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Abstract

This paper considers the problem of robot motion planning in a workspace with obstacles for systems with uncertain 2nd-
order dynamics. In particular, we combine closed form potential-based feedback controllers with adaptive control techniques
to guarantee the collision-free robot navigation to a predefined goal while compensating for the dynamic model uncertainties.
We base our findings on sphere world-based configuration spaces, but extend our results to arbitrary star-shaped environments
by using previous results on configuration space transformations. Moreover, we propose an algorithm for extending the control

scheme to decentralized multi-robot systems. Finally, extensive simulation results verify the theoretical findings.
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1 Introduction

Motion planning and specifically robotic navigation
in obstacle-cluttered environments is a fundamental
problem in the field of robotics [1]. Several techniques
have been developed in the related literature, such as
discretization of the continuous space and employment
of discrete algorithms (e.g., Dijkstra, A*), probabilis-
tic roadmaps, sampling-based motion planning, and
feedback-based motion planning [2]. The latter, which
is the focus of the current paper, offers closed-form
analytic solutions by usually evaluating appropriately
designed artificial potential fields, avoiding thus the po-
tential complexity of workspace discretization and the
respective algorithms. At the same time, feedback-based
methods provide a solution to the control aspect of the
motion planning problem, i.e., the correctness based on
the solution of the closed-loop differential equation that
describes the robot model.

Early works on feedback-based motion planning es-
tablished the Koditschek-Rimon navigation function
(KRNF) [3,4], where, through gain tuning, the robot
converges safely to its goal from almost all initial con-
ditions (in the sense of a measure-zero set). KRNFs
were extended to more general workspaces and adaptive
gain controllers [5], to multi-robot systems [6-9], and
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more recently, to convex potential and obstacles [10].
The idea of gain tuning has been also employed to an
alternative KRNF in [11]. Tuning-free constructions of
artificial potential fields have also been developed in
the related literature; [12] tackles nonholonomic multi-
robot systems, and in [13, 14] harmonic functions, also
used in [15], are combined with adaptive controllers to
achieve almost global safe navigation. A transformation
of arbitrarily shaped worlds to points worlds, which
facilitates the motion planning problem, is also consid-
ered in [13,14] and in [16] for multi-robot systems. The
recent works [13], [17] guarantee also safe navigation in
predefined time.

Barrier functions for multi-robot collision avoidance are
employed in [18] and optimization-based techniques via
model predictive control (MPC) can be found in [19-22];
[23] and [24] propose reciprocal collision obstacle by local
decision making for the desired velocity of the robot(s).
Ellipsoidal obstacles are tackled in [25] and [26] extends a
given potential field to 2nd-order systems. A similar idea
is used in [27], where the effects of an unknown drift term
in the dynamics are examined. Workspace decomposi-
tion methodologies with hybrid controllers are employed
in [28], [29], and [30], and [31] employs a contraction-
based methodology that can also tackle the case of mov-
ing obstacles.

A common assumption that most of the aforementioned
works consider is the simplified robot dynamics, i.e., sin-
gle integrators/unicycle kinematics, without taking into
account any robot dynamic parameters. Hence, the ac-
tual robot trajectory might deviate from the desired
one, jeopardizing its safety. Second-order realistic robot
models are considered in MPC-schemes, like [19-21],
which might, however, result in computationally expen-
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sive solutions. Moreover, regarding model uncertainties,
a global upper bound is required, which is used to enlarge
the obstacle boundaries and might yield infeasible solu-
tions. A 2nd-order model is considered in [25], [26], with-
out, however, considering any unknown dynamic terms.
The works [6,32-34] consider simplified 2nd-order sys-
tems with known dynamic terms (and in particular, in-
ertia and gravitational terms that are assumed to be suc-
cessfully compensated); [27] guarantees the asymptotic
stability of 2nd-order systems with a class of unknown
drift terms to the critical points of a given potential func-
tion. However, there is no characterization of the region
of attraction of the goal. Adaptive control for constant
unknown parameters is employed in [35], where a swarm
of robots is controlled to move inside a desired region.

In this paper, we consider the robot navigation in an
obstacle-cluttered environment under 2nd-order uncer-
tain robot dynamics, in terms of unknown mass and
friction/drag terms. Our main contribution lies in the
design of a novel 2nd-order smooth navigation function
as well as an adaptive control law that guarantees the
safe navigation of the robot from almost all initial con-
ditions. We also show how the proposed scheme can be
applied to star-worlds, i.e., workspaces with star-shaped
obstacles [4], as well as to decentralized multi-robot nav-
igation. Adaptive control for multi-robot coordination
was also employed in our previous works [8,36]. The re-
sults in [8], however, are only existential, since we do
not provide an explicit potential function that satisfies
the desired properties, while [36] focuses on the multi-
agent ellipsoidal collision avoidance, without guarantee-
ing achievement of the primary task.

