
Intermittent Connectivity Maintenance with Heterogeneous Robots
using a Beads-on-a-Ring Strategy

Rosario Aragues1 and Dimos V. Dimarogonas2

Abstract— We consider a scenario of cooperative task servic-
ing, with a team of heterogeneous robots with different maxi-
mum speeds and communication radii, in charge of keeping
the network intermittently connected. We abstract the task
locations into a 1D cycle graph that is traversed by the com-
municating robots, and we discuss intermittent communication
strategies so that each task location is periodically visited, with a
worst–case revisiting time. Robots move forward and backward
along the cycle graph, exchanging data with their previous
and next neighbors when they meet, and updating their region
boundaries. Asymptotically, each robot is in charge of a region
of the cycle graph, depending on its capabilities. The method
is distributed, and robots only exchange data when they meet.

I. INTRODUCTION

Servicing tasks is a core multi–robot application [1]. We
consider a cooperative task servicing scenario, with a team of
task–robots, visiting different task locations to service them,
and a team of communicating–robots in charge of keeping
the task locations intermittently connected. When a task–
robot wants to propagate and get data updates, it waits at the
current task place for a communicating–robot to show up, it
exchanges data, and then moves to the next task location.
The problem of visiting tasks located on the plane can be
abstracted into a 1D scenario by building a tree connecting
the task locations, and then building a cycle graph on it
[2]. We focus on the coordination of the communicating–
robots on this cycle graph, which are heterogeneous and have
different maximum speeds and communication radii.

Connectivity [3] can be preserved at all times, by keeping
the initial set of links with possible link additions [4], [1],
or an underlying topology which is updated as robots move
[5], [6], [7], [8], or by using global connectivity methods
[9], [10], relying on the algebraic connectivity and Fiedler
eigenvector. Keeping a network connected at all times may
not be possible, depending on the environment size, the
number of robots, and their communication capabilities.
Intermittent connectivity methods [11] can cope with larger
environments, at the cost of performance degradation. The
network may be disconnected at every time instant, but it is
jointly connected over time and infinitely often. One of the
notable approaches is [11], where each robot moves forward

*Supported by CAS18/00082, Min. Ciencia, Innovación y Universidades,
JIUZ-2017-TEC-01 Univ. Zaragoza, DPI2015-69376-R Min. de Economı́a
y Competitividad, Spain, group DGA T45-17R, the Swedish Research
Council (VR) and the Knut och Alice Wallenberg Foundation (KAW)

1R. Aragues is with DIIS Universidad de Zaragoza and Instituto de Inves-
tigación en Ingenierı́a de Aragón I3A, Spain raragues@unizar.es

2D. V. Dimarogonas is with the School of Electrical Engineering and
Computer Science, KTH, Stockholm, Sweden dimos@kth.se

and backward on one link of the environmental graph, and
robots exchange data when they meet at the graph vertices.

We propose an intermittent connectivity strategy where
the robots move forward and backward on the 1D cycle
graph of the environment. Robots which are faster or with
larger communicating radius, are in charge of larger regions
in the cycle graph. Each robot has exactly two neighbors
in the cycle graph, and robots exchange data when they
meet at the boundaries of their assigned regions. Unlike
[11], here we do not force the number of robots to equal
the number of links in the graph, and we take advantage of
the heterogeneous capabilities of the robots. In addition, [11]
considers simultaneous data updates using several neighbors,
whereas here the data exchange takes place between pairs of
robots. Thus, we provide a higher flexibility, at the cost of a
possible slower data exchange in some specific scenarios.

The proposed method is similar to a beads–on–a–ring
strategy [12], [13], where each robot moves forward and
backward on a specific segment of the ring, impacting with
its previous and next neighbors, and exchanging data during
the impacts. Whereas in [12], [13] robots synchronize to
move at the same speed and to cover segments of equal
length, here the aim is that robots are in charge of larger
regions, if they are faster or have larger communication
radii. In addition, [12], [13] let robots to speed up without
restrictions, whereas here robots cannot move faster than
their maximum speed.

