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Abstract This paper presents a scalable procedure for

time-constrained planning of a class of uncertain non-

linear multi-robot systems. In particular, we consider N

robotic agents operating in a workspace which contains

Regions of Interest (RoI), in which atomic propositions

for each robot are assigned. The main goal is to de-

sign decentralized and robust control laws so that each

robot meets an individual high-level specification given

as a Metric Interval Temporal Logic (MITL), while us-

ing only local information based on a limited sensing

radius. Furthermore, the robots need to fulfill certain

desired transient constraints such as collision avoid-

ance between them. The controllers, which guarantee

the transition between regions, consist of two terms: a

nominal control input, which is computed online and

is the solution of a Decentralized Finite-Horizon Opti-
mal Control Problem (DFHOCP); and an additive state

feedback law which is computed offline and guarantees

that the real trajectories of the system will belong to a

hyper-tube centered along the nominal trajectory. The

controllers serve as actions for the individual Weighted

Transition System (WTS) of each robot, and the time

duration required for the transition between regions is

modeled by a weight. The DFHOCP is solved at every

sampling time by each robot and then necessary infor-

mation is exchanged between neighboring robots. The

proposed approach is scalable since it does not require

a product computation among the WTS of the robots.
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The proposed framework is experimentally tested and

the results show that the proposed framework is promis-

ing for solving real-life robotic as well as industrial ap-

plications.
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1 Introduction

Over the last few years, the field of control of multi-

robot systems under high-level specifications has been

gaining significant attention [1–7]. Applications arise in

the fields of autonomous driving, industrial work by
autonomously operating robot systems, indoor trans-

portation in warehouses etc [8,9]. The qualitative spec-

ification language that has primarily been used to ex-

press the high-level tasks is Linear Temporal Logic (LTL)

(see, e.g., [10, 11]). In practical applications, however,

the desired tasks need to be accomplished within cer-

tain quantitative time bounds by the robots.

A suitable temporal logic for dealing with tasks that

are required to be completed within certain time bounds

is the Metric Interval Temporal Logic (MITL). MITL

has been originally proposed in [12] and has been used

in control synthesis frameworks in [13]. Given a robot

dynamics and an MITL formula, the control design pro-

cedure is the following: first, the robot dynamics are ab-

stracted into a Weighted Transition System (WTS), in

which the time duration for navigating between states is

modeled by a weight in the WTS (abstraction); second,

an offline product between the WTS and an automa-

ton that accepts the runs that satisfy the given formula

is computed; and third, once an accepting run in the
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product is found, it maps into a sequence of feedback

control laws of the robot dynamics.

Controller synthesis for multi-robot systems under

MITL specifications has been investigated in [14–17].

In our previous works [14–16], the under consideration

dynamics were first order and we considered actuation

over each state of each agent. Additionally, a global

product WTS of the individual WTSs of each robot

was computed. Furthermore, no transient constraints

between the agents are taken into consideration. In par-

ticular, the work [16] can only handle multi-agent timed

constrained planning in R2 dimension, which is usually

not the case in real-life robotic applications. Authors

in [17] have addressed the Vehicle Routing Problem

(VHP), which is modeled as an optimization problem,

that aims at finding the optimal set of routes for a fleet

of vehicles to traverse, in order to deliver the load to a

given set of customers. However, the dynamics of the

agents were not taken into consideration. Moreover, is-

sues such as control input saturation and robustness

against disturbances were not considered. In the same

context, none of the aforementioned works deal with

real-time experimental validation of the corresponding

proposed frameworks.

Motivated by the aforementioned, in this work, we

aim to address the latter issues. In particular, we deal

with nonlinear dynamics in Rn with input constraints

and external uncertainties/disturbances. Then, by as-

signing an MITL formula to each agent, we provide de-

centralized feedback control laws that guarantee robust

transitions between neighboring agents under transient

constraints. The controllers consist of two terms: a nom-

inal control input, which is computed online and is
the solution of a Decentralized Finite-Horizon Opti-

mal Control Problem (DFHOCP); and an additive state

feedback law which is computed offline and guarantees

that the real trajectories of the system will belong to a

hyper-tube centered along the nominal trajectory. More

specifically, the online part is responsible for minimiz-

ing the error and the control input effort in order for the

robot to be navigated between RoI, while transient con-

straints and control input saturation are satisfied. The

second part is introduced in order to guarantee that

while the DFHOCP is solved for the nominal dynam-

ics, the controller compensates for the uncertain part

due to external disturbances and keeps the trajectory

of the robot bounded inside a tube. Furthermore, an

algorithm that computes the runs of each agent that in

turn map into continuous control laws and provably sat-

isfy the MITL formulas is provided. These control laws

correspond to the transitions indicated above. The pro-

posed scheme is experimentally validated in our lab fa-

cilities with a group of Nexus robots (see Fig. 1). More-

Fig. 1: The experimental setup demonstrating the pro-

posed framework. Three Nexus 10011 mobile robots, in

the workspace of Smart Mobility Lab (SML) [18] that

contains 5 RoI.

over, the proposed approach is scalable since does not

require a product computation among the WTS of the

agents.

The idea of avoiding the global product between the

agents lies in the fact that we address the multi-agent

coupling with the low-level continuous time control de-

sign. More specifically, we exploit the inherent advan-

tage of NMPC with reference to other control tech-

niques: we capture the coupling constraints through the

hard constraints of each agent by assuming communica-

tion capabilities between the agents. In the same con-

text, all the algorithmic computations are performed

offline and the robots are executing online only a se-

quence of a control actions that are the outcome of

the planner. Thus, the latter leads to a framework that

is scalable with the number of agents. Our contribu-

tion is thus a fully automated framework for a gen-

eral class of uncertain multi-robot systems consisting of

both constructing purely decentralized abstractions and

conducting timed temporal logic planning with tran-

sient constraints in a scalable way.

This paper is structured as follows. In Section 2 a

description of the necessary mathematical tools, the no-

tations and the definitions are given. Section 3 provides

the modeling of the proposed framework along with the

formal problem statement. Section 4 discusses the tech-

nical details of the solution, while Section 5 is devoted

to a real-time experiment demonstrating the proposed

approach. Finally, conclusions and future research di-

rections are discussed in Section 6.
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N,Q,R Natural, rational & real numbers
[N ] := {1, . . . , N} Labeling set of robots
[Z] := {1, . . . , Z} Labeling set of RoI
R =

⋃
z∈[Z]Rz Union of RoI

W The workspace of the robots
L Lipschitz constant

Ti, Ai, T̃i WTS, TBA, product WTS of robot i
(S, Sinit,Act,−→, t, Γ,L) (states, init. states, actions, transition relation, weight, atomic propos., labeling function)
(Q,Qinit,CL, Inv, E,FS) (states, init. states, clocks, invariance, accepted states)

xi, vi, ui position/orientation, velocity and control input of robot
ei = xi − xi,d Error signal to be minimized through DFHOCP
ξi = [ei, vi]> stack vector
fi, Gi, δi Dynamic model of robot i and disturbance δi

ei = ei − ei, vi = vi − vi Errors between real and nominal signals (state and velocity respectively)
Ωi,1, Ωi,2 Invariant tubes for the errors ei, vi
Pi, Qi, Ri Positive definite weight matrices used in DFHOCP
Ei,Vi,Ui,Fi State constraints, velocity constraints, control input constraints, terminal set of DFHOCP

T, h Prediction horizon and constant sampling time period
ki, ρi Tube gains
rt, wt Timed run & timed word

τ(l), l ≥ 0 Time stamp at position l ≥ 0
M(xi, ri) A ball centered at xi, radius ri covering robot i
di,Gi(t) Sensing radius & set of neighbors of robot i at time t
♦I ,�I ,UI Eventually, always and until MITL operators

Table 1: List of symbols

2 Notation and Preliminaries

In this section, the notation that will be used hereafter

as well as the necessary mathematical background for

nonlinear control systems and formal verification are

provided.