The rest of the paper is organized as follows. Section
2 provides the notation used throughout the paper.
Section 3 describes the tackled problem and Section 4
provides the main results. Sections 5 and 6 extend the
proposed scheme to star worlds and multi-agent frame-
works, respectively. Finally, simulation studies are given
in Section 7 and Section 8 concludes the paper.

2 Notation

The set of natural and real numbers is denoted by N,
and R, respectively, and RZ,, R%,, n € N, are the
n-dimensional sets of nonnegative and positive real
numbers, respectively. The notation ||z| implies the
Euclidean norm of a vector x € R™. The identity matrix
is denoted by I,, € R™*™ the n x m matrix of zeros
by 0,,xm and the n-dimensional zero vector by 0,,. The
gradient and Hessian of a function f : R® — R are de-
noted by V,f(z) = 2 ¢ R* and V2f(x) € R™*",
respectively.

3 Problem Statement

Consider a spherical robot operating in a bounded
workspace W, characterized by its position vector

x € R", n € {2,3} and radius r > 0, and subject to the
dynamics:
T=wv (1a)
mis + £(z,0) +mg = 1, (1b)

where m > 0 is the unknown mass, g € R" is the con-
stant gravity vector, u € R" is the input vector, and
f:R*™ — R” is an unknown friction-like function, sat-
isfying the following assumption:

Assumption 1 The function f : R?" — R" is analytic

and satisfies
1f (@, v)[| < allv], (2)
Va,v € R®, where o € R>q is an unknown constant.

The aforementioned assumption is inspired by standard
friction-like terms, which can be approximated by con-
tinuously differentiable velocity functions [37]. Constant
unknown friction terms could be also included in the dy-
namics (e.g., incorporated in the constant gravity vec-
tor). Note also that || f(x,v)|| < «||v|| implies f(z,0,) =

of(xz,v)
On, and “or v—o.,
to be an open ball centered at the origin
Wi={qeR": |q <rw}, 3)

= Opxn. The workspace is assumed

where ryy > 0 is the workspace radius. The workspace
contains M € N closed sets O;, j € J = {1,..., M},
corresponding to obstacles. Each obstacle is a closed ball
centered at c; € R3, with radius o, > 0,ie.,0; = {q €
Wllg—cjl| 7o, }, Vi € J. The analysis that follows
will be based on the transformed workspace:

Wi={qeR" :|lq|| <7y :=rw -7}, (4)

and set of obstacles O; == {g e W : |l¢g —¢j| < 7o, =
ro; + 1}, Vj € J, where the robot is reduced to the
point x. The free space is defined as

F = W\ U @j, (5)
JjET

also known as a sphere world [3]. We consider the fol-
lowing common feasibility assumption [3,17] for F:

Assumption 2 The workspace W and the obstacles O,
satisfy ||ci—c;l| > ro, +70; 421 andry —||cj|| > 7o, +2r,
Vi,j € J,i#].

Assumption 2 implies that we can find some 7 > 0 such
that

llci = cjll > 1o, + 70, +2r +27, Vi,j € J,i#j, (6a)
rw = |lejll > 1o, +2r + 27, VijeJ (6b)
This paper treats the problem of navigating the robot

to a destination x4 while avoiding the obstacles and the
workspace boundary, formally stated as follows:



Problem 1 Consider a robot subject to the uncertain
dynamics (1), operating in the aforementioned sphere
world, with (z(t9),v(tg)) € F x R™. Given a destination
xq € F, design a control protocol u such that z(t) €
F, t>to andlimy_ o (z(t),v(t)) = (xq,0,).

4 Main Results

We provide in this section our methodology for solving
Problem 1. Define first the set J = {0} U J as well
as the distances d; : F — Rxo, j € J, with d;(z) =
lz —¢;]1? — 737, Vj € J, and do(z) == 7, — ||z||*. Note
that, by keeping d;(x) > 0, do(x) > 0, we guarantee that
x € F1. We also define the constant

o = min { = lloal P min Gyl ()

as the minimum distance of the goal to the obsta-
cles/workspace boundary. We introduce next the notion
of the 2nd-order navigation function:

Definition 1 A 2nd-order navigation function is a func-
tion ¢ : F — R> of the form

$(z) = knllz — zal® + k2 Y B(d;(x)),

jeT

where B : Rug — Rxg is a (at least) twice contin. differ-
entiable function and k1, ko are positive constants, with
the followings properties:

(1) B((0,7]) is strictly decreasing, lim, .o 8(z) = oo,
and 8(z) = B8(7), V2> 71,5 € J, for someT >0,

(2) &(x) has a global minimum at © = x4 € int(F)
where ¢p(zq) =0, -

(8) if B'(di(x)) # 0 and 8" (di(x)) # O for somek € T,
then B'(d;(x)) = 8" (d;(x)) = 0, for all j € T\{k}.

