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a b s t r a c t

In this paper, we study the targeted agreement problem for a group of Lagrangian systems. Each system
observes a convex set as its local target and the objective of the group is to reach a generalized coordinate
agreement towards these target sets. Typically, the generalized coordinate represents position or angle.
We first consider the case when the communication graphs are fixed. A control law is proposed based on
each system’s own target sensing and information exchangewith neighbors.With necessary connectivity,
the generalized coordinates of multiple Lagrangian systems are shown to achieve agreement in the
intersection of all the local target sets while generalized coordinate derivatives are driven to zero.We also
discuss the case when the intersection of the local target sets is empty. Exact targeted agreement cannot
be achieved in this case. Instead, we show that approximate targeted agreement can be guaranteed if the
control gains are properly chosen. In addition, when communication graphs are allowed to be switching,
we propose a model-dependent control algorithm and show that global targeted agreement is achieved
when joint connectivity is guaranteed and the intersection of local target sets is nonempty. Simulations
are given to validate the theoretical results.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Distributed control ofmulti-agent systemshas been extensively
studied during the last decade. The key idea of distributed control
is to realize a collective task for the overall system by using only
neighboring information exchange (Jadbabaie, Lin, &Morse, 2003;
Olfati-Saber, Fax, & Murray, 2007). Such systems rely on commu-
nication and thus raises a natural question on the influence of
communication link failures. Therefore, the analysis of distributed
algorithms executed over switching communication graphs has
been investigated, for both continuous-time (Olfati-Saber et al.,
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2007) and discrete-time models (Blondel, Hendrickx, Olshevsky,
& Tsitsiklis, 2005). The extension to the case of nonlinear multi-
agent dynamics was studied in Lin, Francis, and Maggiore (2007),
Tang, Gao, Zou, and Kurths (2013) and Yang, Meng, Shi, Hong,
and Johansson (2016). The motivation of such studies is the fact
that inmany practical problems the agent dynamics are inherently
nonlinear, e.g., Vicsek’s model and Kuramoto’s model.

As an important special class of nonlinear systems, distributed
control of multiple Lagrangian systems has drawn a great deal of
attention recently. Compared with for instance single integrator
dynamics, a Lagrangian model can be used to accurately describe
mechanical systems, such as mobile robots, autonomous vehicles,
robotic manipulators, and rigid bodies. Therefore, the study on
the distributed control of multiple Lagrangian systems is more
applicable to applications including spacecraft formation flying
and relative attitude keeping and control of multiple unmanned
aerial vehicles, just to name a few. In particular, the author of Ren
(2009) proposed distributed model-independent consensus algo-
rithms for multiple Lagrangian systems in a leaderless setting.
The coordination problem of multiple mechanical systems with
safety guarantees was studied in Chopra, Stipanovi, and Spong
(2008). The control laws were proposed to achieve both velocity
synchronization and collision avoidance. The case of time-varying
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leader was studied in Chung and Slotine (2009), where the non-
linear contraction analysis was introduced to obtain globally
exponential convergence results. The connectivity maintenance
problem was studied for multiple nonholonomic robots in Di-
marogonas and Kyriakopoulos (2008) and finite-time cooperative
tracking algorithms were presented in Khoo, Xie, and Man (2009)
over graphs that are quasi-strongly connected. Distributed con-
tainment control was proposed in Mei, Ren, and Ma (2012) where
a slidingmode based strategywas introduced to estimate the lead-
ers’ generalized coordinate derivative information. The authors
of Meng, Dimarogonas, and Johansson (2014) considered a leader–
follower coordinated tracking problem for multiple Lagrangian
systems. A chattering-free algorithm with adaptive coupling gains
was developed such that the tracking errors between the followers
and the leader are driven to zero. The influence of communication
delayswas discussed in Abdessameud, Polushin, and Tayebi (2014)
and Nuno, Ortega, Basanez, and Hill (2011). Sufficient conditions
for reaching synchronization of multiple Lagrangian systems were
established for the case of fixed and unknown delays in Nuno et
al. (2011), and for the case of discontinuous time-varying delays
in Abdessameud et al. (2014). Region-based shape control was
studied in Cheah, How, and Slotine (2009) andHaghighi and Cheah
(2012), where a group of robots modeled by Lagrangian dynamics
are driven into a desired regionwhile guaranteeing collision avoid-
ance. A similar problem was studied in Yan, Chen, and Sun (2012)
where a multi-level architecture was proposed so that the robots
not only converge into the desired region, but also form a desired
shape.

