounded (H(ω(·)) < dmin). 2

Notice that dmin, in (4.5), is a design parameter, and,
therefore, the domain of attraction in Proposition 4.5
can be made larger by increasing this parameter. More
specifically, dmin increases the domain of attraction in
the state space related to ω, which is clearer in the next
corollary.

Corollary 4.1 Proposition 4.5 holds if r := H(ω(0))
dmin <

1 and if

n(0) ∈ C
(

1
2 arccos

(
1−min

k∈M
f−1
k

(
dmin 1−r

M

)))
, (4.21)

where dmin = mink∈M lims→2− fk(s). If fk ∈ P∞ for all
k ∈ M, then dmin = ∞ and (4.21) reduces to n(0) ∈
C(π2 ).

For proving the latter Corollary, it suffices to check that
the conditions of Proposition 4.5 hold [Pereira and Di-
marogonas, 2016]. Corollary 4.1 states that if the total
kinetic energy is small, and if all neighbors are initially
contained in a small cone, then synchronization is guar-
anteed. Moreover, if dmin = ∞ and if all neighbors are
initially contained in an open π

2 -cone, then synchroniza-
tion is also guaranteed.

Proposition 4.6 Consider the vector field (3.4), the
control law (4.11), and a trajectory x(·) of ẋ(t) =
fx(t,x(t), T̄cl(t,x(t))). If fk ∈ P0 for all k ∈ M, then
for all x(0) ∈ (S2)N × R3N , limt→∞(B ⊗ I)e(n(t)) = 0,
limt→∞ ωi(t) = 0 for i ∈ L and limt→∞Π (n̄j)ωj(t) = 0
for j ∈ L̄; additionally, if x(0) ∈ Ω0

x = {x ∈
(S2)N × R3N : ∃p ∈ M, V (x) < pdmin}, then no more
than p − 1 neighbors are ever diametrically opposed,
i.e., supt≥0 |{q ∈M : qn

T (t)q̄n(t) = −1}| ≤ p− 1.

Proof Notice that if fk ∈ P0 for all k ∈ M then
Ωe

n = ΩD
n = (S2)N , which is a compact set. Since e(·) is

continuous in Ωe
n, it follows that maxn∈Ωe

n
‖e(n)‖ < ∞,

and, therefore, ‖e(n(·))‖ is bounded regardless of the tra-
jectory x(·). To conclude that limt→∞(B⊗I)e(n(t)) = 0,
limt→∞ ωi(t) = 0 for i ∈ L and limt→∞Π (n̄j)ωj(t) = 0
for j ∈ L̄, it suffices to follow the same steps as in
the proof of Proposition 4.5. For the final statement
in the Proposition, consider x(0) ∈ Ω0

x = {x ∈ Ωx :
∃p ∈ M, V (x) < pdmin}. Since, along a trajectory x(·),
D(n(·)) ≤ V (x(·)) ≤ V (x(0)) < pdmin, it suffices to in-
voke Proposition 4.4, with D̄ = V (x(0)), and the Propo-
sition’s conclusion follows. �

Denote f clx (t,x) := fx(t,x, T̄cl(t,x)) as the closed-loop
vector field. Note then that Ωeq

x = {x ∈ (S2)N × R3N :
∀t ≥ 0, f clx (t,x) = 0} provides the set of all equilibrium
points, and moreover {x ∈ (S2)N ×R3N : (B ⊗ I)e(n) =
0,ωi = 0 for i ∈ L,Π (n̄j)ωj = 0 for j ∈ L̄} ⊆ Ωeq

x . As
such, Propositions 4.5 and 4.6 imply that, under the re-
spective Propositions’ conditions, a trajectory x(·) con-
verges to the set of equilibrium points. Note also that

