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Abstract

This paper considers the problem of distributed motion- and task-planning of

multi-agent and multi-agent-object systems under temporal-logic-based tasks

and uncertain dynamics. We focus on manipulator-endowed robotic agents that

can interact with their surroundings. We present first continuous control al-

gorithms for multi-agent navigation and cooperative object manipulation that

exhibit the following properties. First, they are distributed in the sense that

each agent calculates its own control signal from local interaction with the other

agents and the environment. Second, they guarantee safety properties in terms

of inter-agent collision avoidance and obstacle avoidance. Third, they adapt

on-the-fly to dynamic uncertainties and are robust to exogenous disturbances.

The aforementioned algorithms allow the abstraction of the underlying system

to a finite-state representation. Inspired by formal-verification techniques, we

use such a representation to derive plans for the agents that satisfy the given

temporal-logic tasks. Various simulation results and hardrware experiments

verify the efficiency of the proposed algorithms.
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1. Introduction

The technological developments have been increasing exponentially during

the last century, with an evident peak in the last few decades. The recent need

for development of smart cities (including autonomy in industrial buildings,

houses, highways, as well as automated rescue missions) calls for wider deploy-

ment of autonomous agents that must coordinate with each other to achieve a

specific task. Additionally, noteworthy is the increasing evolution of wireless

communication technology that results in the low-cost massive development

of (internal and external) sensor devices. Along with the incapability of the

corresponding computing units to process very large amounts of data in small

amounts of time, this has given rise to a special case of systems that consist

of multiple agents, namely multi-agent systems. Multi-agent systems consist of

autonomous agents that rely solely on local sensor information with respect to

the rest of the agents to determine their actions, which is often called distributed

or decentralized control.

The main focus of multi-agent systems is the design of distributed control

protocols in order to achieve global tasks, such as consensus [1, 2, 3, 4, 5], in

which all the agents are required to converge to a specific point, and formation

[6, 7], in which all the agents aim to form a predefined geometric shape. At

the same time, the agents might need to fulfill certain transient properties, such

as network connectivity [8, 9, 10] and/or collision avoidance [11]. Additionally,

multi-agent systems entail several application in the fields of robotics, which is

the main focus of this paper. More specifically, we consider robotic agents that

consist of mobile platforms and robotic manipulators, having hence access to

the entire workspace and being able to interact with the environment.

Another topic that has troubled researchers the last decades is the control of

multi-agent systems such that each agent fulfills desired tasks given by high-level
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specifications expressed as temporal logic formulas. Temporal-logic-based mo-

tion planning has gained a significant amount of attention over the last decade,

since it provides a fully automated correct-by-design controller synthesis ap-

proach for autonomous agents. Temporal logics, such as linear temporal logic

(LTL), provide formal high-level languages that can describe planning objec-

tives more complex than the well-studied navigation algorithms, and have been

used extensively both in single- as well as in multi-agent setups. The objectives

are given as a temporal logic formula with respect to a discretized abstraction

of the system (usually a finite transition system), and then, a high-level discrete

path is found by off-the-shelf model-checking algorithms, given the abstracted

system and the task specification. Consider, for instance, a robot operating in

a workspace which is partitioned into 6 rooms and a corridor consisting of three

regions. A high-level task for the robot might have the following form: “Peri-

odically visit rooms R1, R4, R6, in this order, while avoiding rooms R2, R3 and

R5”, or “Grab the ball that lies in room R6 and deliver it in room R3 between

10 and 20 seconds”. The aforementioned specifications include complex tasks

where time might play an important role.

One of the main problems that arise when dealing with high-level tasks

based on temporal-logic formulas is the construction of a discrete abstracted

representation of the continuous system. More specifically, given a temporal-

logic formula over a continuous workspace/state space, how does one partition

this space into discrete states? Moreover, given a predefined partition, what are

the control inputs of the agents that guarantee well-defined transitions among

the discrete states? When multiple robotic agents are concerned, the afore-

mentioned specifications must also incorporate collision-avoidance as well as

connectivity-maintenance properties among the agents, which brings the prob-

lem of abstraction to a new level of complexity. Furthermore, consider a case

where some unactuated objects must undergo a series of processes in a workspace

with autonomous agents (e.g., car factories), expressed as temporal-logic high-

level specifications. In such cases, the agents, except for satisfying their own

motion specifications, are also responsible for coordinating with each other in
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order to transport the objects around the workspace.

The aforementioned problems become even more challenging when one takes

into account system uncertainty. The dynamic model of real robotic systems

cannot be accurately known by the user/designer, since it includes terms that

might not be easy to identify, e.g., dynamic parameters (mass, inertia), friction,

and other external disturbances. This becomes more apparent as the complexity

of the considered systems increases (consider, e.g., a mobile robot vs a 6-DoF

robotic manipulator). Such uncertainties are expected to affect the performance

of the system, and since they cannot be accurately canceled by the control

design, the latter must render the closed-loop system adaptable and robust to

them [12].

This paper summarizes the main results of the PhD Thesis [13]1. We consider

the problem of distributed motion- and task-planning of uncertain multi-agent

and multi-agent-object systems under complex task specifications expressed via

temporal logic constraints. We present robust abstractions of the continuous

system dynamics into a discrete representation (e.g., transition systems) and

the application of formal verification methodologies towards the satisfaction of

temporal-logic-based tasks. More specifically, we break down the problem into

three main subproblems.

First, motivated by the need of transition design for multi-agent systems, we

develop distributed control protocols for the safe multi-agent navigation subject

to collision and connectivity constraints as well as model uncertainties. Second,

in view of the incorporation of unactuated objects in the task specifications,

we consider the problem of cooperative object manipulation. We design con-

trol protocols for distributed cooperative manipulation of an object grasped by

multiple robotic agents subject to dynamic uncertainties. The third part draws

from the previous ones to design well-defined discrete abstractions for multi-

agent and multi-agent-objects systems. In that way, we allow the expression

1The first author was the awardee of the 2020 EECI European PhD Award on Control for
Complex and Heterogeneous Systems.
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of complex desired tasks as temporal logic specifications, for which we provide

suitable controller-synthesis algorithms.

2. Related Work

2.1. Multi-Agent Navigation

Multi-agent navigation with collision avoidance, possibly also with works-

pace obstacles, is a special instance of the motion planning problem [14, 15].

Several techniques have been developed in the related literature for robot mo-

tion planning with obstacle avoidance, such as discretization of the continuous

space and employment of discrete algorithms (e.g., Dijkstra, A?), probabilistic

roadmaps, sampling-based motion planning, and feedback-based motion plan-

ning [16].

Feedback-based motion planning has been receiving attention for more than

two decades. Early works [17, 18, 19], relied on the Koditschek-Rimon naviga-

tion function (KRNF) [20, 21], where the robots successfully converge to their

goals while avoiding collisions in obstacle-free workspaces from almost all ini-

tial conditions (in the sense of a measure-zero set), if a control gain is chosen

large enough. The idea of gain tuning has been also employed to an alterna-

tive KRNF in [22]. Tuning-free controllers are presented in [23, 24]. Other

works employ control barrier functions for multi-agent collision avoidance [25]

and optimization-based techniques via model predictive control (MPC) [26]; [27]

proposes reciprocal collision obstacle by local decision making for the desired ve-

locity of the agents and sensing uncertainties are taken into account in [28]. The

work [29] develops a a workspace decomposition methodologies with a hybrid

controller.

A common assumption that most of the aforementioned works consider is the

simplified robot dynamics, i.e., single integrators/unicycle kinematics, without

taking into account any robot dynamic parameters and where the control input

is the robot velocity. Hence, indirectly, the schemes depend on an embedded

internal system that converts the desired signal to the actual robot actuation
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command. The above imply that the actual agent trajectories might deviate

from the desired ones, jeopardizing safety and possibly resulting in collisions.

Multi-agent navigation can be also achieved via means of sequential leader-

follower coordination, where an assigned leader agent has priority over the other

agents for goal convergence. A large variety of works, however, do not consider

collision-avoidance specifications among the agents [30, 31, 32, 33], which is

crucial when considering real physical systems. Moreover, as discussed before,

many of the works in the related literature consider simplified/known dynamics

([34, 6, 22, 35, 31, 36, 33, 37, 38]), which can have crucial effects on the actual

behaviour of real robotic systems.

2.2. Cooperative Manipulation

Cooperative manipulation is a well-studied topic, with numerous works in the

last three decades [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55]).

Impedance and hybrid force/position control is the most common method-

ology used in the related literature, where a desired impedance behavior is

imposed potentially with force regulation. Most of the aforementioned works

employ force/torque sensors to acquire feedback of the object-robots contact

forces/torques, which however may result in a performance decline due to sensor

noise or mounting difficulties. Recent technological advances allow manipulator

grippers to grasp rigidly certain objects (see e.g., [56]), which can render the

use of force/torque sensors unnecessary. Force/Torque sensor-free methodolo-

gies can be found in [42, 57, 49]. Moreover, [51] uses an external force estimator,

without employing force sensors, [40] presents a force sensor-free control proto-

col with gain tuning, and [44] considers the object regulation problem without

force/torque feedback. Finally, force/torque sensor-free methodologies are de-

veloped in [58], where the robot dynamics are not taken into account.

Most works in the related literature consider known dynamic parameters re-

garding the object and the robotic agents. However, the accurate knowledge of

such parameters, such as masses or moments of inertia, can be a challenging is-

sue, especially for complex robotic manipulators; adaptive control protocols are
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proposed in [41] with a gain tuning scheme, in [44], where the object regulation

problem is considered, and in [42], [52]. An estimation of parameters is included

in [58, 59], whereas [53] and [54] employ fuzzy mechanisms to compensate for

model uncertainties. In [55, 60], the authors develop a task-oriented adaptive

control protocol using observers. Kinematic uncertainties and joint limits are

handled in [61], [47], and [62], respectively.

Other works consider internal force and load distribution analysis [63], leader-

follower schemes [50], or intermittent contact [64]; [65] proposes a kinematic-

based multi-robot manipulation scheme, and [66, 67] address the problem from

a formation-control point of view. Finally, an important property not addressed

in the cooperative-manipulation related works is the establishment of transient

constraints for the object and the robotic agents. Such constraints might entail

obstacle avoidance, input saturation constraints, or singularities of the agents’

Jacobian matrix, which maps the joint velocities of each agent to a 6D vector

of generalized velocities.

2.3. Abstractions of Multi-Agent Systems

Temporal-logic-based planning has gained significant attention in recent

years, as it provides a fully automated correct-by-design controller synthesis

approach for autonomous agents. Temporal logics such as linear temporal logic

(LTL) and metric interval temporal logic (MITL) provide formal high-level lan-

guages that can describe complex planning objectives. There exists a wide

variety of works that employ temporal logic languages for multi-agent systems,

e.g., [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78]. The discretization of a multi-agent

system to an abstracted finite transition system necessitates the design of ap-

propriate continuous-time controllers for the transition of the agents among the

states of the transition system [79]. Most works in the related literature, how-

ever, adopt point-mass agents with perfectly known dynamics, without taking

into account inter-agent collision specifications and facilitating, thus, the control

design. Furthermore, the vast majority of temporal-logic-based works consider

LTL-based objectives; LTL languages, in contrast, e.g., to MITL, lack the abil-
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ity to encode time constraints, which provide a larger and more expressive va-

riety of tasks. Time constraints are efficiently encoded in temporal-logic-based

tasks through signal temporal logic (STL) languages [76, 77, 78]. However, STL

tasks are tackled purely with feedback-control algorithms, inheriting thus their

drawbacks, such as local minima. Finally, most works in the related literature

consider temporal logic-based motion planning for fully actuated, autonomous

agents. In many applications, however, unactuated objects must undergo a se-

ries of processes in a workspace with autonomous agents (e.g., car factories).

When the unactuated objects’ specifications are expressed using temporal log-

ics, then the abstraction of the agents’ behavior becomes much more complex,

since it has to take into account the objects’ goals.

3. Preliminaries

3.1. Notation

The sets of real and natural numbers are denoted by R and N, respectively;

‖x‖ and ‖x‖1 denote the 2-norm and 1-norm, respectively, of a vector x ∈ Rn.

The open and closed balls with respect to the 2-norm and with radius δ > 0,

centered at x ∈ Rn, are denoted by B(x, δ) and B̄(x, δ), respectively; Ss(·) is the

skew-symmetric operator defined according to the cross product Ss(a)b = a× b
for vectors a, b ∈ R3. Given the sets S1, S2 ⊂ Rn and the matrix A ∈ Rn×m, we

define the Minkowski addition as S1 ⊕ S2 := {s1 + s2 ∈ Rn : s1 ∈ S1, s2 ∈ S2},
the Pontryagin difference as S1 	 S2 := {s1 ∈ Rn : s1 + s2 ∈ S1,∀s2 ∈ S2}, and

the matrix-set multiplication as A ◦ S := {a : ∃s ∈ S : a = As}. Finally, the 3D

rotation group is denoted by SO(3).

3.2. Task Specification in LTL

We focus on the task specification Φ given as a Linear Temporal Logic (LTL)

formula. The basic ingredients of an LTL formula are a set of atomic proposi-

tions Ψ and several boolean and temporal operators. LTL formulas are formed

according to the following grammar [79]: Φ ::= true|a|Φ1∧Φ2 |¬Φ|©Φ|Φ1UΦ2,

where a ∈ Ψ, Φ1 and Φ2 are LTL formulas and ©, U are the next and until
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operators, respectively. Definitions of other useful operators like � (always), ♦

(eventually) and ⇒ (implication) are omitted and can be found at [79]. The

semantics of LTL are defined over infinite words over 2Ψ. Intuitively, an atomic

proposition ψ ∈ Ψ is satisfied on a word w = w1w2w3 . . . if it holds at its

first position w1, i.e. ψ ∈ w1, denoted as w |= Φ. Formula ©Φ holds true if

Φ is satisfied on the word suffix that begins in the next position w2, whereas

Φ1 ∪ Φ2 states that Φ1 has to be true until Φ2 becomes true. Finally, ♦Φ and

�Φ holds on w eventually and always, respectively. For a full definition of the

LTL semantics, the reader is referred to [79].

3.3. Task Specification in MITL

Similar to LTL, the basic ingredients of MITL are a set of atomic propositions

Ψ, boolean and temporal operators, and intervals of time. MITL formulas

are formed according to the following grammar [79]: Φ := true | a | ¬Φ | Φ1 ∧
Φ2| ©I Φ | ♦IΦ | �IΦ | Φ1UIΦ2, where a ∈ Ψ, and ©,♦,� and U are the

next, future, always and until operators, respectively, as in LTL case; I is a

nonempty time interval in one of the following forms: [i1, i2], [i1, i2), (i1, i2],

(i1, i2), [i1,∞), (i1,∞) with i2 > i1 ≥ 0. MITL can be interpreted either in

continuous or point-wise semantics. We utilize the latter and interpret MITL

formulas over timed runs. The semantics of MITL are defined over infinite timed

words over 2Ψ. More specifically, the satisfaction of an atomic proposition ψ ∈ Ψ

by a timed word w = (w1, t1)(w2, t2) . . . at index j is as follows:

(w, j) |=p⇔ p ∈ L(r(j)),

(w, j) |=¬Φ⇔ (r, j) 6|= Φ

(w, j) |=Φ1 ∧ Φ2 ⇔ (w, j) |= Φ1 and (w, j) |= Φ2

(w, j) |=©I Φ⇔ (w, j + 1) |= Φ and tj+1 − tj ∈ I

(w, j) |=Φ1UIΦ2 ⇔ ∃k, j, with j ≤ k, s.t. (w, k) |= Φ2, tk − tj ∈ I

and (w,m) |= Φ1,∀m ∈ {j, . . . , k}

For more details, the reader is referred to [80, 81].
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4. Multi-Agent Navigation

Safe, distributed navigation of multiple agents is of paramount importance

and entails numerous applications. In the special case of temporal-logic spec-

ifications, each agent’s task requires it to navigate around a workspace while

avoiding collisions with other agents and potential obstacles. In this section, we

address the problem of distributed multi-agent navigation subject to collision

constraints and uncertain dynamics. First, we consider a setup where the agents

operate in an obstacle-free environment, but have to comply with connectivity

constraints among them. Second, we relax the connectivity constraints and gen-

eralize our results to obstacle-cluttered environments. Both setups consider a

leader-follower setting, where, at every time instant, a leader agent is prioritized

over the rest of the agents to navigate to its goal. Such a prioritization can be

given a priori to the agents and is used online to guarantee their sequential

navigation to the respective goals.