2.1 Notation

The set of positive integers, positive rational numbers

and real numbers are denoted by N, Q+, and R, respec-

tively. Given a set S, we denote by |S| its cardinality,

by Sn = S × · · · × S its n-fold Cartesian product, and

by 2S the set of all its subsets; ‖y‖2 :=
√
y>y and

‖y‖M :=
√
y>My, M ≥ 0 stand for the Euclidean and

the weighted norm of a vector y ∈ Rn, respectively;

λmin(M) stands for the minimum absolute value of the

real part of the eigenvalues of M ∈ Rn×n; In ∈ Rn×n
and 0m×n ∈ Rm×n are the identity matrix and them×n
matrix with all entries zeros, respectively. A n×n sym-

metric real matrix M is said to be positive semidefinite

(M ≥ 0) if x>Mx ≥ 0 for every x ∈ Rn. The notation

diag{M1, . . . ,Mn} stands for the block diagonal matrix

with the matrices M1, . . . , Mn in the main diagonal.

The set M(χ, ρ) = {y ∈ Rn : ‖y − χ‖2 ≤ ρ}, repre-

sents the n-dimensional ball with center χ ∈ Rn and

radius ρ ∈ R>0. It should be noticed that, through-

out this manuscript, the nominal signals and the mag-

NMPC Nonlinear Model Predictive Control
RoI Regions of Interest

DFHOCP Decentralized Finite Horizon
Optimal Control Problem

TBA Timed Büchi Automaton
WTS Weighted Transition System
MITL Metric Interval Temporal Logic

ISS Input to State Stability
RCI set Robust Control Invariant set

Table 2: List of acronyms

nitude of upper bounds of signals are denoted with ·,
·̃, respectively. Tables 1, 2 show a list of symbols and

a list of acronyms, respectively, that are used in this

manuscript.

Definition 1 Given the sets S1, S2 ⊆ Rn, S ⊆ Rm
and the matrix M ∈ Rn×m, the Minkowski addition,

the Pontryagin difference as well as the matrix-set mul-

tiplication are respectively defined by:

S1 ⊕ S2 := {s1 + s2 : s1 ∈ S1, s2 ∈ S2},
S1 	 S2 := {s1 : s1 + s2 ∈ S1,∀ s2 ∈ S2},
M ◦ S := {m = Ms, s ∈ S}.

Lemma 1 [19] For any constant ρ > 0, vectors z1,

z2 ∈ Rn and matrix P ∈ Rn×n, P > 0 it holds that:

z1Pz2 ≤
1

4ρ
z>1 Pz1 + ρz>2 Pz2.
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2.2 Nonlinear Control

Definition 2 [20] A continuous function α : [0, a) →
R≥0 belongs to class K if it is strictly increasing and

α(0) = 0. A continuous function β : [0, a)×R≥0 → R≥0
belongs to class KL if: 1) for a fixed s, the mapping

β(r, s) belongs to class K with respect to r; 2) for a

fixed r, the mapping β(r, s) is strictly decreasing with

respect to s; and it holds that: lim
s→∞

β(r, s) = 0.

Definition 3 [21] Consider a dynamical system:

ẋ = f(x, u, δ), x ∈ X , u ∈ U , δ ∈ D,

with initial condition x(0) ∈ X . A set X ′ ⊆ X is a

Robust Control Invariant (RCI) set for the system, if

there exists a feedback control law u := κ(x) ∈ U , such

that for all x(0) ∈ X ′ and for all disturbances δ ∈ D it

holds that x(t) ∈ X ′ for all t ≥ 0, along every solution

x(t).

Definition 4 [20, Def. 4.7, p. 175] A nonlinear system

ẋ = f(x, u, δ), x ∈ X , u ∈ U , δ ∈ D with initial condi-

tion x(0) ∈ X is said to be Input-to-State Stable (ISS)

with respect to δ ∈ D, if there exist functions β ∈ KL,

γ ∈ K such that for any initial condition x(0) ∈ X and

for any input u(t) ∈ U , the solution x(t) exists for all

t ∈ R≥0 and satisfies:

‖x(t)‖2 ≤ β
(
‖x(0)‖2, t

)
+ γ

(
sup

0≤s≤t
‖δ(s)‖2

)
.

2.3 Nonlinear Model Predictive Control

NMPC [22] is formulated as solving at each sampling

time step an online Finite Horizon Optimal Control

Problem (FHOCP) subject to nonlinear system dynam-

ics and constraints involving states and controls. Based

on measurements obtained at each sampling time step,

the controller predicts the dynamic behavior of the sys-

tem over a predictive horizon in the future and deter-

mines the input such that a predetermined open-loop

performance objective is minimized. In order to incor-

porate feedback, the optimal open-loop input is imple-

mented only until the next sampling time step. Using

the new system state at the next sampling time step,

the whole procedure - prediction and optimization - is

repeated.

2.4 Formal Verification

Definition 5 ([12]) A time sequence τ = τ(0)τ(1) . . .

is an infinite sequence of time values τ(l) ∈ Q+, satis-

fying the following properties: 1) Monotonicity: τ(l) <

τ(l + 1) for all l ∈ N; 2) Progress: For every t ∈ Q+,

there exists l ≥ 1, such that τ(l) > t.

An atomic proposition p is a statement that is either

True (>) or False (⊥).

Definition 6 ([12]) Let Γ be a finite set of atomic

propositions. A timed word w over the set Γ is an in-

finite sequence wt = (w(0), τ(0))(w(1), τ(1)) . . . where

w(0) w(1) . . . is an infinite word over the set 2Γ and

τ(0) τ(1) . . . is a time sequence with τ(l) ∈ Q+, l ∈ N.

Definition 7 A Weighted Transition System (WTS )

is a tuple (S, Sinit, Act,−→, t, Γ,L) where S is a finite

set of states; Sinit ⊆ S is a set of initial states; Act is a

set of actions; −→⊆ S×Act×S is a transition relation;

t :−→→ Q+ is a map that assigns a positive weight to

each transition; Γ is a finite set of atomic propositions;

and L : S → 2Γ is a labeling function.

Definition 8 A timed run of a WTS is an infinite se-

quence rt = (r(0), τ(0))(r(1), τ(1)) . . ., such that r(0) ∈
S0, and for all l ≥ 1, it holds that r(l) ∈ S and (r(l),

α(l), r(l+1)) ∈ −→ for a sequence of actions α(1)α(2) . . .

with α(l) ∈ Act,∀ l ≥ 1. The time stamps τ(l), l ≥ 0 are

inductively defined as: 1) τ(0) = 0; 2) τ(l+ 1) = τ(l) +

t(r(l), α(l), r(l+ 1)), ∀ l ≥ 1. Every timed run rt gener-

ates a timed word wt = (w(0), τ(0)) (w(1), τ(1)) . . . over

the set 2Γ where w(l) = L(r(l)), ∀ l ∈ N is the subset

of atomic propositions that are true at state r(l).

The syntax of Metric Interval Temporal Logic (MITL)

over a set of atomic propositions Γ is defined by the

grammar:

ϕ := p | ¬ϕ | ϕ1 ∧ ϕ2 | ♦Iϕ | �Iϕ | ϕ1 UI ϕ2,

where p ∈ Γ , and ♦, � and U are the eventually, always

and until temporal operator, respectively; I = [a, b] ⊆
Q+ where a, b ∈ [0,∞] with a < b is a non-empty timed

interval. The MITL formulas are interpreted over timed

words like the ones produced by a WTS which is given

in Definition 8.