In this paper, we study a targeted agreement problem for a
group of cooperative Lagrangian systems. The dynamics of each
agent ismodeled by a Lagrangian equation and each agent observes
a convex set as its local target. The objective is to ensure that
the generalized coordinate derivatives of all the agents converge
to zero and the generalized coordinates of all the agents reach
an agreement towards these target sets. Typically, generalized
coordinates represent positions, angles, and so on and generalized
coordinate derivatives represent velocities, angular velocities and
so on. The applications of the targeted agreement problem of La-
grangian systems include region-based motion control of multiple
mobile robots (Cheah et al., 2009; Haghighi & Cheah, 2012; Yan et
al., 2012) and cooperative target grasping for multiple robotic ma-
nipulators (Erhart & Hirche, 2013). The solution of this problem is
leveraging a projected agreement algorithm for the distributed op-
timization problemof single integrator networks (Nedic, Ozdaglar,
& Parrilo, 2010; Shi, Johansson, & Hong, 2013). The contributions
of this paper are three-fold. First, we propose a controller ensuring
global targeted agreement over fixed graphs. By applying LaSalle’s
Invariance Principle, we show that all systems not only reach an
agreement, but also converge to the intersection of the local target
sets. Second,we consider the situationwhen the intersection of the
local target sets is empty. We show that instead of exact targeted
agreement, approximate targeted agreement can be achieved in
the sense that agreement and the particular target set tracking are
achieved up to an arbitrary accuracy if control gains are properly
chosen. Third, the case of switching graphs is studied and amodel-
dependent control algorithm is proposed to guarantee global tar-
geted agreement over the network with joint connectivity. The
major efforts of this part are to show that the states of the closed-
loop system remain bounded and to properly use the converging-
input converging-state property of consensus algorithms over
networks with directed joint connectivity. A brief version of this
work has been published in Meng, Yang, Shi, Dimarogonas, Hong,
and Johansson (2014).

2. Preliminaries

2.1. Convex analysis

Denote ∥ · ∥ the Euclidean norm. For any nonempty set S ⊆ Rm,
we use d(x, S) = infy∈S∥x − y∥ to describe the distance between
x ∈ Rm andS. Obviously, d(x, S) = 0, for x ∈ S. A setS ⊂ Rm is said
to be convex if (1−ζ )x+ζy ∈ S when x ∈ S , y ∈ S , and 0 ≤ ζ ≤ 1.
Let S be a convex set. The convex projection of any x ∈ Rm onto S
is denoted by PS(x) ∈ S satisfying ∥x − PS(x)∥ = d(x, S). We also
know that d2(x, S) is continuously differentiable for all x ∈ Rm, and
its gradient can be explicitly obtained by Aubin (1991):

∇d2(x, S) = 2(x − PS(x)), (1)

where ∇ denotes the gradient. Also, it is easy to see that

(PS(x) − x)T(PS(x) − y) ≤ 0, ∀y ∈ S. (2)

In addition,

∥PS(x) − PS(y)∥ ≤ ∥x − y∥ ∀x, y ∈ Rm. (3)

2.2. Graph theory

An undirected graph G consists of a pair (V, E), where V =

{1, 2, . . . , n} is a finite, nonempty set of nodes and E ⊆ V × V is a
set of unordered pairs of nodes. An arc {j, i} ∈ E denotes that node
i, j can obtain each other’s information mutually. All neighbors of
node i are denoted Ni := {j : {j, i} ∈ E}. A path between i1 and
ik is a sequence of arcs of the form {i1, i2}, {i2, i3}, . . . , {ik−1, ik}. An
undirected graph G is connected if each node has an undirected
path to any other node. The adjacency matrix A = [aij] ∈ Rn×n

associated with the graph G is defined such that aij is positive if
{j, i} ∈ E and aij = 0 otherwise. We assume aij = aji, for all i, j ∈ V .
The Laplacian matrix L = [lij] ∈ Rn×n associated with A is defined
as lii =

∑
j̸=iaij and lij = −aij, where i ̸= j.

2.3. Dini derivatives

Let D+V (t, x(t)) be the upper Dini derivative of V (t, x(t)) with
respect to t , i.e., D+V (t, x) = lim supη→0+

V (t+η,x(t+η))−V (t,x(t))
η

. The
following lemma is useful for our analysis.

Lemma 1 (Danskin, 1966). Suppose for each i ∈ V , Vi : R×Rm
→ R

is continuously differentiable. Let V (t, x) = maxi∈VVi(t, x), and let
Ṽ(t) = {i ∈ V : Vi(t, x(t)) = V (t, x(t))} be the set of indices
where the maximum is reached at time t. Then, D+V (t, x(t)) =

maxi∈Ṽ(t)V̇i(t, x(t)).

2.4. Problem definition

Consider a network with n agents labeled by V = {1, 2, . . . , n}.
The dynamics of agent i ∈ V is described by the Lagrangian
equation

Mi(qi)q̈i + Ci(qi, q̇i)q̇i = τi, (4)

where qi ∈ Rm is the vector of generalized coordinates, Mi(qi) ∈

Rm×m is the m × m inertia (symmetric) matrix, Ci(qi, q̇i)q̇i is the
Coriolis and centrifugal terms, and τi ∈ Rm is the control force.
The dynamics of a Lagrangian system satisfies the following prop-
erties (Spong, Hutchinson, &Vidyasagar, 2006): 1.Mi(qi) is positive
definite and bounded for any qi ∈ Rm. More specifically, there exist
positive constants kM and kM such that kM Im ≤ Mi(qi) ≤ kM Im.
2. Ṁi(qi) − 2Ci(qi, q̇i) is skew symmetric. 3. Ci(qi, q̇i) is bounded
with respect to qi and linearly bounded with respect to q̇i. More
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specifically, there is positive constant kC such that ∥Ci(qi, q̇i)∥ ≤