4.1. Leader-follower navigation with collision avoidance and connectivity main-
tenance

Consider N > 1 autonomous agents, with N := {1, . . . , N}, operating in Rn

and characterized by the closed spheres B̄i(pi, ri) = {y ∈ Rn : ‖pi − y‖ ≤ ri}2,

with pi ∈ Rn being agent i’s center, and ri > 0 its bounding radius. We consider

the following Lagrangian dynamics for the agents:

Mi(pi)p̈i + Ci(pi, ṗi)ṗi + gi(pi) + fi(pi, ṗi) + di(t) = ui, (1a)

where Mi : Rn → Rn×n are positive definite (and bounded) inertia matrices,

Ci : R2n → Rn×n are the Coriolis terms, gi : Rn → Rn are the gravity vectors,

fi : R2n → Rn are unknown vector fields that represent friction-like terms,

di : [0,∞)→ Rn are unknown external disturbances and modeling uncertainties,

and ui ∈ Rn are the agents’ control inputs, ∀i ∈ N . All the aforementioned

dynamic terms are continuous in their arguments, and di are uniformly bounded.

2Ellipsoid-shaped agents are considered in [82]
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Moreover, we consider that the dynamic terms Mi, Ci, and gi include unknown

constant dynamic parameters of the agents (e.g., masses, moments of inertia),

denoted by the vectors θi ∈ R`, ` ∈ N, for all i ∈ N . The Lagrangian system

(1) can be linearly parameterized with respect to these parameters, i.e., for any

vectors x, y, z, w ∈ Rn, it holds that Mi(x)y+Ci(x, z)w+gi(x) = Yi(x, z, w, y)θi,

∀x, y, z, w ∈ Rn, where Yi : R4n → Rn×` are known regressor matrices, i ∈ N .

We further assume that the terms fi satisfy the growth condition: ‖fi(pi, ṗ)‖1 ≤
αi‖ṗi‖1, ‖di(t)‖1 ≤ dbi , for all xi, vi ∈ R2n, t ≥ 0, where αi, dbi are unknown

positive constants, i ∈ N .

Each agent has a limited sensing radius ςi > 0, with ςi > maxj∈N {ri + rj},
which implies that the agents can sense each other without colliding. Based on

this, we model the topology of the multi-agent network through the undirected

graph G(p) := (N , E(p)), with E(p) := {(i, j) ∈ N 2 : ‖pi − pj‖ ≤ min{ςi, ςj}},
where p := [p>1 , . . . , p

>
N ]> ∈ RnN . We further denote K(p) := |E(p)|. Given the

k-th edge in the edge set E(p), we use the notation (k1, k2) ∈ N 2 that gives the

agent indices that form edge k ∈ K(p), where k1 is the tail and k2 is the head of

edge k, and K(p) := {1, . . . ,K(p)} is an arbitrary numbering of the edges E(p).

We consider that the agents aim at safely navigating to their goals, denoted

by xdi , i ∈ N . As mentioned before, we assume that the agents have been

assigned with a certain prioritization. The first agent in priority is a leader

agent, while the rest are the follower agents. The follower agents give priority

to the navigation of the leader agent, while avoiding collisions with each other

and maintaining connectivity, as defined by the initial graph G(p(0)). Once

the leader navigates to its goal, the next agent in priority assumes the role

of the leader and so forth. Without loss of generality, we assume that agent

i = 1 corresponds to the leader agent, whereas i > 1 are the followers, which

belong to the set NF := {2, . . . , N}. Hence, the problem at hand is the design

of a distributed control protocol such that leader navigates to a desired pose

pd := pd1 , i.e., lim
t→∞

(p1(t)− pd) = 0, while guaranteeing collision avoidance and

connectivity maintenance, i.e., B̄i(pi(t), ri)∩B̄j(pj(t), rj) = ∅, for all t ≥ 0, i, j ∈
N , i 6= j, and ‖pk1(t)−pk2(t)‖ ≤ min{ςm1

, ςm2
}, for all t ≥ 0, k ∈ K0 ⊂ K(p(0)),
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where K0 := {1, . . . ,K0} is an edge numbering for the edge set E0 := E(p(0)),

with K0 := |E0|.
Besides the edge set E0, with edge numbering K0 and K0 edges, which needs

to remain connected, we consider also the complete graph Ḡ := (N , Ē), with

Ē := {(i, j),∀i, j ∈ N , i < j}, K̄ := |Ē | = N(N−1)
2 , and the edge numbering

K̄ := {1, . . . ,K0,K0 + 1, . . . , K̄}, where {K0 + 1, . . . , K̄} corresponds to the

edges in Ē\E0. We construct now the local collision and connectivity functions

for all edges K̄ and K0, respectively. Given positive constants β̄c and β̄n, define

βc,k : R≥0 → [0, β̄c] and βn,l : R≥0 → [0, β̄n], with

βc,k(x) :=

ϑc,k(x) 0 ≤ x < d̄c,k,

β̄c d̄c,k ≤ x
, βn,l(x) :=

ϑn,l(x) 0 ≤ x < d2
n,l

β̄n d2
n,l ≤ x

,

for all k ∈ K̄, l ∈ K0, where ϑc,k : R≥0 → [0, β̄c], ϑn,l : R≥0 → [0, β̄n] are poly-

nomials that guarantee that βc,k and βn,l, respectively, are twice continuously

differentiable, for all k ∈ K̄, l ∈ K0. The aforementioned functions are smooth

switches. Then, we choose

βc,k := βc,k(ιk), ιk := ιk(pk1 , pk2) := ‖pk1 − pk2‖2 − (rk1 + rk2)2

βn,l := βn,l(νl), νl := νl(pl1 , pl2) := d2
n,l − ‖pl1 − pl2‖2

with dn,k := min{ςk1 , ςk2} and we also set d̄c,k := d2
n,k − (rk1 + rk2)2, k ∈ K̄, l ∈

K0. The terms β̄c, β̄n can be any positive constants. Note that βc,k and βn,l take

into account the limited sensing capabilities of the agents and their derivatives

vanish at collisions and connectivity breaks, respectively, of the respective edges.

All the parameters for the construction of βc,k, βn,l can be transmitted off-line

to the agents.

Regarding the uncertain terms of (1), we define estimates θ̂i ∈ R`, α̂i ∈ R,

d̂bi ∈ R, ∀i ∈ N , with the respective errors θ̃i := θ̂i−θi, α̃i := α̂i−αi, d̃bi := d̂bi−
dbi , ∀i ∈ N . By using adaptive control techniques, these estimations compensate

appropriately for the unknown terms, without necessarily converging to them.

In addition, we define the leader error signal se := x1 − xd and the constants
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αc
i,k and αn

i,l as:

αc
i,k :=


−1, i = k1

1, i = k2

0, otherw.

αn
i,l :=


−1, i = l1

1, i = l2

0, otherw.

for all k ∈ K̄, l ∈ K0, i ∈ N , which provide boolean values depending on whether

agent i is part (head or tail) of edge m and l. Finally, we define, for all k ∈ K̄,

l ∈ K0, the terms

β′c,k :=
∂

∂ιk

(
1

βc,k(ιk)

)
, β′n,l :=

∂

∂νl

(
1

βn,l(νl)

)
, (2)

which diverge to infinity in a collision and a connectivity break of the agents

k1, k2 and l1, l2, respectively. We propose now the following distributed adaptive

control protocol. Choose the agents’ desired velocity as

vd1 = −γese +
∑
k∈K̄

αc
1,kβ

′
c,k

∂ιk
∂xk1

+
∑
l∈K0

αn
1,lβ
′
n,l

∂νl
∂xl1

(3a)

vdi = ki

∑
k∈K̄

αc
i,kβ

′
c,k

∂ιk
∂xk1

+
∑
l∈K0

αn
i,lβ
′
n,l

∂νl
∂xl1

 ,∀i ∈ NF (3b)

that concerns the collision avoidance and connectivity maintenance properties,

with the extra term γese for the leader to guarantee the navigation to xd. The

terms γe, ki are positive constants, for i ∈ NF . Since vdi is not the actual

velocity of the agents, we define the errors evi := ṗi − vdi , for all i ∈ N , and

design the distributed control laws

ui :=
∑
k∈M̄

αc
i,kβ

′
c,k

∂ιk
∂pk1

+
∑
l∈K0

αn
i,lβ
′
n,l

∂νl
∂pl1

− kvievi − s̃ei + Yri θ̂i

− sgn(evi)‖ṗi‖1α̂i − sgn(evi)d̂bi , (4)

for all i ∈ N , where s̃e1 = γese, s̃ei = 0, i ∈ NF , Yri := Yi(pi, ṗi, vdi , v̇di), and

kvi are positive gains. Moreover, we design the adaptation signals

˙̂
dbi = γi,d‖evi‖1, ˙̂αi = γi,f‖evi‖1‖ṗi‖1,

˙̂
θi = −γi,θY >ri evi , (5)
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for all i ∈ N , with arbitrary bounded initial conditions, and positive constants

γi,d, γi,f , γi,θ, i ∈ N . The following theorem establishes the leader navigation

while ensuing collision avoidance and connectivity maintenance.

Theorem 1 ([83]). Consider a multi-agent system described by the dynamics
(1). Then, application of the control and adaptation laws (4), (5) guarantees: 1)
navigation of the leader agent to xd, 2) connectivity maintenance of the subset
E0 of the initial edges, 3) inter-agent collision avoidance, and 4) boundedness of
all closed loop signals, from all collision-free initial configurations. Moreover, it
holds that limt→∞ vi(t) = 0, i ∈ N .

Once the leader agent converges to its goal, e.g., when ‖p1 − pd‖ becomes

smaller than a small positive constant, it broadcasts it and the next agent in

priority becomes the leader. Therefore, repetitive application of the aforemen-

tioned theorem for all agents guarantees their sequential navigation to their

respective goals.

4.2. Leader-follower navigation in obstacle-cluttered environments

In this section, we consider the more challenging problem of distributed

and safe multi-agent navigation in a bounded workspace with obstacles. More

specifically, the workspace is now assumed to the open ball W := B(0, rW) =

{z ∈ Rn : ‖z‖ < rW}, with radius rW > 0. The workspace contains M > 0

closed sets Oj , j ∈ J := {1, . . . , J}, corresponding to obstacles. Each obstacle

is a closed ball centered at cj ∈ Rn, with radius rcj > 0, i.e., Oj := B̄(cj , rcj ) =

{z ∈ W : ‖z − cj‖ ≤ rcj}, for j ∈ J . The agents are now assumed to obey the

simplified - with respect to (1) - dynamics:

mip̈i + fi(pi, ṗi) +mig = ui, (6)

for all i ∈ N , where mi is the ith agent’s mass, which is considered un-

known, g is a gravity constant, and fi(·) are unknown functions satisfying

‖fi(pi, ṗi)‖ ≤ αi‖ṗi‖, for unknown constants αi, i ∈ N , similarly to the previous

section. Without loss of generality, we assume that i = 1 is the leader agent,

aiming to safely converge to its goal pd = pd1 . The large complexity of the con-

sidered problem, imposed by the addition of static obstacles, prevents us from

considering connectivity properties while keeping the convergence guarantees.
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Moreover, in contrast to the previous section, we consider that when the leader

agent arrives at its goal, it stays there idle, representing an additional obstacle

to the rest of the agents. We further make the following assumption regarding

the workspace, the initial states, and goals:

Assumption 1. The workspace W, obstacles Oj , j ∈ J , and destinations pdi ,
i ∈ N , satisfy:

‖cj − ck‖ > rcj + rck + 2rM , rW − ‖cj‖ > rcj + 2rM

‖cj − pdi‖ > rcj + ri + 2rM + εd, ‖pdi − pd`‖ > ri + r` + 2rM + 2εd,

rW − ‖pdi‖ > ri + 2rM + εd,

for all i, ` ∈ N , i 6= `, j, k ∈ J , j 6= k, for an arbitrarily small positive constant
εd, where rM := maxi∈N {ri}.

Loosely speaking, the aforementioned assumption states that the pairwise

distances among obstacles and workspace boundary are large enough so that one

agent can always navigate between them. Since the convergence of the agents

to the their destinations is asymptotic, we incorporate the threshold εd, which

is the desired proximity we want the agents to achieve to the destination.

In view of Assumption 1, we can find a positive constant r̄ such that

‖cj − ck‖ > rcj + rck + 2rM + 2r̄, (7a)

rW − ‖cj‖ > rcj + 2rM + 2r̄, (7b)

‖cj − pdi‖ > rcj + ri + 2rM + εd + 2r̄, (7c)

‖pdi − pd`‖ > ri + r` + 2rM + 2εd + 2r̄, (7d)

rW − ‖pdi‖ > ri + 2rM + εd + 2r̄, (7e)

for all i, ` ∈ N , i 6= `, j, k ∈ J , j 6= k.

The proposed control algorithm relies on the fact that the agents actively

avoid collisions with each other and the obstacles only when they are sufficiently

close to them. Such a property is encoded via a designed switching function.

Before providing it, we define the associated distance metrics for the leader
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agent

d1,cj := d1,cj (p1) := ‖p1 − cj‖2 − (r1 + rcj )
2, (8a)

d1,i := d1,i(p1, pi) := ‖p1 − pi‖2 − (r1 + ri)
2, (8b)

d1,c0 := d1,c0(p1) := (rW + r1)2 − ‖p1‖2 (8c)

for all j ∈ J , i ∈ NF , and the follower distance metrics

di,cj := di,cj (pi) := ‖pi − cj‖2 − (ri + rcj + 2rM + 2r̄)2, (8d)

di,1 := di,1(pi, p1) := ‖pi − p1‖2 − (ri + r1)2 = d1,i(p1, pi) (8e)

di,` := di,`(pi, p`) := ‖pi − p`‖2 − (ri + r` + 2rM + 2r̄)2, (8f)

di,d` := di,d`(pi) := ‖pi − pd`‖2 − (ri + r` + 2rM + 2r̄ + εd)2, (8g)

di,c0 := di,c0(pi) := (rW − ri − 2rM − 2r̄)2 − ‖pi‖2, (8h)

for all i, ` ∈ NF , i 6= `, j, k ∈ J , j 6= k. The aforementioned distances encode

the collisions among the agents, with the obstacles and the workspace boundary.

Note that the follower agents need to keep a larger distance among each other,

with the obstacles, and the workspace boundary. This is needed so that the

leader agent is able to navigate among them to reach its goal. Intuitively,

the follower agents will reach a local minimum from the conflicting objectives of

driving to their goal and avoiding the other agents and obstacles; the leader then

will be able to navigate among them and the obstacles to its goal. Moreover,

as mentioned before and unlike the previous section, where the agents were

required to stay connected to one another, here we consider that the agents aim

to navigate to their goals and remain there. Therefore, the control algorithm

uses the distances di,d` , i, ` ∈ N , i 6= ` so that a follower agent i does not reach

a local minimum too close to a goal pd` for some agent ` 6= i higher in priority

(which would need to navigate to its goal before agent i). Finally, we assume

that all aforementioned distances in (8) are positive initially at t = 0 and we

define the constant r̄d := min

{
r̄2
W−‖pd1‖2,minj∈J

{
‖pd1−cj‖2− r̄2

cj

}}
, where

r̄W := rW − r1, r̄cj := rcj + r1, j ∈ J .

As in the previous section, we consider that each agent i ∈ N has a limited
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sensing radius ςi and has access to (pj , ṗj), ∀j ∈ {j ∈ N : ‖pi − pj‖ ≤ ςi}. We

now assume that ςi satisfies ςi >
√

min(r̄2, r̄d) + ri + 3rM + 2r̄, with r̄d, . The

aforementioned specification on ςi will be needed later for the feasibility of the

control protocol.

A critical property for the correctness of the proposed algorithm is the fact

that the leader agent actively avoid collisions with the followers and the obstacles

only when it is sufficiently close to them. This is encoded through a twice contin.

differentiable function β : R>0 → R≥0, with the properties

1. β((0, τ ]) is strictly decreasing, limx→0 β(x) =∞, and β(x) = β(τ), ∀x ≥ τ ,

j ∈ J̄ , for some τ > 0.

2. The function β̃ : (0, τ)→ R≥0, with β̃(x) := β′′(x)x
√

x is decreasing.

An example for a function β is β(x) = 1
6x5−15x4+10x3 for x ≤ β̄ and β(x) = 1,

for x ≥ β̄, for any positive β̄. Note that β′(x) = β′′(x) = 0, for x ≥ τ .

Let now a function β that satisfies the aforementioned properties. We define

the 2nd-order navigation functions for the agents as

φi(p) := k1i‖pi − pdi‖2 + k2i

(
b1i(pi) + b2i(p) + kfib3i(pi)

)
b1i := b1i(pi) :=

∑
j∈J̄

βi(di,cj (pi))

b2i := b2i(p) :=
∑

`∈N\{i}

β(di,`(pi, p`))

b3i := b3i(pi) :=
∑

`∈N\{i}

βi(di,d`(pi)),

for all i ∈ N .

