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Abstract— The success of a cooperative manipulation process
depends on the level of disturbance rejection between the
cooperating agents. However, this attribute may be jeopardized
due to unexpected behaviors, such as joint saturation or internal
collisions. This leads to deterioration in the performance of
the manipulation task. In this paper, we present an adaptive
distributed control framework that directly mitigates these
internal disturbances, both in the joint (and task) spaces. With
our approach, we show that including the manipulator-load
coupling in the definition of the task error yields improved
performance and robustness. To validate this statement, we
provide stability guarantees and simulation results for two
implementation cases.

I. INTRODUCTION

Adaptive manipulation control dates back to [1]–[3], and
has been used to perform single arm manipulation with lim-
ited knowledge of the environment, as in [4]. However, the
application of adaptive control to cooperative manipulation
is still limited [5]. Several works in this field have proposed
a high-level controller that distributes contributions among
agents [6], [7], while others have accounted for the deviation
from their assigned contribution [8], [9].

Alternatively, different leader-follower approaches have
been proposed in [10]–[12] to circumvent the need for com-
munication between agents. However, these options do not
account for abnormal behaviors by the cooperating partners;
this is further exacerbated when the aberrant robot is the
leader, propagating the undesired behavior to the rest of
the agents. Similarly, distributed formulations have been em-
ployed for cooperative manipulation, including [13], where
a distributed approach without adaptive control was applied,
and [14], in which an unknown payload was manipulated
with an optimization of the decoupled dynamics of both sub-
systems. Other relevant approaches include using distributed
Bayesian learning to infer the load dynamics and internal
manipulation coupling [15]; employing formation control
for the cooperative manipulation task, such as in [16] and
[17], which led to a distributed controller that requires only
local measurements, and a solution that requires a model-
based add-on to compensate for the internal disturbances,
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Fig. 1. Scheme of the cooperative manipulation system, with grasping
setting and multi-agent disturbance transmission mechanism in aquamarine.

respectfully; finally, using decentralized sliding mode control
for cooperative load transport, as in [18];

Returning to adaptive control, we must highlight that its
application on multi-agent manipulation systems is generally
done either in the joint space [3], [19] or in the task
space [20]; but not both. In contrast, we present a control
framework that not only applies adaptive control in both the
joint space and task space, but also improves the robustness
of the solution by accounting for an extra coupling criterion
for the manipulators (see Fig. 1). In particular, we opt for a
backstepping approach [21], [22] to simplify the controller
design and introduce the aforementioned coupling criterion
directly into the formulation. The main contributions of this
paper can then be summarized as:
C1. An adaptive backstepping framework that mitigates

both joint- and task-space disturbances, considering the
full dynamics of the load and the robot manipulators.

C2. The analysis of two applications of this framework:
one tracking the end-effector positions in concordance
with the load trajectories, and the other minimizing the
joint speeds as a load-manipulator coupling criterion.

The novelties of the these contributions compared with
relevant works for the application are as follows. The work of
[23] also proposed an adaptive approach for the collaborative
manipulation task; but in that case, the adaptation is applied
to the weight of the payload. In contrast, our framework
can be distributed and only assumes prior knowledge of the
inertial parameters of the object and its desired trajectory.
In [24], a coupled dynamic formulation is used to obtain
an adaptive controller to compensate for disturbances in
the joint and task spaces. However, this approach tracks
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only the load pose, while we propose adding an extra
coupling criterion for robustness. The approach in [25], in
turn, also includes adaptation to uncertainties in the grasping
setting and is formulated for any number of heterogeneous
agents. However, this formulation involves calculating joint-
space errors, despite their inherent limitations. Moreover, the
optimization of the load-manipulator interaction is not fully
explicit. Finally, in [26], the compensation for disturbances
in the task and joint spaces is considered, but only for point
masses with elastic grasping within a 1-D task-space and
without theoretical guarantees.