kC∥q̇i∥.
We consider the targeted agreement problem for a group of

Lagrangian systems. Each agent i ∈ V observes its own target
set Xi ⊂ Rm. The objective is to ensure that the generalized
coordinate derivatives of all the agents converge to zero and all the
agents reach their target sets and simultaneously reach agreement
with other agents on their generalized coordinates. Note that this
targeted agreement problem is different from the coordinated
tracking problem (Meng et al., 2014), sincewe consider a set target
objective instead of a point target objective. It is also different from
the containment control problem (Ji, Ferrari-Trecate, Egerstedt,
& Buffa, 2008; Mei et al., 2012) or the target-aggregation prob-
lem (Shi & Hong, 2009), since every agent has its own target set.
We assume that each agent observes the boundary points of its
target set and obtains the relative distance information between
the target set and itself.

We impose an assumption on the target sets.

Assumption 1. X1,X2, . . . ,Xn are compact convex sets.

Note that Assumption 1 has been extensively used in the lit-
erature. We next introduce global targeted agreement, where all
the agents not only reach an agreement, but also converge to the
intersection of all Xi, i ∈ V , denoted by, X0 =

⋂
iXi.

Definition1. Multi-agent system (4)with a given control law τi, for
all i ∈ V , achieves global targeted agreement if for all qi(t0) ∈ Rm,
q̇i(t0) ∈ Rm, i ∈ V ,

(1) limt→∞d(qi(t),X0) = 0, ∀i ∈ V , where X0 =
⋂n

i=1Xi,
(2) limt→∞(qi(t) − qj(t)) = 0, ∀i, j ∈ V ,
(3) limt→∞q̇i(t) = 0, ∀i ∈ V .

3. Fixed communication graphs

Let an undirected graph G = (V, E) define the communication
of state information between the agents.

The following model-independent control law is proposed for
all i ∈ V:

τi = −kiq̇i − αi(qi − PXi (qi)) − β
∑
j∈Ni

aij(qi − qj), (5)

where ki > 0 denotes generalized coordinate derivative damping,
qi − PXi (qi) the relative distance between qi to the set Xi, αi > 0
the gain for the target set projection control, β > 0 the gain for the
cooperative control, and aij > 0 is the (i, j) entry of the adjacency
matrix A associated with the graph G, which marks the strength of
the information flow between i and j.

3.1. Exact targeted agreement

Theorem 1. Suppose that Assumption 1 holds and the fixed commu-
nication graph G is connected. Then the multi-agent system (4) with
(5) achieves global targeted agreement if and only if X0 is nonempty.

Proof. (Sufficiency.) Note that the closed-loop system can be
written as q̇i = q̇i, q̈i = M−1

i (qi)(Ci(qi, q̇i)q̇i − kiq̇i − αi(qi −

PXi (qi)) − β
∑

j∈Ni
aij(qi − qj)), i ∈ V. Choose state variable x =

[qT, q̇T]T = [qT1, q
T
2, . . . , q

T
n, q̇

T
1, q̇

T
2, . . . , q̇

T
n]

T. By using the properties
of Lagrangian dynamics (Section 2.4) and noting that PXi (qi) is a
globally Lipschitz continuous function (from (3)), we know that
(4)–(5) is an autonomous system with form ẋ = f (x) and f (x)

is Lipschitz continuous. Then, consider the following Lyapunov
function:

V (x) =
1
2

n∑
i=1

q̇Ti Mi(qi)q̇i +
1
2

n∑
i=1

αi∥qi − PXi (qi)∥
2

+
β

4

n∑
i=1

∑
j∈Ni

aij∥qi − qj∥2. (6)

Based on the properties of Lagrangian dynamics (Section 2.4)
and Assumption 1, it follows that V (x) is radially unbounded,
i.e., V (x) → ∞ as ∥x∥ → ∞. Therefore, the set Ωc = {x ∈

R2mn
|V (x) ≤ c} is bounded for all c = V (x(t0)). The derivative of V

along (4)–(5) is

V̇ =

n∑
i=1

q̇Ti

(
1
2
Ṁi(qi)q̇i + Mi(qi)q̈i

)
+

n∑
i=1

αiq̇Ti (qi − PXi (qi))

+
β

2

n∑
i=1

∑
j∈Ni

aij(qi − qj)T(q̇i − q̇j)

=

n∑
i=1

q̇Ti

⎛⎝−kiq̇i − αi(qi − PXi (qi)) − β
∑
j∈Ni

aij(qi − qj)

⎞⎠
+

n∑
i=1

αiq̇Ti (qi − PXi (qi)) + β

n∑
i=1

q̇Ti
∑
j∈Ni

aij(qi − qj)

= −

n∑
i=1

kiq̇Ti q̇i ≤ 0,

where we have used (1) to derive the first equality, and the fact
that aij = aji and the second property of Lagrangian dynamics
to derive the second equality. Note that V (x) is continuously dif-
ferentiable for all x ∈ R2nm from Section 2.1. We take Ω = Ωc
as the positively invariant compact set. Then, based on LaSalle’s
Invariance Principle, we know that every solution of (4)–(5) con-
verges to the set M, where M = {qi ∈ Rm, q̇i ∈ Rm, ∀i ∈

V | q̇ = 0, and q, q̇ are subject to (4)−(5)}. Let x(t) be a solution
that belongs toM. Then, we know that q̇ ≡ 0 ⇒ αi(qi − PXi (qi))+
β
∑

j∈Ni
aij(qi − qj) ≡ 0, ∀i ∈ V.