The convergence of the leader to its goal is based on the fact that it actively

avoids collision with other agents and obstacles only when it is sufficiently close

to them. In that way, at most one of the terms β1(d1,cj ), β(d1,`), β1(d1,d`),

appearing in φ1, has non-zero gradient at each x ∈ RNn. We achieve that by

setting τ in the functions β as τ ∈ (0,min{r̄2, r̄d}), as proven in [84]. Regarding

the ability of the agents to sense each other when di,`(pi, p`) < τ , which is when
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they avoid collisions with other, it holds that

di,`(pi, p`) < τ ⇔ ‖pi − p`‖2 ≤ τ + (ri + r` + 2rM + 2r̄)2 ⇒

‖pi − p`‖ ≤
√
τ + ri + r` + 2rM + 2r̄ ⇒

‖pi − p`‖ ≤
√

min{r̄2, r̄d}+ ri + r` + 2rM + 2r̄ < ςi,

for all i, ` ∈ N , i 6= `, since ςi >
√

min(r̄2, r̄d) + ri + 3rM + 2r̄ for all i ∈ N .

We next define the distributed control law as

ui := ui(p, ṗ, m̂i, α̂i) := −kφi∇piφi(p) + m̂i(v̇di + g)−
(
kvi +

3

2
α̂i

)
evi , (9)

for all i ∈ N ; kφi , kvi are positive constants, vdi is the ith agent’s reference

velocity, vdi := vdi(x) := −∇piφi(p), evi are the velocity errors evi := vi − vdi ,

and m̂i, α̂i denote the estimates of mi and αi, respectively, by agent i, evolving

according to

˙̂mi := −kmie>vi(v̇di + g), ˙̂αi := kαi‖evi‖2, (10)

with kmi , kαi positive gain constants, α̂i(t0) ≥ 0, and arbitrary initial conditions

m̂i(t0), for i ∈ N .

The correctness of the proposed control algorithm is given in the subsequent

theorem.

Theorem 2 ([84]). Consider N robots operating in W, subject to the uncertain
2nd-order dynamics (6), and a leader agent i = 1. Then, the control protocol
(9), (10) guarantees collision avoidance between the agents and the agents and
obstacles/workspace boundary as well as convergence of p1 to pd = pd1 from
almost all initial conditions that satisfy positivity of the distance metrics (8) at
t = 0, given sufficiently small τ and that kφi >

αi
2 , i ∈ N . Moreover, all closed

loop signals remain bounded, ∀t ≥ 0.

Similarly to the previous section, once the leader agent converges close to its

goal, i.e., when ‖p1−pd‖ ≤ εd, it broadcasts it and the next agent in priority be-

comes the leader. This occurs iteratively until all the robotic agents reach their

destinations. Finally, the proposed algorithm can be extended to environments

with obstacles that are more complicated (e.g., star-shaper obstacles [85]) in

the single-agent case, i.e., when the follower robots are completely immobilized
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Figure 1: (a): The leader signal ‖se(t)‖+‖ev1 (t)‖, which converges to zero for every navigation
objective; (b) the product

∏
k∈K̄

1
βc,k(ιk(t))

∏
l∈K0

1
βn,l(νl(t))

, which remains bounded, prov-

ing thus the collision and connectivity properties (the zero values stem from the computer’s

lower numerical limits); (c) the adaptation signals
∏
i∈{1,...,6} ‖θ̂i(t)‖,

∏
i∈{1,...,6} d̂bi (t),∏

i∈{1,...,6} α̂i(t), which remain bounded, ∀t ∈ [0, 277] s.

[84]. For more complex workspaces and simultaneous multi-agent navigation,

an algorithm combining potential fields and sampling-based motion planning is

developed in [86], requiring however a central computer unit to monitor and

plan the motion for the agents.

4.3. Simulation Results

We first demonstrate the control algorithm of Section 4.1. We conduct

simulations with N = 6 UAVs in R3 using the realistic robotic simulator

Gazebo [87]. We consider bounding radii ri = 0.35m, sensing ranges ςi = 3m,

∀i ∈ N , and initial positions x1(0) = [0, 0, 0.1]>, x2(0) = [2,−0.5, 0.1]>,

x3(0) = [−1.5, 1.5, 0.1]>, x4(0) = [1, 2, 0.1]>, x5(0) = [−1.5,−1, 0.1]>, and

x6(0) = [0.5,−1.5, 0.1]> m. We also consider that the leader has 4 navigation

objectives, that is, to sequentially navigate to the points xd,1 = [0, 0, 5]>, xd,2 =

[4, 5, 3]>, xd,3 = [−2, 4, 2]>, xd,4 = [3,−2, 3]> m. Since this work provides

asymptotic results with respect to the error se, the leader switches navigation

goal each time it gets closer than 0.075m to the current goal, i.e., ‖se‖ ≤ 0.075m.

We also consider E0 = {(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (5, 6), (2, 6)}. The un-

known parameters θi concern the UAVs’ mass and the gravity constant. The

control gains and parameters are set as γe = 0.7, ki = 5, ∀i ∈ {2, . . . , 6}, and

γi,θ = 0.1, γi,d = 0.01, γi,f = 0.1, kvi = 2, ∀i ∈ {1, . . . , 6}. The simulation re-

sults are shown in Fig. 1 for t ∈ [0, 277] s. More specifically, Fig. 1 shows (a) the
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Figure 2: (a): The initial configurations of the multi-agent scenario. The obstacles are depicted
as filled red disks whereas the agents as circles. The destinations are shown with asterisk; (b)
The resulting signals ‖pi(t)− pdi‖, ∀i ∈ N , shown to converge to zero.

evolution of the signal ‖se(t)‖+‖ev1(t)‖, which converges to zero for each naviga-

tion objective, (b) the evolution of the product
∏
k∈K̄

1
βc,k(ιk(t))

∏
l∈K0

1
βn,l(νl(t))

,

which remains bounded, verifying thus the collision avoidance and connectivity

maintenance properties, and (c) the evolution of the products of the adapta-

tion signals
∏
i∈{1,...,6} ‖θ̂i(t)‖,

∏
i∈{1,...,6} d̂bi(t),

∏
i∈{1,...,6} α̂i(t), which remain

bounded, verifying thus the boundedness of the individual signals. An illustrat-

ing video can be found in https://youtu.be/bzzXC-v2hEM.

Next, we demonstrate the control algorithm of Section 4.2. We consider

20 agents in a 2D workspace of rW = 120, populated with 70 obstacles, as

depicted in Fig. 2a. The radius of the agents and the obstacles is chosen as

ri = rcj = 2, ∀i ∈ N , j ∈ J , and the sensing radius of the agents is taken

as ςi = 20, ∀i ∈ N . The masses, and functions fi(p, ṗ), both unknown to the

agent, are taken as mi = 1, and fi(p, ṗ) = α
16 sin(0.5(pix + piy ))F (ṗi)v, with

F (ṗi) = diag{[exp(−sgn(ṗiz )ṗiz ) + 1]z∈{x,y}}, and α = 10, where we denote

(pix , piy ) = pi, (ṗix , ṗiy ) = ṗi. We choose β as β(x) = 1
6x5−15x4+10x3 for x ≤ 100

and β(x) = 1, for x ≥ 100, with τ = 0.25. The control gains are chosen as

k1i = 0.04, k2i = 5, kvi = 20, kφi = 1, and kmi = kαi = 0.01, for all i ∈ N . The

results are depicted in Fig. 2b for 870 seconds, which shows the convergence of

the distance errors ‖pi(t)−pdi‖ to zero, ∀i ∈ N , t ∈ [0, 870]. A video illustrating
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the simulation can be found on https://vimeo.com/393443782.

5. Cooperative Manipulation

As discussed in Section 1, we aim to incorporate high-level temporal tasks for

unactuated objects. Therefore, apart from multi-agent navigation, it is equally

important to establish control algorithms for cooperative object manipulation.

In this section, we address the problem of cooperative manipulation of a single

object by multiple robotic agents. We consider that the agents grasp the object

via means of rigid contacts. Such an assumption is relaxed in our work [88, 89],

where rolling contacts are employed, but is omitted from the current paper for

ease of exposition.

We provide first the model of the cooperative manipulation system. We

denote by qi, q̇i ∈ Rni , with ni ∈ N,∀i ∈ N := {1, . . . , N}, the generalized joint-

space variables and their time derivatives of agent i, with qi := [qi1 , . . . , qini ].

The overall joint configuration is then q := [q>1 , . . . , q
>
N ]>, q̇ := [q̇>1 , . . . , q̇

>
N ]> ∈

Rn, with n :=
∑
i∈N ni. In addition, the inertial position and orientation of

the ith end-effector, denoted by pEi and ηEi , respectively, can be derived by the

forward kinematics and are smooth functions of qi, i.e. pEi := pEi(qi) : Rni →
R3, ηEi := ηEi(qi) : Rni → T, where T is an appropriate orientation space. The

generalized velocity of each agent’s end-effector vi := [ṗ>Ei , ω
>
Ei

]> ∈ R6, where

ωEi ∈ R3 is the respective angular velocity, can be considered as a transformed

state through the differential kinematics vi = Jiq̇i [90], where Ji := Ji(qi) :

Rni → R6×ni is a smooth function representing the geometric Jacobian matrix,

i ∈ N [90]. We define also the sets Si := {qi ∈ Rni : det(Ji(qi)Ji(qi)
>) > 0},

which contains all the singularity-free configurations. The differential equation

describing the task-space dynamics of each agent is [90]:

Mi(qi)v̇i + Ci(qi, q̇i)vi + gi(qi) + di(qi, q̇i, t) = ui − hi, (11)

where Mi : Si → R6×6 is the positive definite inertia matrix, Ci : Si × Rni →
R6×6 is the Coriolis matrix, gi : Si → R6 is the gravity vector, di : Si × Rni ×
R≥0 → R6 is a disturbance term, and ui = [ui,1, . . . , ui,6]> ∈ R6 is the task
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space wrench, representing the control input. All the aforementioned dynamic

terms are continuous, and di(qi, q̇i, t) are bounded in t, for all ∀i ∈ N .

Regarding the object, we denote by xO := [p>O , η
>
O ]> ∈ M := R3 × T, vO :=

[ṗ>O , ω
>
O ]> ∈ R6 the pose and generalized velocity of its center of mass; ηO here

denotes explicitly Euler angles ηO := [ϕO, θO, ψO]> ∈ T = (−π, π) × (−π2 , π2 ) ×
(−π, π). We consider the following second-order dynamics, which can be derived

based on the Newton-Euler formulation:

ẋO = JO(ηO)vO, (12a)

MO(ηO)v̇O + CO(ηO, ωO)vO + gO + dO(xO, ẋO, t) = hO, (12b)

where MO : T→ R6×6 is the positive definite inertia matrix, CO : T×R6 → R6×6

is the Coriolis matrix, gO ∈ R6 is the gravity vector, dO : M×R6×R≥0 → R6 a

bounded vector representing modeling uncertainties and external disturbances,

and hO ∈ R6 is the vector of generalized forces acting on the object’s center

of mass. Moreover, JO := JO(ηO) : T → R6×6 is the object representation

Jacobian [90], which is not well-defined when θO = ±π2 , which is referred to as

representation singularity. Similarly to the robotic agents, the aforementioned

dynamic terms are continuous and dO(xO, ẋO, t) is bounded in t. We also denote

by RO : T→ SO(3) the object’s rotation matrix.

The pose of the agents and the object’s center of mass are related as

pEi(qi) = pO +Ri(qi)p
Ei
Ei/O

, (13a)

ηEi(qi) = ηO + ηEi/O, (13b)

for all i ∈ N , where Ri : Rni → SO(3) is the i’s end-effector rotation matrix,

and p
Ei
Ei/O

, ηEi/O ∈ R3 are the constant distance and orientation offset vectors

between {O} and {Ei}. Following (13), along with the fact that, due to the

grasping rigidity, it holds that ωEi = ωO, i ∈ N , one obtains

vi = JOivO, (14)
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where JOi : Rni → R6×6 is the object-to-agent Jacobian matrix, with

JOi(qi) :=

 I3 −Ss(Ri(qi)pEiEi/O)

0 I3

 ,∀qi ∈ Rni , (15)

which is always full-rank.

The kineto-statics duality along with the grasp rigidity suggest that the force

hO acting on the object’s center of mass and the generalized forces hi, i ∈ N ,

exerted by the agents at the grasping points, are related through:

hO = G(q)h, (16)

where G : Rn → R6×6N , with G(q) := [J>O1
, . . . , J>ON ], is the full row-rank grasp

matrix. By combining (16), (14), (11), and (12), we obtain the coupled dynamics

M̃(x)v̇O + C̃(x)vO + g̃(x) + d̃(x, t) = Gu, (17)

where M̃ := MO + GMG>, C̃ := CO + GCG> + GMĠ>, g̃ := gO + Gg, d̃ :=

dO +Gd, x is the overall state x := [q>, q̇>, η>O , ω
>
O ]> ∈ X := S×Rn+3×T, S :=

S1×· · ·×SN , and we further use v := [v>1 , . . . , v
>
N ] ∈ R6N , M := diag{[Mi]i∈N } ∈

R6N×6N , C := diag{[Ci]i∈N } ∈ R6N×6N , h := [h>1 , . . . , h
>
N ]>, u := [u>1 , . . . ,

u>N ]>, g := [g>1 , . . . , g
>
N ]>, d := [d>1 , . . . , d

>
N ]> ∈ R6N .

The problem we consider in this section is the tracking of a trajectory by

the object. That is, we aim to design distributed, feedback control laws u such

that lim
t→∞

(pO(t) − pd(t)) = lim
t→∞

(ηO(t) − ηd(t)) = 0, for reference trajectories

pd : R≥0 → R3, ηd := [ϕd, θd, ψd] := [ϕd(t), θd(t), ψd(t)] : R≥0 → T, with

bounded first and second derivatives, satisfying θd(t) ∈ [−θ̄, θ̄] ⊂ (−π2 , π2 ), for

all t ∈ R≥0; ηd is associated with a desired angular velocity ωd, as in (12a).

We assume that each robotic agent has continuous feedback of its own state

qi, q̇i and knows the constant offsets p
Ei
Ei/O

and ηEi/O, implying it can compute

the pose and velocity of the object’s center of mass via (13) and (14), for i ∈ N .

As previously mentioned, the dynamics of real robotic systems cannot be

accurately known; therefore, we consider that the object and robot dynamic

terms in (12), (11) are uncertain, i.e., they are not fully available for feedback
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in the control design. Furthermore, as mentioned in Section 1, cooperative ob-

ject manipulation is part of a larger framework that consists of the safe and

possibly timed execution of high-level tasks. Therefore, we present in the fol-

lowing two constrained -control methodologies based on Prescribed Performance

Control (PPC) and nonlinear Model Predictive Control (MPC).

5.1. Prescribed Performance Control

We first adopt the concepts and techniques of PPC, proposed in [91], in

order to achieve predefined transient and steady-state response for the derived

error, as well as ensure that θO(t) evolves in a subset of (−π2 , π2 ), for all t ≥ 0.

Prescribed performance characterizes the behavior where a signal evolves strictly

within a predefined region that is bounded by absolutely decaying functions of

time, called performance functions. This signal is represented by the object’s

pose error

es :=
[
esx , esy , esz , esϕ , esθ , esψ

]>
:= xO − xd (18)

where xd := xd(t) := [(pd)>, (ηd)>]> := [(pd(t))>, (ηd(t))>]> : R≥0 → M. We

further assume here that the robotic agents operate away from their kinematic

singularities, i.e., each qi(t) evolves in a closed subset of Si, for i ∈ N . Finally,

we consider that the dynamic terms and disturbances appearing in the robot

and object models (11) and (12), respectively, are completely unknown and

cannot be used in the control design.

The mathematical expressions of prescribed performance are given by the

following inequalities:

− ρsk(t) < esk(t) < ρsk(t),∀k ∈ K, (19)

where K := {x, y, z, ϕ, θ, ψ} and ρk : R≥0 → R>0, with

ρsk(t) := (ρsk,0 − ρsk,∞) exp(−lskt) + ρsk,∞, ∀k ∈ K, (20)

are designer-specified, smooth, bounded and decreasing positive functions of

time with lsk , ρsk,∞, k ∈ K, positive parameters incorporating the desired tran-

sient and steady-state performance respectively. The terms ρsk,∞ can be set
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arbitrarily small, achieving thus practical convergence of the errors to zero.

Next, we propose a state feedback control protocol that does not incorporate

any information on the agents’ or the object’s dynamics or the external distur-

bances and guarantees (19) for all t ≥ 0. More specifically, given the errors (18):

Step I-a. Select the functions ρsk as in (20) with

(i) ρsθ,0 = ρsθ (0) = θ∗, ρsk,0 = ρsk(0) > |esk(0)|,∀k ∈ K\{θ},

(ii) lsk > 0,∀k ∈ K,

(iii) ρsk,∞ ∈ (0, ρsk,0),∀k ∈ K,

where θ∗ is a positive constant satisfying θ∗ + θ̄ < π
2 .