The rest of the paper is organized as follows: in Section
II, we introduce the cooperative manipulation problem and
motivate the need for the proposed framework, which is
detailed in Section III, including two particular cases. To
validate these, in Section IV we provide realistic simulation
results, highlighting the strengths and weaknesses of our ap-
proach. The manuscript is wrapped up with the conclusions
in Section V.
Notation: IM ∈ ℜM×M and 0M×N ∈ ℜM×N denote the
identity and zero matrices, respectively, with 0M = 0M×M ,
and 0M ∈ ℜM the zero column vector; S(v) is the skew-
symmetric matrix for vector v, and |v|2W := v⊤Wv its
weighted norm square, where the subindex is omitted for the
identity; A+ the right-hand Moore-Penrose pseudoinverse of
A ∈ ℜM×N ,M < N , and tr(A) stands for its trace. ϖ̂ is
an estimate of ϖ whose error reads ϖ̃ := ϖ − ϖ̂.
Acronyms: robot manipulator (RM), end-effector (EE), de-
grees of freedom (DoF).

II. SYSTEM MODELING

Let us consider the system in Fig. 1, in which a team of
n ≥ 2 RMs (R) –with N ≥ 3n DoF in total– carries a rigid
body (L). The stacked joint-space configurations of (R) are
γ ∈ ℜN ; the derived stacked Cartesian positions p ∈ ℜ3n;
and the load pose xL ∈ ℜ6. Then, the kinematics of the
overall system is given by

vL = TẋL, (1a)
vR = J γ̇, (1b)

where vL ∈ ℜ6, vR ∈ ℜ6n denote the operational-space
velocities –i.e., including angular velocities– for (R) and (L),
J is the geometric Jacobian for the EEs of (R); and

T :=

(
I3 03
03 T

)
T is the matrix that transforms a set of (L) angular rates into
their equivalent angular velocity (see [27], Subsection II.A).
Moreover, we define the EE position Jacobians as

ṗ := Jpγ̇.

Subsequently, the dynamics of the (R)+(L) system is

M v̇L + bL = Gh, (2a)

Bγ̈ + Cγ̇ + gR = τ − J⊤h, (2b)

with M ∈ ℜ6×6 –including the rotation inertia I ∈ ℜ3×3–
and B∈ ℜN×M the load and manipulators inertia matrices,

respectively; C ∈ ℜ6×6 the Coriolis matrix for (R); b⊤
L :=

[(S(ωL)IωL)
⊤+ g⊤

L ,0
⊤
3 ], where ωL ∈ ℜ3 are the angular

speed of the load and gL ∈ ℜ3, gR ∈ ℜN account for gravity
in both subsystems; τ ∈ ℜN the stacked joint torques, and
h ∈ ℜ6n the stacked EE wrenches expressed in the inertial
frame. The corresponding grasp matrix is defined by

G :=

(
I3 03

S(r1) I3
· · · I3 03

S(rn) I3

)
∈ ℜ6×6n,

where rn is the vector from the load frame to the grasp
location of the n-th robot [28], [29]. For simplicity, let us
finally reformulate the dynamics of the (R)+(L) system in
(2) in compact form

Bv̇ + b = Pcu, (3)

with v⊤ := [v⊤
L , γ̇

⊤] the generalized velocities of the sys-
tem, b⊤ := [b⊤

L ,b
⊤
R] the stacked gravitational and Coriolis

terms where bR := Cγ̇ + gR, u := [h⊤, τ⊤]⊤ ∈ ℜ6n+N

the actuation vector and

B :=

(
M 06×N

0N×6 B

)
∈ ℜ(6+N)×(6+N),

Pc :=

(
G 06×N

−J⊤ IN

)
∈ ℜ(6+N)×(6n+N),

the compound system inertia and the matrix mapping from
the actuation u to the system dynamics, respectively.