The main contributions of our paper are: (i) a fully dis-
tributed method, which does not depend on a specific number
of robots, which takes advantage of the heterogeneous nature
of the robots, and which only requires data exchange during
robot meetings; and (ii) the proof that, asymptotically, each
robot is in charge of a region with a length depending on its
maximum speed and communication radius, so that the time
to traverse the region is the same for all the robots.

II. COOPERATIVE TASK SERVICING AND INTERMITTENT
CONNECTIVITY MAINTENANCE

Assume a team of tasks–robots is in charge of servicing
some tasks. Task–robots travel to the different locations of
the l tasks placed in an environment as in Fig. 1. To provide
task–robots with data exchange capabilities, we place in
the area a dedicated team of communicating–robots, that
communicate among them and arrive at the task locations
periodically and infinitely often, as it is required by classical
algorithms such as distributed averaging, max/min consen-
sus, or flooding. When a task–robot wants to propagate or
get data updates, it just waits at its current task location for

a communicating–robot to show up, and then, it exchanges
data and moves to its next task location.

We build a task–tree (Fig. 1), e.g., a Minimum–distance
Spanning Tree (MST), with l−1 edges connecting the l nodes
with the task locations. There are n communicating–robots
(robots), with different maximum motion speeds and commu-
nication radii, that move forward and backward through the
edges of the graph, meeting and exchanging data with their
neighbors. We do not make any assumptions on the relation
between n and l, and also we do not restrict the robots
to remain within one specific edge. Since every scenario
with tasks located on a plane can be transformed into a
MST and then into a cycle graph, from now on, we will no
longer consider the underlying tree structure. We will focus
instead on the behavior of the method on the associated cycle
graph, using L as the total length of the cycle graph. In the
simulations we will represent with a line the robot positions
between 0 and L, where L will coincide with 0.

Fig. 1. A task–tree with 9 edges (blue lines) connects the locations of 10
tasks (orange regions). Each link can be traversed in two directions (black
arrows), e.g., 2a, 2b between Tasks 2 and 3. The cycle graph (red dashed)
associated to the task–tree [2] starts at the location of Task 1 (green region),
and traverses links 1b, 2a, 2b, . . . and finally, 1a, getting back to the initial
position at the location of Task 1. The length L of the cycle graph equals
twice the sum of the lengths of the individual links in the original tree.

III. NOTATION AND PROBLEM DESCRIPTION

We consider n robots moving along the cycle graph. Each
robot i = 1, . . . , n has a communication radius ri ∈ R≥0
and a maximum motion speed vi ∈ R>0, and it is assigned
a scalar pi(t) ∈ R, which represents its position in the cycle
graph, pi(t) ∈ [0, L], for i = 1, . . . , n. We assume that
the cycle graph cannot be covered by the robots at static
positions using their radii ri, and thus, the intermittent con-
nectivity strategy is required. Robots cannot move faster than
their maximum speed. At every time instant, each robot i can
move forward, backward, or be stopped. This information
is stored in ai(t) ∈ {0, 1} (a robot is respectively stopped
or moving), and oi(t) ∈ {−1,+1} (it moves respectively
backward or forward). Note that stopped robots have an
orientation associated. Robots either move at their maximum
speeds or remain stopped, so that

ṗi(t) = viai(t)oi(t). (1)

Each robot i ∈ 1, . . . , n has two neighbors, its left (i− 1)
and right (i+1) neighbor. For the clarity of the presentation,

we assume the robot identifiers are sorted according to their
position on the cycle graph, from left to right. From now on,
i+1 = 1 for i = n , and i− 1 = n for i = 1. Between each
pair of robot neighbors i and i+1, for i = 1, . . . , n there is a
boundary yi(t) (its computation is explained in Section IV).
Each robot i is responsible of the region in the cycle graph
within its boundaries yi−1(t), yi(t). Robot i moves forward
and backward within its region, until its communication
zone reaches its boundaries (Fig. 2). When robot i meets
its neighbor i + 1 at the boundary yi(t) (or neighbor i − 1
at boundary yi−1(t)) at time te, they can exchange data. We
let di(t) be the length of the region associated to a robot i,
that depends on its boundaries yi−1(t), yi(t),

d1(t) = y1(t), di(t) = yi(t)− yi−1(t), i = 2, . . . , n, (2)

and ei(t) be the traversing time that robot i needs to move
between its boundaries at maximum speed,

ei(t) =
di(t)− 2ri

vi
, for i = 1, . . . , n. (3)