Step I-b. Introduce the normalized errors

ξs :=
[
ξsx , . . . , ξsψ

]>
:= ρ−1

s es, (21)

where ρs := diag{[ρsk ]k∈K} ∈ R6×6, as well as the transformed state functions

εs : (−1, 1)6 → R6, and signals rs : (−1, 1)6 → R6×6, with

εs(ξs) :=
[
εsx , . . . , εsψ

]>
:=
[
ln
(

1+ξsx
1−ξsx

)
, . . . , ln

(
1+ξsψ
1−ξsψ

)]>
(22)

rs(ξs) := diag{[rsk(ξsk)]k∈K} := diag

{[
∂εsk
∂ξsk

]
k∈K

}
, (23)

and design the reference velocity vector

vr := −gsJO(ηO)−1ρs(t)
−1rs(ξs)εs(ξs), (24)

where gs is a positive gain constant.

Step II-a. Define the velocity error vector

ev :=
[
evx , . . . , evψ

]>
:= vO − vr, (25)

and select the corresponding positive performance functions ρvk(t) := (ρvk,0 −
ρvk,∞) exp(−lvkt) + ρvk,∞, such that ρvk,0 > ‖ev(0)‖, lvk > 0 and ρvk,∞ ∈
(0, ρvk,0), k ∈ K.

Step II-b. Define the normalized velocity error

ξv :=
[
ξvx , . . . , ξvψ

]>
:= ρ−1

v ev, (26)
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where ρv := ρv(t) := diag{[ρvk ]k∈K}, as well as the transformed states εv :

(−1, 1)6 → R6 and signals rv : (−1, 1)6 → R6×6, with

εv := εv(ξv) :=
[
εvx , . . . , εvψ

]>
:=
[
ln
(

1+ξvx
1−ξvx

)
, . . . , ln

(
1+ξvψ
1−ξvψ

)]>
(27)

rv(ξv) := diag{[rvk(ξvk)]k∈K} := diag

{[
∂εvk
∂ξvk

]
k∈K

}
, (28)

and design the distributed feedback control protocol for each agent i ∈ N as

ui := −gvJOi(qi)−1ρv(t)
−1rv(ξv)εv(ξv), (29)

where gv is a positive constant gain.

Remark 1. The PPC technique guarantees predefined transient and steady-
state performance specifications by enforcing the normalized errors ξsk , and
ξvk , k ∈ K, to remain strictly in (−1, 1) for all t ≥ 0. Owing to (22) and
(27), the proposed control algorithm achieves such a containment simply by
maintaining the boundedness of the modulated errors εsk , εvk , k ∈ K; a careful
inspection of (24) and (29) reveals that the PPC algorithm operates similarly to
reciprocal barrier functions in constrained optimization, admitting high negative
or positive values depending on whether esk(t)→ ±ρsk(t) and evk(t)→ ±ρvk(t),
k ∈ K, eventually preventing esk(t) and evk(t) from reaching the respective
boundaries.

Remark 2. Notice from (29) that each agent i ∈ N calculates its own control
signal, rendering thus the overall control scheme distributed. The terms lk,
ρk,0, ρk,∞, lvk , and ρvk,∞, k ∈ K needed for the calculation of the performance
functions can be transmitted off-line to the agents. Moreover, the PPC protocol
is robust to model uncertainties and external disturbances. In particular, note
that the control laws do not even require the structure of the terms M̃, C̃, g̃, d̃.

The correctness of the PPC algorithm is established in the following theorem.

Theorem 3 ([92]). Consider N agents rigidly grasping an object with unknown
coupled dynamics (17). Then, the distributed control protocol (21)-(29) guar-
antees that −ρsk(t) < esk(t) < ρsk(t), for all k ∈ K, t ≥ 0, from all initial
conditions satisfying |θO(0) − θd(0)| < θ∗ (from Step I-a (i)), with all closed
loop signals being bounded.

The incorporation of θ∗ in the aforementioned theorem stems from the need

to comply with the singularity constraints −π2 < θO(t) < π
2 . One can avoid such

singularities by using different representation for the object orientation, such as

unit quaternions or rotation matrices. Algorithms for multi-agent control using
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such representations have been developed in [93, 94]. Finally, the developed

PPC algorithm can be extended to achieve simultaneous asymptotic stability,

except for compliance with the performance bounds [95, 96].

5.2. Model Predictive Control

In this section, we consider a more general problem, where we take into

account explicit constraints regarding the object and the agents [97, 98, 99].

Such constraints consist of inter-robot collision avoidance, collision avoidance

with obstacles, singularity avoidance, and control-input saturation constraints.

In particular, consider J ∈ N obstacles Oj ⊂ R3, j ∈ J = {1, . . . , J}, as in

Section 4, and denote by Ai(qi) ⊂ R3, i ∈ N , AO(xO) ⊂ R3 the physical

volumes occupied by agent i, at state qi, i ∈ N , and the object, at state xO,

respectively. The problem here consists of designing the control input u in a

distributed way, such that lim
t→∞

xO(t) = xd, while ensuring the satisfaction of

the following collision avoidance and singularity properties:

1. Ai(qi(t)) ∩ Oj = ∅, AO(xO(t)) ∩ Oj = ∅,∀i ∈ N , j ∈ J ,

2. Ai(qi(t)) ∩ A`(q`(t)) = ∅,∀i, ` ∈ N , i 6= `,

3. −π2 < −θ̄ ≤ θO(t) ≤ −θ̄ < π
2 , qi(t) ∈ Si, ∀i ∈ N

for all t ≥ 0, as well as the input and velocity magnitude constraints: |τi,k| ≤
τ̄i, |q̇ik | ≤ ¯̇qi,∀k ∈ {1, . . . , ni}, i ∈ N , for some positive constants τ̄i, ¯̇qi, i ∈ N .

In the following, we assume that the free space is connected, i.e., the set

{(q, xO) ∈ Rn × M : Ai(qi) ∩ Oj = ∅,Ai(qi) ∩ A`(q`) = ∅,AO(xO) ∩ Oj =

∅,∀i, ` ∈ N , i 6= `, j ∈ J } is nonempty and connected and that the each agent

can continuously communicate with the other agents and transmit appropriate

information.
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We further define the sets

Si,O :={qi ∈ Rni : Ai(qi) ∩ Oj = ∅,∀j ∈ J }, ∀i ∈ N

SA :={q ∈ Rn : Ai(qi) ∩ A`(q`) = ∅,∀i, ` ∈ N , i 6= `}

SO :={xO ∈M : AO(xO) ∩ Oj = ∅}

SOi :={qi ∈ Rni : AO(xOi(qi)) ∩ Oj = ∅,∀j ∈ J }, ∀i ∈ N

Si,A(q−i) :={qi ∈ Rni : Ai(qi) ∩ A`(q`) = ∅,∀` ∈ N\{i}}, ∀i ∈ N

associated with the desired collision-avoidance properties, where q−i := [q>1 , . . . ,

q>i−1, q>i+1, . . . , q>N ]>, for i ∈ N . The presented results in this section concern

a constant reference pose xd, but can be extended to account for time-varying

reference trajectories Further, we consider that the dynamic uncertainties are

represented by the state- and time-dependent functions di(·) and dO(·) of (11)

and (12), respectively, while the rest of the dynamics terms are assumed known.

Finally, we ease of exposition, we adopt agents with 6 degrees of freedom, i.e.,

ni = 6, i ∈ N ; the analysis can be extended, however, to redundant agents

(ni > 6).

In order to develop a distributed MPC algorithm, we modify the represen-

tation of the coupled object-agents dynamics presented so far. We first de-

couple the dynamics (17) for each agent’s MPC. We define xOi : Rni → M,

vOi : R2ni → R6 with xOi(qi) := [pOi(qi)
>, ηOi(qi)

>]> ∈M,

pOi(qi) :=pEi(qi) +Ri(qi)p
Ei
O/Ei

(30a)

ηOi(qi) :=ηEi(qi) + ηO/Ei (30b)

for all i ∈ N , as well as

vOi(qi, q̇i) := [ṗOi(qi)
>, ωOi(qi, q̇i)

>]> := JiO (qi)vi(qi, q̇i), ∀i ∈ N , (31)

where JiO (qi) := JOi(qi)
−1, ∀i ∈ N , which are derived from (13) and (14),

respectively; xOi and vOi are the pose and velocity of the object as computed

by agent i ∈ N .

Consider now the constants ci, with 0 < ci < 1 and
∑
i∈N

ci = 1 that play the

role of load sharing coefficients for the agents. Then, the object dynamics (12)
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can be written as:∑
i∈N

ci

{
MO

(
ηOi(qi)

)
v̇Oi(qi, q̇i) + CO

(
ηOi(qi), ωOi(qi, q̇i)

)
vOi(qi, q̇i) + gO + dO(·)

}
=

∑
i∈N

JOi(qi)
>hi,

from which, by employing the grasp coupling (see (16)), the differential kine-

matics of the agents, (31), and after straightforward algebraic manipulations,

we obtain the coupled dynamics∑
i∈N

{
MDi(qi)q̈i + CDi(qi, q̇i)q̇i + gDi(qi) + dDi(qi, t)

}
=
∑
i∈N

JOi(qi)
>ui, (32)

where

MDi :=ciMOJiOJi + J>OiMiJi,

CDi :=J>Oi

(
MiJ̇i + CiJi

)
+ ciMOJiO J̇i + ciMOJ̇iOJi + ciCO,

gDi :=cigO + J>Oigi,

dDi :=cidO + J>Oidi

for all i ∈ N .

To design a distributed NMPC control scheme, we employ a leader-follower

perspective. More specifically, as will be explained in the sequel, at each sam-

pling time, a leader agent solves part of the coupled dynamics (32) via an NMPC

scheme, and transmits its predicted variables to the rest of the agents. Assume,

without loss of generality, that the leader corresponds to agent i = 1. Loosely

speaking, the proposed solution proceeds as follows: agent 1 solves, at each

sampling time step, the receding horizon model predictive control subject to

the forward nominal dynamics:

MD1
q̈1 + CD1

q̇1 + gD1
= J>O1

u1, (33)

and a number of inequality constraints, as will be clarified later. After ob-

taining a control input sequence and a set of predicted variables for q1, q̇1, it

transmits the corresponding predicted state for the object xO1
(q1), vO1

(q1, q̇1)
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for the control horizon to the other agents {2, . . . , N}. Then, the followers solve

the receding horizon NMPC subject to the forward nominal dynamics:

MDi q̈i + CDi q̇i + gDi = J>Oiui, (34)

the state equality constraints:

xOi(qi) = xO1
(q1), vOi(qi, q̇i) = vO1

(q1, q̇1), (35)

for i ∈ {2, . . . , N}, as well as a number of inequality constraints that incorporate

obstacle and inter-agent collision avoidance. More specifically, we consider that

there is a priority sequence among the agents, which we assume, without loss of

generality, that is defined by {1, . . . , N}. Each agent, after solving its optimiza-

tion problem, transmits its calculated predicted variables to the agents of lower

priority, which take them into account for collision avoidance. Note that the

coupled object-agent dynamics are implicitly taken into account in equations

(33), (34) in the following sense. Although the coupled model (32) does not im-

ply that each one of these equations is satisfied, by forcing each agent to comply

with the specific dynamics through the optimization procedure, we guarantee

that (32) is satisfied, since it’s the result of the addition of (33) and (34), for

i = 1 and every i ∈ {2, . . . , N}, respectively. Intuitively, the leader agent is

the one that determines the path that the object will navigate through, and

the rest of the agents are the followers that contribute to the transportation.

Moreover, the equality constraints (35) guarantee that the predicted variables

of the agents {2, . . . , N} will comply with the rigidity at the grasping points.

By using the notation xqi := [x>qi,1, x
>
qi,2]> := [q>i , q̇

>
i ]> ∈ R2ni , i ∈ N , the

nonlinear dynamics of each agent can be written as:

ẋqi = fqi(xqi , ui) +dqi(xqi , t) :=

 fqi,1(xqi)

fqi,2(xqi , ui)

+

 0

−M̂Di(qi)dDi(qi, t)

 , (36)

where

fqi,1(xqi) :=xqi,2,

fqi,2(xqi , ui) :=M̂Di(qi)
(
JOi(qi)

>ui − CDi(qi, q̇i)q̇ − gDi(qi)
)
,
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and M̂Di(qi) := MDi(qi)
>(MDi(qi)MDi(qi)

>)−1
. for all i ∈ N . The nominal

dynamics of each agent are given by omitting the disturbance dqi(·):

˙̄xqi = fqi(x̄qi , ūi) :=

 fqi,1(x̄qi)

fqi,2(x̄qi , ūi)

 , (37)

and ·̄ is used to denote the nominal signals. It can be concluded that the matrices

M̂Di(qi) + M̂Di(qi)
> are positive definite when qi ∈ Si, i ∈ N . Therefore,

one also concludes that the linearized nominal systems are stabilizable around

x̄qi = 0.

We define now the error and nominal error as:

eD1
(xq1) :=

xO1
(q1)− xd

vO1
(q1, q̇1),

 , ēD1
(x̄q1) :=

xO1
(q̄1)− xd

vO1
(q̄1, ˙̄q1),

 (38)

which gives us the dynamics:

ėD1
=fD1

(xq1 , t, u1), (39a)

˙̄eD1 =f̄D1(x̄q1 , ū1), (39b)

with

fD1(xq1 , u1) :=[
JO(ηO1

(q1))J1O (q1)J1(q1)q̇1

J1O (q1)J1(q1)
(
fq1,2(xq1 , u1) − M̂D1(q1)dD1(q1, t)

)
+
(
J1O (q1)J̇1(q1) + J̇1O (q1)J1(q1)

)
q̇1

]
f̄D1(x̄q1 , ū1) :=[

JO(ηO1
(q̄1))J1O (q̄1)J1(q̄1) ˙̄q1

J1O (q̄1)J1(q̄1)fq1,2(x̄q1 , ū1) +
(
J1O (q̄1)J̇1(q̄1) + J̇1O (q̄1)J1(q̄1)

)
˙̄q1

]
where we employed (39) and the object dynamics.

The input-constraint sets are now defined as

UDi :=

{
ui ∈ R6 : ‖ui‖ ≤

τ̄i
σmin(J>i )

}
,

where σmin(·) denotes the minimum singular value. Define also the sets

XD1
(q−1) :=

{
xq1 ∈ R2n1 : θO1

(q1) ∈ [−θ̄, θ̄], |q̇1k | ≤ ¯̇q1,∀k ∈ {1, . . . , n1},

q1 ∈ S1 ∩ S1,A(q−1) ∩ S1,O ∩ SO1

}

XDi(q−i) :=

{
xqi ∈ R2ni : |q̇ik | ≤ ¯̇qi,∀k ∈ {1, . . . , ni}, qi ∈ Si ∩ Si,A ∩ Si,O

}
,
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for all i ∈ {2, . . . , N}. The sets XDi capture all the state constraints of the
system dynamics (36), i.e., representation- and singularity-avoidance, collision
avoidance among the agents and the obstacles, and collision avoidance of the
object with the obstacles. Such constraints are assigned to the leader agent
only. We further define the set

ED1(q−1) := {eD1(xq1) ∈ R12 : xq1 ∈ XD1(q−1)},

which now represents the constraints set for the NMPC scheme of the leader.
The main problem at hand is the design of a feedback control law u1 ∈ UD1

for agent 1 that guarantees that the error signal eD1 with dynamics given in
(39), satisfies limt→∞ ‖eD1(xq1(t))‖ → 0, while ensuring the aforementioned
constraints. The role of the followers {2, . . . , N} is, through the load-sharing
coefficients c2, . . . , cN in (32), to contribute to the object trajectory execution,
as derived by the leader agent 1, while also avoiding collisions. In order to solve
the aforementioned problem, we propose a NMPC scheme, which is presented
hereafter.

The control law for the leader agent consists of a nominal control action ū1

and a state feedback law κ1(eD1
, ēD1

). As it will be presented hereafter, ū1 will
be the outcome of a nominal finite-horizon optimal control problem (FHOCP),
solved at each sampling time instant; and the feedback law κ1(eD1

, ēD1
) is used

to guarantee that the real trajectory eD1(xq1(t)) remains in bounded hyper-
tubes centered in the nominal trajectories ēD1(x̄q1(t)), for all times. The volume
of the hyper-tubes depends on the upper bound of the disturbances dD1

as well
as the agent dynamics. The state feedback law is designed as

κ1(eD1 , ēD1) = −kD1(eD1 − ēD1),

where kD1
is a positive control gain. By appropriately setting kD1

, we guarantee
that eD1

− ēD1
∈ Z1, where Z1 is a closed ball in R12. More details are provided

in [100].
Next, we describe the design of the component ū1. Consider a sequence

of sampling times {tj}, j ∈ N with tj+1 = tj + hs, hs ∈ (0, Tp), and Tp the
respective horizon. For agent 1, the open-loop input signal applied in between
the sampling instants is given by the solution of the following FHOCP:

min
û1(·)

JD1(ēD1(x̄q1(tj)), ū1(·)) := min
ū1(·)

{
VD1(ēD1(x̄q1(tj + Tp)))

+

∫ tj+Tp

tj

[
FD1

(ēD1
(x̄q1(s)), ū1(s))

]
ds

}
(40a)

subject to:

˙̄eD1
(x̄q1(s)) = f̄D1

(x̄q1(s), ū1(s)), ēD1
(x̄q1(tj)) = f̄D1

(x̄q1(tj)), (40b)

ēD1
(x̄q1(s)) ∈ ĒD1

(q−1(tj)), s ∈ [tj , tj + Tp], (40c)

ū1(s) ∈ ŪD1
, s ∈ [tj , tj + Tp], (40d)

ēD1
(x̄q1(tj + Tp)) ∈ ED1

. (40e)
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At a generic time tj then, agent 1 solves the aforementioned FHOCP. The
functions FD1 : R12 × R6 → R≥0, VD1 : R12 → R≥0 stand for the run-
ning cost and the terminal penalty cost, respectively, and they are defined
as: FD1

(eD1
, u1) := e>D1

QD1
eD1

+ u>1 RD1
u1, VD1

(eD1
) := e>D1

PD1
eD1

, where
RD1

∈ R6×6 and PD1
∈ R12×12 are symmetric and positive definite gain ma-

trices; QD1 ∈ R12×12 is a symmetric and positive semi-definite controller gain
matrix and ED1 is the terminal set used to force stability of the closed-loop
system.