(4) The function B : (0,7) — Rso, with f(z) =
B"(2)z+/z is strictly decreasing.

By using the first property we will guarantee that, by
keeping 3(d;(x)) bounded, there are no collisions with
the obstacles or the free space boundary. Property 2 will
be used for the asymptotic stability of the desired point
x = xq. Property 3 places the rest of the critical points
of ¢ (which are proven to be saddle points) close to the
obstacles, and the last property is used to guarantee that
these are non-degenerate. An example for S that satisfies
properties 1) and 4), is

N (8)

_[(62° =152 +102%) 78, 2 <1
6(2) '{1’ 221’

1" A safety margin can also be included, which needs, how-
ever, to be incorporated in the constant 7 of (6).

Note that [ is essentially a reciprocal barrier func-
tion [18]. We prove next that, by appropriately choosing
7, only one 3(d;(x)), j € J affects the robotic agent
for each € F, and furthermore that f’'(d;(z4)) =
B"(d;(zq)) = 0. Hence, properties 2) and 3) of Def. 1
are satisfied.

Proposition 1 By choosing T as 7 € (0, min{7?,74}),
where 7,74 were introduced in (6) and (7), respectively,
we guarantee that at each x € F there is no more than
one j € J such that d; < 7, implying that 5'(d;(x)) and
B"(dj(x)) are non-zero.

PROOF. See the proof of Prop. 1 in [38].

Moreover, one can easily conclude in view of (7) that

B'(dj(za)) = B"(dj(2zq)) =0,Vj € J.

Intuitively, the obstacles and the workspace boundary
have a local region of influence defined by the constant
7, which will play a significant role in determining the
stability of the overall scheme later. This robot inter-
action with only one obstacle at a time has also been
demonstrated in the feedback control-based related lit-
erature, e.g., [5,10,17,28,39], which deals with simpli-
fied single-integrator models, as well as in the more dis-
crete decision making bug algorithms [1], which involve
circumnavigation of obstacles and can handle in general
complex unknown environments.

Given the aforementioned definitions, we design a refer-
ence signal vq : F — R™ for the robot velocity v as

va(z) = =Vao(z). (9)

Next, we design the control input u to guarantee track-
ing of the aforementioned reference velocity as well as
compensation of the unknown terms m and f(z, v). More
specifically, we define the signals m € R and & € R as the
estimation terms of m and « (see Assumption 1), respec-
tively, and the respective errors m == m—m, a = & —a.
We design now the control law u : F x R*"*2 — R" as
u = u(z,v,m, &), with

u = —kyV () + m(vq + g) — <k + za> ey, (10)

where e, = v — vq, and k,, kg are positive gain con-
stants. Moreover, we design the adaptation laws for the
estimation signals as

m = — kme, (04 + 9) (11a)
& =kq|les||?, (11b)

with k,,, k. positive gain constants, &(tp) > 0, and ar-
bitrary finite initial condition /(tg). The choices for the
control and adaptation laws are based on Lyapunov tech-
niques, and follow standard adaptive control methodolo-
gies (see, e.g., [40]). The following theorem establishes
the correctness of the proposed control protocol.



Theorem 1 Consider a robot operating in W, subject
to the uncertain 2nd-order dynamics (1). Given xq €
F, the control protocol (9)-(11) guarantees the collision-
free navigation to xq from almost all initial conditions
(x(to), v(to), m(to), &lto)) € F x R™! x Rxg, given a
sufficiently small T and that ky > 5. Moreover, all closed
loop signals remain bounded, Vt > tg.

PROOF. See the proof of Theorem 1 in [38].

Remark 1 Note that, unlike the related works in
feedback-based robot navigation, the proposed algorithm
guarantees almost global safe convergence while com-
pensating for unknown dynamic terms (f and m in this
case). Moreover, in contrast to tuning schemes (e.g.,
[3, 6, 14, 33]), we do not require large control gains in
order to establish the correctness of the propose scheme.