[(1N ⊗ n?)T ·]T ∈ Ωeq
x for all n? ∈ S2, i.e., all configura-

tions where all agents are synchronized are equilibrium
configurations (agents are synchronized and not moving,
or agents are synchronized and spinning around their
principal axis). Finally, notice that since e(Sn) = e(n)
for all S ∈ {IN ⊗R ∈ R3N×3N : R ∈ SO(3)} and for all
n ∈ Ωe

n, it follows that Ωeq
x has geometric isomerism [Li

and Spong, 2014]; i.e. [nT ·]T ∈ Ωeq
x ⇒ [SnT ·]T ∈ Ωeq

x ,
which means that for every equilibrium configuration,
there exits infinite other equilibria configurations which
are the same up to a rotation. In Section 5, for tree
graphs, we show that Ωeq

x is composed of configurations
where agents are either synchronized or diametrically
opposed; while in Section 6, for graphs as those discussed
in Proposition 4.1, we show that Ωeq

x is composed of con-
figurations where agents belong to a common plane. In
light of these comments, it follows that Corollary 4.1
provides conditions for when a trajectory is guaranteed
to converge to a configuration where all agents are syn-
chronized, and not any other configuration in Ωeq

x ; in
particular, if the initial kinetic energy is too large with
respect to dmin, the agents may escape to other equilibria
configurations other than synchronized ones.

Remark 4.1 In our framework, where in general Ji 6=
jiI for some i ∈ N and ji > 0, invariance of the closed-
loop dynamics to rotations does not hold due to the term
S (ωi) Jiωi in (3.3) [Pereira and Dimarogonas, 2016].

5 Tree Graphs

Let us focus first on static tree graphs, for whichN (B⊗
I) = {0} [Dimarogonas and Johansson, 2009]. In this sec-
tion, we quantify the domain of attraction for synchro-
nization to be asymptotically reached, i.e., we construct
a domain Ω0

x such that if x(0) ∈ Ω0
x, then all trajectories

of ẋ(t) = fx(t,x(t), T̄cl(t,x(t))) (see (3.4) and (4.11))
asymptotically converge to a configuration where all unit
vectors are synchronized. Later, we construct another set
Ω0

x, for graphs other than tree graphs, which is smaller
in size, and we quantify how much smaller it is.

Theorem 5.1 Consider a static tree network graph, the
vector field (3.4), the control law (4.11), and a trajectory
x(·) of ẋ(t) = fx(t,x(t), T̄cl(t,x(t))). If x(0) ∈ Ω0

x =
{x ∈ ΩD

n × R3N : V (x) < dmin} then synchronization is
asymptotically reached, i.e., limt→∞(ni(t)− nj(t)) = 0,
for all (i, j) ∈ N 2. If fk ∈ P∞ for all k ∈ M, then
dmin =∞ and synchronization is asymptotically reached
for almost all initial conditions in (S2)N × R3N .

Proof Under the Theorem’s conditions, we can invoke
Propositions 4.5 and 4.4 to conclude, respectively, that
limt→∞(B ⊗ I)e(n(t)) = 0 and that two neighbors are
never arbitrarily close to a configuration where they are
diametrically opposed. Since N (B⊗ I) = {0}, it follows
that limt→∞(B ⊗ I)e(n(t)) = 0 ⇒ limt→∞ e(n(t)) = 0.
As such, and since two neighbors are never arbitrar-
ily close to a configuration where they are diametri-
cally opposed, it follows that all unit vectors converge
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to one another. For the second part of the Theorem,
notice that, if dmin = ∞, then Ω0

x = ΩD
n × R3N . Since

ΩD
n ×R3N\{(S2)N×R3N} = {x ∈ (S2)N×R3N : kn

T
k̄n 6=

−1,∀fk ∈ P∞} is a set of zero measure in the space of all
initial conditions, i.e. (S2)N × R3N , synchronization for
almost all initial conditions is guaranteed for dmin =∞.
�

Notice that in Theorem 5.1, increasing dmin enlarges the
region of stability, and it yields the almost global sta-
bility result for dmin = ∞. However, a similar result for
other graphs, other than tree graphs, is not presented in
this manuscript.

Example 5.1 Consider the distance functions d(n1,n2) =
f(1 − nT1n2) where f(s) = a (π−1 arccos(1− s))α, with
a > 0 and α ≥ 2. For these, dmax = a, f ∈ P∞̄ and
f ∈ P 0̄; also f ∈ P0. Suppose fk(s) = f(s) for all k ∈M,
and for some a and α. Invoking Corollary 4.1, it follows
that if r := H(ω(0))

a < 1 and n(0) ∈ C
(
π
2

(
1−r
M

) 1
α

)
then

Theorem’s 5.1 conclusions follow. Notice that by in-
creasing a convergence for arbitrary initial values of ro-
tational kinetic energy can be guaranteed; on the other
hand, by increasing α we can increase the size of the
cone where the agents need to initially be contained in
(up to C

(
π
2

)
). Nevertheless, the domain of attraction in

Theorem 5.1 is larger, in the sense that there are initial
conditions which do not satisfy the previous conditions,
but for which synchronization is still guaranteed.