III. ADAPTIVE CONTROL FRAMEWORK

There are several reasons why a cooperating agent might
exhibit unexpected behaviors [9]. For instance, when a
manipulator cannot meet the required end-effector wrench
due to joint saturation [30], when an internal collision occurs,
or if the joint torque sensors get uncalibrated [31]. These
situations result in unexpected disturbances that the other
agents have to mitigate to fulfill the cooperative manipulation
task. This generally requires either measuring the differences
with respect to a nominal behavior or characterizing the
disturbances to propose a suitable indirect estimate [15], [32].
As these disturbances are hard to characterize and measuring
the divergences from the undisturbed case requires enhanced
sensor capabilities, we opt for a different approach.

In this work, we propose a control framework with a core
controller obtained using a backstepping approach that, apart
from tracking the load, also accounts for the manipulator
dynamics. This already robust approach is then enhanced
with an adaptive update law for a simple formulation of the
uncertainties in both subsystems in (3) –as is [17]–, yielding

u = uc + ud, (4)

where u⊤
c := [h⊤

c , τ
⊤
c ] are the control inputs to the system

dynamics without accounting for uncertainties: hc ∈ ℜ6n the
nominal stacked wrenches and τ c ∈ ℜN the nominal stacked
torques; and u⊤

d := [d⊤, δ⊤] are the terms to incorporate the
uncertainties that we assume slow time-varying, i.e., u̇d ≈
06n+N : d ∈ ℜ6n in the wrenches and δ ∈ ℜN in the joint-
space. Throughout this manuscript, we refer to d as the load-
space disturbance and δ as the joint-space disturbance.
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Remark 1: Due to the coupling induced by the Jacobian
J and grasp matrix G, the projection of any time-varying
behavior into the joint-space and load-space is closer to
the slow time-varying condition. This makes adapting to
d and δ significantly more inclusive than just employing
either of them. To illustrate this, consider a case in which
a manipulator in (R) is under joint-space disturbances (Fig.
1). These would be first moderated in the same space, but
not completely canceled. As the remaining disturbances are
transmitted via the aforementioned matrices, our approach
would also mitigate them after the coupling.

We formulate the general adaptive control framework
using both the minimum norm joint torques and their derived
contact wrenches, namely

uc = Λ(Γe+φ) + P+
c b− Pdûd, (5)

with the adaptive update law for the uncertainties in (4),

˙̂ud = −ΓdΛ
⊤
d Γae. (6)

From a descriptive perspective –later expanded and defined
once we particularize the strategy for two application cases
in the next section, with their associated matrix/vector sizes–,
the parameters introduced in the formulation can be seen as

• e encapsulates the error metrics including proportional,
derivative and integral actions for (L) and a (R)-(L)
link through the manipulator dynamics, and is the main
design option of the control framework;

• Λ is the matrix distributing the error tracking and
feedforward action between the direct control input and
the indirect contact wrenches and Λd reflects how the
adaptive parameters should react to this error;

• Γ includes the control gains in the control core, with
Γd ∈ ℜ(6n+N)×(6n+N) its positive definite counterpart
for the adaptive module, and Γa scales how the error
propagates into the adaptive estimation;

• φ accounts for the feedforward actions, i.e. terms di-
rectly including the reference speeds and accelerations,
depending on the definition of the error metrics e;

• P+
c provides the solution of the under-determined sys-

tem of equations in (3) for a uc of lesser norm, namely

P+
c =

(
G+ 06n×N

J⊤G+ IN

)
∈ ℜ(6n+N)×(6n+N);

• Pd is the mapping from the estimated disturbances into
the control actuation given by

Pd :=

(
G+G 06n×N

−J⊤PG IN

)
∈ ℜ(6n+N)×(6n+N); and

• PG := I6n − G+G is the projection matrix into the
kernel of G.

Remark 2: It is worth discussing the impact of distur-
bances through Pd (above) in (5). While δ is directly handled
by τ c, its equivalent for the task-space is distributed along
the null- and column-spaces of G: i) the kernel contributions
via PG, i.e. internal forces that do not directly alter the
load dynamics, are handled by the direct control input. In

other words, part of the compensation of disturbances in
the task space is achieved through internal stress on the
object through PG, as in [33]; ii) disturbances in the column-
space are compensated indirectly via control wrenches. This
implies that although the latter do not appear explicitly on
the control input τ c, they are indeed compensated.