Remark 2 The condition ky > 5 of Theorem 1 is only
sufficient and not necessary, as will be shown in the sim-
ulation results. Moreover, in case the robot gets stuck in
a local minima, one could apply an exciting input per-
pendicular to x — xq (see [17]), freeing it thus from that
configuration. Nevertheless, the set of initial conditions
that drive the robot to such configurations has zero mea-
sure and hence the probability of starting in it is zero. >

4.1  Dynamic Disturbance Addition

Except for the already considered dynamic uncertain-
ties, we can add to the right-hand side of (1) an unknown
disturbance vector d(x,v,t), i.e.,

=
mi + f(z,0) +mg + d(x,v,t) = u,

subject to a uniform boundedness condition ||d(z, v, t)||
<d,Vz,v,t € R®" x R>¢. In this case, by slightly mod-
ifying the control scheme, we still guarantee collision
avoidance with the workspace obstacles and boundary.
In addition, we achieve uniform ultimate boundedness
of the error signals as well as the gradient of ¢, as the
analysis in this section shows.

The control scheme of the previous section is appropri-
ately enhanced to incorporate the o- modification [40],
a common technique in adaptive control. More specifi-
cally, the adaptation laws (11) are modified according to

m = — ke (0q + g) — omin
Qe

:ka ”e'u ||2 - Uocda

where o,,, 0, are positive gain constants. More specif-
ically, the addition of o,,, 0, guarantees the uniform

2 The exciting input could be applied at the initial condition,
if it can be identified that it will lead to a local minima.

boundedness of m, &. By exploiting the boundedness of
d(-) and the fact that limg; .0 3(d;) = 0o, one can eas-
ily show that collisions are provably avoided. Although
the goal configuration might is not proven to be almost
globally stabilized, intuition suggests that if d(-) does
not behave adversarially, the agent will converge close
to it. More details can be found in Section 4.1 of [38].

5 Extension to Star Worlds

In this section, we discuss how the proposed control
scheme can be extended to generalized sphere worlds,
and in particular star worlds, being inspired by the
methodology of [4]. That work however, like others re-
lated to workspace transformations [14, 16], considers
simplified dynamics without taking into account un-
known terms, which is the focus of this section. Although
we focus on star-worlds, the analysis holds for any dif-
fereomorphic transformation that exhibits the desired
properties (e.g. [14]). Star worlds are diffeomorphic to
sphere worlds sets of the form 7" := W\ U, ; O7; , where

W is a workspace of the form (4) and O7; are M disjoint
star-shaped obstacles (indexed by J = {1,...,M}).
The latter are sets characterized by the property that all
rays emanating from a center point cross their boundary
only once [4]. One can design a diffeomorphic mapping
H : T — F, where F is a sphere world of the type (5).
More specifically, H maps the boundary of 7 to the
boundary of F. Construction of such a mapping is be-
yond the scope of the paper and we refer the interested
reader to the related literature [4,41].

The control scheme of the previous section is modified
now to account for the transformation H as follows. The
desired robot velocity is set to vq : 7 — R™, with

va(x) = —~Ju(2) " Vi@ o(H(z)), (12)

where Jy(x) = 9H(=) i¢ the nonsingular Jacobian ma-

trix of H. Next, by letting e, == v — vgq, the control law
is designed as u : T x R"*2 — R", with

u = u(z,v,1M, &) = — ko Jp(x) "V i (H(2))+

m(va + g) — <k + ;’a> ev, (13)

where m and & evolve according to the respective ex-
pressions in (11). The next theorem gives the main result
of this section.

Theorem 2 Consider a robot operating in W, subject
to the uncertain 2nd-order dynamics (1). Givenzq € T,
the control protocol (11)-(13) guarantees the collision-
free navigation to xq from almost all initial conditions
(z(to), v(to), m(to), &(to)) € T x R™ X R, given a
sufficiently small T and that kg > 5. Moreover, all closed
loop signals remain bounded, ¥t > t.



PROOF. See the proof of Theorem 2 in [38].

Remark 3 The proposed schemes can also be extended
to unknown environments, where the amount and loca-
tion of the obstacles is unknown a priori, and these are
sensed locally on-line. In particular, by having a large
enough sensing neighborhood, each obstacle j € J can
be sensed when d; = T, and hence the respective term
can be smoothly incorporated in V,$(x), in view of the
properties of B (a similar idea is discussed in Section V
of [10]). It should be noted, however, that the local sen-
sory information and respective hardware must allow for
the accurate estimation of the centers and radii (or the
implicit function in case of star-worlds) of the obstacles.

