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Abstract— Control barrier functions are valuable for satis-
fying system constraints for general nonlinear systems. How-
ever a main drawback to existing techniques is the proper
construction of these barrier functions to satisfy system and
input constraints. In this paper, we propose a methodology to
construct control barrier functions for Euler-Lagrange systems
subject to input constraints. The proposed approach is validated
in simulation on a 2-DOF planar manipulator.

I. INTRODUCTION

Recent technological advancements have increased the
presence of autonomous systems in human settings. Euler-
Lagrange systems are representative of real-world au-
tonomous systems (e.g autonomous vehicles, robotic manip-
ulators) for which safety around humans is critical. To define
safety, we specify position and velocity constraints, e.g. do
not leave a pre-defined region or exceed this speed, that must
be respected at all times. A critical property of real-world
systems is that they have limited actuation to uphold system
constraints. The problem addressed here is how to satisfy
state and input constraints for Euler-Lagrange systems.

Control barrier functions have attracted attention for con-
straint satisfaction of nonlinear systems [1]. Existing barrier
function methods have been applied to nonlinear continu-
ous/hybrid systems [2] and used to satisfy constraints while
providing stability [3]. Recently, the distinction between
reciprocal control barrier functions (RCBFs) and zeroing
control barrier functions (ZCBFs) has been established [8], in
which RCBFs are undefined at the constraint boundary while
ZCBFs are zero at the boundary and well-defined outside
of the constraint set. Aside from practical implementations,
ZCBFs are advantageous in that they are robust to pertur-
bations [9]. Those methods have been applied to bi-pedal
walking, adaptive cruise control, and robotic applications
[4]–[7]. A review of ZCBFs can be found in [1].

A well known set-back of barrier function methods is the
difficulty in constructing them. This issue is further exac-
erbated when also considering input constraints, which are
characteristic of real-world systems. One existing method to
construct ZCBFs includes sum-of-squares programming [1],
[2], however that approach is only applicable to polynomial
systems, and not to the Euler-Lagrange systems considered
here. One method that can be applied to nonlinear affine
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systems (and thus Euler-Lagrange systems) requires a pre-
defined evasive maneouver [10]. However the closed-form
design of that evasive maneouver is not straight forward
in general. Furthermore, that approach is restricted to a
finite time horizon and requires forward simulation of the
system dynamics which is not tractable for general Euler-
Lagrange systems. Thus despite recent advancements, there
is no existing approach to construct ZCBFs in closed-form
for Euler-Lagrange systems.

In this paper, we present a methodology to construct
ZCBFs for Euler-Lagrange systems that respect input con-
straints. The proposed approach is designed off-line by
exploiting properties of Euler-Lagrange systems, and guar-
antees safe workspace constraint satisfaction (position and
velocity). The approach is validated in numerical simulation
on the 2-DOF planar manipulator. We note that the approach
extends upon [4] by providing formal guarantees regarding
the construction of ZCBFs.

Notation: The term ej ∈ Rr denotes the jth column of the
identity matrix Ir×r. The Lie derivatives of a function h(x)
for the system ẋ = f(x) + g(x)u are denoted by Lfh and
Lgh, respectively. The terms � and � are used to denote
element-wise vector inequalities. The matrix inequality A <
B for square matrices A and B means that the matrix B−A
is positive-definite. The interior and boundary of a set A
are denoted Int(A ) and ∂A , respectively. For brevity, the
equation ¯

¯
a = ¯

¯
b± c denotes ā = b̄+ c and

¯
b =

¯
b− c.

II. BACKGROUND

A. Control Barrier Functions

Here we introduce the existing work regarding control
barrier functions for nonlinear affine systems: ẋ = f(x) +
g(x)u where x(t) ∈ Rn is the state, u ∈ Rm is the control
input. We will consider the case where f : Rn → Rn and
g : Rn → Rn×m are locally Lipschitz functions, and the
system is forward complete.

Let us first define the extended class-K function:

Definition 1. [8]: A continuous function, α : (−b, a) →
(−∞,∞) for a, b ∈ R>0 is an extended class-K function if
it is strictly increasing and α(0) = 0.

Note for simplicity, the extended class-K functions ad-
dressed here will be smooth and defined for a, b =∞.