Then, upon plugging the control law (5) and the uncer-
tainty model in (4) into the compact dynamic formulation in
(3), we obtain the closed-loop behavior of the system:

v̇ = B−1Pc [Λ (Γe+φ) + ũd] , (7)

where ũd was the difference between the real disturbances
and the estimation coming from the adaptive update law (6).

We now proceed to particularize the general framework
above for two different sets of error metrics associated with
two design concepts:

A. an approach in which both the load pose xL and
consistent (R) end-effector positions p are tracked
simultaneously for robustness, similarly to [27]; but for
the multi-agent disturbance scenario presented above.

B. an alternative solution in which only the load pose xL

is tracked; but we include the joint-space velocities of
(R) in the Lyapunov candidate. This allows us to both
link the (R) and (L) dynamics, thereby transforming
the wrench control into a torque one, and softening
the response of the controller.

Each of these particular cases is explored in a separate sub-
section below, highlighting their connection to (5) and (6),
and detailing the values of their associated gains matrices.
Please note that the general variables will be altered.

A. Consistent tracking of the load pose and EE positions

Let us define the task-space of the problem as in [27], i.e.
x := [x⊤

L ,p
⊤]⊤ ∈ ℜS , S := 6 + 3n and ẋ =Wv, with

W =

(
T−1 06×N

03n×6 Jp

)
.

In contrast to tracking only the load pose, this definition
allows us to consistently track the load references in both the
load and the manipulator dynamics (2), thus enhancing the
robustness of this solution, as thoroughly discussed in [27].
Consequently, the kinodynamics of the compound (R)+(L)
system (2) in error terms becomes

ėI = eP , (8a)
ėP = eD, (8b)

ėD = φ(ẍr, ẋr) + ẆW+eD −WB−1 (Pcu− b) , (8c)

where eP := xr − x is the tracking error and eI its implicit
integral counterpart, φ(ẍr, ẋr) := ẍr − ẆW+ẋr. Then, we
particularize the framework in (5) for this task.

Proposition 1: Consider the system (8) and the multi-
agent disturbance model in (4) with its associated assumption
of slow time-varying disturbances ud and assume that we are
operating away from any singularity of T . Then, under the
control law (5) for the error metric e := [e⊤I , e

⊤
P , e

⊤
D]⊤, and
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the particularization of the matrices in (5) given by (9), for
Γ1,Γ2,Γ3 ∈ ℜS×S positive definite gain matrices,

Λ =

(
G+MT 06n×3n

J⊤G+MT BJ+
p

)
,

Λd =

(
T−1M−1G 06×N

−JpB−1J⊤ JpB
−1

)
,

and the adaptive update laws (6), the closed-loop system (7)
is asymptotically stabilized to zero, i.e., e → 0 as t→ ∞.

Proof: Let us use a backstepping approach and define
V1 := |eI |2 /2 ≥ 0 and derive V̇1 = e⊤I eP =−|eI |2Γ1

−z⊤1 eI ,
with z1 := −Γ1eI − eP the error of the first step. To cope
with it, we define V2 := V1 + |z1|2 /2 ≥ 0, and thus V̇2 =
− |eI |2Γ1

−z⊤1 (eI + Γ1eP + eD) = − |eI |2Γ1
−|z1|2Γ2

−z⊤2 z1,
with z2 := −Γ2z1+eI+Γ1eP +eD the error of this second
step. Analogously, we define V3 := V2 + |z2|2 /2 ≥ 0 under
the error dynamics in (8c), and then we have

V̇3 =− |eI |2Γ1
− |z1|2Γ2

+ z⊤2 (ż2 − z1)

=− |eI |2Γ1
− |z1|2Γ2

+ z⊤2

[
Γ1eI + (Γ2Γ1+2IS) eP +(Γ2+Γ1) eD

+φ+ ẆW+eD −WB−1 (Pcu− b)
]
.