Theorem 5.2 Consider a static tree network graph, the
vector field (3.4), the control law (4.11), and a trajec-
tory x(·) of ẋ(t) = fx(t,x(t), T̄cl(t,x(t))). If fk ∈ P0

for all k ∈ M, and x(0) ∈ Ω0
x = {x ∈ ΩD

n × R3N :
∃p ∈ M, V (x) < pdmin} then the group of unit vectors
converges to a configuration where no more than p − 1
neighboring unit vectors are diametrically opposed.

Proof Under the Theorem’s conditions, Proposi-
tion 4.6 can be invoked. Additionally, since N (B ⊗ I) =
{0} in a tree graph, it follows that limt→∞(B ⊗
I)e(n(t)) = 0⇒ limt→∞ e(n(t)) = 0, which implies that
all neighbors are either synchronized or diametrically
opposed. Since, by Proposition 4.6, there are at most
p − 1 diametrically opposed neighboring unit vectors,
it follows that the group of unit vectors converges to
a configuration where no more than p − 1 neighboring
unit vectors are diametrically opposed. �

Under Theorem’s 5.2 conditions, the group of agents can
converge to configurations where one or more pairs of
neighbors are diametrically opposed. However, it does
not provide any insight on whether these equilibrium
configurations are stable or unstable; neither on whether
the limits limt→∞ ni(t) (for all i ∈ N ) exist. See [Pereira
and Dimarogonas, 2016] for some remarks on these top-
ics.

6 Non-Tree Graphs

In this section, we study the equilibria configurations
induced by some more general, yet specific, network
graphs. Also, we study the local stability properties of
the synchronized configuration for arbitrary graphs. We
first give the following definition.

Definition 6.1 Given x1, · · · ,xN ∈ R3, we say that
{xi}i∈{1,··· ,n} belong to a common plane if there exists
a unit vector ν ∈ S2 such that Π (ν)xi = xi for all
i ∈ {1, · · · , n}. We say that {xi}i∈{1,··· ,n} belong to a
common unique plane if there exists a single pair of unit
vectors (+ν,−ν), with ν ∈ S2, such that Π (ν)xi = xi
for all i ∈ {1, · · · , n}
Let us first discuss a property that is exploited later in

this section.

Proposition 6.1 Consider n1,n2 ∈ S2. If S (n1)n2 6=
0, then n1 and n2 belong a common unique plane.

Proof Consider ν = S(n1)n2

‖S(n1)n2‖ ∈ S
2, which is well de-

fined since S (n1)n2 6= 0. It follows that Π (ν)n1 = n1

and that Π (ν)n2 = n2, which implies that n1 and n2

belong a common plane. Moreover, n1 and n2 belong a
common unique plane, since n1 and n2 span a two di-
mensional space. �

Proposition 6.2 Consider n1, . . . , nn ∈ S2, with
|nTi ni+1| 6= 1 for all i = {1, · · · , n− 1}. If ± S(n1)n2

‖S(n1)n2‖ =

· · · = ± S(nn−1)nn
‖S(nn−1)nn‖ , then all unit vectors belong to a

common unique plane.

Proof Consider n = 3. Since |nT1 n2| 6= 1 and |nT2 n3| 6=
1, it follows that ‖S (n1)n2‖ 6= 0 and ‖S (n2)n3‖ 6= 0.
Additionally, by assumption, ± S(n1)n2

‖S(n1)n2‖ = ± S(n2)n3

‖S(n2)n3‖ ,

is satisfied. Consider then ν = S(n1)n2

‖S(n1)n2‖ ∈ S
2. It follows

immediately that Π (ν)n1 = n1 and that Π (ν)n2 =
n2. It also follows that Π (ν)n3 = (I− ννT )n3 = n3 −
ν(νTn3) = n3, where νTn3 = 0 follows from taking
the inner product of ± S(n1)n2

‖S(n1)n2‖ = ± S(n2)n3

‖S(n2)n3‖ with n3.
Altogether, it follows that n1, n2 and n3 belong to a
common unique plane (see Proposition 6.1). For n > 3,
it suffices to apply the previous argument n−2 times. �

Proposition 6.3 Consider n1, . . . , nn ∈ S2 and re-
call (4.2). If ±e1(n1,n2) = · · · = ±en−1(nn−1,nn) then
all unit vectors belong to a common plane, which is
unique if ±e1(n1,n2) = · · · = ±en−1(nn−1,nn) 6= 0.