Let h(x) : Rn → R be a continuously differentiable
function, and let the associated constraint set be defined by:

C = {x ∈ Rn : h(x) ≥ 0} (1)



where ∂C = {x ∈ Rn : h(x) = 0} and Int(C ) = {x ∈
Rn : h(x) > 0}.

Constraint satisfaction is ensured via Nagumo’s Theorem
by showing that the system states are directed into the
constraint set (see Theorem 4.7 of [11]). In the context
of barrier functions, this condition is written as: ḣ(x) ≥
−α(h(x)) for all x ∈ C , for a continuously differentiable,
extended class-K function α. Here h is considered the ZCBF
and formerly defined as:

Definition 2. [8]: Given a set C defined by (1) for a
continuously differentiable function h : Rn → R, the
function h is called a ZCBF defined on an open set E with
C ⊂ E ⊂ Rn if there exists an extended class-K function α
such that: sup

u∈U
[Lfh(x)+Lgh(x)u+α(h(x))] ≥ 0,∀x ∈ E .

If h is a ZCBF, the condition ḣ(x) ≥ −α(h(x)) is then
enforced in the control by re-writing it as: Lfh + Lghu ≥
−α(h(x)), which is linear with respect to u. Resulting
methods for ZCBFs then implement this condition as a
constraint in a quadratic program to define u. One example
of such a controller is [4]:

u(x)∗ = argmin
u∈Rm

||u− unom(x)||22

s.t. Lfh(x) + Lgh(x)u ≥ −α(h(x))
(2)

where unom : Rn → Rm is a state-feedback control law
designed to stabilize the system.

B. Euler-Lagrange Dynamics
Consider the following Euler-Lagrange system:

q̇ = v

v̇ = M(q)−1(−C(q,v)v − Fv + g(q) + u)
(3)

where M(q) ∈ Rn×n is the inertia matrix, C(q,v) ∈ Rn×n

is the Coriolis and centrifugal matrix, g(q) ∈ Rn is the
generalized gravity on the system, F ∈ Rn×n is the positive
semi-definite, diagonal damping matrix, u ∈ U ⊆ Rn is the
control input. Let (q(t, q0),v(t,v0)) ∈ R2n be the solution
of (3), which for ease of notation is denoted by (q,v).

Here we consider the following well-known properties for
Euler-Lagrange systems [12]:

Property 1. : M(q) is symmetric, positive-definite, and
bounded such that there exists µm1

, µm2
∈ R>0, µm2

> µm1

such that µm1
In×n < M(q) < µm2

In×n.

Property 2. : There exists kc ∈ R>0 such that C(q,v)
satisfies: ||C(q,v)||≤ kc||v||.

Property 3. : There exists kg ∈ R>0 such that g(q) satisfies:
kg ≥ sup

q∈Rn

||g(q)||.

Due to the bounded, positive-definite property of the
inertia matrix M(q) the following lemma follows:

Lemma 1. Under Property 1, there exists km1 , km2 ∈ R>0,
km2 > km1 such that km1In×n < M(q)−1 < km2In×n.
Furthermore, there exist kdij

:= max
q∈Rn
{|mij(q)|}, where

mij(q) is the i, j element of M(q)−1.

Note that we use Properties 1-3 for simplicity. We consider
safety of the system over a compact set, which due to
smoothness of M , C, and g ensures that km1

, km2
, kdij

,
kc, and kg exist for general Euler-Lagrange systems [13].

C. Problem Formulation

The goal of constraint satisfaction is to ensure the states
q,v stay within a set of constraint-admissible states. We
define the position constraints as:

C = {q ∈ Rn : qmin � q � qmax} (4)

for qmin, qmax ∈ Rn and qmax � qmin. These types
of constraints are highly popular in robotics and general
automated systems.

We define the system’s velocity constraints as:

D = {v ∈ Rn : vmin � v � vmax} (5)

where vmin,vmax ∈ Rn, vmax � 0, and for simplicity of
the presentation let vmin = −vmax.

In addition to state constraints, real-world systems have
limited actuation capabilities. We define the input constraints
as:

U = {u ∈ Rn : umin � u � umax} (6)

where umin,umax ∈ Rn, umax � 0, and for simplicity of
the presentation let umin = −umax.