Definition 9 ([23], [24]) Given a timed word wt =

(w(0), τ(0))(w(1), τ(1)) . . . , an MITL formula ϕ and a

position l in the timed word, the satisfaction relation

(wt, l) |= ϕ, for l ≥ 0 (read wt satisfies ϕ at position l)
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is inductively defined as follows:

(wt, l) |= p⇔ p ∈ w(l),

(wt, l) |= ¬ϕ⇔ (wt, l) 6|= ϕ,

(wt, l) |= ϕ1 ∧ ϕ2 ⇔ (wt, l) |= ϕ1 and (wt, l) |= ϕ2,

(wt, l) |= ♦Iϕ⇔ ∃ l′ ≥ l, such that

(wt, l′) |= ϕ, τ(l′)− τ(l) ∈ I,
(wt, l) |= �Iϕ⇔ ∀ l′ ≥ l, τ(l′)− τ(l) ∈ I

⇒ (wt, l′) |= ϕ,

(wt, l) |= ϕ1 UI ϕ2 ⇔ ∃l′ ≥ l, s.t. (wt, l′) |= ϕ2,

τ(l′)− τ(l) ∈ I and (wt, l′′) |= ϕ1,∀ l ≤ l′′ < l′.

We say that a timed run rt = (r(0), τ(0))(r(1), τ(1)) . . .

satisfies the MITL formula ϕ (we write rt |= ϕ) if

and only if the corresponding timed word wt = (w(0),

τ(0))(w(1), τ(1)) . . . with w(l) = L(r(l)),∀ l ≥ 0, sat-

isfies the MITL formula (wt |= ϕ).

Timed Büchi Automata (TBA) were originally in-

troduced in [12, 25, 26]. Let CL = {c1, . . ., c|CL|} be a

finite set of clocks. The set of clock constraints Φ(CL)

is defined by the grammar:

φ := > | ¬φ | φ1 ∧ φ2 | c ./ ψ,

where c ∈ CL is a clock, ψ ∈ Q+ is a clock constant and

./ ∈ {<,>,≥,≤,=}. A clock valuation is a function

ν : CL → Q+ that assigns a value to each clock. A

clock cl has valuation νl for l ∈ {1, . . . , |CL|}, and ν =

(ν1, . . . , ν|CL|). We denote by ν |= φ the fact that the

valuation ν satisfies the clock constraint φ.

Definition 10 A Timed Büchi Automaton is a tuple

(Q,Qinit,CL, Inv, E,FS, Γ,L) where Q is a finite set of

locations; Qinit ⊆ Q is the set of initial locations; CL is

a finite set of clocks; Inv : Q → Φ(C) is the invariant;

E ⊆ Q× Φ(CL)× 2C ×Q gives the set of edges of the

form e = (q, g,RS, q′), where q, q′ are the source and

target states, g is the guard of edge e and RS is a set of

clocks to be reset upon executing the edge; FS ⊆ Q is

a set of accepting locations; Γ is a finite set of atomic

propositions; and L : Q→ 2Γ labels every state with a

subset of atomic propositions.

Any MITL formula ϕ over Γ can be algorithmically

translated into a TBA with the alphabet 2Γ , such that

the language of timed words (i.e. the set of all accepted

timed words) that satisfy ϕ is the language of timed

words produced by the TBA ([27–30]).

Definition 11 Given a WTS T = (S, Sinit, Act, −→,

t, Γ , L), and a TBA A = (Q,Qinit,CL, Inv, E,FS, Γ )

with CL clocks. Then, their product WTS :

T̃ = T ~A = (Q̃, Q̃init, , t̃, F̃, Γ, L̃),

is defined as follows:

– Q̃ = S ×Q is the set of states;

– Q̃init = Sinit ×Qinit is the set of initial states;

–  is the set of transitions where (q̃, q̃′) ∈ iff:

◦ q̃ = (s, q) ∈ Q̃ and q̃′ = (s′, q′) ∈ Q̃,

◦ (s, ·, s′) ∈−→, and

◦ there exist g, γ,RS such that (q, g,RS, γ, q′) ∈ E
where γ = L(q′);

– t̃(q, q′) = t(s, s′) if (q, q′) ∈ , is a map that assigns

a positive weight to each transition;

– F̃ = {(s, q) ∈ Q̃ : q ∈ FS} is a set of accepting

states; and

– L̃(s, q) = L(s) is a labeling function.

3 Problem Formulation

3.1 System Model

Consider a team ofN robots with labels [N ] := {1, . . . , N}
operating in a bounded workspaceW ⊆ Rn. The robots

are governed by the following kinematics and dynam-

ics model:

ẋi = vi, (1a)

v̇i = fi(xi, vi) +Giui + δi, (1b)

where xi, vi ∈ Rn stands for the position/orientation

and the linear/angular velocity of the robot i ∈ [N ],

respectively; fi : Rn×Rn → Rn is a known and contin-

uously differentiable vector fields with fi(0, 0) = 0 and

Gi ∈ Rn×n; ui ∈ Rn stands for the control input vec-

tor; and δi ∈ Rn models the external disturbances and

uncertainties. Consider also velocity constraints, input

constraints as well as bounded disturbances:

vi ∈ Vi := {vi ∈ Rn : ‖vi‖2 ≤ ṽi},
ui ∈ Ui := {ui ∈ Rn : ‖ui‖2 ≤ ũi},

δi ∈ ∆i := {δi ∈ Rn : ‖δi‖2 ≤ δ̃i},

where the constants ṽi, ũi, δ̃i > 0 are a priori given. The

sets Vi, Ui and∆i are assumed to be connected sets with

the origin as an interior point. Define the corresponding

nominal kinematics/dynamics by:

ẋi = vi, (2a)

v̇i = fi(xi, vi) +Giui, (2b)

which are the real kinematics/dynamics for the case of

δi = 0.

Assumption 1 The linear systems η̇i = Aiηi + Biui,

where ηi := [x>i , v
>
i ]> ∈ R2n, that are the outcome

of the Jacobian linearization of the nominal dynamics

(2a)-(2b) around the equilibrium states (xi, vi) = (0, 0)

are stabilizable.
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Assumption 2 There exist strictly positive constants

Gi such that:

λmin

[
Gi +G>i

2

]
≥ Gi > 0, ∀i ∈ V. (3)

Remark 1 Assumption 1 is required for the NMPC nom-

inal stability to be guaranteed [22]. Note also that in

real-time robotic systems, the matrices Gi usually rep-

resents the mass matrix of the robots which are always

positive-definite. Thus, Assumption 2 is satisfied.

In the given workspace, there exist Z ∈ N disjoint

Regions of Interest (RoI) labeled by [Z] := {1, . . . , Z}.
We assume that the RoI are modeled by balls, i.e.,

Rz := M(yz, pz), Z ∈ N, where yz and pz > 0 stand

for the center and radius of RoI Rz, respectively. Define

also the union of RoI by

R :=
⋃
z∈[Z]

Rz.

Due to the fact that we are interested in impos-

ing safety constraints, at each time t ≥ 0, the robot

i is occupying a ball M(xi(t), ri) that covers its vol-

ume, where xi(t) and ri > 0 are its center and ra-

dius, respectively. Moreover, in order to be able to im-

pose transient constraints among the robots, we assume

that each robot i ∈ [N ] has communication capabilities

within a limited sensing range di > 0 such that:

di > max
i,j∈[N ],i6=j

{ri + rj}, (4)

The latter implies that each agent has sufficiently large

sensing radius so as to measure the agent with the

biggest volume, due to the fact that the agents’ radii

are not the same. Define the set of robots j that are

within the sensing range of agent i at time t as:

Gi(t) := {j ∈ [N ]\{i} : ‖xi(t)− xj(t)‖2 < di}. (5)

3.2 Objectives

The goal of this paper is to design decentralized feed-

back control laws that steers the robots with dynamics

as in (1a)-(1b) between RoI so that they obey individ-

ual high-level tasks given in MITL under transient con-

straints between them. Define the labeling functions:

Li : R → 2Γi , (6)

which map each RoI with a subset of atomic proposi-

tions that hold true there. Note that some of the RoI

may be assigned with labels that indicate unsafe re-

gions, i.e., the robot is required to avoid visiting them

(safety specifications).