Proof If ±e1(n1,n2) = · · · = ±en−1(nn−1,nn) 6= 0, it
suffices to invoke Proposition 6.2. If ±e1(n1,n2) = · · · =
±en−1(nn−1,nn) = 0, it follows that ±n1 = · · · = ±nn,
and thus all unit vectors belong to a common plane. �

Theorem 6.1 Consider the vector field (3.4), the con-
trol law (4.11) with fk ∈ P0 for all k ∈M, and a trajec-
tory x(·) of ẋ(t) = fx(t,x(t), T̄cl(t,x(t))). If the network
graph contains only independent cycles and/or cycles
that share only one edge, then all unit vectors belonging
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Fig. 5. Two equilibrium configurations for group with net-
work graph shown in Fig. 5(c) with two cycles that share
only one edge; the equilibria in Fig 5(a) and 5(b) are found
with the distance function f(s) = s for all edges.

to each independent cycle converge to a common plane,
and all unit vectors belonging to each pair of cycles that
share only one edge also converge to a common plane.

Proof (Sketch of Proof) Under the conditions of the
Theorem, we can invoke Proposition 4.6, from which it
follows that limt→∞(B ⊗ I)e(n(t)) = 0, and therefore
that e(n(·)) converges to the null space of B ⊗ I. Now,
consider a graph with only independent cycles and recall
Proposition 4.1 (with n2 = 0). Without loss of gener-
ality, consider that there is only one independent cycle
and that the first n ≥ 3 edges form that cycle. From
Proposition 4.1, it follows that e(n) ∈ N (B ⊗ I) ⇒
±e1(1n, 1̄n) = · · · = ±en(nn, n̄n). In turn, from Propo-
sition 6.3, it follows that all unit vectors that form the
cycle belong to a common plane when (B ⊗ I)e(n) = 0.
�

The complete proof of Theorem 6.1 is found in [Pereira
and Dimarogonas, 2016] and relies on asserting, with the
help of Proposition 4.1, that the only way all edges be-
long to the null-space of B⊗ I is by belonging to a com-
mon plane. Figure 5 exemplifies the statement in Theo-
rem 6.1, with a network of six agents, with the network
graph in Fig. 5(c), and where the distance function is the
same for all edges (f1(s) = · · · = f7(s) = s). In this sce-
nario, there are two cycles that share only one edge, one
cycle composed by the unit vectors {n1,n2,n3,n4,n5}, a
second cycle composed by the unit vectors {n1,n5,n6},
and where the shared edge is formed by {n1,n5}. There
are at least two equilibria configurations (apart from
configurations where ni = ±nj for some i and j), which
are given in Fig. 5(a) and Fig. 5(b), where in both cases
all unit vectors belong to a common plane.

Proposition 6.1 focus on equilibria for some general,
yet specific, network graphs. However, for arbitrary
graphs, we can find equilibria configurations where the
unit vectors do not necessarily belong to a common
plane [Pereira and Dimarogonas, 2016].

We now present a proposition, which will be useful in
guaranteeing local asymptotic stability of incomplete at-
titude synchronization for arbitrary graphs.

Proposition 6.4 Consider n = (n1, · · · ,nN) ∈ C̄(α),
for some α ∈ [0, π2 ), and consider also i) a connected
network graph; ii) and that e(n) ∈ N (B ⊗ I), with e(·)
as in (4.3). This takes place iff ∃ν ∈ S2 : n = (1N ⊗ ν).