6 Extension to Multi-Robot Systems

This section is devoted to extending the results of Section
4 to multi-robot systems. Consider, therefore, N € N
spherical robots operating in a workspace W of the form
(3), characterized by their position vectors z; € R”, as
well as their radii 7; > 0,7 € N == {1,...,N}, and
obeying the second-order uncertain dynamics (1), i.e.,

‘T’:i = ’UZ- (1434)
mv; + fi(zi,v;) +mig = uy, (14b)

with the unknown f;(+) satisfying || fi(zi, vi)|| < vl
for unknown positive constants «;, Vi € N. We also
denote x = [z],...,2 ], v = [v],..., 0] € RV
Each robot’s destination is zq,, i € N.

The proposed multi-robot scheme is based on a pri-
oritized leader-follower coordination. Prioritization
in multi-agent systems for navigation-type objectives
has been employed in [9] and [42], where KRNF gain
tuning-type methodologies are developed. The proposed
framework, however, is substantially different from
these works; [42] does not take into account inter-agent
collisions, and uses prioritization for the sequential nav-
igation and task satisfaction subject to connectivity
constraints, while [9] uses prioritization for directional
collision-avoidance. In our proposed prioritized leader-
follower methodology, the leader robot, by appropri-
ately choosing the offset 7, “sees” the other robots as
static obstacles and hence the overall scheme reduces to
the one of Section 4. This is accomplished by differen-
tiating the free spaces of the leader and the followers.
Moreover, the aforementioned works [9, 42] consider
simplified first-order dynamics and cannot be easily ex-
tended to the uncertain dynamics-case considered here.
In fact, we note that, according to our best knowledge,
there does not exist a control framework that provably
guarantees decentralized safe multi-robot navigation
in workspaces with obstacles and subject to uncertain
2nd-order dynamics.

The workspace is assumed to satisfy Assumption 2 and
we further impose the following extra conditions:

Assumption 3 The workspace W, obstacles O;,j € J,
and destinations xq,, 1 € N, satisfy:

llej —xa,ll > ro, +1i +2rp +6,Vi,j e N X T
|xa, — wa, || > i + 75+ 2rar + 26, Vi, 5 € Nyi# j

>+ 2ry e Vie N

w — ||$db
whereas the initial positions satisfy:

”Cj —z;(to)]| > To; + T4 +2ry, Vi, EN X T
rw — |lzi(to)|| > ri +2ra, Vi € N
|za, — 2;(to)|| > ri + 7+ 2rn +€,¥i,§ € N,i # §,

for an arbitrarily small positive constant e, Vi € N, j €
J, where vy = max;epn{r;}.

Loosely speaking, the aforementioned assumption states
that the pairwise distances among obstacles, workspace
boundary, initial conditions and final destinations are
large enough so that one robot can always navigate be-
tween them. Since the convergence of the agents to their
destinations is asymptotic, we incorporate the threshold
€, which is the desired proximity we want to achieve to
the destination, as will be clarified in the sequel. Intu-
itively, since we cannot achieve x; = x4, in finite time,
the high-priority agents will stop once ||z; — xq,|| = &,
which is included in the aforementioned conditions to
guarantee the feasibility of the collision-free navigation
for the lower-priority agents. Similarly to the single-
agent case, we can find a positive constant 7 such that
(6) hold as well as

lle; — zi(to)ll > ro; + i+ 2rm + 27, Vi, j €N x T (15a)
rw — ||zi(to)]| > 7 + 2rm + 27, Vi € N (15b)
llcj — xa; || > ro; +1ri 4+ 2ra + 4 27, Vi, j € N x J (15¢)
llza, — xa, || > ri +rj +2rm + 26 4+ 27,Vi,j € N,i # j

(15d)
lza; — j(to)|| > 75 + 75 + 2rn + € + 27, Vi, j € N,i # j

(15e)
rw — |Ta, || > 7i + 2rar + &+ 27, Vi € N (15¢f)

We consider that the agents have a limited sensing range,
defined by a radius ¢; > 0, ¢ € A/, and we assume that
each agent ¢ can sense the state of its neighbors:

Assumption 4 Fach agenti € N has a limited sensing
radiuss;, satisfyings; > /min(72, 7q)+r;+r;+2ry+2F,
with 7q as defined in (7), and has access to x; —x;, v; —vj,
Vie{ieN |z — x| <<}

Moreover, we consider that the destinations, zq,,i € N,
as well as the radii, r;, are transmitted off-line to all the

agents 3. Consider now a prioritization of the agents,

3 This implies that the agents can compute rys offline.



possibly based on some desired metric (e.g., distance to
their destinations), which can be performed off-line and
transmitted to all the agents. Our proposed scheme is
based on the following algorithm. The agent with the
highest priority is designated as the leader of the multi-
agent system, indexed by i, whereas the rest of the
agents are considered as the followers, defined by the
set Nz = N\{iz}. The followers and leader employ
a control protocol that has the same structure as the
one of Section 4. The key difference here lies in the def-
inition of the free space for followers and leaders. Let
q=1[q,...,qx]" € RV We define first the sets