Pick any q0 ∈ X0. Such a q0 exists since Assumption 1 holds
and X0 is nonempty. Thus, it follows that for all i ∈ V , β(qi −

q0)T
∑

j∈Ni
aij(qi − qj) + αi(qi − q0)T(qi − PXi (qi)) ≡ 0. We then

know that β
∑n

i=1(qi−q0)T
∑

j∈Ni
aij(qi−qj)+αi

∑n
i=1(qi−q0)T(qi−

PXi (qi)) ≡ 0. It also follows that
∑n

i=1(qi − q0)T
∑

j∈Ni
aij(qi − qj) =

1
2

∑n
i=1
∑

j∈Ni
aij∥qi − qj∥2

≥ 0 by noting that aij = aji. Also, we
know from (2) that for all i ∈ V , (PXi (qi) − q0)T(qi − PXi (qi)) ≥ 0.
It then follows that (qi − q0)T(qi − PXi (qi)) = ∥qi − PXi (qi)∥

2
+

(PXi (qi) − q0)T(qi − PXi (qi)) ≥ ∥qi − PXi (qi)∥
2. This shows that∑n

i=1(qi − q0)T
∑

j∈Ni
aij(qi − qj) ≡ 0, and ∥qi − PXi (qi)∥ ≡ 0,

∀i ∈ V . Note that the above analysis holds for all x(t0) ∈ R2nm.
Therefore, we know from LaSalle’s Invariance Principle and the fact
that G is connected that for all qi(t0) ∈ Rm, q̇i(t0) ∈ Rm, i ∈ V ,
limt→∞q̇i(t) = 0, limt→∞(qi(t) − PXi (qi(t))) = 0, ∀i ∈ V , and
limt→∞(qi(t) − qj(t)) = 0, ∀i, j ∈ V . It then follows that for all
i ∈ V and l ∈ V ,

∥qi − PXl (qi)∥ ≤ ∥qi − ql∥ + ∥ql − PXl (ql)∥
+ ∥PXl (ql) − PXl (qi)∥

≤ 2∥qi − ql∥ + ∥ql − PXl (ql)∥, (7)

where we have used (3). This implies that limt→∞(qi(t) −

PXl (qi(t))) = 0, ∀i ∈ V and l ∈ V . Therefore, limt→∞d(qi(t),X0) =

0, ∀i ∈ V . This shows that global targeted agreement is achieved.
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(Necessity.) It follows directly from the fact that X0 nonempty
is a necessary condition such that the first part of Definition 1 can
be achieved. ■

3.2. Weighted distance optimization

The assumption that the intersection of Xi, for all i ∈ V , is
nonempty is a necessary condition for Theorem 1. In this section,
we discuss the situationwhen this assumption does not hold. Obvi-
ously, global targeted agreement in the sense of Definition 1 cannot
be achieved since self-targeted tracking control and cooperative
control are conflicting to each other. Instead, we first show that
overall weighted distance optimization can be achieved.

Definition 2. Multi-agent system (4)–(5) achieves weighted dis-
tance optimization if there exists q∗

= [q∗

1, q
∗

2, . . . , q
∗
n] ∈

argmin F (q) such that limt→∞qi(t) = q∗

i , and limt→∞q̇i(t) = 0,∀i ∈

V , where F (q) =
1
2

∑n
i=1αi∥qi − PXi (qi)∥

2
+

β

4

∑n
i=1
∑

j∈Ni
aij∥qi −

qj∥2.

Theorem 2. Suppose that Assumption 1 hold, the fixed communi-
cation graph G is connected and X0 is empty. Then the multi-agent
system (4)– (5) achieves weighted distance optimization.

Proof. By using the Lyapunov function (6) in the proof of Theo-
rem 1, we know that every solution of (4)–(5) converges to the
largest invariant set inM (defined in the proof of Theorem1). Then,
based on (4) with (5), we know thatM1 = {qi ∈ Rm, q̇i ∈ Rm, ∀i ∈

V | q̇ = 0, αi(qi − PXi (qi)) + β
∑

j∈Ni
aij(qi − qj) = 0, ∀i ∈ V} ⊇ M

and limt→∞q̇i(t) = 0, ∀i ∈ V .
Note that αi(qi − PXi (qi)) + β

∑
j∈Ni

aij(qi − qj) = −▽qiF (q), for
all i ∈ V . It also follows that M2 = {qi ∈ Rm, q̇i ∈ Rm, ∀i ∈

V | q̇ = 0, q ∈ argmin F} ⊇ M. Therefore, according to
LaSalle’s Invariance Principle, it follows that weighted distance
optimization is achieved. ■

We next consider the scenario when certain local set is more
important than others and the objective is to guarantee all agents
approaching a pre-given local set Xl.