Proof For the sufficiency statement, it follows that,
if ∃ν ∈ S2 : n = (1N ⊗ ν), then all unit vectors are
contained in a π

2 -cone, i.e., n ∈ C(
π
2 ); and, moreover,

e(1N ⊗ν) = 0 ∈ N (B⊗ I). For the necessity statement,
the proof is as follows. For a tree graph, (B ⊗ I)e(n) =
0 ⇔ e(n) = 0 follows. This implies that ni = ±nj for
all (i, j) ∈ E , but since n ∈ C(π2 ), it follows that ni = nj
for all (i, j) ∈ E . In a connected graph, this implies that
ni = nj for all (i, j) ∈ N ×N , and therefore ∃ν ∈ S2 :
n = (1N ⊗ ν). For an arbitrary graph, the null space of
(B ⊗ I) may be more than {0}, i.e., (B ⊗ I)e(·) = 0 6⇒
e(·) = 0. We anticipate the final result by stating that
if n ∈ C(π2 ), then (B⊗ I)e(n) = 0⇒ e(n) = 0, in which
case we conclude again that ∃ν ∈ S2 : n = (1N ⊗ ν).
Consider then an n = (n1, · · · ,nN) ∈ (S2)N , such that
(B ⊗ I)e(n) = 0. This means that, for every i ∈ N (Bi:

stands for the ith row of B),

0 = (Bi: ⊗ I)e(n)
(4.2)
= S (ni)

∑
j∈Ni

f ′κ(i,j)(1− nTi nj)nj.(6.1)

Since n ∈ C̄(α), it follows that there exists a unit vector
µ ∈ S2, such that µTni ≥ cos(α) > 0 for all i ∈ N .
Taking the inner product of (6.1) with S (ni)µ, it follows
that µTΠ (ni)

∑
j∈Ni

f ′κ(i,j)(1− nTi nj)nj = 0, which can
be expanded into∑

j∈Ni
f ′κ(i,j)(1− nTi nj) (µTnj − (µTni)n

T

i nj) = 0.(6.2)

Now, consider the set T = {i ∈ N : i = arg maxi∈N (1−
µTni)}, and choose k ∈ T (in the end, we show that, in
fact, T = N ). Notice that 0 < cos(α) ≤ µTnk ≤ µTnj
for all k ∈ T and all j ∈ N . As such, it follows from (6.2)
with i = k that

0 ≤ cos(α)
∑
j∈Nk f

′
κ(i,j)(1− nTi nj) (1− nTknj) ≤

≤
∑
j∈Nk

f ′κ(i,j)(1− nTi nj) (µTnj − (µTnk)n
T
knj) = 0.(6.3)

Notice that the lower bound (on the left side of (6.3))
is non-negative and zero if and only if all neigh-
bors of agent k are synchronized with itself (note
that lims→2− f

′
κ(i,j)(s) may be 0, but since n ∈ C̄(α),

f ′κ(i,j)(s)|s=1−nT
i
nj can only vanish if s → 0+). As such,

it follows from (6.3) that all neighbors of agent k are
contained in T , i.e., Nk ⊂ T . As such, the same proce-
dure as before can be followed for the neighbors of agent
k, to conclude that the neighbors of the neighbors of
agent k are all synchronized. In a connected graph, by
applying the previous reasoning at most N − 1 times,
it follows that all unit vectors are synchronized, or,
equivalently, that ∃ν ∈ S2 : n = (1N ⊗ ν). �

Proposition 6.4 has the following interpretation. Re-

10



call that {x ∈ (S2)N × R3N : (B ⊗ I)e(n) = 0,ωi =
0 for i ∈ L,Π (n̄j)ωj = 0 for j ∈ L̄} ⊆ Ωeq

x , where Ωeq
x

is the set of equilibrium points. For example, we have
seen that, for specific graphs, all equilibrium configura-
tions are such that all unit vectors belong to a common
plane (see Theorem 6.1), as illustrated in Fig. 5. How-
ever, if we can guarantee that along a trajectory x(·)
of ẋ(t) = fx(t,x(t), T̄cl(t,x(t))), ∃α ∈ [0, π2 ) : n(t) ∈
C̄(α),∀t ≥ 0, i.e., if we can guarantee that all unit vec-
tors remain in an closed α-cone smaller than an open π

2 -
cone, thenwe can invoke Proposition 6.4 to conclude that
limt→∞(B ⊗ I)e(n(t)) = 0 ⇒ limt→∞(ni(t) − nj(t)) =
0∀i, j ∈ N ; i.e., that convergence of e(n(·)) to the null
space of B ⊗ I implies synchronization of the agents.