Wia = {q € RV Hqic H <Tw — Tic}v

Oipj ={qa€Wi, :llgi —cill 1oy +1i},Vj €T

Cip ={a€Wi, |, — agsll < 1ip +15,¥5 € N\ic}},
which correspond to the leader agent, as well as the fol-
lower sets
Wi = {q e R"" : ||g|| < rw — s — 2ras — 27}
Oij ={qge€W;:|lgi—cjl| <ro; +ri+2rm +27},Vj € T
Ci={qgeWi:llai —qi || <ri+rig,

lgi = qsll < ri 475+ 2ram + 27, V5 € N\{ic, i},
llgi — za, || < ri4rj+2rm + 27 +€,Vj € Ni},

Vi € Nz, where N; denotes the set of agents with higher
priority than agent 7. The free space for the agents is
defined then as F; == W\{(U,cs 0i;) UC;}, Vi € N.
It can be verified that, in view of (15), the sets F; are
nonempty and z(tg) € F = (\;cpr Fi- The main differ-
ence lies in the fact that the follower agents aim to keep
a larger distance from each other, the obstacles, and the
workspace boundary than the leader agent, and in par-
ticular, a distance enhanced by 2r;; + 27. In that way,
the leader agent will be able to choose an appropriate
constant 7 (as in the single-agent case of Section 4) so
that it is influenced at each time instant only by one of
the obstacles/followers, and will be also able to navigate
among the obstacles/followers. Note that the followers
are required to stay away also from the destinations of
the higher priority agents, since a potential local mini-
mum in such configurations can prevent the leader agent
from reaching its goal. We provide next the mathemati-
cal details of the aforementioned reasoning.

Consider the leader distances di . o, , di, j, di 00 * Fip —
R>g as

dic,Ok (:L') = ”xlc - Ck||2 - (Tic + rOk)2’Vk eJ
dig j (@) = |lzip — 2| = (rip +715)%,Vi € NF
dig,00(x) = (rw +7i)? = |li |
and the follower distances d; o, , dii., dij, dia; dio, :
Fi = Ry as
diso, () = @i — ck||® = (rs 4 Top + 2ras +27)°,VE € T
dijig (@) = |lwi = @i |* = (ri +702)" = digi(2)
dij (@) = |lwi — a;|1* = (ri + 75 + 2ra +27)°, V5 € NF\{i}
dia, () = |lwi — za,|* = (ri + 75 + 27 + 27 +€)°,Vj € N;

diop (x) = (rw —1i — 2rpr — 277)2 - ||xz|\27

Vi € Nx. Note that d; ;(z) = d;:(x), Vi,j € N, with
i # j and also that x € F is equivalent to all the afore-
mentioned distances being positive.

Let now functions 3, §;, i € N, that satisfy the proper-
ties of Definition 1, as well as the respective constants 7,
i, such that 5'(z) = 5”(2) =0,Vz > 7, Bi(2) = B/ (2) =
0, Vz > 75, ¢ € N. The 2nd-order navigation functions
for the agents are now defined as ¢; : F; — R>¢, with

6i(2) = b, s — wa,||* + ko, (b (2) + bay (2) + kfibsxx))

bi () =Y Bildio, (x)), by, ()= Y Bldi(x))
jed FEN\{i}
bs,(x) = Y Bi(dia,(2)),

JEN;

Vi € N, and ky, . = 0, ky, = 1, Vi € Nr. Note that
the robotic agents can choose independently their 7,
i € N, that concerns the collision avoidance with the
obstacles and the workspace boundary. The pair-wise
inter-agent distances, however, are required to be the
same and hence the same 8 (and hence 7) is chosen (see
the terms by, (z) in ¢;(x)), which can, nevertheless, be
done off-line. To achieve convergence of the leader to its
destination, we choose 7 and 7;, as in Section 4, i.e.,
7,7i, € (0,min{7?,74}). In view of Assumption 4, it
can be proved that d; ;(x) < 7 implies ||z; — 2] < g,

Vi,j €N, i # 7.