If we plug (5) for the proposed gains in (9) into the above
–as in [27]–, we obtain that

V̇3 =− |eI |2Γ1
− |z1|2Γ2

− |z2|2Γ3
− z⊤2 WB−1Pcũd

=− |eI |2Γ1
− |z1|2Γ2

− |z2|2Γ3
− e⊤Γ⊤

a Λdũd.

Finally, we propose the Lyapunov function to mitigate the
uncertainties in (4): VA := V3 + |ũd|2Γ−1

d
/2 ≥ 0. Under the

assumption of slow time-varying disturbances (u̇d ≈ 06n+N )
and using the adaptive update law in (6), we obtain that

V̇A =− |eI |2Γ1
− |z1|2Γ2

− |z2|2Γ3
+ ũ⊤

d

(
Γ−1
d

˙̃ud − Λ⊤
d Γae

)
=− |eI |2Γ1

− |z1|2Γ2
− |z2|2Γ3

.

Since VA > 0 and V̇A ≤ 0, all the trajectories are bounded,
and we can invoke LaSalle’s Invariance Principle. To rule out
all other conditions for V̇A ≤ 0 different from the desired
equilibrium, we analyze z1 and z2. From the definition of
z1 := −Γ1eI − eP , it follows that eP = 0S . Analogously,
as z2 := −Γ2z1+eI +Γ1eP +eD, we obtain eD = 0S and
therefore e = 03S , thus concluding the proof.

B. Load pose tracking with softened joint-space response

In contrast to Subsection III-A, we define the task-space
as x := xL ∈ ℜ6, that is, only accounting for the load pose.
As this traditional option does not yield a clear intercon-
nection with the dynamics of the manipulator, it tends to
be associated with an open-loop torque allocation based on
(2b), (i.e., τ = Bγ̈ +Cγ̇ + gR + J⊤h). Here, nevertheless,
we propose a different approach: adding the joint speeds of
(R) to the proposed Lyapunov function so that this control
allocation comes directly from the closed-loop formulation.
For that purpose, we write the error kinodynamics of (2a) as

ėI = eP , (10a)
ėP = eD, (10b)

ėD = φR(ẍr, ẋr)−T−1ṪeD−T−1M−1(Gh−bL) , (10c)

where eP := xr − x is the tracking error and eI its implicit
integral counterpart, while φR(ẍr, ẋr) := ẍr + T−1Ṫẋr.

Proposition 2: Consider the system (10) and the multi-
agent disturbances slow time-varying disturbances ud in (4)
and assume that T is full-ranked. Then, under the control
law (5) for e := [e⊤I , e

⊤
P , e

⊤
D,−γ̇]⊤, φ = [φ⊤

R,0
⊤
N ]⊤, the

control gains in (11), where Γ4,Γ5,Γ6 ∈ ℜ6×6, Γ7 ∈ ℜN×N

are positive definite gain matrices; and with

Λ=

(
G+MT 06n×N

J⊤G+MT B

)
, Λd =

(
T−1M−1G 06×N

−B−1J⊤ B−1

)
,

and the adaptive update laws (6) for these matrices, the
closed-loop system (7) is asymptotically stabilized to zero,
i.e., e → 0 as t→ ∞.

Proof: Let us use a backstepping approach, define
V1 := |eI |2 /2≥ 0 and derive V̇1 = e⊤I eP =−|eI |2Γ4

−z⊤1 eI ,
z1 := −Γ4eI −eP the error of this first backstepping step.
To cope with it, we define V2 := V1+|z1|2 /2≥ 0, and hence
V̇2 = −|eI |2Γ4

− z⊤1 (eI +Γ4eP +eD) = −|eI |2Γ4
− |z1|2Γ5

−
z⊤2 z1, with z2 := −Γ5z1 + eI +Γ4eP + eD the error of the
second step. Instead of adding a standard third step, we opt
for a Lyanpunov candidate that includes the coupling with
the manipulator, namely V3 := V2 + |z2|2 /2+ |γ̇|2 /2 ≥ 0.
The derivative of such candidate under (10c) and (2b) is

V̇3 =− |eI |2Γ4
− |z1|2Γ5

+

[
z2
−γ̇

]⊤[
ż2 − z1
−γ̈

]
=− |eI |2Γ1

− |z1|2Γ5
+

[
z2
−γ̇

]⊤[
ėD
−γ̈

]
+

[
z2
−γ̇

]⊤[
Γ4eI +(Γ5Γ4+2I6) eP +(Γ5+Γ4) eD

0N

]
.