Definition 3. Given l ∈ V , themulti-agent system (4)–(5) achieves
approximate targeted agreement to the set Xl if for any given
ε > 0, there exist control gains β(ε), αi(ε), ki(ε), i ∈ V , such
that lim supt→∞d(qi(t),Xl) ≤ ε, lim supt→∞∥qi(t) − qj(t)∥ ≤ ε,
limt→∞q̇i(t) = 0, ∀i, j ∈ V .

Proposition 1. Suppose that Assumption 1 holds, the fixed commu-
nication graph G is connected and X0 is empty. Then the multi-agent
system (4)–(5) achieves approximate targeted agreement.

Proof. Following the proof of Theorem 2, we next consider a given
l ∈ V and fix control gains ki > 0, for all i ∈ V , and αi > 0,
for all i ∈ V \ {l}. We next show that lim supt→∞d(qi(t),Xl) ≤

ε, i ∈ V . First, a global minimum of the function Fl(qlo ) =
1
2

∑
i∈V\{l}αi∥qi − PXi (qi)∥

2 can be found as F∗

l = Fl(q∗

lo ) = 0, where
qlo = [q1, . . . , ql−1, ql+1, . . . , qn] and q∗

lo ∈ X1 × · · · × Xl−1 ×

Xl+1 · · · × Xn. Based on the fact that Xi is bounded for all i ∈ V , it
follows that there exists a constant Z∗ > 0 such that Fl(qlo ) > 0 for
all ∥qlo∥ > Z∗. Therefore, we know that F (q) > 0 for all ∥qlo∥ > Z∗.
This implies that the global minimum of F can be reached only
when ∥qlo∥ ≤ Z∗. We next define ζ = sup{∥qi − q0i∥, ∀q0i ∈

Xi, ∀i ∈ V \ {l}, ∥qlo∥ ≤ Z∗
}. It is obvious that ζ is finite. Also,

based on the fact that aij = aji, it follows that αi(qi − PXi (qi)) +

β
∑

j∈Ni
aij(qi − qj) ≡ 0, ∀i ∈ V ⇒

∑n
i=1αi(qi − PXi (qi)) ≡ 0.

We thus know that by choosing 2ε−1ζ
∑

i∈V\{l}αi ≤ αl ≤

2ε−1νζ
∑

i∈V\{l}αi, M3 = {qi ∈ Rm, q̇i ∈ Rm, ∀i ∈ V | q̇ =

0, ∥ql − PXl (ql)∥ ≤
1
2ε} ⊇ M, where ν > 1 is a given

positive constant. Next, we define ω = n−1∑n
i qi. On the set

M2, we know that
∑n

i=1αi(qi − ω)T(qi − PXi (qi)) + β
∑n

i=1(qi −

ω)T
∑

j∈Ni
aij(qi − qj) ≡ 0. It follows from Theorem 3 of Olfati-

Saber et al. (2007) that |βϖ T(L ⊗ Im)ϖ | ≥ βλ2ϖ
Tϖ, where

λ2 denotes the smallest non-zero eigenvalue of Laplacian matrix
L, ϖi = qi − ω, for all i ∈ V , and ϖ = [ϖ T

1 , ϖ T
2 , . . . ,ϖ T

n ]
T.

Also, we know that
⏐⏐∑n

i=1αi(qi − ω)T(qi − PXi (qi))
⏐⏐ ≤

1
2ϖ

Tϖ +

1
2

∑n
i=1α

2
i

⏐⏐qi − PXi (qi)
⏐⏐2 ≤

1
2ϖ

Tϖ +
(1+4ν2)ζ2

2

(∑
i∈V\{l}αi

)2
. It thus

follows that
∑n

i=1∥qi − ω∥
2

≤
(1+4ν2)ζ2

(∑
i∈V\{l}αi

)2
2βλ2−1 .

Therefore, we know that for all i, j ∈ V , ∥qi − qj∥ ≤

ζ
√

1+4ν2
(∑

i∈V\{l}αi

)
√
2βλ2−1 . It then follows that by choosing β ≥

(1+4ν2)ζ2
(∑

i∈V\{l}αi

)2
2λ2ε2

+
1

2λ2
, we can guarantee that ∥qi−qj∥ ≤

1
2ε, for

all i, j ∈ V . We then know that on the set M2
⋂

M3, for all j ∈ V ,
∥qj − PXl (ql)∥ ≤ ∥ql − PXl (ql)∥ + ∥qj − ql∥ ≤ ε. This shows that
for a given l ∈ V and any given ε > 0, by properly choosing αl
and β , we can guarantee that lim supt→∞d(qi(t),Xl) ≤ ε, ∀i ∈ V ,
lim supt→∞∥qi(t) − qj(t)∥ ≤ ε, ∀i, j ∈ V , and limt→∞q̇i(t) =

0, ∀i ∈ V . Therefore, the desired conclusion follows. ■

4. Switching communication graphs

One potential issue is communication link failure. Link fail-
ure becomes even more important when we consider controlling
multiple vehicles with limited power. Therefore, it is necessary
to consider the case of switching communication graphs. We as-
sociate the switching communication with a time-varying graph
Gσ (t) = (V, Eσ (t)), where σ : [t0, +∞) → P is a piecewise constant
function and P is a finite set of all possible graphs. Gσ (t) remains
constant for t ∈ [tℓ, tℓ+1), ℓ = 0, 1, . . . and switches at t = tℓ,
ℓ = 1, . . .. In addition, we assume that infℓ(tℓ+1 − tℓ) ≥ τd > 0,
ℓ = 1, . . ., where τd is a constant. This dwell time assumption is
extensively used in the analysis of switched systems (Liberzon &
Morse, 1999). The joint graph of Gσ (t) during time interval [t1, t2)
is defined by Gσ (t)([t1, t2)) =

⋃
t∈[t1,t2)

G(t) = (V,
⋃

t∈[t1,t2)
E(t)).