Definition 12 A trajectory xi(t) of robot i ∈ [N ] is

associated with a timed run rti = (ri(0), τi(0)) (ri(1),

τi(1))(ri(2), τi(2)) . . ., where ri(l) ∈ R, ∀l ∈ N, is a

sequence of RoI that the robot crosses, if the following

hold:

1. τi(0) = 0, i.e., the robot starts the motion at time

t = 0;

2. M(xi(τi(0)), ri) ( ri(0), i.e., initially, the volume of

the robot is entirely within the RoI ri(0) ∈ R;

3. M(xi(τi(l)), ri) ( ri(l), ∀l ∈ N, i.e., the robot

changes discrete state as soon as its entire volume

is strictly contained in the corresponding RoI;

4. τi(l+ 1) := τi(l) + ti(ri(l), ri(l+ 1)), ∀l ∈ N, where:

ti : R×R → Q+, (7)

are functions that model the duration that the robot

needs to be driven between regions ri(l) and ri(l+1).

Definition 13 A trajectory xi(t) satisfies an MITL

formula ϕi over the set of atomic propositions Γi, for-

mally written as xi(t) |= ϕi, ∀t ≥ 0, if and only if there

exists a timed run rti to which the trajectory xi(t) is

associated, according to Definition 12, which satisfies

ϕi.

Remark 2 We assume that the volume of each robot is

covered by a ball. We further assume that the obstacles

can be modeled by RoI that are also balls. Even if the

volume of an agent and/or an obstacle is not a ball, it

can be over-approximated by a ball.

3.3 Problem Statement

The problem considered in this paper is stated as fol-

lows:

Problem 1 Consider N robots governed by dynamics

(1a)-(1b), covered by the balls M(xi(t), ri), operating

in the workspace W ⊆ Rn with sensing communication

capabilities captured by the sets Gi as defined in (5).

The workspace contains the RoI Rz, z ∈ [Z] modeled

also by balls. Given task specification formulas ϕi for

each robot i ∈ [N ] expressed in MITL over the set

of atomic propositions Γi and labeling functions Li as

in (6); then, design decentralized feedback control laws

ui = κi(xi, vi) ∈ Ui, such that the robot trajectories

in the workspace fulfill the MITL specifications ϕi, i.e.,

xi(t) |= ϕi, ∀t ≥ 0, according to Definition 12, while

collision avoidance constraints are imposed among the

robots, i.e.:

‖xi − xj‖2 > ri + rj , ∀i ∈ [N ], j ∈ [N ]\{i}.
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Remark 3 Note that Problem 1 constitutes a general

problem due to the fact that the dynamics (1a)-(1b)

arise in most robotic applications and transient con-

straints among the robots are taken into consideration.

4 Problem Solution

In this section, a systematic framework for solving Prob-

lem 1 is provided as follows:

1. In Sections 4.1-4.2, decentralized feedback control

laws that guarantee the transition between RoI in

the given environments are provided. The laws con-

sist of two components: an online control law which

is the outcome of a DFHOCP solved at each timed

step (Section 4.1); and an offline law which guaran-

tees that the trajectories of the real system remain

in a hyper-tube (Section 4.2).

2. Then, by using the outcome of Section 4.1, we ab-

stract the dynamics (1a)-(1b) into a WTS for each

robot, exploiting the fact that the timed runs in the

WTS project onto associated trajectories according

to Definition 12. (Section 4.3)

3. By invoking ideas from our previous work [13], a

controller synthesis procedure that provides a se-

quence of control laws that serve as solution to Prob-

lem 1 is consulted. (Section 4.4)

4. Lastly, the computational complexity of the pro-

posed framework is discussed in Section 4.5.

4.1 Decentralized Feedback Control Design - Part I

Consider the robot i with dynamics (1a)-(1b) occupy-

ing a RoI Ri,s ∈ R at time ti,s ≥ 0. The decentral-

ized feedback control should guarantee that the robot is

navigated towards a desired RoI Ri,d ∈ R, Ri,d 6= Ri,s
without intersection with any other RoI or other agents

j ∈ [N ], j 6= i. Denote by xi,d ∈ Ri,d the center of the

RoI Ri,s. Define the error vector:

ei := xi − xi,d ∈ Rn, i ∈ [N ],

as well as the uncertain error kinematics/dynamics by:

ėi = vi, (8a)

v̇i = fi(ei + xi,d, vi) +Giui + δi, (8b)

The corresponding uncertain nominal error kinemat-

ics/dynamics are given by:

ėi = vi, (9a)

v̇i = fi(ei + xi,d, vi) +Giui. (9b)

Consider the feedback control law:

ui := ui(ei, vi) + κi(ei, vi, ei, vi), (10)

which consists of a nominal control action ui(ei, vi) ∈
Ui and a state feedback laws κi(ei, vi, ei, vi). The control

action ui(ei, vi) is the outcome of a DFHOCP solved

on-line at each sampling time step; the state-feedback

law will be tuned off-line according to a procedure that

will be presented thereafter.

Define the sets that capture the state constraints of

each robot as:

Ei :=
{
ei(t) ∈ Rn : ‖ei(t) + xi,d − ej(t)− xj,d‖2 >

ri + rj + δ̃i
min{αi,1,αi,2} , ∀j ∈ Gi(t),

M(ei(t) + xi,d, ri) ∩ {R\{Ri,s,Ri,d}} = ∅
}
.

The first constraint captures the fact that the robots

should not collide with each other; the latter one, cap-

tures the fact that each robot needs to be navigated

from RoI Ri,s to RoI Ri,d without intersecting with

any other RoI of the workspace due to the fact that we

are interested in imposing safety specifications.

Assumption 3 It is assumed that:

ri + δ̃i
min{αi,1,αi,2} < pz, ∀z ∈ [Z], i ∈ [N ]. (11)

More specifically, (11) states that the radius of the ball

that covers every robot plus the radius of the distur-

bance tube is smaller than the radius of any of the RoI

of the workspace. As it will be shown later, this as-

sumption is required in order to compute the time that

a robot needs to be navigated between the RoI in the

workspace.

Consider a sequence of sampling times {tk}, k ∈ N,

with a constant sampling period 0 < h < T , where T

stands for the finite prediction horizon. It holds that

tk+1 = tk + h, ∀k ∈ N. It should be noted that both

tk and T are multiples of h. At every discrete sampling

time tk a DFHOCP is solved by each robot i ∈ [N ] as

follows:

min
ui(·)

{
‖ξi(tk + T )‖2Pi+

∫ tk+T

tk

[
‖ξi(s)‖2Qi + ‖ui(s)‖2Ri

]
ds

}
(12a)

subject to:

ξ̇i(s) = fi(ei(s), vi(s), ui(s)), (12b)

ξi(s) ∈ E i × Vi, ui(s) ∈ U i, ∀s ∈ [tk, tk + T ], (12c)

ξi(tk + T ) ∈ Fi. (12d)
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In the aforementioned optimal control problem we de-

fined:

ξi := [ei, vi]
> ∈ R2n,

fi(ξi, ui) :=

[
vi

fi(ei + xi,d, vi) + ui

]
.

The matrices Qi, Pi ∈ R2n and Ri ∈ Rn are positive

definite weighting matrices. The sets Fi stand for the

terminal sets that are used to enforce the stability of

the nominal system (see [22] for more details).

Hereafter, the sets E i, Vi and U i are explained. In

order to guarantee that while the DFHOCP (12a)-(12d)

is solved for the nominal dynamics (9a)-(9b), the real

states ei, vi and control inputs ui satisfy the corre-

sponding state and input constraints Ei, Vi and Ui, re-

spectively, the latter sets are appropriately modified as:

E i := Ei 	Ωi,1,
Vi := Vi 	Ωi,2,
U i := Ui 	

[
−ki ◦Ωi

]
,

withΩi := Ωi,1⊕Ωi,2,Ωi,1,Ωi,2 as given in (16a), (16b),

respectively, and ki to be defined later. This consti-

tutes a standard constraints set modification technique

adopted in tube-based NMPC frameworks (for more de-

tails see [21]). The advantage of the tube-based frame-

work compared to other robust NMPC approaches is

that the constraint tightening is performed offline and

it does not depend on the length of the horizon. Algo-

rithm 1 depicts the procedure of how the control law is

calculated and applied to a real robot. This is a proce-

dure of implementing the continuous-time tube-based

NMPC in a real-time system that has been introduced

in [21].