The problem addressed here is to ensure the set of state
constraints is forward invariant while respecting input con-
straints and formally stated as follows:

Problem 1. Consider the system (3) with position, velocity,
and input constraints (4), (5), (6). Design a control law u ∈
U such that the state constraint sets C , D are rendered
forward invariant.

III. PROPOSED SOLUTION

To address Problem 1, we first construct the ZCBFs with
particular design parameters, then explain how the design
parameters should be chosen. Let N = {1, ..., n}. We re-
write the constraint set C into individual constraints with
respect to functions h̄i(qi),

¯
hi(qi) : R → R for each qi,

i ∈ N , which are defined as:

h̄i(qi) = qmaxi
− qi,

¯
hi(qi) = qi − qmini

(7)

Let the constraint-admissible set for state qi be:

Ci = {qi ∈ R : h̄i(qi) ≥ 0,
¯
hi(qi) ≥ 0} (8)

Note that by definition, Ci is always convex, compact, non-
empty, and h̄i,

¯
hi are smooth functions of their arguments.

To ensure forward invariance of Ci (and consequently C ),
the following conditions must hold: ˙̄hi(qi) ≥ −α1(h̄i(qi)),
˙
¯
hi(qi) ≥ −α1(

¯
hi(qi)) for all qi ∈ Ci, i ∈ N , for

some extended class-K function α to then apply Nagumo’s
theorem [11]. Substitution of (7) with (3) yields the following
requirement: −vi ≥ −α(h̄i(qi)) and vi ≥ −α(

¯
hi(qi)).

Moreover, due to the fact that this system is of relative degree
two, there is no control input to ensure the conditions hold.



Thus we treat these conditions as new constraints by defining
b̄i,

¯
bi : R2 → R [14]:

b̄i(qi, vi) = −vi+γα1(h̄i(qi)),
¯
bi(qi, vi) = vi+γα1(

¯
hi(qi))

(9)
where α1 is an extended class-K function, and γ ∈ R>0 is
a design parameter. Note that without loss of generality, we
will use γ and α1 for all 2n upper and lower bound con-
straints. Notice that when b̄i(qi, vi) ≥ 0 and

¯
bi(qi, vi) ≥ 0, it

follows that ˙̄hi(qi) ≥ −γα1(h̄i(qi)), ˙
¯
hi(qi) ≥ −γα1(

¯
hi(qi))

as required by Nagumo’s theorem for forward invariance of
Ci. To properly address the set of states where b̄i(qi, vi) ≥ 0
and

¯
bi(qi, vi) ≥ 0, we define the following set:

Bi = {(qi, vi) ∈ R2 : b̄i(qi, vi) ≥ 0,
¯
bi(qi, vi) ≥ 0} (10)

with B denoting the Cartesian product of Bi over all i ∈ N .
In order to ensure forward invariance of B (and thus C ),

another application of Nagumo’s Theorem requires that:
˙̄bi(qi, vi) ≥ −βα2(b̄i(qi, vi)), ˙

¯
bi(qi, vi) ≥ −βα2(

¯
bi(qi, vi))

(11)
for (qi, vi) ∈ (Ci × R) ∩ Bi for i ∈ N , where α2 is
an extended class-K function, and β ∈ R>0 is a design
parameter.

The aim is to correctly construct b̄i and
¯
bi via γ and β

such that a control u ∈ U exists to enforce (11). In this
context, we consider b̄i and

¯
bi as the candidate ZCBFs of

the system (3). We start by stating a key property of the
proposed ZCBFs on this class of constraints:

Lemma 2. Consider the constraint sets Ci (8), functions b̄i,

¯
bi (9), and associated set Bi (10), ∀i ∈ N . Then ||v||∞≤
γa for all (q,v) ∈ (C × Rn) ∩ B, where a := α1(δq),
δq = ||qmin − qmax||∞.

Proof. From (8), (9), and (10) it follows that
−γα1(

¯
hi(qi)) ≤ vi ≤ γα1(h̄i(qi)) for all i ∈ N .

Thus v is bounded for q ∈ C . From Definition 1 and
(8), the max of the upper and lower bounds of v i.e
max{ max

qi∈Ci,i∈N
γα1(h̄i(qi)), max

qi∈Ci,i∈N
γα1(

¯
hi(qi))} yields

γa, which completes the proof.