The control protocol follows the same structure as the
single-agent case presented in Section 4. In particular,
we define the reference velocities as vq, : F; — R”, with

va, (x) = = V2, 0s(2), (16)

where 51 : Fi = Ry is the slightly modified function:

&l(l’) = kli ”:E2 — Ld; H2 + in (bli ($) + 2b21‘, (IE) + kfib3i (.’L’))

The need for modification of ¢; to (El stems from the dif-
ferentiation of the terms by,. The control law is designed

as u; = ui(x,v, My, &) : F; x RVN"2 o R with

~ .. 3.
Ui = — kg, Vo, i (z) + mi(0q; +9) — (kvi + gai) ey, (17)

Vi € N kg,, k,, are positive constants, e,, are the ve-
locity errors e,, = v; — vq,, and 1;, &; denote the esti-
mates of m; and «;, respectively, by agent i, evolving ac-
cording to (11). We further denote 1 = [y, ..., 7mnN] ",
& = [d1,...,an]" € RY. The following theorem con-
siders the convergence of a leader to its destination.

Theorem 3 Consider N robots operating in W, sub-
ject to the uncertain 2nd-order dynamics (14), and a
leader ip. Under Assumptions 1-4, the control proto-
col (16), (17), (11) guarantees collision avoidance be-
tween the agents and the agents and obstacles/workspace



boundary as well as convergence of x;,. to Ta,, from al-
most all initial conditions (x(to), v(to), m(to), &(tg)) €
F x RN(+1) RJ>V0, giwen sufficiently small 7, 7., and
that kg, > G, i € N. Moreover, all closed loop signals
remain bounded, ¥Vt > tg.

PROOF. See the proof of Theorem 3 in [38].

When the current leader i, reaches e-close to its goal,
at a time instant ¢;, 4, it broadcasts this information
to the other agents, switches off its control and remains
immobilized, considered hence as a static obstacle with
center cpr+1 = x;,.(ti,.) and radius rpr41 by the rest
of the team. Note that ||car11 — 24, || < € and hence,
in view of (15), [¢; — carq1ll > 7o, + iy + 2ra + 27,
Vi e J,and ryw — |lem+1]l] > i, + 27 + 27, satisfying
the obstacle spacing properties (6). The next agent i, €

N =N \{iz} in priority is then assigned as a leader for
navigation, and we redefine the sets

Op ;i ={a€Wy, g — ¢l <ro, +1:}.¥j €T
Cir, = {a € Wiy, : llaw, — aill < rig, + 75, V5 € N\{iz}},
(~7)¢,j ={qeWi: |l —cll <ro; +71i+2rm + 27}, V) € J
Ci = {geW; g — q’i/£|| STt T,
lgi — qj|| < 7i + 75 4 2rar + 27, V5 € N\{il, i},
@i — za; || < 7+ 75+ 2ras + 27 +,V5 € Ny},

Vi € N\{i}, where N; := Nj\{iz}, and J := JU{M+
1}, to account for the new obstacle M + 1. The new

free space is F; = Wi\{(Ujefoi,j) UC},Vi € N and
one can conclude that Ty, (tip) € .7?1»2, x;i(ti,) € FiVie

N \{¢’.}. Therefore, the application of Theorem 3 with

ti. as to and agent i/, as leader guarantees its navigation

e-close to xq,, . Applying iteratively the aforementioned
L

reasoning, we guarantee the successful navigation of all
the agents to their destinations. Finally, we note that
due to prioritization-based leader-follower architecture,
the total time to reach the goals increases with the size
of the multi-agent team.

7 Simulation Results

This section verifies the theoretical findings of Sections
4-6 via computer simulations. We consider first a 2D
workspace on the horizontal plane with ryy, = 11, pop-
ulated with M = 60 randomly placed obstacles, whose
radius, enlarged by the robot radius, is randomly cho-
sen in 7, € [0.25,0.75], Vj € J. The mass, is chosen as
m = 1, and f(z,v) = {%sin(0.5(x1 + z2))F(v)v, with
F(v) = diag{[exp(—sgn(vi)v;) + ;e (1,23}, and a = 10,
where we denote (z1,z2) = z, (v1,v2) = v. Note that
f() is highly nonlinear, motivated by the friction model