We will explain hereafter the form of the sets ĒD1
(q−1(tj)) and ŪD1

. In
order to guarantee that, while agent 1 is solving the FHOCP (40) for its nom-
inal system, the real trajectory eD1

(xq1(t)) and the control inputs u1(t) sat-
isfy the state and input constraints ED1(q−1(tj)) and UD1 , respectively, the
sets ED1(q−1(tj)) and UD1 need to be properly modified. In view of the fact
that eD1

− ēD1
∈ Z1 under the feedback control law κ(eD1

, ēD1
), it holds that

eD1
(xq1(s)) ∈ Z1 ⊕ {ēD1

(x̄q1(s))}, for s ∈ [tj , tj + Tp]. Therefore, ĒD1
(q−1(tj))

is defined a ĒD1
(q−1(tj)) := ED1

(q−1(tj)) 	 Z1. By following a similar rea-
soning, ŪD1 is defined as ŪD1

:= UD1 	 [(−kD1) ◦ Z1]. Intuitively, the sets
ED1(q−1(tj)) and UD1 are tightened due to the difference between eD1(xq1(t))
and ēD1

(x̄q1(t)).
The solution to FHOCP (40a) - (40e) starting at time tj provides an optimal

control input, denoted by ū?1(s; eD1
(xq1(tj)), xq(tj)), s ∈ [tj , tj + Tp], xq :=

[x>q1 , . . . , x
>
qN ]>. This control input is then applied to the system until the next

sampling instant tj+1:

ū1 (s; ēD1
(x̄q1(tj)), x̄q(tj)) = ū?1 (s; eD1

(xD1
(tj)), xq(tj)) , ∀s ∈ [tj , tj+1). (41)

At time tj+1 = tj + hs, a new FHOCP is solved in the same manner, leading to
a receding horizon approach. The control input ū1(·) is of feedback form, since
it is recalculated at each sampling instant based on the then-current state.

After the solution of the FHOCP and the calculation of the predicted states
x̄q1(s), s ∈ [tj , tj+1), at each time instant tj , agent 1 transmits the values
q̄1(s), ˙̄q1(s) as well as xO1

(q̄1(s)) and vO1
(q̄1(s), ˙̄q1(s)), computed by (30), (31),

s ∈ [tj , tj + Tp], to the rest of the agents {2, . . . , N}. The rest of the agents
then proceed as follows. Each agent i ∈ {2, . . . , N} applies the control input
ui = ūi + κi(·), similarly to the leader; κi(·) is a closed-form state feedback law
associated with some error function, such as eDi defined as in (38), and ūi is
the solution of the FHOCP:

min
ūi(·)

JDi(x̄qi(tj)), ūi(·)) (42a)

subject to:

˙̄xqi = fqi(x̄qi(s), ūi(s)), (42b)

x̄qi(s) ∈ Xi

(
q̄1(s), . . . , q̄i−1(s), qi+1(tj), . . . , qN (tj)

)
, (42c)

xOi(q̄i(s)) = xO1
(q̄1(s)), (42d)

vOi(q̄i(s), ˙̄qi(s)) = vO1
(q̄1(s), ˙̄q1(s)), (42e)

ūi(s) ∈ UDi , (42f)
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for s ∈ [tj , tj + Tp] and at every sampling time tj , where JDi is an associated
cost function. The constraint (42c) guarantees that agent i will obtain a trajec-
tory that does not collide with the predicted trajectories of the agents higher in
priority, or the agents lower in priority at tj . Note that, through the equality
constraints (42d), (42e), the follower agents must comply with the trajectory
computed by the leader q̄1(s), ˙̄q1(s). We further assume that the aforemen-
tioned constraints are feasible, i.e., the sets {q ∈ Rn : xOi(q̄i(s)) = xO1

(q̄1(s)),
vOi(q̄i(s), ˙̄qi(s)) = vO1

(q̄1(s), ˙̄q1(s)), qi ∈ Xi

(
q̄1(s), . . . , q̄i−1(s), qi+1(tj), . . . , qN (tj)

)
}

are nonempty, for all i ∈ {2, . . . , N}, s ∈ [tj , tj + Tp], j ∈ N.
Next, similarly to the leader agent, agent i > 1 calculates the predicted states

q̄i(s), ˙̄qi(s), s ∈ [tj , tj + Tp], which then transmits to the agents {i + 1, . . . , N}.
In that way, at each time instant tj , each agent i ∈ {2, . . . , N} receives the other
agents’ states, incorporates the constraint (42c) for the agents {i + 1, . . . , N},
receives the predicted states q̄`(s), ˙̄q`(s) from the agents ` ∈ {2, . . . , i − 1}
and incorporates the collision avoidance constraint (42c) for the entire hori-
zon. Loosely speaking, we consider that each agent i ∈ N takes into account
the first state of the next agents in priority (q`(tj), ` ∈ {i + 1, . . . , N}), as well
as the transmitted predicted variables q̄`(s), ` ∈ {1, . . . , i − 1} of the previous
agents in priority, for collision avoidance. Intuitively, the leader agent executes
the planning for the followed trajectory of the object’s center of mass (through
the solution of the FHOCP (40a)-(40e)), the follower agents contribute in ex-
ecuting this trajectory through the load sharing coefficients ci (as indicated
in the coupled model (32)), and the agents low in priority are responsible for
collision avoidance with the agents of higher priority. Moreover, the aforemen-
tioned equality constraints (42d), (42e) as well as the forward dynamics (42a)
guarantee the compliance of all the followers with the model (32).

Given the constrained FHOCP (42a)-(42f), the solution of the problem lies in
the capability of the leader agent to produce a state trajectory that guarantees
xO1

(q1(t)) → xdes, by solving the FHOCP (40a)-(40e) [98]. A formal proof is
similar to the ones presented in [101, 100] and is therefore omitted.

5.3. Energy-Optimal Cooperative Manipulation

An important aspect in cooperative manipulation systems is the regulation of
internal forces. Internal forces are forces exerted by the agents at the grasping
points that do not contribute to the motion of the object. While a certain
amount of such forces is required in many cases (e.g., to avoid contact loss in
multi-fingered manipulation), they need to be minimized in order to prevent
object damage and unnecessary effort of the agents. In particular, the forces
h = [h>1 , . . . , h

>
N ]> of (11) between the object and the agents can be decoupled

into motion-induced and internal forces

h = hm + hint.

The internal forces hint are squeezing forces that the agents exert to the object
and belong to the nullspace of G(x) (i.e., G(x)hint = 0). When h = hint, it
holds that G(x)(u−Mv̇ − Cv − g − d) = 0 and the object moves according to
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hO = MOv̇O + COvO + gO = 0. Hence, hint does not contribute to the object’s
motion and results in internal stresses that might damage it.

In cooperative manipulation schemes, the most energy- efficient way of trans-
porting an object is to exploit the full potential of the cooperating robotic agents,
i.e., each agent does not exert less effort at the expense of other agents, which
might then potentially exert more effort than necessary. For instance, consider
a rigid cooperative manipulation scheme, with only one agent (a leader) working
towards bringing the object to a desired location, whereas the other agents have
zero inputs. Since the grasps are rigid, if the leader is equipped with sufficiently
powerful actuators, it will achieve the task by “dragging” the rest of the agents,
compensating for their dynamics, and creating non-negligible internal forces. In
such cases, when the cooperative manipulation system is rigid (i.e., the grasps
are considered to be rigid), the optimal strategy of transporting an object is
achieved by regulating the internal forces to zero. Therefore, from a control
perspective, the goal of a rigid cooperative manipulation system is to design a
control protocol that achieves a desired cooperative manipulation task, while
guaranteeing that the internal forces remain zero.

By employing Gauss’ principle for constrained motion and exploiting the
grasp rigidity, we obtain a closed-form expression for the internal forces as hint =
−M 1

2 (ARM
− 1

2 )†(ȦRv +ARαR), where αR := M−1(u−Cv − g − d) and AR is
the constraint matrix

AR =


I3 Ss(p12) −I3 03×3 . . . 03×3 03×3

03×3 I3 03×3 −I3 . . . 03×3 03×3

...
... . . .

. . .
. . .

...
...

I3 Ss(p1N ) 03×3 03×3 . . . −I3 03×3

03×3 I3 03×3 03×3 . . . 03×3 −I3


with pij := pEi − pEj , i, j ∈ N 3. Based on the aforementioned expression, we
derive new results on the expression of hint as well as the internal-force-free
distribution of an object force to the agents.

Theorem 4 ([102, 103]). Consider N robotic agents rigidly grasping an object.
Then it holds that

hint = (I6N −MG>(GMG>)−1G)h.

Further, let a desired force hO,d ∈ R6 to be applied to the object, which is dis-
tributed to the agents’ desired forces as hd = G∗hO,d, and where G∗ is a right-
inverse of G, i.e., GG∗ = I6. Then it holds that

hint = 0⇔ G∗ = MG>(GMG>)−1.

3It can be proven that the matrix AR is equivalent to the rigiity matrix in rigid formations
when the manipulator end-effectors are viewed as the nodes of a graph [102]
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Based on the aforementioned result, we provide next a control protocol that
guarantees convergence to a reference xd while guaranteeing regulation of inter-
nal forces to zero. In order to avoid the representation singularity of θO = π

2
(see (12a)), we use the orientation error metric eo = 1

2 tr(I3 − R>d RO), where
Rd : R≥0 → SO(3) is a desired rotation matrix, corresponding to ηd and evolv-

ing according to Ṙd = Ss(ωd)Rd. which we desire to drive to zero [102]. The
aforementioned singularity is translated now to an undesired equilibrium lo-
cated at the configuration that satisfies eo = 2. The proposed control protocol
guarantees eo(t) < 2 for all t ≥ 0.

Corollary 1 ([102, 94]). Consider N robotic agents rigidly grasping an object,
with coupled dynamics (17). Further assume that dO(·) = di(·) = 0, for all
i ∈ N , and eo(0) < 2. Consider the control law

u = g + (CG> +MĠ>)vO +G∗(gO + COvO) + (MG> +G∗MO)(v̇d −Kdev −Kpex)
(43)

where ev := vO − vd, vd := [ṗ>d , ω
>
d ]> ∈ R6, ex := [e>p ,

1
2(2−eO)2 e

>
RR
>
O ]>, Kp :=

diag{Kp1 , kp2I3}, where Kp1 ∈ R3×3,Kd ∈ R6×6 are positive definite matrices,
and kp2 ∈ R>0 is a positive constant. Then the solution of the closed-loop
coupled system satisfies: 1) eO(t) < 2, for all t ∈ R≥0, 2) limt→∞(pO(t) −
pd(t)) = 0, limt→∞Rd(t)>RO(t) = I3, and 3) there are no internal forces, i.e.,
hint(t) = 0, for all t ∈ R≥0, if and only if G∗ = MG>(GMG>)−1.

Note that the employed inverse dynamics controller requires knowledge of
the agent and object dynamics. In case of dynamic parameter uncertainty,
standard adaptive and/or robust control schemes (like the ones of the previous
sections) that attempt to compensate for potential uncertainties in the model
would intrinsically create internal forces, since the dynamics of the system would
not be explicitly accounted for. Further, note that G∗ = MG>(GMG>)−1

induces an implicit and natural load-sharing scheme via the incorporation of
M . More specifically, note that the force distribution to the robotic agents via
GhO,d yields for each agent MiJOi(

∑
i∈N J

>
Oi
MiJOi)

−1, for all i ∈ N . Hence,
larger values of Mi will produce larger inputs for agent i, implying that agents
with larger inertia characteristics will take on a larger share of the object load.
Note that this is also a desired load-sharing scheme, since larger dynamic values
usually imply more powerful robotic agents.

5.4. Simulation and Experimental Results

We first present experimental results for the PPC scheme of Section 5.1. The
tested scenario for the experimental setup consists of two WidowX Robot Arms
rigidly grasping a wooden cuboid object of initial pose xO(0) = [0.3, 0, 0.15, 0, 0, 0]>

([m], [rad]), which has to track a planar time trajectory pd(t) = [0.3+0.05 sin( 2πt
35 ),

0.15 − 0.05 cos( 2πt
35 )]>, ηd(t) = π

20 sin( 5πt
35 ). We set the performance functions

as ρsx(t) = ρsz (t) = 0.03 exp(−0.2t) + 0.02 [m], ρsθ (t) = 0.2 exp(−0.2t) + 0.2
[rad], ρvx(t) = 5 exp(−0.2t) + 5 [m/s], ρvz (t) = 5 exp(−0.2t) + 10 [m/s], and
ρvθ (t) = 4 exp(−0.2t) + 3 [m/s], and the control gains of (24) and (29) as
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Figure 3: Experimental results for the PPC of Section 5.1. Top: the pose errors esx (t),
esz (t), esθ (t) (with blue) along with the respective performance functions (with red); Bottom:
The velocity errors evx (t), evz (t), evθ (t) (with blue) along with the respective performance
functions (with red), ∀t ∈ [0, 70].

gs = 0.05 and gv = 10, respectively. The experimental results are depicted in
Fig. 3, which shows the pose and velocity errors es(t), ev(t) along with the
respective performance functions, for t ∈ [0, 70] seconds. A video illustrating
the experimental results can be found on https://youtu.be/jJWeI5ZvQPY.

Next, we demonstrate the MPC scheme of Section 5.2. We consider a sim-
ulation example with N = 3 ground vehicles equipped with 2-DOF manip-
ulators, rigidly grasping an object with n1 = n2 = n3 = 4. The states of
the agents are given as: qi = [p>Bi , α

>
i ]> ∈ R4,where pBi = [xBi , yBi ]

> ∈ R2

are the vehicles’ position and αi = [αi1 , αi2 ]> ∈ R2 are the manipulators’
joint angles, i ∈ N = {1, 2, 3}. The manipulators become singular when
sin(αi1) = 0, i ∈ N , thus the state constraints for the manipulators are set
to ε ≤ αi1 ≤ π

2 − ε, −π2 + ε ≤ αi2 ≤ π
2 − ε, i ∈ N . We also consider

the input constraints: −10 ≤ ui,j(t) ≤ 10, i ∈ N , j ∈ {1, . . . , 4}. The ini-
tial conditions of agents and the object are set to: q1(0) = [0.5, 0, π4 ,

π
4 ]>,

q2(0) = [0,−4.4142,−π4 ,−π4 ]>, q3(0) = [−0.50,−4.4142,−π4 ,−π4 ]>, q̇1(0) =
q̇2(0) = q̇3(0) = [0, 0, 0, 0]>, xO(0) = [0,−2.2071, 0.9071, π2 ]>, and ẋO(0) =
[0, 0, 0, 0]> (in [rad], [rad/s] ([m], [rad]), ([m/s], [rad/s]), respectively). The de-
sired goal state the object is set to xd = [5,−2.2071, 0.9071, π2 ]> ([m], [rad]),
which, due to the structure of the considered robots, corresponds uniquely to
q1,d = [5.5, 0, π4 ,

π
4 ]>, q2,d = [5,−4.4142,−π4 ,−π4 ]>, q3,d = [4.5, 0,−π4 ,−π4 ]>,

q̇1,d = q̇2,d = q̇3,d = [0, 0, 0, 0]>. ([rad] and [rad/s], respectively). We set an
obstacle between the initial and the desired pose of the object. The obstacle is
spherical with center (2.5,−2.2071, 1) m and radius

√
0.2 m. The sampling time

is hs = 0.1 seconds, the horizon is Tp = 0.5 seconds, and the total simulation
time is 60 seconds; The matrices PDi , QDi , RDi are set to: PDi = QDi = 0.5I8,
RDi = 0.5I4, ∀i ∈ N , and the load sharing coefficients as c1 = 0.3, c2 = 0.5,
and c3 = 0.2. The simulation results are depicted in Fig. 4, which shows the
error states of the agents, successfully converging to zero. The simulation was
carried out by using the NMPC toolbox given in [104] and it took 13450 sec in
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(a) (b) (c)

Figure 4: The error states of the three agent for the MPC scheme.