Lemma 2 provides insight into how the barrier function
construction affects the system behaviour. First, by appro-
priately tuning γ (and thus B), the velocity bounds can
be adjusted to satisfy the state constraint D . Second, the
relation −γα1(

¯
hi(qi)) ≤ vi ≤ γα1(h̄i(qi)) shows that as qi

approaches the boundary ∂Ci, the velocity approaches zero.
This is an important property because it restricts the system’s
inertia relative to the constraint boundary. This aligns with
intuition in that if the velocity is too high near the boundary,
exceedingly large control effort would be required to ensure
forward invariance. While γ dictates the system’s velocity,
β dictates the behaviour of u as the system approaches the
constraint boundary. From (11), β will dictate how soon
the control acts to keep the system in the constraint set. In
the remainder of this section, we will exploit this property
to explicitly compute γ and β to ensure state and input
constraint satisfaction.

First, we note in the following lemma that by construction
of b̄i and

¯
bi, we can ensure the conditions of Nagumo’s

theorem for a subset of the boundary of (Ci × R) ∩Bi:

Lemma 3. Consider the constraint sets Ci (8), functions
b̄i,

¯
bi (9), and associated set Bi (10), ∀i ∈ N . Let S̄i,

¯
Si ⊂ ∂((Ci × R) ∩Bi) be defined by:

S̄i = {(qi, vi) ∈ R2 : h̄i(qi) = 0, vi ∈ [−γα1(δqi), 0]},

¯
Si = {(qi, vi) ∈ R2 :

¯
hi(qi) = 0, vi ∈ [0, γα1(δqi)]} (12)

for i ∈ N and δqi = qmaxi
− qmini

. Then it follows that
˙̄hi(qi) ≥ 0, and ˙

¯
hi(qi) ≥ 0 on S̄i,

¯
Si, respectively.

Proof. By (12), it follows that vi ≤ 0 for (qi, vi) ∈ S̄i,
and vi ≥ 0 for (qi, vi) ∈

¯
Si. Differentiation of (7) yields

˙̄hi(qi) = −vi, ˙
¯
hi(qi) = vi, and the respective substitution

for vi completes the proof.

Lemma 3 follows intuition in that violation of the con-
straints defined by h̄i(qi) ≥ 0 (resp.

¯
hi(qi) ≥ 0) can

only occur if the system is moving towards the constraint
boundary i.e. vi > 0 (resp. vi < 0). To present the next
lemma, we first define the following terms:

ũmini
:= umini

+
km2

km1

kg +
1

km1

∑
j 6=i

kdij
umaxj

ũmaxi := umaxi −
km2

km1

kg +
1

km1

∑
j 6=i

kdijuminj

(13)

¯
¯
ψ
i
(qi, vi) := km1

ũmini
+ km2

kca
2γ2 +

∑
j 6=i

kdij
fjaγ

∓ (km1
fi − γ

∂α1

∂¯
¯
hi

(qi))vi (14)

where a = α1(δq), δq = ||qmax − qmin||∞, fi is the ith
element of the diagonal of F , and kg , km2

, km1
, kdij

are
from Lemma 1 and Property 3. Here ũmini

and ũmaxi
denote

the available control effort to actively prevent constraint
violation. Note that ũmaxi = −ũmini since umax = −umin.
We make the following assumption to ensure the system has
sufficient control authority:

Assumption 1. The system (3) has sufficient control au-
thority such that ũmini

and ũmaxi
defined by (13) satisfy:

ũmini
< 0, ũmaxi

> 0, ∀i ∈ N .

Next, we state a sufficient condition for (11):

Lemma 4. Consider the system (3) with the state and input
constraints defined by (4), (5), and (6). Let the functions
b̄i(qi, vi) and

¯
bi(qi, vi) be defined by (9) with smooth ex-

tended class-K functions α1 and α2, and consider the sets
Ci (8), Bi (10), ∀i ∈ N . Suppose the following conditions
hold for all (qi, vi) ∈ (Ci × R) ∩Bi, i ∈ N :

if vi ≥ 0, then ψ̄i(qi, vi)− βα2(b̄i(qi, vi)) ≤ 0,

if vi ≤ 0, then
¯
ψi(qi, vi)− βα2(

¯
bi(qi, vi)) ≤ 0

(15)

where ψ̄i and
¯
ψi are defined in (14). Then there exists u ∈ U

that satisfies (11) for i ∈ N .