4.2 Decentralized Feedback Control Design - Part II

For each agent i ∈ [N ] define by:

ei := ei − ei,
vi := vi − vi,

the deviation between the real states ei, vi of the un-

certain system (8a)-(8b) and the states of the nomi-

nal system (9a)-(9b) with ei(0) = vi(0) = 0. It will be

proven that the states ei, vi remain invariant in certain

compact sets. The dynamics of the states ei and vi are

Algorithm 1 Implementation of feedback control laws

ui(t), i ∈ [N ]

Step 0 : At time t0 := 0, set ei(0) = ei(0), vi(0) = vi(0).
Step 1 : At time tk and current state
(ei(tk), vi(tk), ei(tk), vi(tk)), solve the DFHOCP (12a)-
(12d) to obtain the nominal control action ui(tk) and the
actual control action

ui(tk) = ui(tk) + κi(ei(tk), ei(tk), vi(tk), vi(ti)).

Step 2 : Apply the control ui(tk) to the system (8a)-(8b),
during sampling interval [tk, tk+1), where tk+1 = tk + h.
Step 3 : Measure the state (ei(tk+1), vi(tk+1)) at the next
time instant tk+1 of the system (8a)-(8b) and compute the
successor state (ei(tk+1), vi(tk+1)) of the nominal system
(9a)-(9b) under the nominal control action ui(tk).
Step 4 : Set

(ei(tk), ei(tk), vi(tk), vi(tk))← (ei(tk+1),

ei(tk+1), vi(tk+1), vi(tk+1)),

tk ← tk+1;

Go to Step 1.

written as:

ėi = ėi − ėi
= vi − vi
= vi, (13a)

v̇i = v̇i − v̇i
= fi(ei + xi,d, vi)− fi(ei + xi,d, vi)

+Giui −Giui + δi

= g(ei, ei, vi, vi) +Gi (ui − ui) + δi, (13b)

where the functions gi are defined by:

gi(ei, ei, vi, vi) := fi(ei + xi,d, vi)− fi(ei + xi,d, vi),

and they are upper bounded by:

‖gi(ei, ei, vi, vi)‖2 ≤ ‖fi(ei + xi,d, vi)− fi(ei + xi,d, vi)‖2
= ‖fi(ei + xi,d, vi)− fi(ei + xi,d, vi)

+ fi(ei + xi,d, vi)− fi(ei + xi,d, vi)‖2
≤ ‖fi(ei + xi,d, vi)− fi(ei + xi,d, vi)‖2
+ ‖fi(ei + xi,d, vi)− fi(ei + xi,d, vi)‖2
≤ Lv,i‖vi − vi‖2 + Le,i‖ei + xi,d − ei − xi,d‖2
= Lv,i‖vi − vi‖2 + Le,i‖ei − ei‖2
= Lv,i‖vi‖2 + Le,i‖ei‖2
≤ Li (‖ei‖2 + ‖vi‖2) .

The constants Le,i, Lv,i stand for the Lipschitz con-

stants of functions fi with respect to the variable ei
and vi, respectively, and

Li := max{Le,i, Lv,i}, i ∈ [N ].
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Lemma 2 The state feedback laws designed by:

κi(ei, ei, vi, vi) := −ki(ei − ei)− ki(vi − vi), i ∈ [N ],

(14)

where ki, ρi > 0 are chosen such that the following hold:

ki >
1

Gi
[1 + (1 + 2ρi)Li] , ρi >

Li
2
, (15)

renders the sets:

Ωi,1 :=
{
ei ∈ Rn : ‖ei‖2 ≤ δ̃i

min{αi,1,αi,2}

}
, (16a)

Ωi,2 :=
{
vi ∈ Rn : ‖vi‖2 ≤ 2 δ̃i

min{αi,1,αi,2}

}
, (16b)

RCI sets for the error dynamics (13a), (13b), according

to Definition 3, where the constants αi,1, αi,2 > 0 are

defined by:

αi,1 := 1− Li
2ρi

, αi,2 := ki Gi−1−(1+2ρi)Li. (17)

Proof A backstepping control methodology will be used

[31]. The state vi in (13b) can be seen as virtual input to

be designed such that the candidate Lyapunov function:

L1(ei) :=
1

2
‖ei‖22,

for the dynamical system (13a) is always decreasing.

The time derivative of L1 along the trajectories of sys-

tem (13a) is given by:

L̇1(ei) = e>i ėi = e>i vi.

Thus, by designing vi ≡ −ei, it yields that

L̇1(ei) = −‖ei‖22.

Define the backstepping auxiliary errors ζi,1, ζi,2 ∈ Rn
by:

ζi,1 := ei,

ζi,2 := vi + ei.

Then, the auxiliary error dynamics are written as:

ζ̇i,1 = ėi = vi = ζi,2 − ei = −ζi,1 + ζi,2 (18a)

ζ̇i,2 = −ζi,1 + ζi,2 + gi(·) +Gi (ui − ui) + δi, (18b)

with:

‖gi(·)‖2 ≤ Li (‖ei‖2 + ‖vi‖2)

= Li (‖ζi,1‖2 + ‖ζi,1 − ζi,2‖2)

≤ 2Li ‖ζi,1‖2 + Li‖ζi,2‖2, (18c)

and ζi,1(0) = ζi,2(0) = 0. Define the stack vector ζi :=

[ζ>i,1, ζ
>
i,2]> ∈ R2n and consider the candidate Lyapunov

function L(ζi) = 1
2‖ζi‖

2
2 with L(0) = 0. The time deriva-

tive of L along the trajectories of system (13a)-(13b) is

given by:

L̇(ζi) = ζ>i ζ̇i

= ζ>i,1ζ̇i,1 + ζ>i,2ζ̇i,2

= −‖ζi,1‖22 + ‖ζi,2‖2 + ζ>i,2 gi(·)
+ ζ>i,2 Gi (ui − ui) + ζ>i,2 δi

≤ −‖ζi,1‖22 + ‖ζi,2‖2 + ‖ζi,2‖2 ‖gi(·)‖2
+ ζ>i,2 Gi (ui − ui) + ζ>i,2 δi

By using (18c), the latter becomes:

L̇(ζi) = −‖ζi,1‖22 + (Li + 1)‖ζi,2‖22 + 2Li‖ζi,1‖2‖ζi,2‖2
+ ζ>i,2 Gi (ui − ui) + ζ>i,2δi.

By using Lemma 1 we have:

‖ζi,1‖2‖ζi,2‖2 ≤
‖ζi,1‖22

4ρi
+ ρi‖ζi,2‖2

⇒ 2Li‖ζi,1‖2‖ζi,2‖2 ≤
Li‖ζi,1‖22

2ρi
+ 2ρiLi‖ζi,2‖2.

with ρi satisfying (15). Then, it holds that:

L̇(ζi) ≤ −
(

1− Li
2ρi

)
‖ζi,1‖22 + [1 + (1 + 2ρi)Li] ‖ζi,2‖22

+ ζ>i,2 Gi (ui − ui) + ‖ζi,2‖δ̃i.

By designing ui−ui = −kiζi,2 = −kiei−kivi = −ki(e−
ei)− ki(vi − vi) which is the same with (14) and com-

patible with (10) we get:

L̇(ζi) ≤ −
(

1− Li
2ρi

)
‖ζi,1‖22 + [1 + (1 + 2ρi)Li] ‖ζi,2‖22

− ki ζ>i,2 Gi ζi,2 + ‖ζi,2‖δ̃i.