Using (2b) and (10c), and the notation in (3), we obtain

V̇3 =− |eI |2Γ4
− |z1|2Γ5

+

[
z2
−γ̇

]⊤[
φ−

(
(MT)−1

06×N

0N×6 B−1

)
(Pcu− b)

]
+

[
z2
−γ̇

]⊤[
Γ4eI+(Γ5Γ4+2I6)eP+

(
Γ5+Γ4−T−1Ṫ

)
eD

0N

]
.

If we then plug in (5) with the particularization above and
the proposed gains in (11) –as in [27]–, the derivative of the
Lyapunov candidate becomes

V̇3 =− |eI |2Γ4
− |z1|2Γ5

− |z2|2Γ6
− |γ̇|2Γ7

−
[
z2
−γ̇

]⊤ (
(MT)−1

06×N

0N×6 B−1

)
Pcũd

=− |eI |2Γ4
− |z1|2Γ5

− |z2|2Γ6
− |γ̇|2Γ7

− e⊤Γ⊤
a Λdũd.

Finally, we mitigate the adaptive errors with the Lyapunov
function VA := V3 + |ũd|2Γ−1

d
/2 ≥ 0. Under the assump-

tion of slow time-varying disturbances (u̇d ≈ 06n+N ) and
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Γ=
(
Γ1+Γ3Γ2Γ1+Γ3 Γ2Γ1+Γ3Γ1+Γ3Γ2+2IS Γ1+Γ2+Γ3+ẆW+

)
, Γa=

(
Γ2Γ1+IS Γ1+Γ2 IS

)
. (9)

Γ=

(
Γ4+Γ6Γ5Γ4+Γ6 Γ5Γ4+Γ6Γ4+Γ6Γ5+2I6 Γ4+Γ5+Γ6−T−1Ṫ 06×N

0N×18 Γ7

)
, Γa=

(
Γ5Γ4+I6 Γ4+Γ5 I6 06×N

0N×18 IN

)
. (11)

introducing the adaptive update law in (6), we obtain that

V̇A =− |eI |2Γ4
−|z1|2Γ5

−|z2|2Γ6
−|γ̇|2Γ7

+ũ⊤
d

(
Γ−1
d

˙̃ud−Λ⊤
d Γae

)
=− |eI |2Γ4

−|z1|2Γ5
−|z2|2Γ6

−|γ̇|2Γ7
.

Since VA > 0 and V̇A ≤ 0, all the trajectories are bounded,
and we can invoke LaSalle’s Invariance Principle. As in the
previous discussion, we rule out all solutions of V̇A = 0
different from e = 018+N . Since z1 := −Γ4eI − eP , we
obtain eP = 06, and recalling z2 := −Γ5z1 + eI +Γ4eP +
eD, it follows that eD = 06, thus concluding the proof.

IV. VALIDATION

To validate the framework, we analyze the results of
both application cases in simulation, using the MathWorks®

MATLAB/Simulink multi-body Simscape tool. The proposed
cooperative manipulation test bench is depicted in Fig. 2,
and consists of two RMs with 6 DoF sharing a load –
with a mass of 2.117 kg and inertia in the body frame of
[Ix, Iy, Iz] = [0.0297, 0.0316, 0.0440] kgm2– following a
sinusoidal pose trajectory. It is important to note that this load
is above the combined maximum loads of the manipulators,
allowing us to obtain a conservative evaluation of the track-
ing performance. Moreover, we include a temporal torque
saturation for one of the joints to evaluate the robustness
of the framework against the unexpected internal behaviors
mentioned above. Moving to the implementation, we include
the well-known σ-modification [34] of the adaptive update
in (6) to improve its robustness against drift. The gains
associated with this and the control gains chosen for both
cases are detailed in Table I, where [ϕ, θ, ψ] denote the roll-
pitch-yaw angles of the load.