4 Note that the proven asymptotic stability of Theorem 3
guarantees that this will occur in finite time.

of [43]. We choose the goal position as zq = (5, 5), which
the robot aims to converge to from 3 different initial po-
sitions, namely x(0) = —(5,5), (—7,3.5), and (3.5, =7).
The parameter 7 is chosen as 7 = 0.5. We choose a vari-
ation of (8) for B with 7 = 72. The control gains are
chosen as k; = 0.04, ky = 5, ky, = 20, ky = 1, and
km = ko = 0.01. The results for ¢ € [0, 100] seconds are
depicted in Figs. 1, 2; 1 (left) shows that the robot navi-
gates to its destination without any collisions, and 2 de-
picts the input and adaptation signals u(t), &(t), m(¢)
for the trajectory starting from (—5, 5). In addition, note
that the fact that o > 2 does not affect the performance
of the proposed control protocol and hence we can verify
that the condition k¢ > 3 is only sufficient and not nec-
essary. Moreover, in order to verify the results of Section
1, we add a bounded time-varying disturbance vector
d(z,v,t) = d(t) == 2 [sin(0.5¢ + &), cos(0.4¢t — %)]T €
R? and we choose the extra control gains as o, = 04 =
0.1. The results are depicted in Fig. 1 (right), which
shows the safe navigation of the agent to a set close to
x4, and Fig. 2, which shows the input and adaptation
signals for the trajectory starting from (—5,5).

Fig. 1. The resulting trajectories z(t), ¢ € [0,100] seconds,
from the initial points —(5,5),(—7,3.5), and (3.5,—7) to
the destination (5, 5). Left: without any disturbances. Right:
with bounded disturbance d(z,v,t).

40 0.12 = =
fuxfu,gd —m—myq
0.1 A A
20 —Uy— Uy —a —Qy
0
—~
E 20
3
-40
-60 0
-80 -0.02
0 50 100 0 50 100

Fig. 2. The input u(t) = (u1(t),u2(t)) (left), and adaptation
signals &(¢), m(t) (right) for the 2D trajectory from —(5,5)
to (5,5) of Fig. 1. The subscript d corresponds to the model
where a bounded disturbance vector d(x,v,t) was included.

Next, we illustrate the performance of the control pro-
tocol of Section 5 in a 2D star-world. We consider a
workspace with 7, = 8, which contains 2 star-shaped



obstacles, centered at (—3,—3) and (0, 1), respectively.
The mass m and function f(x,v) are given as before,
with o = 1. In order to transform the workspace to a
sphere world, we employ the transformation proposed in
[4]. In the transformed sphere world, we choose 7 = 4
and 7,, = 0.5, whereas the function f3 is chosen as in the
sphere-world case. The initial and goal position are se-
lected as z(0) = (—5,—5) and zq = (3,4), respectively,
and the control gains as k; = 0.04, ks = .2, k, = 20,
ky = 1, and k,, = ko, = 0.01. The robot trajectory is
depicted in Fig. 3, for t € [0,500] seconds, both in the
original star and in the transformed sphere world.

Finally, we use the control scheme of Section 6 in a
multi-agent scenario. We consider 20 agents in a 2D
workspace of ry = 120, populated with 70 obstacles.
The agents and obstacles are randomly initialized to
satisfy the conditions of the free space of Section 6, as
shown in Fig. 4. The radius of the agents and the obsta-
cles is chosen as r; = 1,, = 2, Vi € N,j € J, and the
sensing radius of the agents is taken as¢; =20,Vi e N.
The functions 3, B; are chosen as before, and we also
choose 7 = 4, ¢ = 0.1. The results are depicted in Fig.
5 for 870 seconds, which shows the convergence of the
distance errors ||z;(t) — xq_;|| to zero, Vi € N as Well
as the minimum of the distances ||z;(t) — z;(¢)| —

Vi,j € N, i # j,and ||z;(t) — ¢;|| — 2r, Vi 6/\/] € j
defined as Buin (t) == min{mlnl’JeNﬂ;ﬁ]{Hx t)—z; ()| —
2r},ming jenxg i) — ¢l — 2r}}, WhiCh stays
strictly positive, V¢ € [0,870], implying that collisions
are avoided. A video illustrating the multi-agent navi-
gation can be found in https://vimeo.com/393443782.
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Fig. 3. The resulting trajectory x(t), ¢ € [0,500] seconds,
from the initial points —(5, 5) to the destination (3,4), in the
2D star world workspace (left) and the transformed sphere
world (right).

8 Conclusion and Future Work

This paper considers the robot navigation in an obstacle-
cluttered environment subject to uncertain 2nd-order
dynamics. A novel navigation function is proposed and
combined with adaptation laws that compensate for the
uncertain dynamics. The results are extended to star

100 -

50

50

-100 -

Fig. 4. The initial configurations of the multi-agent scenario.
The obstacles are depicted as filled red disks whereas the
agents as circles. The destinations are shown with asterisk.
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Fig. 5. The resulting signals ||z;(t)
the signal Bmin(t) (right).

—xq,||, Vi € N (left) and

worlds as well as multi-agent cases. Future directions
will aim at relaxing the assumptions for the latter.
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