Fig. 2. Left: Events like arriving to a boundary and meeting, catching,
or discovering a neighbor, take place when the communication regions of
robots get in touch, or touch the boundary. Right: Region associated to robot
i, length di(t) of the region, and position of the boundaries yi−1(t), yi(t).

The goal is to design a strategy that makes the robots
meet infinitely often along the cycle graph, so that all the
task locations are intermittently connected, and they are
periodically revisited, where the worst case revisiting time
is associated to the tasks placed at the leafs in the tree.

IV. INTERMITTENT CONNECTIVITY MAINTENANCE
WITH HETEROGENEOUS ROBOTS

Robots execute the algorithm presented in this section for
meeting intermittently, and for computing their boundaries
yi(t). We discuss its properties in Section V. The method
roughly consists of each robot i moving until it reaches or
defines a boundary, waiting at this boundary until it meets
with its neighbor, updating their data, and then moving to
its other boundary and repeating the process. We distinguish
between the following behaviors for the robots:
• Participating in an event: they affect at most two neigh-

bors, and they modify their values of the activity ai(t),
orientation oi(t), and boundary yi(t).

• Between events: robot positions pi(t) evolve according
to (1). Robots may be in the following states:

– (STmove) moving from their current position until
they arrive to or define a boundary (ai(t) = 1), or

– (STwait) waiting at a boundary (ai(t) = 0).
States (STmove) give rise to events, and states (STwait)
define the type of event. Events have associated a time te.

Along the section, we define the types of events, and how
robots react to them. We make the following assumptions:

Assumption 4.1 (A1, A2): (A1) Robots n and 1 have a
fixed boundary yn(t) = L for all t ≥ 0, placed at position L
(equivalently, due to the cycle structure, at position 0). (A2)
oi(0) 6= oj(0) for at least a pair of robots i, j, i 6= j.

The proposed algorithm works as follows.
Algorithm 4.1 (Initialization): Robots i = 1, . . . , n start

randomly placed pi(0) so that their communication zones
do not overlap, with initial orientations oi(0) satisfying (A2),
and all are active ai(0) = 1, for all i = 1, . . . , n. Initially,
robots do not know their boundaries yi(0), i = 1, . . . , n− 1
but yn(0) = L from Assumption (A1).

Algorithm 4.2 (Discovery and Catch): Initially, robots
move to discover their neighbors and set an initial value for
their boundaries. There are two events associated:
Discovery event: Robots i and i+ 1 are moving (STmove),
(ai(t) = 1 and ai+1(t) = 1), with robot i moving forward
and robot i + 1 moving backward, oi(t) > 0, oi+1(t) < 0,
and they do not know yi(t). The discovery happens when
their communication regions get in touch for te ≥ t (Fig. 2),

pi(te) + ri = pi+1(te)− ri+1. (4)

At the discovery, the involved robots i and i+1 initialize their
common boundary yi(t) with this discovery position, they
reverse their orientations and move in opposite directions,

yi(t
+
e) = pi(te) + ri, oi(t

+
e) = −1, oi+1(t

+
e) = +1. (5)

Catch event: Robots i and i + 1 do not know yi(t). The
catcher is robot i when it is active ai(t) = 1, both i and
i+ 1 are oriented forward oi(t) > 0, oi+1(t) > 0, and robot
i + 1 is stopped ai+1(t) = 0 or moving slower ai+1(t) =
1, vi+1 < vi. (Equivalently, the catcher is robot i + 1 when
ai+1(t) = 1, oi(t) < 0, oi+1(t) < 0, and robot i is stopped
ai(t) = 0 or moving slower ai(t) = 1, vi < vi+1). The catch
happens when their communication regions get in touch for
te ≥ t as in eq. (4) and Fig. 2. At the catch, robots i and i+1
initialize their common boundary yi(t), and the catcher robot
(e.g., robot i) remains waiting (STwait) at this boundary,

yi(t
+
e) = pi(te) + ri, ai(t

+
e) = 0. (6)