Moreover, j is a neighbor of i at time t whenever {j, i} ∈ Eσ (t), and
Ni(σ (t)) represents the set of agent i’s neighbors at time t .

Definition 4. Gσ (t) is uniformly jointly connected if there exists a
constant T > 0 such that G([t, t + T )) is connected for any t ≥ t0.

The switching communication graphmakes the targeted agree-
ment problemmuchmore complex. We assume therefore that the
system parameters are available and propose the following control
law:

τi = Ci(qi, q̇i)q̇i − kMi(qi)q̇i − αiMi(qi)(qi − PXi (qi))

− βMi(qi)
∑

j∈Ni(σ (t))

aij(σ (t))(qi − qj), ∀i ∈ V, (8)

where k > 0 denotes generalized coordinate derivative damping,
αi > 0 the gain for the target set projection control, β > 0 the
gain for the cooperative control, and aij(p) is the (i, j) entry of the
adjacency matrix Ap associated with graph Gp, for all p ∈ P .

Remark 1. The exact systemmodel information is used in the con-
trol law (8). Such a model-dependent control algorithm is called
an inverse dynamics controller. It has been extensively used in the
control of Lagrangian systems (Spong et al., 2006). Note that the
proposed algorithm is implementable due to that the time-varying
matrix Mi(qi) is always positive definite, which does not hold for
general nonlinear systems.
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Theorem 3. Suppose that Assumption 1 holds, X0 is nonempty,
and k is sufficiently large. Then the multi-agent system (4) with (8)
achieves global targeted agreement if the communication graph Gσ (t)
is uniformly jointly connected.

We prove Theorem 3, with the help of a series of lemmas.
Note that the closed-loop system of (4) and (8) can be written

as

q̈i = −kq̇i − β
∑

j∈Ni(σ (t))

aij(σ (t))(qi − qj) − αi(qi − PXi (qi)). (9)

Lemma 2. Suppose that Assumption 1 holds, X0 is nonempty, and k
is sufficiently large. For the multi-agent system (4)with (8), it follows
that limt→∞

(
qi(t) − PXi (qi(t))

)
= 0, and limt→∞q̇i(t) = 0, for all

i ∈ V .

Proof. Note that the Lyapunov function (6) proposed in the proof of
Theorem 1 is not valid here due to the switching graph. Instead, by
picking any q0 ∈ X0, we propose the following Lyapunov function:
V =

1
2

∑n
i=1

1
β
q̇Ti q̇i +

∑n
i=1

1
β
(qi − q0)Tq̇i +

∑n
i=1

k
2β ∥qi − q0∥2

+

1
2

∑n
i=1

αi
β
∥qi − PXi (qi)∥

2, where we choose k > 1 to guarantee V
positive definite. The derivative of V along (9) is

V̇ =

n∑
i=1

1
β
q̇Ti

⎛⎝−kq̇i − β
∑

j∈Ni(σ (t))

aij(σ (t))(qi − qj)

− αi(qi − PXi (qi))

⎞⎠+

n∑
i=1

αi

β
q̇Ti (qi − PXi (qi))

+

n∑
i=1

(qi − q0)T

β

⎛⎝−kq̇i − β
∑

j∈Ni(σ (t))

aij(σ (t))(qi − qj)

− αi(qi − PXi (qi))

⎞⎠+

n∑
i=1

∥q̇i∥2

β
+

n∑
i=1

k
β
(qi − q0)Tq̇i

= −

n∑
i=1

k − 1
β

∥q̇i∥2
−

n∑
i=1

q̇Ti
∑

j∈Ni(σ (t))

aij(σ (t))(qi − qj)

−

n∑
i=1

αi

β
(qi − q0)T(qi − PXi (qi)) −

n∑
i=1

(qi − q0)T

×

∑
j∈Ni(σ (t))

aij(σ (t))(qi − qj).