MATLAB Environment on a desktop computer with 8 cores, 3.60 GHz CPU
and 16GB of RAM.

Finally, we demonstrate the internal-force-free control algorithm of Section
5.3. We consider 4 6-DOF UR5 robotic manipulators in the realistic dynamic
environment CoppeliaSim [105]. The 4 agents are rigidly grasping an object
of 40 kg at an initial configuration pO(0) = [−0.225,−0.612, 0.161]>, ηO(0) =
[0, 0, 0]>. In order to verify the theoretical findings of the previous sections,
we apply the control law (43) to achieve tracking of a desired trajectory by
the object’s center of mass. We simulate the closed-loop system for two cases
of G∗, namely the proposed one G∗1 = MG>(GMG>)−1 as well as the more
standard choice G∗2 = G>(GG>)−1. We set the desired trajectory as pd(t) =
pO(0) + [0.2 sin(wpt+ ϕd), 0.2 cos(wpt+ ϕd), 0.09 + 0.1 sin(wpt+ ϕd)]>, ηd(t) =
[0.15 sin(wφt + ϕd), 0.15 sin(wθt + ϕd), 0.15 sin(wψt + ϕd)]> (in [m] and [rad],
respectively), where ϕd = π

6 , wp = wφ = wψ = 1, wθ = 0.5, and ηd(t) is
transformed to the respective Rd(t). The control gains are set as Kp1 = 15,
kp2 = 75, and Kd = 40I6. The results are given in Figs. 5 and 6 for 15
seconds. Fig. 5 depicts the pose and velocity errors ep(t), eO(t), ev(t), which
are shown to converge to zero for both choices of G∗, as expected. Fig. 6 depicts
the norm of the internal forces, ‖hint(t)‖. It is clear that G∗2 yields significantly
large internal forces, whereas G∗1 keeps them very close to zero, as proven in the
theoretical analysis. A video illustrating the aforementioned simulation can be
found on https://youtu.be/a31LTBBkE-Q.

6. Abstractions of Multi-Agent and Multi-Agent-Object Systems

The control algorithms of the previous sections offer a way to abstract the
underlying continuous system to a discrete representation. Such a discrete rep-
resentation can be used to synthesize a higher-level controller such that the
system satisfies a temporal-logic task. In the following, we present such an ab-
straction and controller synthesis for both multi-agent and multi-agent-object
systems.
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Figure 5: The error metrics ep(t), eO(t), ev(t), respectively, top to bottom, for the two choices
G∗1 and G∗2 and t ∈ [0, 15] seconds.
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Figure 6: The norm of the internal forces ‖hint(t)‖ for the two cases of G∗ and t ∈ [0, 15]
seconds.
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6.1. Multi-Agent Systems

We first consider the distributed control-synthesis problem for a multi-agent
system subject to linear temporal logic (LTL) tasks [106, 107]. Formally, we
consider N agents, characterized by pi ∈ Rn, i ∈ N = {1, . . . , N} and operating
in a static workspace W. Similarly to Section 4, we consider that the agents
evolve subject to 2nd-order uncertain dynamics and their physical volume is
bounded by the closed spheres B̄(pi, ri), where ri is the radius of agent i ∈ N .
The workspace is populated with J ≥ 0 obstacles at cj ∈ Rn represented by the
closed balls B̄(cj , rcj ), j ∈ J = {1, . . . , J}. We further assume that there exist
KR > 1 points in W, denoted by pπk ∈ Rn, corresponding to certain proper-
ties of interest (e.g., gas station, repairing area, etc.), with KR := {1, . . . ,KR}.
Since, in practise, these properties are naturally inherited to some neighbour-
hood of the respective point of interest, we define for each k ∈ KR the region
of interest πk, corresponding to pπk , as the the closed ball πk := B̄(pπk , rπk)
with radius rπk > 0, for k ∈ KR. These properties of interest are expressed
as boolean variables via finite, disjoint sets of atomic propositions Ψi, i ∈ N .
The properties satisfied at each region πk are provided by the labelling func-
tions Li : Π → 2Ψi , which assigns to each region πk the subset of the atomic
propositions Ψi that are true in that region. We provide now some tools that
relate the continuous multi-agent system with the navigation of the agents to
the regions of interest.

Definition 1. Let B̄(pi(t0), ri) ⊂ πk0 , i.e., agent i is in region πk0 , k0 ∈
KR, for some t0 ≥ 0. Then, agent executes a transition from πk0 to πk1 ,
k1 ∈ KR\{k0}, denoted by πk0 →i πk1 , if there exists a finite time instant
t1 ≥ t0 such that B̄(pi(t1), ri) ⊂ πk1 and B̄(pi(t), ri)

⋂(⋃
`∈N\{i} B̄(p`(t), r`)

)
=

B̄(pi(t), ri)
⋂(⋃

j∈J B̄(cj , rcj )
)

= ∅, rW > ‖pi(t)‖+ ri, for all t ∈ [t0, t1].

Loosely speaking, agent i can transit between two regions in Π if it can
navigate among them while avoiding collisions with other agents and obstacles.
We note that, if the agent’s task requires it to avoid a certain region of Π, then
the latter can be considered as an obstacle.

Our goal here is to control the multi-agent system so that each agent’s
behaviour obeys a given temporal-logic specification over its atomic proposi-
tions Ψi. Formally, the behaviour of agent i over its trajectory pi(t) is the
infinite sequence bi(ψi) := (pi(ti1), ψi1)(pi(ti2), ψi2) . . . , with ψim ∈ 2Ψi and
B̄(pi(tim), ri) ⊂ πkm , ψim ∈ Li(πkm), with km ∈ KR and an increasing sequence
of positive time instants tim , m ∈ N. The control objectives are given for each
agent separately as LTL formulas Φi over Ψi, i ∈ N (see Section 3). Agent i
satisfies the LTL formula Φi if it produces a behaviour bi(ψi) that satisfies Φi,
i.e., if ψi = ψi1ψi2 . . . |= Φi.

By using the control algorithm of Section 4, one guarantees the transitions
πk →i πk′ , for all k, k′ ∈ KR and agents i ∈ N , which gives rise to the following
finite transition system that encodes the motion of the agents in the workspace:

Ti := {Π, πinit
i ,→i,Ψi,Li}
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where we use πinit
i ∈ Π to denote the ith agent’s initial region.

After defining the transition systems Ti, the problem at hand reduces to de-
riving high-level paths for the agents, as sequences of regions of Ti to be visited,
that satisfy their individual specifications encoded by Φi. In order to derive
such paths, we follow an algorithm inspired by formal-verification methodolo-
gies [79]. The algorithm translates each formula Φi to a Büchi Automaton Ci
and computes the product T̃i := Ti×Ci. One can compute the accepting runs of
T̃i by viewing it as a weighted digraph and using standard graph-search meth-
ods. Such accepting runs satisfy Φi and are directly projected to a sequence of
waypoints to be visited, providing therefore a desired path for agent i. Although
the semantics of LTL is defined over infinite sequences of atomic propositions,
it can be proven that there always exists a high-level path that takes a form of
a finite state sequence followed by an infinite repetition of another finite state
sequence. For more details on the followed technique, we refer the reader to the
related literature, e.g. [79].

6.2. Multi-Agent-Object Systems

As mentioned in Section 1, numerous applications require that, except for the
agents, unactuated objects undergo certain processes. Therefore, this section
considers the control-synthesis problem under tasks expressed as temporal-logic
specifications for a team of robotic agents and a set of unactated objects [108,
109].

The problem setup follows Section 6.1, i.e. we consider a set of N agents
operating in a workspace W ⊂ Rn with a set Π of KR of spherical regions
around points of interest pπk , k ∈ KR and the respective atomic proposition
set Ψi and labelling functions Li, i ∈ N . We further consider MR unactuated
objects, characterized by the variables poj (e.g., center of mass), for j ∈MR :=
{1, . . . ,MR}. The objects have their own set of properties of interest over Π,
as expressed by the disjoint sets Ψoj of atomic propositions and the respective

labelling functions Loj : Π → 2Ψoj , j ∈ MR. Similarly to the agents, the
objects’ volume is modelled by the spheres B̄(poj , roj ), j ∈ MR. We note that
the agents are equipped with suitable equipment, e.g., robotic manipulators, in
order to be able to interact with the objects. For ease of exposition, however, we
consider that each agent’s volume is represented by the sphere B̄(pi, ri), where
pi denotes a point on agent i (e.g., its center of mass).

We further introduce some additional tools for the interaction among the
agents and the objects. First, we consider that the agents have specific power
capabilities, which for simplicity, we associate to positive integers ζi > 0, i ∈ N ,
via an analogous relation. Hence, we define a function Λ ∈ {True,False} that
outputs whether the agents that potentially grasp an object are able to transport
it, based on their power capabilities. For instance, Λ(j,A) = True, implies
that the agents with indices in A ⊆ N have sufficient power capabilities to
(cooperatively) transport object j. Second, we define the boolean functions
AGj : R≥0 → 2N0 , with N0 := N ∪ {0}, to denote which agents grasp an object
j ∈ MR at a specific time instant; AGj(ts) = {0} means that no agents grasp
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object j at time ts. Note also that i ∈ AGj(ts) ⇔ i /∈ AGj′(ts) = False, for all
j′ ∈ MR\{j}, i.e., agent i can grasp at most one object at a time. We further
denote AG := [AG1, . . . ,AGMR

]> ∈ (2N0)MR . Finally, we represent the volume
of a set of agents A ⊆ N grasping an object j ∈MR by the sphere B̄(poj , rA,j),
with rA,j being the bounding radius, which is large enough to cover the volume
of the coupled system.

We now define action primitives for the multi-agent-object systems, simi-
larly to Definition 1. In these definitions, we use the term “entity” to refer to
single agent, object as well as systems comprised by agents that grasp an object
(agents-object systems). The number of these systems depends on the variables
AG. Given a grasping configuration AG ∈ (2N0)MR , consider T̄R(AG) number
of entities, indexed by the set TR(AG) := {1, . . . , T̄R(AG)}. Each entity (agent,
object, or coupled agents-object system) is characterized by the respective con-
figuration (e.g., pi, poj , or poj′ ) and radius (e.g., ri, roj , or rA,j′), respectively,
which we denote for simplicity by the generic variables pei , r

e
i , for all i ∈ TR(AG).

Definition 2. (Navigation) Let AG(t0) ∈ (2N0)M and i ∈ T (AG(t0)) such
that B̄(pei (t0), rei ) ⊂ πk0 , for some k0 ∈ KR and t0 ≥ 0. Then, entity i executes a
transition from πk0 to πk1 , with k1 ∈ KR, if there exists a finite time instant t1 ≥
t0 such that B̄(xei (t1), rei ) ⊂ πk1 and B̄(xei (t1), rei )

⋂(⋃
`∈N\{i} B̄(pe`(t), r

e
` )
)

=⋂(⋃
j∈J B̄(cj , rcj )

)
= ∅, rW > ‖pei (t)‖+ rei , for all t ∈ [t0, t1].

Definition 2 corresponds to the action primitives of agent navigation and
(cooperative) object transportation, depending on what entity i is, from πk0
to πk1 . When the transition corresponds to a single-agent navigation for agent
i ∈ N , we denote it by πk0 →i πk1 ; when it corresponds to a transportation of

object j ∈ MR by a subset of agents A ⊂ N , we denote it by πk0
T−→A,j πk1 .

We further need the definition of grasping an object.

Definition 3. (Grasping) Let AG(t0) ∈ (2N0)M and i ∈ N , j ∈ MR such

that i /∈ AGj(t0). Then, agent i grasps object j, denoted by i
g−→ j, if there

exists a finite time instant t1 ≥ t0 such that i ∈ AGj(t1) and rW > ‖pei (t)‖+ rei ,
B̄(pei (t1), rei )

⋂(⋃
`∈N\{i} B̄(pe`(t), r

e
` )
)

=
⋂(⋃

j∈J B̄(cj , rcj )
)

= ∅, for all t ∈
[t0, t1].

Similarly, we can define the releasing action i
r−→ j for an agent i ∈ N and object

j ∈MR.
Next, we assume the existence of a procedure Ps that outputs whether or

not a set of non-intersecting spheres fits in a larger sphere as well as possible
positions of the spheres in the case they fit. More specifically, given a region of
interest πk and a number Ñ ∈ N of sphere radii (of robots, objects, or object-
robots systems) the procedure can be seen as a function Ps := [Ps,0,P>s,1]>,

where Ps,0 : RÑ+1
≥0 → {True,False} outputs whether the spheres fit in the region

πk whereas Ps,1 provides possible configurations of the robots and the objects or
0 in case the spheres do not fit. For instance, Ps,0(rπ2

, r1, r3, ro1 , ro5) determines
whether the robots 1, 3 and the objects 1, 5 fit in region π2, without colliding
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with each other; (pe1, p
e
2, p

e
3, p

e
4) = (p1, p3, po1 , po5) = Ps,1(rπ2 , r

e
1, r

e
2, r

e
3, r

e
4) =

Ps,1(rπ2 , r1, r3, ro1 , ro5) provides a set of configurations such that the pairwise
intersections among B̄i(pei , rei ), i ∈ {1, . . . , 4}, are empty. The problem of finding
an algorithm Ps is a special case of the sphere packing problem [110]. Note,
however, that we are not interested in finding the maximum number of spheres
that can be packed in a larger sphere but, rather, in the simpler problem of
determining whether a set of spheres can be packed in a larger sphere.

Our goal is to control the multi-agent-object system defined above such
that the agent and the objects obey a given specification over their atomic
propositions Ψi,Ψoj ,∀i ∈ N , j ∈ M. Similar to the agents’ behaviour, defined
in Section 6.1, we define the behaviour of object j, over its trajectory poj ,
as the infinite sequence boj (ψoj ) := (poj (toj ,1), ψoj ,1)(poj (toj ,2), ψoj ,2) . . . ,, with

ψoj ,m ∈ 2Ψoj and B̄(poj (toj ,m)) ⊂ πkm , ψoj ,m ∈ Loj (πkm), with km ∈ KR, and
an increasing sequence of time instants toj ,m, m ∈ N.

As in Section 6.1, the control objectives are given as LTL formulas Φi,Φoj
over Ψi,Ψoj , respectively, for all i ∈ N , j ∈MR. The control-synthesis problem
is the derivation of actions for the agents such that each agent i ∈ N and each
object j ∈MR satisfy their LTL formulas Φi and Φoj , respectively, i.e., actions
that produce behaviours bi(ψi) and boj (ψoj ) such that ψi = ψi1ψi2 . . . |= Φi
and ψoj = ψoj ,1ψoj ,2 . . . |= Φoj , for all i ∈ N , j ∈MR.

As in Section 6.1, we abstract the continuous multi-agent-object system into
a discrete transition system. For the execution of the navigation primitives
(Def. 2), one can use the multi-agent navigation and cooperative-manipulation
control algorithms of Sections 4 and 5, respectively. For the execution of the
grasping/releasing primitives (Def. 3), one can employ existing methodologies
that can derive the respective control actions (e.g., [111]). Therefore, we can ab-
stract the behaviour of the multi-agent-object system using the finite transition
system

T O = (Πs,Π
init
s ,→s,AG,Ψ,L,Λ, Ps, χ)

where

1. Πs ⊂ Π̄ × Π̄o × (2N0)M is the set of states; Π̄ := Π1 × · · · × ΠN and
Π̄o := Πo1 × · · · × ΠoMR

are the set of states-regions that the agents and
the objects can be at, with Πi = Πoj = Π, for all i ∈ N , j ∈MR;

By defining π̄ := (πk1 , · · · , πkN ) , π̄o := (πko,1 , · · · , πko,MR ), then the cou-
pled state πs := (π̄, π̄o,AG) belongs to Πs, i.e., (π̄, π̄o,AG) ∈ Πs if

(a) Ps,0
(
rπk , [ri]i∈{i∈N :ki=k}, [roj ]j∈{j∈MR:ko,j=k}

)
= >, i.e., the respec-

tive agents and objects fit in the region, for all k ∈ KR,

(b) ki = ko,j for all i ∈ N , j ∈ MR such that i ∈ AGj , i.e., an agent
must be in the same region with the object it grasps,

2. Πinit
s ∈ Πs is the initial state at t = 0,
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3. →s⊂ Πs × Πs is a transition relation defined as follows: given the states
πs, π̃s ∈ Π, with

πs :=(π̄, π̄o,AG)

:=(πk1 , . . . , πkN , πko,1 , . . . , πko,MR ,AG1, . . . ,AGM ),

π̃s :=(˜̄π, ˜̄πo, ÃG)

:=(πk̃1 , . . . , πk̃N , πk̃o,1 , . . . , πk̃o,1 , ÃG1, . . . , ÃGM ), (44)

a transition πs →s π
′
s occurs if all the following hold:

(a) @i ∈ N , j ∈ MR such that i ∈ AGj , i /∈ ÃGj (or i /∈ AGj , i ∈
ÃGj), and ki 6= k̃i, i.e., there are no simultaneous grasp/release and
navigation actions,

(b) @i ∈ N , j ∈ MR such that i ∈ AGj , i /∈ ÃGj (or i /∈ AGj , i ∈
ÃGj), and ki = ko,j 6= k̃i = k̃o,j , i.e., there are no simultaneous
grasp/release and transportation actions,

(c) @i ∈ N , j, j′ ∈ MR, with j 6= j′, such that i ∈ AGj and i ∈ ÃGj′ ,
i.e., there are no simultaneous grasp and release actions,

(d) @j ∈MR such that ko,j 6= k̃o,j and i /∈ AGj ,∀i ∈ N ( or i /∈ ÃGj ,∀i ∈
N ), i.e., there is no transportation of a non-grasped object,

(e) @j ∈ MR, T ⊆ N such that ko,j 6= k̃o,j and Λ(j, ζT ) = ⊥, with

(i ∈ AGj , i ∈ ÃGj) ⇔ i ∈ T , i.e., the agents grasping an object are
powerful enough to transfer it,

4. Ψ := Ψ̄ ∪ Ψ̄o with Ψ̄ =
⋃
i∈N Ψi and Ψ̄o =

⋃
j∈MR

Ψoj , are the atomic
propositions of the agents and objects, respectively.