Once the simulation settings are clear, let us discuss the
results in Fig. 3. For the first application case in Subsection
III-A, we can see that the base strategy –without the adaptive
update law– already provides solid tracking capabilities. In
particular, we wish to highlight that during the saturation dis-
turbances (t ∈ [4, 6]s) this core approach just suffers limited
oscillations in load position and attitude. These results are
further improved when the adaptive update law is used. For
example, the adaptive add-on reduces the oscillations in the
load pose produced by the disturbances due to the change in
d̂, δ̂ around t = 5s, while maintaining the nominal behavior
before and after them.

Regarding the results for the second case (Subsection III-
B), we can see that the base controller is capable of tracking
the load position but produces noticeable oscillations in the
attitude from the start of the disturbances. Thanks to the
adaptive update law, those are mitigated in the complete
strategy, but without reaching the nominal behavior prior

Fig. 2. Cooperative manipulation test bench system with two RMs.

TABLE I
CONTROL GAINS AND VALUES FOR THE σ-MODIFICATION

Subsection III-A Subsection III-B

Core (5) Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7

(L)
Pos. 0.5 30.0 6.0 0.5 30.0 6.0 -
ϕ 1.5 120.0 6.0 0.8 66.0 3.3 -
θ 0.5 42.0 6.0 1.3 102.0 5.1 -
ψ 0.6 160.0 0.8 0.3 72.0 0.4 -

(R)
pxy 0.4 9.0 4.0 - - - -
pz 0.6 18.0 4.0 - - - -
γ̇1-5 - - - - - - 60.5
γ̇6 - - - - - - 300.0

Adaptive (6) Γd σ Γd σ

(L) dxyz 0.01 0.6 0.01 3.0
dϕθψ 0.01 2.4 0.01 3.0

(R) δ 0.12 1.4 0.02 150.0

to them nor the tracking capabilities of the previous case.
Nevertheless, we recall that the validation is performed under
severe conditions, both in the load mass and in the joint
torque saturation.

In general, we can infer that the proposed framework
mitigates the disturbances produced by the joint saturation
in one of the manipulators, which propagate from this to the
other manipulator through the gasp map. As this involves
coping with disturbances in both task and joint spaces, the
adaptive update law employed in the framework has also
proven useful in modulating such disturbances.

V. CONCLUSION

In this work, we present a control framework which ex-
tends previous collaborative manipulation approaches using
contact wrenches with an interconnection criterion between
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A. Consistent tracking of the load pose and EE positions
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B. Load pose tracking with softened joint-space response
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Fig. 3. Simulation results for particularizations detailed in Subsections III-A and III-B, with and without the adaptive update law in (6), including the
saturation of the torque of the third DoF of (R)1 for t ∈ [4, 6]s (whose effects on the tracking performance are highlighted in light orange).

the load and manipulator mechanics. This new paradigm
leads to a joint torque solution that comes directly from
the control design and provides enhanced disturbance re-
jection capabilities. Moreover, we focus on the problem
of unexpected disturbances within the robot collaboration,
for which we propose adding an adaptive update law to
the base framework. This strategy is then particularized for
two application cases: one extending the task-space with

the consistent tracking of the end-effector positions of the
manipulators, and another one with the joint speeds. The
stability of the solution for these two cases is analyzed with
Lyapunov methods, and their simulation results are used to
validate the framework. Finally, these results are thoroughly
discussed, with special emphasis on the robustness of the
strategy and the safe response against the aforementioned
internal disturbances. Future work will extend the number
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of manipulators beyond two, and hardware experiments will
be used to validate our method. In addition, more quantitative
comparisons between our work and others will be conducted.
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