This motivates us to introduce a distance d? > 0, which
is useful in guaranteeing that, along a trajectory x(·),
∃α ∈ [0, π2 ) : n(t) ∈ C̄(α),∀t ≥ 0. Consider then

d? = min
k∈M

fk

(
1− cos

(
π
3

1
N−1

))
< dmin, (6.4)

which satisfies f−1
k (d?) ≤ 1−cos

(
π
3

1
N−1

)
for all k ∈M.

Notice that d? < dmin, since dmin = mink∈M lims→2− fk(s),
since 1 − cos(π3

1
N−1 ) < 2 for all N ≥ 2, and since all

fk(·) are increasing functions in (0, 2). As shown next,
if D(n(0)) < d? (and H(ω(0) = 0), then the network of
unit vectors is forever contained in a closed α-cone, for
some α ∈ [0, π2 ).

Theorem 6.2 Consider an arbitrary connected net-
work graph, the vector field (3.4), the control law (4.11),
and a trajectory x(·) of ẋ(t) = fx(t,x(t), T̄cl(t,x(t)))
If x(0) ∈ Ω0

x = {x ∈ ΩD
n × R3N : V (x) < d?}

then synchronization is asymptotically reached, i.e.,
limt→∞(ni(t) − nj(t)) = 0, for all i, j ∈ N . Moreover,
all implications of Proposition 4.5 also follow.

Proof Since d? < dmin, we can invoke Proposi-
tion 4.5, and infer that limt→∞(B ⊗ I)e(n(t)) = 0
(as well as all other implications stated in the Propo-
sition). Since V̇ (x(·)) ≤ 0, it follows that fk(1 −
kn

T (·)k̄n(·)) ≤ D(n(·)) ≤ V (x(·)) ≤ V (x(0)) < d?, for
all k ∈ M. In turn, this implies that θ(kn(·), k̄n(·)) ≤
arccos(1 − f−1

k (d?)) < π
3

1
N−1 , for all k ∈ M. Since

the angular displacement between any two unit
vectors ni and nj in a connected graph satisfies
θ(ni(·),nj(·)) ≤ (N − 1) maxk∈M θ(kn(·), k̄n(·)), it fol-
lows that supt≥0 θ(ni(t),nj(t)) < π

3 for all i, j ∈ N .
As such, it follows from Proposition 4.3 that n(·) ∈
C̄( 3

2 supt≥0 θ(ni(t),nj(t))), where
3
2 supt≥0 θ(ni(t),nj(t)) <

π
2 . Finally, we invoke Proposition 6.4, which implies that
limt→∞(B ⊗ I)e(n(t)) = 0⇒ limt→∞(ni(t)− nj(t)) = 0
for all i, j ∈ N . �

Let us provide a corollary to Theorem 6.2, with an
easier to visualize region of attraction.

Corollary 6.1 Theorem 6.2 holds if r := H(ω(0))
dmin < 1

and ifn(0) ∈ C
(

1
2 arccos

(
1−min

k∈M
f−1
k

(
d?

M (1− r)
)))

,

with d? as in (6.4).

For proving Corollary 6.1 it suffices to check that if its
conditions are satisfied, then V (x(0)) < d?.

Remark 6.1 Comparing Theorems 5.1 and 6.2, it fol-
lows that the region of attraction in Theorem 5.1 is larger
than that in Theorem 6.2. Loosely speaking, the region
of attraction in Theorem 5.1 is dmin

d? > 1 times larger
than the region of attraction in Theorem 6.2. This dif-
ference comes from the network graph topology, and in
fact, a tree network graph provides stronger results.

Theorems 5.1 and 6.2 provide asymptotic results, such
as limt→∞ e(n(t)) = 0. [Pereira and Dimarogonas, 2016]
provides some insight on exponential convergence to 0.