It follows that V̇ ≤ −
[
q(t) q̇(t)

] ([ Lσ (t)
Lσ (t)

2
Lσ (t)

2
K

]
⊗ Im

)
×

[
q(t)
q̇(t)

]
−
∑n

i=1
αi
β
d2(qi(t),Xi) −

∑n
i=1

1
β
∥q̇i(t)∥2, where K =

k−2
β

In, q =

[qT1, q
T
2, . . . , q

T
n]

T, q̇ = [q̇T1, q̇
T
2, . . . , q̇

T
n]

T, Lσ (t) is the Laplacian matrix
associatedwith graph Gσ (t) at time t , andwe have used the fact that
(qi − q0)T(qi − PXi (qi)) ≥ ∥qi − PXi (qi)∥

2 based on (2).
It is easy to show that Lp is symmetric and positive semi-

definite, for all p ∈ P . It follows that Lp can be diagonalized as
Lp = Γ −1

p ΛpΓp, where Γp is a real orthogonal matrix, Λp =

diag{λ1
p, λ

2
p, . . . , λ

n
p} and λi

p ≥ 0 for all i ∈ V and all p ∈ P . We then

know that Fp =

[
Γ −1
p 0
0 Γ −1

p

]
Pp
[
Γp 0
0 Γp

]
, where Fp =

[
Lp

Lp
2

Lp
2

K

]

and Pp =

[
Λp

Λp

2
Λp

2
K

]
. It then follows that the eigenvalue µp of Pp

are the solutions ofµ2
p − (λi

p +
k−2
β

)µp +
k−2
β

λi
p −

1
4 (λ

i
p)

2
= 0 for all

p ∈ P . Thus, Fp is positive semi-definite for all p ∈ P if k is chosen

such that k ≥ 2 +
1
4βmaxp∈P{λmax(Lp)}. Since λmax(Lp) can be

bounded by λmax(Lp) ≤ 2maxi∈V
∑

j∈Ni(p)
aij(p) based on inequality

(12) of Olfati-Saber et al. (2007), we know that it is sufficient to
choose k ≥ 2 +

(n−1)a∗β

2 such that Fp is positive semi-definite for
all p ∈ P , where a∗

= maxp∈Pmaxi,j∈Vaij(p).
We let σ = pl on [tl−1, tl) for pl ∈ P . Then, for any t

satisfying t0 < t1 < · · · < tl < t < tl+1, we have V̇ ≤

−
[
q(t) q̇(t)

] ([ Lpl
Lpl
2

Lpl
2

K

]
⊗ Im

)[
q(t)
q̇(t)

]
−
∑n

i=1
αi
β
d2(qi(t),Xi) −∑n

i=1
1
β
∥q̇i(t)∥2, Since the selection of V is independent of σ and

Fpl is positive semi-definite for all pl ∈ P given k ≥ 2 +
(n−1)a∗β

2 ,
we know that for all t ≥ t0,

V̇ ≤ −

n∑
i=1

αi

β
d2(qi,Xi) −

n∑
i=1

1
β

∥q̇i∥2
≤ 0. (10)

Therefore, qi and q̇i, ∀i ∈ V , are bounded. We also know that
(10) implies that

∫
∞

t0

(∑n
i=1

αi
β
d2(qi(t),Xi) +

∑n
i=1

1
β
∥q̇i(t)∥2

)
dt ≤

V (t0) is bounded.
Therefore, from (9) and that qi and q̇i, ∀i ∈ V are bounded, we

know that

d
dt

(
n∑

i=1

αi

β
d2(qi(t),Xi) +

n∑
i=1

1
β

∥q̇i(t)∥2

)
is bounded ∀t ≥ t0. Then, based on Barbalat’s lemma (Khalil,
2002), we can show that

lim
t→∞

(
n∑

i=1

αi

β
d2(qi(t),Xi) +

n∑
i=1

1
β

∥q̇i(t)∥2

)
= 0.

Therefore, limt→∞d(qi(t),Xi) = 0, and limt→∞q̇i(t) = 0, for all
i ∈ V . Finally, we know that limt→∞

(
qi(t) − PXi (qi(t))

)
= 0, for all

i ∈ V . ■

We next define xi = qi, xn+i = qi + 1
β
q̇i, for all i ∈ V . After some

manipulations, (9) can be rewritten as

ẋi = −β(xi − xn+i), (11a)

ẋn+i = −

∑
j∈Ni(σ (t))

aij(σ (t))(xn+i − xn+j) + δi(t), (11b)

where i ∈ V , and δi = (1 −
k
β
)q̇i +

1
β

∑
j∈Ni(σ (t))aij(σ (t))(q̇i −

q̇j) −
αi
β
(qi − PXi (qi)), for all i ∈ V . Note that Lemma 2 implies that

limt→∞δi(t) = 0, for all i ∈ V . We next present two lemmas on the
connectivity of (11) and on the converging-input converging-state
property of the agreement algorithm.

Consider (11) as a multi-agent system with node set V =

{1, 2, . . . , 2n}. We associate this system with a graph Gσ (t) =

(V, Eσ (t)) and the corresponding neighbor set N i(σ (t)) and adja-
cency matrix Aσ (t), where the connections and weights for agents
{n + 1, n + 2, . . . , 2n} are defined by Eσ (t) and Aσ (t). In addition,
there exists arcs ai(i+n)(t) = β > 0, for all i = 1, 2, . . . , n and all
t ≥ t0. Note that Gσ (t) is switching from the sets of directed graphs.
We define that the directed graph G is quasi-strongly connected
if there exists a node i ∈ V such that there exists a directed path
from i to any other node. In addition, the switching graph Gσ (t) is
said to be uniformly jointly quasi-strongly connected if there exists
a constant T > 0 such that G([t, t+T )) is quasi-strongly connected
for any t ≥ t0.