Proof. Here we show how satisfaction of (15) implies (11).
We re-write (11) by differentiating (9) and substituting (3),
which yields:

eTi M
−1(u + g) ≤ eTi M

−1(C + F )v − γ ∂α1

∂h̄i
vi + βα2(b̄i)

(16a)

eTi M
−1(u + g) ≥ eTi M

−1(C + F )v − γ ∂α1

∂
¯
hi
vi − βα2(

¯
bi)

(16b)
First, we show that there exists a u ∈ U such

that km1
ũmini

≥ eTi M(q)−1(u + g) and km1
ũmaxi

≤
eTi M(q)−1(u + g). The intuition is that the available ac-
tuation to enforce (11) is limited by M(q)−1 from (16), and
the worst case scenario is when the lower bound, km1 , is
reached. We address this worst case scenario for u ∈ U as
follows. Note that by Lemma 1, km2

≥ mii(q) ≥ km1
where

mii(q) ∈ R>0 is the ith element of the diagonal of M(q)−1.
Recall that umin = −umax, such that multiplication by the
negatively valued umini

yields km1
umini

≥ mii(q)umini
.

Now let A = {ui ∈ R : mii(q)ui − km1umini ≥ 0}. By
choosing ui = umini we see that A ∩ Ui 6= ∅ and thus
we can say that there always exists a ui ∈ Ui such that
mii(q)ui ≤ km1

umini
. Similarly, we can say km1

umaxi
≤

mii(q)umaxi
such that for u ∈ U , we can find a ui ∈ Ui

such that mii(q)ui ≥ km1umaxi . Thus we ensure that there
exists a u ∈ U such that if mii(q) reaches km1 , there is
sufficient control available to enforce (11).

Next we consider the off-diagonal elements of M(q)−1,
where we must address the interference from uj , j 6= i

in ˙̄bi, ˙
¯
bi. It is straightforward to see that for u ∈ U ,∑

j 6=i kdijumaxj ≥
∑

j 6=imij(q)uj . Thus we can say that
there exists a u ∈ U such that the following relations hold
for all i ∈ N :

km1
umini

+
∑
j 6=i

kdij
umaxj

≥ mii(q)ui +
∑
j 6=i

mij(q)uj

km1
umaxi

−
∑
j 6=i

kdij
umaxj

≤ mii(q)ui +
∑
j 6=i

mij(q)uj

(17)

where the right hand side is equivalently eTi M(q)−1u. The
motivation for the terms kdijumaxj is that to ensure that
constraint i is satisfied, the control ui must be able to
handle the worst case when all other uj (j 6= i) are at their
maximum/minimum values.

Now we address the effect of gravity. By Lemma 1 and
Property 3 it follows that km2

kg ≥
∑

j mij(q)gj(q) =

eTi M(q)−1g(q). Thus from (17) and (13), we can say that
there exists a u ∈ U such that the following hold:

km1
ũmini

≥ eTi M(q)−1(u + g)

km1
ũmaxi

≤ eTi M(q)−1(u + g)
(18)

Second, we address the term eTi M(q)−1C(q,v)v
from (16). From Lemma 1 and Property 2 it fol-
lows that km2

kc||v||≥ ||M−1C||. From Lemma 2 it
follows that ||v||∞≤ γa such that km2

kca
2γ2 ≥

||eTi M(q)−1C(q,v)v||∞, which yields:

−km2
kca

2γ2 ≤ eTi M(q)−1C(q,v)v

km2
kca

2γ2 ≥ eTi M(q)−1C(q,v)v
(19)

Third, we address the term eTi M(q)−1Fv from (16), and
note that F is diagonal, positive semi-definite such that
fi ≥ 0. Recall from Lemma 1 that mii(q) ≥ km1 . Now
we consider the two cases when vi ≥ 0 and vi ≤ 0. When
vi ≥ 0 it follows that km1

fivi ≤ miifivi. When vi ≤ 0 it
follows that km1

fivi ≥ miifivi. Furthermore from Lemma
2 it follows that

∑
j 6=i kdij

fjγa ≥
∑

j 6=imij(q)fjvj , which
yields:

km1
fivi −

∑
j 6=i

kdij
fjaγ ≤ eTi M(q)−1Fv for vi ≥ 0

km1fivi +
∑
j 6=i

kdijfjaγ ≥ eTi M(q)−1Fv for vi ≤ 0
(20)

Substitution of inequalities (18), (19), and (20) in (15)
yield (16) (and thus (11)) where (16a) holds for vi ≥ 0 and
(16b) holds for vi ≤ 0.