During the first time instants, some robots may be dis-
covering and catching neighbors (Algorithm 4.2), and others
may have already discovered them. Once robot i has discov-
ered its two neighbors, it knows yi−1(t), yi(t), and it moves
within these boundaries, updating them, and acting from then
on according to the following algorithm.

Algorithm 4.3 (Arrivals and meetings): In this phase, the
events that can take place are the following:
Arrival event: Robot i moving backward ai(t) = 1, oi(t) <
0 (or moving forward ai(t) = 1, oi(t) > 0) arrives at its
yi−1(t) boundary (or at yi(t)) at the time te ≥ t when its
communication region touches the boundary (Fig. 2), i.e.,

yi−1(te) = pi(te)− ri, (yi(te) = pi(te) + ri) (7)

After an arrival to a boundary, robot i waits at the boundary,

ai(t
+
e) = 0. (8)

Note that robot i must already know the boundary (otherwise,
it moves to discover or catch its neighbor). The event is
arrival if robot i arrives to the boundary and there is no
neighbor waiting there. Otherwise, it is a meeting event.
Meeting event: Robots i and i+1 meet at time te ≥ t when
both of them arrive at their common boundary yi(t),

yi(te) = pi(te) + ri = pi+1(te)− ri+1. (9)

At the meeting, robots i, i+1 update their common boundary:

yi(t
+
e) =

vi+1(yi−1(te) + 2ri) + vi(yi+1(te)− 2ri+1)

vi + vi+1
. (10)

In case they still do not have an initial value for either
yi−1(t) or yi+1(t), they keep yi(t+e) unchanged. Then, robots
reverse their orientations and get active,

oi(t
+
e) = −1, oi+1(t

+
e) = +1, ai(t

+
e) = 1, ai+1(t

+
e) = 1. (11)

In fact, only i or i + 1 (the first one that arrived to the
boundary) should be inactive. If both arrivals take place at
the same time, we establish an order, e.g., to start with the left
robot. After the meeting and the updates (10), (11), robots
i, i+ 1 move away from each other, towards their opposite
boundary. E.g., robot i moves towards the common boundary
yi−1(t) with its neighbor i− 1. Note that robots i and i− 1
must have the same value for yi−1(t), since it can only be
updated when both i and i−1 meet, and thus it cannot have
been changed in the meantime. When robot i gets to the
yi−1(t) boundary, a new arrival or meeting takes place.

V. PROPERTIES AND PERFORMANCE METRICS

We discuss some properties of the boundaries yi(t), i =
1, . . . , n computed by the robots and the values y?i they
asymptotically achieve. Similar to eqs. (2) and (3), we let d?i
and t? be the length of the region associated to robot i and
the traversing time required to move along it at maximum
speed, when robots use the asymptotic boundaries y?i ,

d?1 = y?1 , d?i = y?i − y?i−1, for i = 2, . . . , n,

t? = (d?i − 2ri)/vi, for i = 1, . . . , n. (12)

A. Common traversing time

Consider a cycle graph with length L, traversed by n
robots with maximum speeds vi and communication radii
ri, i = 1, . . . , n. We want to assign regions to each robot i
which are disjoint, with the only common point being the
boundary, and whose union is the cycle graph (0 . . . L),

d?1 + d?2 + · · ·+ d?n = L. (13)

We want the traversing times t? employed by each robot i
for moving between its boundaries, to be the same, i.e.,

t? =
d?1 − 2r1

v1
=
d?2 − 2r2

v2
= · · · = d?n − 2rn

vn
. (14)

Thus, the common traversing time is given by:

(v1 + · · ·+ vn)t? = d?1 + · · ·+ d?n − 2r1 − · · · − 2rn,

t? = (L− 2

n∑
i=1

ri)/(v1 + v2 + · · ·+ vn). (15)