5. L : Πs → 2Ψ is a labeling function defined as follows: Given a state πs as

in (44) and ψs :=
(⋃

i∈N ψi

)⋃(⋃
j∈MR

ψoj

)
with ψi ∈ 2Ψi , ψoj ∈ 2Ψoj ,

then ψs ∈ L(πs) if ψi ∈ Li(πki) and ψoj ∈ Loj (πko,j), for all i ∈ N , j ∈
MR.

6. Λ and Ps as defined previously.

7. χ : (→s) → R≥0 is a function that assigns a cost to each transition
πs →s π̃s. This cost might be related to the distance of the robots’
regions in πs to the ones in π̃s, combined with the cost efficiency of the
robots involved in transport tasks (according to ζi, i ∈ N ).

Next, we proceed as in Section 6.1; we form the global LTL formula Φ :=
(∧i∈NΦi) ∧ (∧j∈MR

Φoj ) over the set Ψ, and we translate it to a Büchi Au-

tomaton CO. Next, we compute the product T̃ O := T O × CO and use graph-
search-based methodologies to find an accepting path that satisfies Φ. This path
is projected to the original transition system T O and provides a sequence of
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action primitives for the agents to execute (navigation, grasping, releasing, or
cooperative transportation). Note that, unlike Section 6.1, where the tasks were
specified independently for each agent, the object-related LTL tasks require the
coupling and collaboration of more than one agents. Such a coupling results in
a centralized path-planning procedure, i.e., a central computer unit computes
T̃ O and the accepting path for all the agents. We note that such a centralized
procedure might yield significant computational complexity, in terms of com-
puter memory and running time. One can, however, employ procedures more
sophisticated than simple graph search to compute an accepting path of T̃ O in
order to reduce the computational complexity (such as STyLuS∗ [109]).

6.3. Timed Abstractions for Cooperative Manipulation

In the previous sections, we considered the motion planning and control of
multi-agent and multi-agent-object systems subject to tasks expressed as LTL
constraints. In this section, we consider the problem of controlling a coop-
eratively manipulated object such that it satisfies a task expressed as metric
interval temporal logic (MITL) constraints [112, 113]; such constraints allow
the incorporation of time constraints (deadlines), enriching thus the range of
available tasks (see Section 3).

We consider here N robotic agents rigidly grasping an object in a bounded
workspace W ⊂ R3, as in Section 5. The agent, object, and coupled dynamics
are given by (11), (12), and (17), respectively. In contrast to section 6.1 and
6.2, where the LTL tasks were specified over specific “regions of interest” πk,
we consider here a different discretization of the workspace, described next.

We denote by Sq the set that consists of all points ps ∈ W that physically
belong to the coupled system, i.e., they consist part of either the volume of the
agents or the volume of the object. Note that these points depend on the agents’
configuration variables q. We further define the constant L̂ ≥ sup q∈Rn

ps∈Sq
‖ps −

pO(q)‖, where we express pO as a function of q. Note that, although the explicit
computation of Sq may not be possible, L̂ is an upper bound of the maximum
distance between the object center of mass and a point in the coupled system’s
volume over all possible configurations q, and thus, it can be measured. For
instance, Fig. 7 shows L̂ for a system comprised by two robotic agents and
an object. It is straightforward to conclude that Sq ⊂ B̄(pO(q), L̂),∀q ∈ Rn.
Next, we partition the workspace W into RW equally sized rectangular regions
Π = {π1, . . . , πRW}, whose geometric centers are denoted by pcπj ∈ W, j ∈
{1, . . . , RW}. The length of the region sides is set to D = 2L̂+ 2l0, where l0 is
an arbitrary positive constant. Hence, each region πj can be formally defined
as follows:

πj :={p ∈ W s.t. (p)k ∈ [(pcπj )k − L̂− l0, (pcπj )k + L̂+ l0),∀k ∈ {x, y, z}},

with ‖pcπj+1
−pcπj‖ = (2L̂+ 2l0),∀j ∈ {1, . . . , R−1}, and (pcπj )z := L̂+ l0,∀j ∈

{1, . . . , RW}; (·)k, k ∈ {x, y, z}, denotes the k-th coordinate. An illustration of
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Figure 7: An example of a cooperative manipulation system in the configuration that produces
L̂.

the aforementioned partition is depicted in Fig. 8. We also define the neighbor-
hood D of region πj as the set of its adjacent regions, i.e., D(πj) := {πj′ ∈ Π s.t.

‖pcπj −pcπj′‖ = (2L̂+ 2l0)}, which is symmetric, i.e., πj′ ∈ D(πj)⇔ πj ∈ D(πj′).

We write A(q) ∈ πj to denote that the coupled object-agents systems is in
region πj , equivalent to Sq ⊂ πj and ‖pO(q) − pcπj‖ < l0. We now define the
timed transition of the coupled system between two regions πj , πj′ :

Definition 4. Assume that A(q(t0)) ∈ πj for some j ∈ {1, . . . , RW}, t0 ≥ 0.
Then, there exists a transition for the coupled object-agents system from πj to

πj′ , j
′ ∈ {1, . . . , RW}, with time duration δtj,j′ ≥ 0, denoted as πj

T−→ πj′ , if

1. A(q(t0 + δtj,j′)) ∈ πj′ ,
2. Sq(t) ⊂ πi ∪ πj , ∀t ∈ [t0, t0 + δtj,j′ ].

Note that the entire system object-agents must remain in πj , πj′ during the
transition and therefore the requirement πj′ ∈ D(πj) is implicit in Definition 4.

Given the aforementioned workspace partition, we introduce a set of atomic
propositions Ψo for the object, such as “Obstacle region”, “Goal region”, with
the associated labeling function L : Π→ 2Ψo .

Similarly to Sections 6.1, 6.2, we define the timed behaviour of the coupled
object-agents system over a trajectory q(t) as the infinite timed sequence bt :=
(q(t1), ψ1, t1)(q(t2), ψ2, t2) . . . , where tm is an increasing sequence of positive
time instants, m ∈ N; q(tm) and ψm satisfy A(q(tm)) ∈ πjm , ψm ∈ 2Ψo , and
ψm ∈ L(πjm), with jm ∈ {1, . . . , RW}, for all m ∈ N. The problem consists
of computing the agents’ control actions such that the object satisfies a given
MITL formula Φ, i.e., control actions that produce a timed behaviour bt such
that (ψ1, t1)(ψ2, t2) . . . |= Φ.

The first ingredient for the solution of the aforementioned problem is the de-
sign of a control protocol such that a transition relation between two adjacent
regions according to Definition 4 is established. We first associate to the tran-
sition a smooth and bounded trajectory with bounded time derivatives, defined
by the line segment that connects pcπj and pcπj′ , i.e. define pj,j′ : [t0,∞) → R3,

such that pj,j′(t0) = pcπj , pj,j′(t) = pcπj′ ,∀t ≥ t0 + δtj,j′ and B(pj,j′(t), L̂+ l0) ⊂
πj ∪ πj′ , ∀t ≥ t0. An example of pj,j′ is

pj,j′(t) =


pcπj′ − p

c
πj

δtj,j′
t+

pcπj (δtj,j′ − 1)− pcπj′
δtj,j′

t0, t ∈ [t0, t0 + δtj,j′)

pcπj′ , t ∈ [t0 + δtj,j′ ,∞)
(45)
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Figure 8: The workspace partition according to the bounding box of the coupled system.

Figure 9: Top view of a transition between two adjacent regions πj and πj′ . Since pO ∈
B̄(pj,j′ (t), l0), we conclude that Sq ⊂ B̄(pO, L̂) ⊂ B̄(pj,j′ (t), l0 + L̂) ⊂ πj ∪ πj′ .

Intuitively, if we guarantee that the object’s center of mass stays l0-close to pj,j′ ,
i.e., ‖pO(t) − pj,j′(t)‖ < l0, for all t ≥ t0, then ‖pO(t0 + δtj,j′) − pcπj′‖ < l0, we

obtain Sq(t) ⊂ B̄(pO(t), L̂) ⊂ B̄(pj,j′(t), L̂ + l0) ⊂ πj ∪ πj′ , for all t ≥ t0 (and
therefore t ∈ [t0, t0 + δtj,j′ ]), and thus the requirements of Definition 4 for the
transition relation are met. Fig. 9 illustrates the aforementioned reasoning.

Along with pj,j′ , we consider that the object has to comply with certain
specifications associated with its orientation. Therefore, we also define a smooth
and bounded orientation trajectory ηj,j′ := [ϕj,j′ , θj,j′ , ψj,j′ ]

> : [t0,∞) → T
with bounded time derivative, that has to be tracked by the object’s center
of mass. We form, therefore, the desired pose trajectory xj,j′ : [t0,∞) → M,
with xj,j′(t) := [pj,j′(t)

>, ηj,j′(t)
>]>. In case of multiple consecutive transitions

. . . πh
T−→ πj

T−→ πj′
T−→ πh′ . . . over the intervals . . . ,δth,j , δtj,j′ , δtj′,h′ ,. . . ,

the desired orientation trajectories . . . , ηh,j(t), ηj,j′(t), ηj′,h′(t), . . . must be
continuous at the transition points, i.e., ηh,j(t0) = ηj,j′(t0) and ηj,j′(t0 + δtj,j′)
= ηj′,h′(t0 + δtj,j′).

The considered problem is equivalent to a problem of trajectory tracking
within certain bounds. A suitable methodology for the control design in hand
is that of prescribed performance control (PPC), which was used for the coop-
erative manipulation problem in Section 5.1. More specifically, the distributed
control law (29) guarantees the tracking of the desired trajectory pj,j′(t) by the
object with prescribed performance, i.e., −ρsk(t) < pO(t) − pj,j′(t) < ρsk(t),
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(a) (b) (c)

(d) (e) (f)

Figure 10: Execution of the paths (π1π2π3π2)1 and (π2π1)2 by agents 1 and 2, respectively for
the second experimental scenario. (a), (d): π1 →1 π2, π2 →2 π1, (b), (e): π2 →1 π3, π1 →2

π2, (c), (f): π3 →1 π2, π2 →2 π1.

for user-defined performance functions ρsk(t) and all k ∈ {x, y, z, ϕ, θ, ψ}. Now,
by selecting ρs,k(t0) = l0 ≥ ρs,k(t), for t ≥ t0 and k ∈ {x, y, z}, the PPC
algorithm guarantees that pO(q(t)) ∈ B(pj,j′(t), l0),∀t ≥ t0 and, consequently,
pO(q(t0 + δtj,j′)) ∈ B(pcπj′ , l0), since pj,j′(t0 + δtj,j′) = pcπj′ . Moreover, since

pO(q(t)) ∈ B(pj,j′(t), l0), we deduce that B(pO(q(t)), L̂) ⊂ B(pj,j′(t), l0 + L̂) and
Sq(t) ⊂ πj ∪πj′ ,∀t ∈ [t0, t0 + δtj,j′ ] ⊂ [t0,∞), and therefore a transition relation
with time duration δtj,j′ is successfully established. More details can be found
in [112, 113]. Therefore, we can abstract the motion of the coupled agents-object
system as a timed transition system

T = {Π,Π0,
T−→,Ψ,L, γT },

where we further introduce the map γT : (
T−→) → R≥0 that assigns to each

transition its time duration, i.e., γT (πj
T−→ πj′) = δtj,j′ .

The next step of the algorithm follows a similar procedure as that of Sections
6.1 and 6.2. Namely, we translate the MITL formula Φ into a Timed Büchi
Automaton CtΦ [114], we compute the product T̃ = T ⊗ CtΦ [79], and find its
accepting runs. The projection of these accepting runs onto T provides a infinite
sequence of regions in Π to be visited at specific time instants; such a sequence
satisfies Φ. More details on the technique can be found in [79, 115, 114].

6.4. Simulation and Experimental Results

We first demonstrate the algorithm of Section 6.1 through experiments with
IRIS+ quadrotors from 3D Robotics. We consider that the quadrotors have
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a sensing range of ςi = 0.65m, and bounding spheres with radius ri = 0.3m,
i ∈ {1, 2}. We consider a 2-dimensional scenario in a workspace W with radius
of 2.5m and 3 regions of interest Π = {π1, . . . , π3}, with rπk = 0.4, k ∈ {1, . . . , 3}
and pπ1

= [−1,−1.7]>m, pπ2
= [−1.3, 1.3]>m and pπ3

= [1.2, 0]>m. The
agents are initially in π1 and π2, respectively. We define the atomic propo-
sitions Ψ1 = Ψ2 = {“resa”, “resb”, “base”}, corresponding to a base and sev-
eral resources in the workspace, with L1(π1) = L2(π1) = {“resa”},L1(π2) =
L2(π2) = {“base”},L1(π3) = L2(π3) = {“resb”}. The agents have to trans-
fer the resources to the “base” in π2; both agents are responsible for “resa”
but only agent 1 should access “resb”. The specifications are translated to the
formulas Φ1 = �(♦(“resa”© “base”) ∧ ♦(“resb”© “base”)),Φ2 = �¬“resb” ∧
�♦(“resa”© “base”) and the derived paths are (π1π2π3π2)ω for agent 1, and
(π1π2)ω for agent 2. For the continuous control, we use the algorithm of Sec-
tion 4.2. The execution of the paths (π1π2π3π2)1 and (π2π1)2 by agents 1 and
2, respectively, are depicted in Fig. 10, showing the successful execution and
satisfaction of the paths and formulas. A video demonstrating the experiment
can be found on https://youtu.be/dO77ZYEFHlE.

Next, we demonstrate the multi-agent-object algorithm of Section 6.2 in an
obstacle-cluttered office environment. We choose the atomic propositions for the
agents and objects as Ψi = {“i-π1”, . . . , “i-πK”} and Ψoj = {“Oj-π1”, . . . , “Oj-πK”},
respectively, for i ∈ N , j ∈ MR, indicating their presence in the regions of
interest. For the constructed transition systems, we set the cost χ as the Eu-
clidean distance among the RoI contained in the nodes of the transitions. We
consider N = 3 robots, K = 4 regions and MR = 2 objects. The regions of
interest are circular centered at (88,−280)m, (100,−160)m, (200,−130)m, and
(250,−285)m, with radius equal to 4m. The agents’ and object’ mass is taken as
1kg and 0.25kg, respectively, while their spherical volume’s radii as 0.75m and
0.2m, respectively. The power capabilities of the agents are 2, 3, 4, respectively,
and the power required for each object is 5, 6, respectively. Initially, the agents
are located in regions πinit(1) = π1, πinit(2) = π3, and πinit(3) = π4, respectively,
whereas the objects are located in regions πinito(1) = π2, πinito(2) = π1, respec-
tively. For the continuous control design, we choose the algorithm of Section
4.2, both for multi-agent navigation and object transportation; for the latter,
we treat the coupled agents-object system as a sphere and we distribute the
control law (9) equally to the agents grasping the object. To deal with the
non-spherical obstacles, we use the workspace transformation from [116] that
converts the obstacles to points.