Writing the matrices Gi as Gi =
Gi+G

>
i

2 +
Gi−G>

i

2 and

taking into account that:

y>
(
Gi −G>i

2

)
y = 0, ∀y ∈ Rn,

y>Py ≥ λmin(P )‖y‖22, ∀y ∈ Rn, P ∈ Rn×n, P > 0,

we obtain:

L̇(ζi) ≤

−
(

1− Li
2ρi

)
‖ζi,1‖22 + [1 + (1 + 2ρi)Li] ‖ζi,2‖22

− kiλmin

(
Gi +G>i

2

)
‖ζi,2‖22 + ‖ζi,2‖δ̃i.
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By using Assumption 2 and (17), the latter becomes:

L̇(ζi) ≤ −αi,1‖ζi,1‖22 − αi,2‖ζi,2‖22 + ‖ζi,2‖δ̃i
≤ −min{αi,1, αi,2}

(
‖ζi,1‖22 + ‖ζi,2‖22

)
+ ‖ζi,2‖δ̃i

= −min{αi,1, αi,2}‖ζi‖22 + ‖ζi,2‖δ̃i

= ‖ζi‖2
[
−min{αi,1, αi,2}‖ζi‖2 + δ̃i

]
Thus, L̇(ζi) < 0 when ‖ζi‖2 > δ̃i

min{αi,1,αi,2} . Taking

the latter into account and the fact that ζi(0) = 0 we

have that ‖ζi(t)‖2 ≤ δ̃i
min{αi,1,αi,2} , ∀t ≥ 0. Moreover,

the following inequalities hold:

‖ei‖2 = ‖ζi,1‖2 ≤ ‖ζi‖2

⇒ ‖ei‖2 ≤
δ̃i

min{αi,1, αi,2}
, ∀t ≥ 0,

and:∣∣‖ei‖2 − ‖vi‖2∣∣ ≤ ‖ei + vi‖2 ≤ ‖ζi,2‖2 = ‖ζi‖2

⇒ ‖vi‖2 ≤
2 δ̃i

min{αi,1, αi,2}
, ∀t ≥ 0,

which leads to the conclusion of the proof.

The aforementioned result states that real trajec-

tories ei(t), vi(t) will belong to a hyper-tubed which is

centered along the nominal trajectories ei(t), vi(t). The

tubes’ radii are δ̃i
min{αi,1,αi,2} and 2δ̃i

min{αi,1,αi,2} , respec-

tively, as it is depicted in Fig. 2.

Remark 4 It should be noted that the volume of the

hyper-tubes depends on the upper bound of the distur-

bances δi, the Lipschitz constants Li and the constants

Gi. By tuning the gains ki and ρi as in (15), (17) ap-
propriately, the volume of the tubes can be adjusted.

However, these gains cannot be set arbitrarily high due

to the fact that the robots have limited actuation re-

sources which are captured by the upper bound of the

control input. The higher the upper bound of the con-

trol input is, the smaller the volume of the tube can be

set.

By using (10), the closed-loop system is written as:

ėi = vi, (19a)

v̇i = fi(ei + xi,d, vi) + ui(ei, vi)− ki(ei − ei)
− ki(vi − vi) + δi. (19b)

Due to the fact that Problem 1 imposes transient

constraints between the agents (collision avoidance) and

the agents have communication capabilities within the

sensing range di as given in (4)-(5), we adopt here the

decentralized procedure depicted in Algorithm 2 and

explained hereafter. Assume that each agent knows its

labeling number in the set [N ]. After each sampling

time tk, ∀k ≥ 0 that agent i solves its own DFHOCP

and obtains the estimated open-loop trajectory ξi(s),

s ∈ [tk, tk + T ], it transmits it to all agents j ∈ Gi(tk),

j 6= i, i.e., to agents that are within its sensing radius

at time tk. Then, agents’ j ∈ Gi(tk), j 6= i hard con-

straints Ej are updated by incorporating the predicted

trajectory of agent i, i.e., ξi(s), s ∈ [tk, tk + T ]. Among

all agents j ∈ Gi(tk), the one with higher priority, i.e.,

smaller labeling number in the set [N ], solves its own

DFHOCP (for example, agent 2 has higher priority than

agents 3, 4, . . . ). This sequential procedure is continued

until all agents i ∈ [N ] solve their own DFHOCP, and

then the sampling time is updated.

In other words, each time an agent solves its own

individual optimization problem, it knows the (open-

loop) state predictions that have been generated by the

solution of the optimization problem of all agents within

its sensing range at that time, for the next T time

units. These pieces of information are required, as each

agent’s trajectory is constrained not by constant values,

but by the trajectories of its associated agents through

time: at each solution time tk and within the next T

time units, an agent’s predicted configuration at time

s ∈ [tk, tk+T ] needs to be constrained by the predicted

configuration of its neighboring and perceivable agents

(agents within its sensing range) at the same time in-

stant s, so that collisions are avoided. We assume that

the above pieces of information are always available,

accurate and can be exchanged without delay. We will

show thereafter that by adopting the aforementioned

sequential communication procedure, and given that at

t = 0 the DFHOCP (12a) - (12d) of all agents are feasi-

ble, the agents are navigated to the desired RoI, while

all distance and input constraints imposed by Problem

1 are satisfied.

Remark 5 It should be noted that the constraint sets

E i, i ∈ [N ] in (12c) depend on the estimated open-loop

trajectories ei(s) and ej(s) for all i ∈ [N ], j ∈ G(tk),

with s ∈ [tk, tk + T ]. Moreover, they are updated when

each robot has received the transmitted trajectories by

its neighbors.

Remark 6 By considering a real-time scenario where

the state vector ξ is comprised of 12 real numbers en-

coded by 4 bytes the overall downstream bandwidth

required by each robot is:

BWd = 12× 32 [bits]× |Gi(tk)| × T

h
× f [sec−1].

Given a conservative sampling time f = 100 Hz and

a horizon of
T

h
= 100 time steps, the wireless protocol
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δ̃i
min{αi,1,αi,2}

δ̃i
min{αi,1,αi,2}

• •
•

ei(t)
ei(t)

Fig. 2: The hyper-tube centered along the trajectory ei(t) (depicted by blue line) with radius δ̃i
min{αi,1, αi,2} . Under

the proposed control law, the real trajectory ei(t) (depicted with red line) lies inside the hyper-tube for all times,

i.e., ‖ei(t)‖ ≤ δ̃i
min{αi,1, αi,2} , ∀t ∈ R≥0.

IEEE 802.11n-2009 (a standard for present-day devices)

can accommodate up to

|Gi(tk)| = 600 [Mbit · sec−1]

12× 32[bit]× 104[sec−1]
≈ 16 · 102 robots,

within the range of one robot. We deem this number

to be large enough for practical applications of the pro-

posed approach.

The following theorem guarantees the navigation of

the agents between RoI and thereafter we will pro-

pose algorithms computing the corresponding transi-

tion times.

Theorem 1 Suppose that Assumptions 1-3 hold. Sup-

pose that the robots start at time ti,s ≥ 0 from the RoI

Ri,s and they need to be navigated to RoI Ri,d for ev-

ery i ∈ [N ]. Suppose also that at time ti,s the DFHOCP
(12a)-(12d) sequentially solved by all the robots i ∈ [N ],

is feasible. Then, the proposed decentralized feedback

control law (10), (14), renders the closed-loop system

(19a)-(19b) of each robot i ∈ [N ] Input to State Stable

with respect to δi(t) ∈ ∆i.

Proof The proof of the theorem consists of two parts:

Feasibility Analysis: It can be shown that recursive

feasibility is established and it implies subsequent feasi-

bility. The proof of this part is similar to the feasibility

proof of [32, Theorem 2, Sec. 4, p. 12].

Convergence Analysis: Recall that:

ei = xi − xi,d, ei = ei − ei, vi = vi − vi.