Having smaller environments, more robots, faster, or with
larger communication radii, produce lower common travers-
ing times. From (15), (12), the length d?i of the region
associated to robot i, for i = 1, . . . , n, is:

d?i = vit? + 2ri =
vi(L− 2

∑n
j=1 rj)

v1 + v2 + · · ·+ vn
+ 2ri, (16)

and the position of each boundary y?i , for i = 1, . . . , n,
obtained by summing up the region lengths d?j , is:

y?i =

i∑
j=1

vj(L− 2
∑n

j′=1 rj′)

v1 + v2 + · · ·+ vn
+ 2rj , (17)

where y?n gives L as expected. Next, we prove that, as robots
execute the algorithm in Section IV, their boundaries yi(t)
asymptotically converge to the boundaries y?i in eq. (17)
associated to the common traversing time t? in eq. (15).

B. Convergence to common traversing times

The proof relies on two facts. First, we rewrite eq. (10)
in terms of the traversing times ei(t) (3) and show that it is
an asynchronous weighted consensus method [14], [15]. We
prove its convergence, assuming that the topology is jointly
connected infinitely often. Then, in Section V-C, we prove
that the topology is in fact jointly connected infinitely often.

Proposition 5.1 (Weighted consensus on traversing times):
Assume that algorithm (4.3) gives rise to a network which is
jointly connected infinitely often. Then, the traversing times
ei(t), region lengths di(t), and boundaries yi(t) (eqs. (3),
(2), (10)) asymptotically converge to the goal values t?, d?i ,
y?i in eqs. (15), (16), (17), for i = 1, . . . , n.

Proof: We first consider how the region lengths di(t),
di+1(t) (eq. (2)) evolve when robots i, i+1, i ∈ 1, . . . , n− 1,
update their boundary yi(t+e) with eq. (10) (the other region
lengths are not affected by (10)). If several simultaneous
events take place, we will consider any ordering, e.g., first the
ones with lower identifiers. Note that (18) will be the same
in the presence of simultaneous updates, since it depends on
boundaries which require actions from robots i and i + 1
and, since they are currently involved in their meeting, they
cannot be simultaneously involved in other meetings.

di(t
+
e) = yi(t

+
e)− yi−1(t+e) = yi(t

+
e)− yi−1(te), (18)

di+1(t
+
e) = yi+1(t

+
e)− yi(t+e) = yi+1(te)− yi(t+e).

After some manipulation, (18) is equivalent to:

di(t
+
e) =

vi+1(di+1(te) + di(te))

vi + vi+1
+ 2

vi+1ri − viri+1

vi + vi+1
, (19)

di+1(t
+
e) =

vi+1(di+1(te) + di(te))

vi + vi+1
− 2

vi+1ri − viri+1

vi + vi+1
.

The traversing times ei(t), ei+1(t) (eq. (3)) of robots i
and i + 1 are also affected by (10), due to (19) (the other
traversing times are not affected by (10)):

ei(t
+
e) = ei(te) +

εi
vi
(ei+1(te)− ei(te)), εi =

vivi+1

vi + vi+1
,

ei+1(t
+
e) = ei+1(te) +

εi
vi+1

(ei(te)− ei+1(te)). (20)

In matrix form, eq. (20) is a discrete–time switching
weighted consensus, with Perron matrix [14] Pi as in (24),

e(t+e) = Pi(te)e(te), e(t) = [e1(t), . . . , en−1(t)]
T
. (21)

From Proposition 6.1 in the Appendix, if the network is
jointly connected infinitely often, then e(t) in (21) converges
to e? in (34). Thus, for all i = 1, . . . , n, ei(t) defined by
eq. (3) and evolving as in (20), converge to the weighted av-
erage of ej(0), with weighting vector given by [v1, . . . , vn]

T ,

lim
t→∞

ei(t) =

∑n
j=1 vjej(0)

v1 + · · ·+ vn
=

∑n
j=1

vj(dj(0)−2rj)

vj

v1 + · · ·+ vn
= t?, (22)

since d1(0)+· · ·+dn(0) = yn(t) = L (eq. (2)), with t? as in
(15), and thus, the region lengths di(t), and the boundaries
yi(t) converge to the values in (16), (17).