The resulting transition system consists of 3, 112 reachable states and 154, 960
transitions and it was created within 1.71 minutes. We set the following formula
for the multi-robot-object system:

φ = �♦ψ̄1 ∧�♦ψ̄2 ∧�♦ψ̄2 ∧ ♦ψ̄4 ∧ (¬ψ̄4U ψ̄5) (46)

with

• ψ̄1 = {“1-π1”, “2-π1”, “3-π1”, “O1-π1”, “O2-π4”}
• ψ̄2 = {“1-π1”, “2-π3”, “3-π1”, “O1-π1”, “O2-π3”}
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Figure 11: Navigation of agent 1 from π1 to π3 in the original (left) and the transformed
point-world (right) environment. In the original environment, the agent’s circular volume has
been transferred to the obstacles and workspace boundary.

• ψ̄3 = {“1-π3”, “2-π3”, “3-π3”, “O1-π4”, “O2-π3”}

• ψ̄4 = {“1-π2”, “2-π4”, “3-π1”, “O1-π4”, “O2-π2”}

• ψ̄5 = {“1-π4”, “2-π4”, “3-π2”, “O1-π3”, “O2-π4”}

In words, the mission specification in (46) requires the robots and objects to
satisfy ψ̄1, ψ̄2, and ψ̄3 infinitely often, satisfy ψ̄4 eventually, and satisfy ψ̄5 before
satisfying ψ̄4. The LTL formula in (46) corresponds to a non-deterministic Büchi
automaton with 6 states - among which one is a final state - and 18 transitions.
For the multi-agent-object planning, we use the STyLuS* algorithm [117], which
found the first feasible prefix and suffix path within 1.23 minutes and 0.64
minutes, respectively. The action path of the agents is depicted in Tables 1-
2, starting from πs,1 and satisfying {“1-π1”, “2-π2”, “3-π4”, “O1-π2”, “O2-π1”}.
We further illustrate the continuous control design. In particular, we consider
the navigation of agent 1 from π1 to π3. The results are depicted in Figs. 11.
The left part of Fig. 11 shows the trajectory of agent 1 in the environment,
where the obstacles and boundary have absorbed the the spherical volume of
the agent; the right part of Fig. 11 shows the trajectory of agent 1 in the
transformed point world, where the obstacles are represented by points.

Finally, we demonstrate the algorithm of Section 6.3 in the CoppeliaSim
simulator [105]. We consider a rectangular rigid body of dimensions 0.025×0.2×
0.025 m3 representing the object that is rigidly grasped by two agents. Each
agent consists of a quadrotor base {Bi} and a 2-DOF robotic arm. We consider
that the quadrotor is fully actuated and that there exists an embedded algorithm
that translates the generalized force of the quadrotor base to the actual motor
inputs. The initial conditions of the system are taken as pO(0) = [0, 0, 1.5]>m,
ηO(0) = [0, 0, 0]>rad. The workspace is partitioned into RW = 16 regions, with
L̂ = 0.75 m and l0 = 0.5 m. Initially, the coupled system is located in π1. We
further define the atomic propositions Ψ = {“green1”, “green2”, “red”, “obs”},
representing goal (“green1”, “green2”) and obstacle (‘obs”) regions with L(π5) =
{“green1”},L(π14) = {“green2”},L(π6) = L(π10) = {“obs”} and L(πj) = ∅, for
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Table 1: The agent actions for the discrete path of the first case study (Part 1)

πs,` Actions πs,` Actions

πs,1 − πs,17 2
g−→ 1, 3

g−→ 1

πs,2 1
g−→ 2, π4 →3 π1 πs,18 π3

T−→{2,3},1 π4

πs,3 π3 →2 π2 3
g−→ 2 πs,19 2

r−→ 1, 3
r−→ 1

πs,4 π1
T−→{1,3},2 π4, 2

g−→ 1 πs,20 1
g−→ 2, 2

g−→ 1, π4 →3 π1

πs,5 1
r−→ 2, 2

r−→ 1 πs,21 π1 →3 π4

πs,6 π4 →1 π2, 2
g−→ 1, 3

r−→ 2 πs,22 3
g−→ 1

πs,7 1
g−→ 1 πs,23 1

r−→ 2, π4
T−→{2,3},1 π1

πs,8 π2
T−→{1,2},1 π3 πs,24 2

r−→ 1, 3
r−→ 1

πs,9 1
r−→ 1, π4 →3 π2 πs,25 1

g−→ 2, π1 →3 π2

πs,10 π3 →1 π4, 2
r−→ 1 πs,26 1

g−→ 2, π1 →2 π3, 3
g−→ 2

πs,11 π3 →2 π4 πs,27 π2
T−→{1,3},2 π4

πs,12 1
g−→ 2, π2 →3 π4 πs,28 1

r−→ 2, π3 →2 π1, 3
r−→ 2

πs,13 π4 →2 π3, 3
g−→ 2 πs,29 π4 →3 π1

πs,14 π4
T−→{1,3},2 π2 πs,30 π4 →1 π1, 3

g−→ 1

πs,15 1
r−→ 2, 2

g−→ 1, 3
r−→ 2 πs,31 π1 →2 π4, 3

r−→ 1

πs,16 2
r−→ 1, π2 →3 π3 πs,32 π1 →3 π4

the remaining regions. We consider the MITL formula

Φ = (�[0,∞)¬“obs”) ∧ ♦[0,60](“green1” ∧ “green2”),

which describes the following behavior: the coupled system must always avoid
the obstacle regions and it must visit the greens region in the first 60 sec-
onds. By following the presented algorithm, we obtain the accepting timed run
(π1, 0)(π2, 6)(π3, 12)(π4, 18)(π5, 24)(π12, 30)(π13, 36)(π14, 42)(π11, 48)(π12, 54)(π5, 60).

Regarding each transition πrj
T−→ πrj+1 , j ∈ {1, . . . , 10}, we choose δtrj ,rj′ =

6 s, prj ,rj′ (t) as in (45) and ηrj ,rj′ (t) = [0, 0, π4 sin(π3 (t − trj ))]>, where trj =
jδtrj ,rj′ = 6j plays the role of t0 for each transition. Regarding the parameters of
the performance functions, we choose ρsk,0 = ρsk(trj ) = l0 = 0.5[m], lsk = 0.5,
ρsk,∞ = lim

t→∞
ρsk(t) = 0.1 [m],∀k ∈ {x, y, z}, ρsk,0 = ρsk(trj ) = π

2 [rad],

lsk = 0.5, ρs,k,∞ = lim
t→∞

ρsk(t) = π
12 r, ∀k ∈ {φ, θ, ψ}, ρvk,0 = ρvk(trj ) =

2|evk(trj )|+0.5, lvk = 0.5 and ρvk,∞ = lim
t→∞

ρvk(t) = 0.1, k ∈ K, j ∈ {1, . . . , 10}.
The control gains are chosen as gs = 1, gv = 10, and the agents are set
to contribute equally to the object motion. The simulation results are de-
picted in Figs. 12-13. More specifically, Fig. 12 depicts the timed transi-
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Table 2: The agent actions for the discrete path of the first case study (Part 2)

πs,` Actions πs,` Actions

πs,33 π1 →1 π2, 2
g−→ 2,3

g−→ 2 π?s,49 π3
T−→{1,3},2 π4

πs,34 π4
T−→{2,3},2 π3 π?s,50 3

r−→ 2

πs,35 π2 →1 π1, 2
r−→ 2, 3

r−→ 2 π?s,51 1
r−→ 2, 2

r−→ 1, π4 →3 π1

πs,36 1
g−→ 1, π3 →3 1 π?s,52 π4 →1 π1, 3

g−→ 1

πs,37 π3 →2 π2, 3
g−→ 1 π?s,53 π1 →2 π4, 3

r−→ 1

πs,38 π1
T−→{1,3},1 π4 π?s,54 π1 →3 π4

πs,39 π2 →2 π3, 1
r−→ 1, 3

r−→ 1 π?s,55 1
g−→ 1, 2

g−→ 2, 3
g−→ 2

πs,40 π4 →3 π3 π?s,56 1
r−→ 1, π4

T−→{2,3},2 π3

πs,41 π4 →1 π3, 3
g−→ 2 π?s,57 2

r−→ 2, 3
r−→ 2

π?s,42 π3 →2 π4, 3
r−→ 2 π?s,58 1

g−→ 1, π3 →3 π1

π?s,43 π3 →3 π4 π?s,59 π3 →2 π2, 3
g−→ 1

π?s,44 2
g−→ 1, 3

g−→ 1 π?s,60 π1
T−→{1,3},1 π4

π?s,45 π4
T−→{2,3},1 π1 π?s,61 1

r−→ 1, π2 →2 π3, 3
r−→ 1

π?s,46 2
r−→ 1, 2

r−→ 3 π?s,62 π4 →3 π3

π?s,47 π1 →3 π3 π?s,63 π4 →1 π3, 3
g−→ 2

π?s,48 1
g−→ 2, 2

g−→ 1, 3
g−→ 2

tions of the coupled object-agents system, from which it can be deduced that
pO(t) ∈ B(prj ,rj′ , l0) and therefore Sq(t) ⊂ πrj ∪ πrj′ , ∀j ∈ {1, . . . , 10}. More-
over, Fig. 13 illustrate the errors es(t) and ev(t) along with the performance
functions ρs(t), respectively, for all the transitions πrj → πrj′ , j ∈ {1, . . . , 10}.
A video showing the aforementioned simulation paradigm can be found on
https://youtu.be/AiAt9NqL1jo.

7. Conclusion and Discussion

This paper presented control and planning algorithms for multi-agent and
multi-agent-object systems subject to temporal-logic-based tasks. Temporal
logic tasks offer a wide range of complex objectives and, except for the robotic
applications presented in this paper, they entail numerous applications, such as
biological systems or epidemic strategies [118, 119]. By using formal-verification
techniques, the problem often boils down to creating a finite-state abstraction of
the continuous system, which, in turn, requires appropriate control algorithms
for the transition of the system among the abstraction’s states (see Sections 4,
5). Regarding timed transitions, required by timed temporal tasks, we adopt a
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(a) (b)

Figure 12: (a): The overall desired object trajectory (with red), the actual object trajectory
(with black), the domain specified by B(prj ,rj′ (t), l0), ∀j ∈ {1, . . . , 10} (with green), and the

domain specified by B(pO(t), L̂) (with blue), for t ∈ [0, 60] s. (b): Illustration of the system at

the final region at t = 60s in the CoppeliaSim environment along with the ball B(pO(60), L̂).
Since pO ∈ B(prj ,rj′ (t), l0), the desired timed run is successfully executed.

complete partition of the state space, ensuring timed navigation among neigh-
bouring cells. More general workspaces with arbitrarily-shaped obstacles can
be found in [120, 121, 122] for single-agent systems. The extension to multiple
agents, however, is significantly challenging since the inter-agent interactions
and potential actuation constraints may prevent them from achieving naviga-
tion in pre-defined time intervals. Finally, the presented algorithms focus on
the safety of the underlying system and on the adaptability and robustness to
dynamic uncertainties and exogenous disturbances. Safety is a crucial property
when it comes to physical dynamical systems that interact with each other,
such as robots. Being an invariance-like property, however, safety concerns a
much wider range of systems, including for instance sensor networks, biological
systems, or power systems, where several state variables must operate within
certain regions of operation. Robustness and adaptability to model uncertainties
is an equally important property; the vast majority of dynamical systems cannot
be modelled accurately and suffer, in many cases, from unknown disturbances
or unexpected faults.

One can identify numerous future directions of the presented results. Re-
garding the control algorithms of Sections 4, 5, an important direction consists of
the incorporation of explicit control-input constraints. For the multi-agent nav-
igation (Section 4), an open problem is the simultaneous and timed navigation
of the agents in complex environments. Such a problem is also interesting for
the cooperative manipulation problem (Section 5), since the complex structure
of robotic manipulators brings significant challenges when it comes to collision
avoidance. Regarding the planning algorithms of Section 6, an important direc-
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Figure 13: The pose errors es(t) (with blue) along with the performance functions ρs(t) (with
red).

tion is the development of reconfigurable and more decentralized procedures for
the derivation of high-level paths in multi-agent-object systems.

References

[1] W. Ren, R. Beard, Consensus Seeking in Multi-agent Systems under Dy-
namically Changing Interaction Topologies, IEEE Transactions on Auto-
matic Control (TAC) 50 (5) (2005) 655–661.

[2] R. Olfati-Saber, R. Murray, Consensus problems in networks of agents
with switching topology and time-delays, IEEE Transactions on Auto-
matic Control (TAC) 49 (9) (2004) 1520–1533.

[3] A. Jadbabaie, J. Lin, S. Morse, Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules, IEEE Transactions on Au-
tomatic Control (TAC) 48 (6) (2003) 988–1001.

[4] H. Tanner, A. Jadbabaie, G. J. Pappas, Flocking in fixed and switching
networks, IEEE Transactions on Automatic Control (TAC) 52 (5) (2007)
863–868.

[5] D. V. Dimarogonas, K. Kyriakopoulos, On the rendezvous problem for
multiple nonholonomic agents, IEEE Transactions on Automatic Control
(TAC) 52 (5) (2007) 916–922.

54



[6] M. Egerstedt, X. Hu, Formation constrained multi-agent control, IEEE
Transactions on Robotics and Automation 17 (6) (2001) 947–951.

[7] K. Oh, M. Park, H. Ahn, A survey of multi-agent formation control, Au-
tomatica 53 (2015) 424–440.

[8] M. Ji, M. Egerstedt, Distributed Coordination Control of Multi-Agent
Systems While Preserving Connectedness, IEEE Transactions on Robotics
(TRO) 23 (4) (2007) 693–703.

[9] M. Zavlanos, G. J. Pappas, Potential Fields for Maintaining Connectivity
of Mobile Networks, IEEE Transactions on Robotics (TRO) 23 (4) (2007)
812–816.

[10] M. Zavlanos, G. J. Pappas, Distributed connectivity control of mobile
networks, IEEE Transactions on Robotics (TRO) 24 (6) (2008) 1416–
1428.

[11] D. V. Dimarogonas, S. G. Loizou, K. J. Kyriakopoulos, M. Zavlanos,
A Feedback Stabilization and Collision Avoidance Scheme for Multiple
Independent Non-Point Agents, Automatica 42 (2) (2006) 229–243.

[12] M. Krstic, I. Kanellakopoulos, P. Kokotovic, Nonlinear and Adaptive Con-
trol Design, Publisher: Wiley New York (1995).

[13] C. Verginis, Planning and control of uncertain cooperative mobile
manipulator-endowed systems under temporal logic tasks, Ph.D. thesis,
KTH Royal Institute of Technology (2020).

[14] J.-C. Latombe, Robot motion planning, Vol. 124, Springer Science & Busi-
ness Media, 2012.

[15] H. M. Choset, S. Hutchinson, K. M. Lynch, G. Kantor, W. Burgard, L. E.
Kavraki, S. Thrun, Principles of robot motion: theory, algorithms, and
implementation, MIT press, 2005.

[16] S. M. LaValle, Planning algorithms, Cambridge university press, 2006.

[17] S. G. Loizou, K. J. Kyriakopoulos, Closed loop navigation for multiple
holonomic vehicles, IEEE/RSJ International Conference on Intelligent
Robots and Systems 3 (2002) 2861–2866.

[18] D. V. Dimarogonas, S. G. Loizou, K. J. Kyriakopoulos, M. M. Zavlanos,
A feedback stabilization and collision avoidance scheme for multiple inde-
pendent non-point agents, Automatica 42 (2) (2006) 229–243.

[19] G. Roussos, K. J. Kyriakopoulos, Decentralized and prioritized naviga-
tion and collision avoidance for multiple mobile robots, Distributed Au-
tonomous Robotic Systems (2013) 189–202.

55



[20] D. Koditschek, E. Rimon, Robot navigation functions on manifolds with
boundary, Advances in Applied Mathematics 11 (4) (1990) 412–442.

[21] E. Rimon, D. E. Koditschek, Exact robot navigation using artificial po-
tential functions, IEEE Transactions on Robotics and Automation 8 (5)
(1992) 501–518.

[22] H. G. Tanner, A. Kumar, Towards decentralization of multi-robot naviga-
tion functions., IEEE International Conference on Robotics and Automa-
tion (ICRA) 4 (2005) 4132.

[23] S. G. Loizou, The multi-agent navigation transformation: Tuning-free
multi-robot navigation., Robotics: Science and Systems 6 (2014) 1516–
1523.

[24] D. Panagou, A distributed feedback motion planning protocol for multi-
ple unicycle agents of different classes, IEEE Transactions on Automatic
Control 62 (3) (2017) 1178–1193.

[25] L. Wang, A. D. Ames, M. Egerstedt, Safety barrier certificates for
collisions-free multirobot systems, IEEE Transactions on Robotics 33 (3)
(2017) 661–674.

[26] A. Filotheou, A. Nikou, D. V. Dimarogonas, Decentralized control of un-
certain multi-agent systems with connectivity maintenance and collision
avoidance, European Control Conference (2018).

[27] J. Van Den Berg, J. Snape, S. J. Guy, D. Manocha, Reciprocal collision
avoidance with acceleration-velocity obstacles, IEEE International Con-
ference on Robotics and Automation (ICRA) (2011).
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