Then, we get:

‖xi(t)− xi,d‖2 ≤ ‖ei(t)‖2 + ‖ei(t)‖2,
‖vi(t)‖2 ≤ ‖vi(t)‖2 + ‖vi(t)‖2,

which, by using the fact that:

‖ei‖2 ≤ ‖ξi‖2, ‖vi‖2 ≤ ‖ξi‖2,

as well as the bounds from (16a), (16b), become:

‖xi(t)− xi,d‖2 ≤ ‖ξi(t)‖2 + δ̃i
min{α1,α2} , (20a)

‖vi(t)‖2 ≤ ‖ξi(t)‖2 + 2δ̃i
min{α1,α2} , ∀t ≥ 0. (20b)

Since only the nominal system dynamics (9a)-(9b)

are used for the online computation of the control ac-

tion ui(s) ∈ U i, s ∈ [tk, tk + T ] through the DFHOCP

(12a)-(12d), by invoking nominal NMPC stability re-

sults found on [22], it can be shown that there exist

class KL functions βi, such that:

‖ξi(t)‖ ≤ βi(‖ξi(ti,s)‖2, t), ∀t ∈ R≥0. (21)

By combining (20a)-(20b) with (21) we get:

‖xi(t)− xi,d‖2 ≤ βi(‖ξi(ti,s)‖2, t) + δ̃i
min{α1,α2} , (22a)

‖vi(t)‖2 ≤ βi(‖ξi(ti,s)‖2, t) + 2δ̃i
min{α1,α2} . (22b)

for every t ∈ R≥0. The latter inequalities leads to the

conclusion of the proof.

4.3 Discrete System Abstraction

Theorem 1 implies that for each robot i ∈ [N ] with

kinematics/dynamics as in (1a), (1b), starting from the

RoI Ri,s at time ti,s, is driven by the controller (10)

towards a desired RoI Ri,d, while all state, input and

transient constraints are satisfied. Hereafter, we provide

an algorithm for constructing the WTS of each agent.

By observing (22a) and taking into account Assumption

3, it holds that there exists a time instant ti,d such that

the volume of robot i will be included strictly within
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Algorithm 2 Computation of ti,d := ti(Ri,s,Ri,d)
1: Input: ti,s, xi(tk), k ∈ N;
2: Output: ti,d;
3: tk ← ti,s;
4: flag← 1;
5: while flag = 1; do
6: solve DFHOCP (12a)-(12d) with Ẽi as in (23);
7: measure xi(tk);

8: if

∥∥∥∥∥(‖xi(tk)‖+ ri + δ̃i
min{α1,α2}

)
− xi,d

∥∥∥∥∥
2

< pd

then
9: flag← 0; {robot i is whithin RoI Ri,d}

10: break;
11: Go to “line 15”
12: end if
13: tk ← tk + h;
14: end while
15: ti,d ← tk;

the RoI Ri,d. Furthermore, due to the fact that we have

knowledge of the nominal dynamics and the MITL tasks

ϕi are independent for each robot, for the computation

of the time ti,d an offline computer simulation of the

DFHOCP (12a)-(12d) with state constraints as:

Ẽi :=
{
ei(t) ∈ Rn :M(ei(t) + xi,d, ri)

∩ {R\{Ri,s,Ri,d}}
}
	Ωi,1, (23)

is conducted. In particular, (23) captures constraints

regarding the navigation of robot i from RoI Ri,s to

RoI Ri,d without intersecting with any other RoI of

the workspace. It should be noted that if any collision

is about to occur in real-time when the robots are ex-

ecuting the on-line control actions, the transition time

between the RoI will be different. In order to overcome

the aforementioned issue, we will provide thereafter an

algorithm that monitors the collision offline and up-

dates the transition times appropriately. Then, the pro-

cess of computing ti,d is described in Algorithm 3. The

abstraction that captures the dynamics of each robot

into a WTS is given through the following definition.

Definition 14 The motion of robot i in the workspace

W is modeled by the WTS

Ti = (Si, S
init
i ,Acti,−→, ti, Γi, Li),

where:

– Si = R =
⋃
z∈[Z]

Rz is the set of states of the robot

that contains all the RoI of the workspace W;

– Sinit
i ⊆ Si is a set of initial states defined by the

robot’ s initial position xi(0) in the workspace;

– Acti is the set of actions containing the union of

all feedback controllers (10) which can navigate the

robot i between RoI;

– −→i⊆ Si×Acti×Si is the transition relation. We say

that (Ri,s, ui,Ri,d) ∈−→i, with Ri,s, Ri,d ∈ R with

Ri,s 6= Ri,d if there exist feedback control law ui ∈
Acti as in (10) which can drive the robot from the

region Ri,s to the region Ri,d without intersecting

with any other RoI of the workspace;

– ti is the time weight as given in (7) and it is com-

puted by Algorithm 2;

– Li is the labeling function as given in (6);

– and Γi is the set of atomic propositions imposed by

Problem 1.

The aforementioned WTS of each robot allows us to

work directly at the discrete level and design a sequence

of feedback controllers as in (10) that solve Problem 1.

By construction, each timed run produced by the WTS

Ti, where the notion of timed run is given in Definition

8, is associated with the trajectory xi(t) of the system

(1a)-(1b), as given in Definition 12. Hence, if a timed

run of Ti of each robot i ∈ [N ] satisfying the given

MITL formula ϕi is found, a desired timed word of the

original system, and hence a trajectory xi(t) that is a

solution to Problem 1 is found.

4.4 Control Synthesis

Fig. 3 depicts a framework under which a sequence of

feedback control laws ui(xi, vi) of each robot that guar-

antees the satisfaction of the MITL formula ϕi can

be computed. First, a TBA Ai that accepts all the

timed runs satisfying the specification formula ϕi is con-

structed. Second, a product between the WTS Ti given

in Definition 14 and the TBA Ai is computed which

gives the product WTS T̃i. By performing graph search

to the product WTS T̃i, a timed run that satisfies the

MITL formula ϕ can be found. For more details re-

garding the control synthesis procedure we refer to our

previous work [13,15].

In view of Algorithm 3, (23) and the offline plan

computation, it is possible that while each agent is exe-

cuting online its individual actions and transits between

RoI, there might be a cluster of agents that avoid colli-

sion between each other. In such a scenario, the online

feedback control law avoids the possible collisions, but

the navigation time between the RoI will have been dif-

ferent that the one computed by Algorithm 3. In order

to resolve this, we propose an offline collision detection

algorithm (see Algorithm 4) which detects the cluster of

agent that will avoid potential collision when the plan

of each agent is executed and updates the transition

times between RoI of each agent appropriately.

More specifically, the input to Algorithm 4 is the

transition times of each agent and the output is the



Scalable Time-constrained Planning of Multi-robot Systems 13

MITL2TBA

MITL2TBA

ϕ1

ϕN

A1

AN

⊗

⊗
...

T̃1
...

T̃N

T1
...

TN

synthesis

synthesis

r̃t1
...

r̃tN

abstraction

abstraction

ẋ1 = v1
v̇1 = f1 +G1u1 + δ1

...
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Fig. 3: A graphic illustration of the proposed framework.

updated realistic transition times denoted by treali,d as

well as the formula bounds relaxation. The function

computePlanAgent(i) computes the sequence of RoI

that agent i needs to follow in order to satisfy the

formula. The function executePlanAgent(i) executes a

simulated plan for each agent. Then, by using a moni-

toring function

collisionClusterMonitoring,

the cluster of the agents that are colliding can be de-

tected. Then, we need to update the transition times of

each of the colliding agents by a term which models the

time duration of the maneuvering that the correspond-

ing agent is performing in order to avoid the collision.

This time is denoted in Algorithm 4 by T imaneuver. By

finding the maximum of the aforementioned times, the

time bounds of the MITL formula of each agent are

relaxed. The function relaxBounds(ϕi,maxi) updates

each formula time interval of the form [a, b], a > b ≥ 0,

to [a, b+ maxi].

Proposition 1 The solution that it is obtained from

the controller synthesis procedure provides a sequence

of feedback control laws ui(xi, vi) as in (10) that guar-

antees the satisfaction of the formula ϕ of the robot

governed by dynamics as in (1a)-(1b), thus, providing

a solution to Problem 1.