Finally, we will show that there exists a u ∈ U such the
system (3) upholds Nagumo’s condition (11). The boundary
of (Ci×R)∩Bi is defined by the union of S̄i,

¯
Si from (12)

with Ēi = {(qi, vi) ∈ R2 : h̄i(qi) ≥ 0,
¯
hi(qi) ≥ 0, b̄i = 0}

and
¯
Ei = {(qi, vi) ∈ R2 : h̄i(qi) ≥ 0,

¯
hi(qi) ≥ 0,

¯
bi = 0}.

From (11), we see that for (qi, vi) ∈ Ēi (where vi ≥ 0)
˙̄bi ≥ −α2(b̄i) = 0. Similarly for (qi, vi) ∈

¯
Ei (where vi ≤ 0)

it follows that ˙
¯
bi ≥ −α2(

¯
bi) = 0. From these conditions and

from Lemma 3, (11) is satisfied for i ∈ N for u ∈ U .

The result from Lemma 4 effectively reduces the design
of the ZCBFs to determining γ and β to satisfy (15). First,
we note that for b̄i > 0,

¯
bi > 0, we can choose β sufficiently

large to satisfy (15). We thus define β∗ ∈ R as:

β∗ :=max
{

max
(qi,vi)∈(Ci×R)∩Bi

i∈N

ψ̄i(qi, vi)

α2(b̄i(qi, vi))
,

max
(qi,vi)∈(Ci×R)∩Bi

i∈N

¯
ψi(qi, vi)

α2(
¯
bi(qi, vi))

}
(21)

By definition, if β ≥ β∗ (β > 0), then (15) holds. However
it appears that β∗ is ill-defined at the set boundary where
b̄i = 0 (resp.

¯
bi = 0).

Our next task is to design γ to ensure β∗ is always well-
defined. The solution is to choose γ such that when b̄i = 0
(resp.

¯
bi = 0), ψ̄i < 0 (resp.

¯
ψi < 0), and so the right hand

side of (21) is upper bounded. To do this, first we set b̄i = 0
(resp.

¯
bi = 0), where by definition vi = γα1(h̄i(qi)) (resp.

vi = −γα1(h̄i(qi))) . We substitute b̄i = 0 (resp.
¯
bi = 0)

into (14) and set ψ̄i = 0 (resp.
¯
ψi = 0), which yield the

following quadratic expressions:

γ2 + d̄i(qi)γ + c̄i(qi) = 0, γ2 +
¯
di(qi)γ +

¯
ci(qi) = 0 (22)

where ¯
¯
di(qi) :=

∑
j 6=i kdij

fja− km1
fiα1(¯

¯
hi(qi))

km2kca
2 +

∂α1

∂¯
¯
hi

(qi)α1(¯
¯
hi(qi))

and



¯
¯
ci(qi) :=

km1 ũmini

km2kca
2 +

∂α1

∂¯
¯
hi

(qi)α1(¯
¯
hi(qi))

. We make a few

notes regarding (22). First, the definition of
¯
ci follows since

ũmaxi = −ũmini . Second, the derivation of (22) requires

division by km2kca
2 +

∂α1

∂¯
¯
hi

(qi)α1(¯
¯
hi(qi)), which is always

positive in Ci. Finally, ¯
¯
ci < 0 from Assumption 1.