7 Simulations

We now present simulations that illustrate some of
the results presented previously. For the simulations, we
have a group of ten agents, whose network graph is that
presented in Fig. 6(e). The moments of inertia were gen-
erated by adding a random symmetric matrix (with en-
tries in [−1, 1]) to the identity matrix. For the initial
conditions, we have chosen ω(0) = 0 and we have ran-
domly generated one set of 10 rotation matrices. For the
axes to be synchronized, we have that n̄i is the principal
axis of Ji, with largest eigenvalue, for i = {1, 2, 3, 4, 5},
and that n̄i = [1 0 0]T for i = {6, 7, 8, 9, 10}. Therefore,
we apply the control law (4.11), with L̄ = {1, 2, 3, 4, 5}
and L = {6, 7, 8, 9, 10}. For the edge 1, we have chosen
f1(s) = 10 tan2 (0.5 arccos(1− s)). For the other edges,
we have chosen fk(s) = 5s, for k =M\{1}. Notice that
we have chosen a distance function (for edge 1) that
grows unbounded when two unit vectors are diametri-
cally opposed. As such, it follows that agents 1 and 6
will never be diametrically opposed, under the condi-
tion that they are not initially diametrically opposed.
We have also chosen σ(x) = k σxx√

σ2
x+xTx

with k = 10 and

σx = 1. For this choice, we find that σmax = kσx = 10.
As such, for all agents, except 1 and 6, an upper bound
on the norm of their torque is given by σmax + 2 · 5 = 20
(the factor 2 relates to the fact that all agents, except
1 and 6, have two neighbors, and the factor 5 comes
from fk(s) = 5s ⇒ f ′k(s) = 5). For agents 1 and 6,
no upper bound can be found (more precisely, a bound
can be found, but it depends on the initial conditions).
Given these choices, it follows from Corollary 6.1 that if
n(0) ∈ C(≈ 1◦) then synchronization is guaranteed. We
emphasize, nonetheless, that Corollary 6.1 provides con-
servative conditions for synchronization to be achieved,
and the domain of attraction is in fact larger. We also
emphasize that, for tree graphs, the domain of attrac-
tion is considerably larger: for example, if we removed
the edges between agents 1 and 2, and between agents 6
and 7, we would obtain a tree graph, and Corollary 4.1
would read as n(0) ∈ C(≈ 18◦). Finally, we emphasize
that we can increase the size of the cones in Corollar-
ies 4.1 and 6.1, by choosing different distance functions,
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as exemplified in Example 5.1.

Figure 6 is composed of two simulations: one simulation
where the control law is that in (4.11) and another where
the control law in (4.11) is corrupted by noise (namely,
for each agent i ∈ N , Ti(t) = T̄cl

i (t,x(t))+0.1λi[0 0 1]T ,
where λi corresponds to the largest eigenvalue of Ji). The
trajectories of the unit vectors for the described condi-
tions are presented in Figs. 6(a)–6(b) (Ri(0)n̄i marked
with a circle and Ri(30)n̄i marked with a cross, for
all i ∈ N ). Notice that despite not satisfying condi-
tions of Theorem 6.2 (the unit vectors are not always in
a π

2 cone), incomplete attitude synchronization is still
achieved. This can be verified in Figs. 6(c)-6(d), which
present the angular error between neighboring agents.
In Figs. 6(a) and 6(b), the control laws are different be-
tween agents 1–5 and 6–10. The former perform synchro-
nization of principal axes, by applying the constrained
control law (4.10); while the later perform synchroniza-
tion of their first axes, i.e., n̄i = [1 0 0]T , by applying
the control law (4.6). In Fig. 6(d), for which the control
laws were corrupted by noise, perfect synchronization is
not asymptotically achieved. Instead, the unit vectors
converge to a configuration where they remain close to
each other (error of ≈ 5◦ between neighbors). As such,
these simulations suggest that the chosen control laws
provide a certain level of robustness against constant
disturbances. Further simulation examples are found in
found in [Pereira and Dimarogonas, 2016].

8 Conclusions

In this paper, we proposed a distributed control strat-
egy that guarantees attitude synchronization of unit vec-
tors, representing a specific body direction of a rigid
body. The proposed torque control laws depend on dis-
tance functions in S2, and we provide conditions on these
distance functions that guarantee that i) a synchronized
network is locally asymptotically stable in an arbitrary
connected undirected network graph; ii) a synchronized
network is asymptotically achieved for almost all ini-
tial conditions in a tree network graph. Also,the pro-
posed control laws can be implemented by each individ-
ual rigid body in the absence of a global common orien-
tation frame, i.e., by using only local information. Addi-
tionally, if the direction to be synchronized is a principal
axis of the rigid body, we proposed a control law that
only requires torque in the plane orthogonal to the prin-
cipal axis. We also studied the equilibria configurations
that come with certain types of network graphs.
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