It is not hard to verify the following lemma.

Lemma3. SupposeGσ (t) is uniformly jointly connectedwith a uniform
constant T . Then, Gσ (t) is uniformly jointly quasi-strongly connected
with the same constant T .
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Fig. 1. The fixed communication graph G.

The converging-input converging-state property of the agree-
ment algorithm over networks with joint connectivity has been
shown in Proposition 4.10 of Shi and Johansson (2013), which is
restated in the following lemma.

Lemma 4. Consider a network of 2n nodes with the communication
graph Gσ (t). The dynamics of node i is given by

ẋi = −

∑
j∈N i(σ (t))

aij(σ (t))(xi − xj) + δi(t),

for all i ∈ V , where δi is a piecewise continuous function. Suppose Gσ (t)
is uniformly jointly quasi-strongly connected and limt→∞δi(t) = 0
for all i ∈ V . Then, limt→∞(xi(t) − xj(t)) = 0, ∀i, j ∈ V.

Proof of Theorem 3. Based on Lemmas 2–4, we know that
limt→∞q̇i(t) = 0, limt→∞(qi(t) − PXi (qi(t))) = 0, ∀i ∈ V , and
limt→∞(qi(t) − qj(t)) = 0. ∀i, j ∈ V . Following (7) in the proof
of Theorem 1, it follows that limt→∞d(qi(t),X0) = 0, ∀i ∈ V . This
shows that global targeted agreement is achieved.

5. Simulation verifications

Assume that there are eight agents (n = 8) in the group with
systemdynamics given by

[
M11,i M12,i
M21,i M22,i

] [
q̈ix
q̈iy

]
+

[
C11,i C12,i
C21,i C22,i

] [
q̇ix
q̇iy

]
=[

τix
τiy

]
, i = 1, 2, . . . , 8, where M11,i = θ1i + 2θ2i cos qiy, M12,i =

M21,i = θ3i + θ2i cos qiy, M22,i = θ3i, C11,i = −θ2i sin qiyq̇iy,
C12,i = −θ2i sin qiy(q̇ix + q̇iy), C21,i = θ2i sin qiyq̇ix, C22,i = 0. Choose
θ1i = 1.301, θ2i = 0.256, θ3i = 0.096, i = 1, 2, . . . , 8. We assume
that the available target sets of all the agents are disks. The radius
of the disks are rli = 3, i = 1, 2 . . . , 8. Denote the coordinates
of the center points as li = [lix, liy]T ∈ R2, i = 1, 2 . . . , 8 and
l1 = l3 = l7 = [1.5, 1.5]T, l2 = l6 = l8 = [0, −3]T, and
l4 = l5 = [1.5, −3]T. The initial states of the agents are given by
q1(0) = [−8, 8]T, q2(0) = [6.4, 12]T, q3(0) = [−8, −8]T, q4(0)
= [6, −8]T, q5(0) = [−8.8, −4]T, q6(0) = [4.8, −12]T, q7(0) =

[−4, −8]T, q8(0) = [3.2, −12]T, q̇1(0) = [−0.4, 0.4]T, q̇2(0) =

[0.8, −0.8]T, q̇3(0) = [2.8, −2.8]T, and q̇4(0) = [1.6, −1.6]T,
q̇5(0) = [−1.2, 0.8]T, q̇6(0) = [1.6, −0.4]T, q̇7(0) = [1.6, −2]T,
and q̇8(0) = [0.8, −0.8]T. The control parameters of (5) are chosen
as ki = 1, αi = 1, for all i ∈ V , and β = 1. The communication
graph G is given in Fig. 1. Also, the weight of adjacency matrix A
associated with G is chosen to be 1, for all i, j ∈ V . For the multi-
agent system (4) with (5), snapshots of generalized coordinates
are shown in Fig. 2. We see that all the generalized coordinates
of agents converge to a common point in the intersection set of
all target set Xi, for all i ∈ V . This shows that global targeted
agreement is achieved.

6. Conclusions

In this paper, we studied the targeted agreement problem for
a group of cooperative Lagrangian systems. The objective was to
drive generalized coordinated derivatives to converge to zero and
achieve generalized coordinate agreement for the all the agents
while the final generalized coordinate of each agent was restricted

Fig. 2. Snapshots of the generalized coordinates of the multi-agent system. The
small circles denote the generalized coordinates of the agents and the large circles
are target sets. As indicated by the plots, global targeted agreement is achieved.

by its target set. Under a necessary condition that the intersection
of all the target sets is nonempty, we first proposed a control
algorithm that achieved global targeted agreement, i.e., all the
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Lagrangian systems achieve agreement in the intersection of all
the target sets. The assumption that the intersection of all the
target sets is nonempty was later removed. Instead of exact tar-
geted agreement for such a case, we showed that approximate
targeted agreement can be achieved by properly choosing control
gains. In addition, the case of switching communication graphs
was considered using amodel-dependent control algorithm,which
guaranteed global targeted agreement over the network with joint
connectivity. Simulations were given to validate the theoretical
results. Future works include the study of moving targets and
directed communication graphs.
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