Next, we apply the standard quadratic formula to solve
(22) over all qi ∈ Ci, i ∈ N , which yields the following
definition for γ∗ ∈ R>0:

γ∗ = min
{

min
qi∈Ci,
i∈N

φ̄(qi), min
qi∈Ci,
i∈N

¯
φ(qi)

}
(23)

where ¯
¯
φ
i
(qi) := 1

2 (− ¯
¯
di(qi) +

√
¯
¯
di(qi)

2 − 4¯
¯
ci(qi)). We note

that since ¯
¯
ci is strictly negative, ¯

¯
φ
i

has two real roots. Since
there are two solutions to (22), we choose the largest, positive
value hence the “+” in ¯

¯
φ
i
.

Now it is straightforward to see from (22), (23) that γ∗

ensures ψ̄i = 0 (resp.
¯
ψi = 0) when b̄i = 0 (resp.

¯
bi = 0).

Thus by choosing γ < γ∗, ψ̄i < 0 when b̄i = 0 (resp.

¯
ψi < 0 when

¯
bi = 0), and so β∗ ∈ R is now well-defined.

Consequently the choice of β ≥ β∗ ensures (15) is satisfied.
To additionally satisfy the velocity bounds of D , we must
also ensure γ ≤ 1

a mini∈N vmaxi
, which from Lemma 2

ensures that v ∈ D . We further note that (23) and (21) can
be solved off-line as will be shown in Section IV.

We are now ready to state the main result of this paper:

Theorem 1. Consider the system (3) with the state and input
constraints defined by (4), (5), and (6). Let the functions
b̄i(qi, vi) and

¯
bi(qi, vi) be defined by (9) with smooth ex-

tended class-K functions α1 and α2, and consider the sets
Ci (8), Bi (10), ∀i ∈ N . Let ũmini

and ũmaxi
be defined

by (13). Suppose Assumption 1 holds. For γ∗ defined by (23)
and β∗ defined by (21), if γ < min{γ∗, 1a mini∈N vmaxi

},
γ > 0, and β ≥ β∗, β > 0, then ((C ×Rn)∩B) ⊂ C ×D ,
((C × Rn) ∩B) 6= ∅, and there exists a control u ∈ U to
render (C × Rn) ∩B forward invariant.

Proof. Under Assumption 1, (23) has a positive, real solution
such that γ∗ > 0. Now by definition of ψ̄i and

¯
ψi from

(14) and Lemma 2, ψ̄i and
¯
ψi are bounded for all (qi, vi) ∈

(Ci × R) ∩Bi. The terms
1

α2(b̄i)
and

1

α2(
¯
bi)

are bounded

over any compact subset of Int((Ci × R) ∩ Bi). Now by
choosing γ ∈ (0, γ∗) we ensure that on the boundary ∂B,
ψ̄i

α2(b̄i)
< 0 and ¯

ψi

α2(
¯
bi)

< 0. Thus
ψ̄i

α2(b̄i)
and ¯

ψi

α2(
¯
bi)

are

upper bounded for all (qi, vi) ∈ (Ci × R) ∩Bi, and so β∗

from (21) is well-defined. Thus the choice of γ ∈ (0, γ∗) and
β ≥ β∗, β > 0 satisfies (15) for all (qi, vi) ∈ (Ci×R)∩Bi,
i ∈ N . By Lemma 4, it follows that there exists a u ∈ U
that satisfies (11). Thus for a given x, there exists a u ∈ U to
satisfy the conditions of Nagumo’s Theorem [11] and render
(C ×Rn)∩B forward invariant. Note by ensuring γ > 0 it
follows that (C ×Rn)∩B is non-empty. Furthermore, since
γ < 1

a mini∈N vmaxi it follows from Lemma 2 that v ∈ D

and ((C × Rn) ∩B) ⊂ C ×D .

Theorem 1, and all the prerequisite analysis, exploits the
proposed ZCBF formulation to appropriately restrict the
velocities and the required actuator effort near the constraint
boundaries. We may thus define a controller that is guaran-
teed to satisfy position, velocity, and input constraints for a
Euler-Lagrange system as:

u∗(q,v) = argmin
u∈U

||u− unom(q,v)||22

s.t. A(q,v)u � p(q,v)
(24)

where A is the concatenation of all Lgb̄i, Lg
¯
bi, p is the

concatenation of −Lfb̄i − βα2(b̄i), −Lf
¯
bi − βα2(

¯
bi) for

i ∈ N , where f and g represent the nonlinear affine
dynamics of (3). Here unom can represent a stabilizing
control law or a human input for the system (3). Note
that the proposed ZCBFs satisfy Definition 2 and are thus
robust to model uncertainties [9]. We refer the reader to
[4] to address sampled-data implementations of (24) for the
proposed ZCBFs.