Algorithm 3 Offline collision detection and formula

bounds relaxation

1: Input: ti,s, ϕi, i ∈ [N ];
2: Output: treali,d , ϕi, i ∈ [N ];
3: maxi ← 0;
4: for i ∈ [N ] do
5: cumputePlanAgent(i); {Execute the simulated plan of

each agent}
6: executePlanAgent(i);
7: end for
8: for i ∈ collisionClusterMonitoring do
9: T imaneuver ← computeManueverTime;

10: if T imaneuver > maxi then
11: maxi ← T imaneuver

12: end if
13: treali,d ← ti,s + T imaneuver

14: end for
15: for i ∈ [N ] do
16: ϕi ← relaxBounds(ϕi,maxi);
17: end for

4.5 Complexity Analysis

The proposed framework consists of the computational

complexity of the following steps:

– C1: the computational complexity of the offline con-

struction of WTS T̃i and graph search. In particu-

lar, the graph search is performed over the product

WTS T̃i which has |Si| · |Qi| number of states, i.e.,

the multiplication between the states of the WTS
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(number of RoI of the workspace) and the number

of states of the TBA. The complexity of the Di-

jskstra algorithm that is used for the graph search is:

O
(
|Si| · |Qi|+ |edges| log

(
|Si| · |Qi|

))
, where |edges|

is the number of edges of the product WTS T̃i.
– C2: Algorithm 2 is an offline computer simulation

and the computational complexity is the same with

the complexity of a nominal NMPC algorithm;

– C3: Algorithm 3 is an offline computer simulation

of collision detection which scales with the number

of agents;

– C4: the DFHOCP (12a)-(12d) is the only online

commutation of the proposed framework and has

the same complexity with the nominal NMPC algo-

rithm (quadratic programming optimization tech-

nique).

By taking into account that C1 is standard in timed

verification, and the fact that C2, C4 have the same

complexity with nominal NMPC, and C3 is a com-

puter simulation that scales with the number of agents,

the proposed approach is scalable with the number of

agents.

5 Experimental Setup and Results

In this section the efficacy of the proposed framework

via a real-time experiment employing N = 3 Nexus

10011 mobile robots is validated. The experiment was

conducted at Smart Mobility Lab (SML) (see Fig. 1 and

[18]). By controlling the speed of each wheel, the Nexus

Robot 10011 is able to move for-ward, backward, left,

and right. The robot can also rotate clockwise and coun-

terclockwise. In other word, it has three degrees of free-

doms, i.e moving forward/backward, moving left/right

and rotation. By combining the three degree of free-

dom, the Nexus Robot is able to move towards any

direction. SML provides a motion capture system (Mo-

Cap) with 12 cameras spread across the lab. The Mo-

Cap provides the robot state vector, including pose,

orientation as well as linear and angular velocities at

frequency of 100Hz. The software implementation of

the proposed control strategy was conducted in C++

under Robot Operating System (ROS) [33]. Moreover,

the optimization algorithms described in this chapter

are implemented by employing the NLopt Optimization

library found in [34].

The state of each robot is xi = [xi,1, xi,2, xi,3]>

where xi,1, xi,2 indicate the position of the robot and

xi,3 its orientation. The workspace that the robots can

operate in as well as a panoramic view of it is depicted

in Fig. 1 and Fig. 4, respectively. The workspace is cap-

tured by the set:

W := {w ∈ R2 : |wk| ≤ 2.5, k ∈ {1, 2}},

and it contains 5 RoI which are divided as follows:

– the RoI Rz, z ∈ {1, 2, 3, 4} depicted with blue color

in Fig. 4 which stand for the RoI that the robots are

required to visit. The RoI Rz, z ∈ {1, 2, 3, 4} map

into the atomic propositions that model missions for

each robot;

– the RoI R5 depicted with red color in Fig. 4 stands

for an unsafe region that the robots should avoid

collision with. It holds that Li(R5) = {obs} for ev-

ery i ∈ [N ].

The control input constraints of each robot are set to:

Ui = {ui ∈ R3 : |ui,k| ≤ 0.15, k ∈ {1, 2, 3}}, i ∈ [N ],

where ui,1, ui,2 stand for the linear velocities and ui,3
stands for the angular velocity. The ball that covers

the volume of each robot has radius ri = 0.4m for every

i ∈ [N ]. The sensing radius of each robot is di = 2m.

The robots 1, 2 and 3 are initially place in the ROI R1,

R2 and R3, respectively. The set of atomic propositions

of each robot is given by:

Π1 = {obs,mission11,mission13},
Π2 = {obs,mission22,mission24},
Π3 = {obs,mission33,mission32},

with the corresponding labeling functions:

L1(R1) = {mission11}, L1(R2) = ∅,
L1(R3) = {mission13},L1(R4) = ∅,
L2(R1) = ∅, L2(R2) = {mission22},
L2(R3) = ∅,L2(R4) = {mission24},
L3(R1) = ∅, L3(R2) = {mission32},
L3(R3) = {mission33}, L3(R4) = ∅.

The desired MITL tasks are set to:

ϕ1 = �[0,120]{¬obs} ∧ ♦[10,25]{mission13}
∧ ♦[30,45]{mission11},

ϕ2 = �[0,120]{¬obs} ∧ ♦[25,45]{mission22}
∧ ♦[50,80]{mission24},

ϕ3 = �[0,120]{¬obs} ∧ ♦[30,45]{mission33}
∧ ♦[60,75]{mission32},

respectively. The prediction horizon is chosen T = 2.0 sec.

The tube of each robot is given by the set:

Ωi =

{
ei : ‖ei‖ ≤

δ̃i
ki

}
.
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The NMPC gains are set to:

Qi = Pi = Ri = 0.5I3, i ∈ [N ].

By using Algorithm 3 and Algorithm 4, the total tran-

sition times of the navigation of the robots between the

RoI of the workspace are computed as follows:

t1(R1,R3) = t1(R3,R1) = 18,

t2(R2,R4) = t2(R4,R2) = 20,

t3(R2,R3) = t3(R3,R2) = 16.

By using the proposed framework, we find a sequence

of runs of each agent that fulfills the given MITL task.

The sequence of runs maps into a sequence of feedback

control laws that the robot execute online and fulfill the

given tasks. By online executing the proposed plan, the

trajectories of the robots in the workspace are depicted

in Fig. 5- Fig. 7.

Video: A video demonstrating the experiment of this

section can be found in the following link:

https://www.youtube.com/watch?v=9ZNVlEjKZ9g

6 Conclusions and Future Work

In this paper, a scalable framework for time-constrained

planning of multi-robot systems has been proposed.

ConsideringN robots operating in a bounded workspace

which contains RoI, assigned with tasks given in MITL,

a framework for efficiently designing decentralized feed-

back control laws that guarantee the satisfaction of the

corresponding tasks has been provided. The controllers

are the outcome of DFHOCP solved by each robot at

each sampling time and form the actions of the WTS.

By proposing high-level controller synthesis algorithms,

a sequence of feedback laws for each robot can be de-

signed. The approach is scalable since the local prod-

ucts are computed offline and only the DFHOCP of

each robot is computed online which has complexity

similar with the nominal NMPC framework. Future re-

search directions will be devoted towards incorporating

event-triggered strategies between he robots in order to

save valuable actuation and sensing resources.
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22. H. Chen and F. Allgöwer, “A Quasi-Infinite Horizon Non-
linear Model Predictive Control Scheme with Guaranteed
Stability,” Automatica, vol. 34, no. 10, pp. 1205–1217,
1998.

23. D. D. Souza and P. Prabhakar, “On the Expressiveness
of MTL in the Pointwise and Continuous Semantics,”
International Journal on Software Tools for Technology
Transfer, vol. 9, no. 1, pp. 1–4, 2007.

24. J. Ouaknine and J. Worrell, “On the Decidability of Met-
ric Temporal Logic,” 20th Annual IEEE Symposium on
Logic in Computer Science (LICS), pp. 188–197, 2005.

25. P. Bouyer, “From Qualitative to Quantitative Analysis
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