IV. NUMERICAL EXAMPLE

Here we apply the proposed ZCBF approach to a 2-DOF
planar manipulator. The manipulator consists of two identical
links with a length of 1 m and mass of 1 kg, which are
parallel to the ground such that g = 0. The system is
equipped with motors capable of umax1

= −umin2
= 18

Nm, and umax2
= −umin2

= 10 Nm of torque. The system
damping is F = 0.001I2×2 kg/s. Let the position/velocity
safety constraints be defined by qmax1 = −qmin1 = π/2
rad, qmax2

= 5π/6 rad, qmin2
= π/2 rad, and vmax1,2

=
−vmin1,2

= 1.5 rad/s. We choose the following extended
class-K functions for the ZCBFs: α1(h) = tan(h)−1,
α2(b) = b3. The α1 term was chosen to enlarge the set
B (see Example 1 of [4]). The α2 term was chosen because
it empirically works well in practice [4], [5].

In the following steps we walk through the procedure to
define γ and β. We refer to [13] for the full system dynamics.
First we identify the bounds on M(q2)−1. Here we will
use km1i , km2i ∈ R>0 as the respective upper and lower
bounds of the diagonals of M(q2)−1 for joint i to reduce
the conservatism in (13). After substitution of the model
parameters, M(q2)−1 is computed over the constraint set
q2 ∈ [π/2, 5π/6] for which we find the following bounds:
km11 = 0.5455, km21 = 0.7869, km12 = 3.0, km22 = 3.546,
and kd1,2

= 0.5455. We similarly find the bound kc = 0.9
for C and set kg = 0. We appropriately substitute km1i ,
km2i i ∈ {1, 2} for km1 , km2 terms in (13) and compute
ũmax1 = −ũmin1 = 8 and ũmax2 = −ũmin2 = 6.727.
Note that Assumption 1 is satisfied. Now we plot ¯

¯
φ
i

from
(23) for i ∈ {1, 2}, which is shown in Figure 1. As shown
¯
¯
φ
i

is lower bounded by γ∗ = 0.8907, and so we choose
a slightly smaller value of γ = 0.8906 to ensure γ <
γ∗. Next we check the maximum velocity via Lemma 2
||v||≤ 0.8906α1(δq = π) = 1.1245. Thus the velocity safety
constraints are satisfied, and we continue by computing β∗

from (21). Figure 1 shows the plots of ψ̄i(qi, vi)/α2(b̄i(q, v))



and
¯
ψi(qi, vi)/α2(

¯
bi(q, v)) for (qi, vi) ∈ (Ci × R) ∩ Bi,

i ∈ {1, 2} for which β∗ = −0.6482. Thus we are free to
choose β = 10.

(a) i = 1 (b) i = 2

(c) i = 1 (d) i = 2

Fig. 1: Plots of ¯
¯
φ
i

and ¯
¯
ψ
i
(qi, vi) /α2(¯

¯
bi(qi, vi)) for i ∈

{1, 2}

Next, we construct the ZCBFs as per (9) and im-
plement the control (24). For this example, the nomi-
nal control is the computed torque control law: unom =
M(q2)(r̈ − ė − e) + Cv [13] where e = q − r and
r = [3.4708 sin(1.3t), 2.6236 sin(1.3t) + 2.0944]T is the
reference that attempts to move the system outside of C ,
D , and U . This nominal control is used to represent a
pre-defined control law or equivalently a human that is
incorrectly operating the system. The implementation of the
proposed control shows satisfaction of q ∈ C , v ∈ D , and
u ∈ U as shown in Figure 2.

V. CONCLUSION

In this paper we design ZCBFs for Euler-Lagrange sys-
tems. The proposed approach ensures satisfaction of posi-
tion, velocity, and input constraints. The ZCBF parameters
can be computed offline as demonstrated by the numerical
example. Simulation results are used to validate the proposed
approach. Future work will investigate how the choice of α1

and α2 affect the design process for better performance of
the proposed approach.
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