C. Joint connectivity

We give some intermediary results to prove that, under our
algorithm, the topology is jointly connected infinitely often.

Lemma 5.1 ((STmove)): Behavior (STmove) in Sec-
tion IV has a bounded time associated, and after that, it
always gives rise to an arrival or a meeting event.

Proof: Since L is fixed, and yn(t) = L is fixed then,
for all i = 1, . . . , n, di(t) ≤ L and thus ei(t) ≤ L/vi
(3). In (STmove), robots move from a position inside their
region to one of their boundaries, employing thus a time
≤ ei(t), which as we saw, is bounded. After that, the event
is an arrival if the boundary is empty, and a meeting if the
neighbor is already waiting (STwait) at the boundary.

This observation allows us to focus on the behavior of the
discrete asynchronous version of the method.

Definition 5.1 (Discrete asynchronous behavior): The
discrete asynchronous version of the method, includes
only the event times te1 , te2 , . . . , tek , Each robot
i is always placed (STwait) at one of its boundaries,
pi(tek) ∈ {yi−1(tek), yi(tek)}. The states yi(tek),
oi(tek), ai(tek), change due to meeting events (10),
(11) (equivalently, di(tek), ei(tek) (2), (3)). After a meeting
between robots i, i + 1 at time tek , two arrival events take
place in the future:

tek′ = tek + ei(t
+
ek
), pi(t

+
ek′) = yi−1(tek), and

tek′′ = tek + ei+1(t
+
ek
), pi+1(t

+
ek′′) = yi+1(tek). (23)

Since meeting and discovery events are equivalent, we con-
sider only meetings in what follows.

Lemma 5.2 (Properties): Consider n robots executing al-
gorithm 4.3. The method satisfies the following facts:
• (i)

∑n
i=1 oi(t) remains constant for all t.

• (ii) The regions associated to each robot are disjoint,
with the only common point being the boundary.

• (iii) In the discrete asynchronous behavior (Def. 5.1)
the order of the robots is preserved.
Proof: (i) About the orientations: Orientations oi(t)

only change during discovery and meeting events and, in both
cases (eqs. (5), (11)), the orientations of the two involved
agents i and i+ 1 are simultaneously changed.

(ii) About the regions: This is true during the discovery/
catch, where robots i, i + 1 define their common boundary
at the same time. After, at meetings (eq. (10)) robots i,
i+1 change simultaneously their common boundary yi(t+e),
and the update rule makes yi(t+e) remain strictly between
yi−1(t

+
e) = yi−1(te) and yi+1(t

+
e) = yi+1(te).

(iii) About robots not exchanging positions: The region as-
sociated to each robot i is defined by the boundaries yi−1(t)
and yi(t). After meeting with robot i + 1, the position of
yi(t

+
e) changes (eq. (10)), with yi(t+e) ∈ [yi−1(te), yi+1(te)].

Then, robot i goes to its other boundary yi−1(t) ≤ yi(t),
and when later it comes back to boundary yi(t), it holds
yi(t) ≤ yi+1(t), regardless the fact that robot i+1 may have
updated or not yi+1(t). Thus, robot i will reach yi(t) and
will never reach yi+1(t). Thus, in the discrete asynchronous
behavior (Def. 5.1), robots do not exchange the positions.

Depending on the relative speeds of robot i and i + 1,
it may be the case that, during (STmove) they exchange
positions. E.g., if yi(t+e) > yi(te), and vi >> vi+1, robot
i may get to yi−1(te) and get back to yi(t

+
e) before robot

i + 1 has reached yi(t
+
e). This is temporary: robot i will

stop at yi(t+e), but robot i + 1 will continue (STmove)
to yi+1(te) ≥ yi(t

+
e). Thus, in the discrete asynchronous

behavior (Def. 5.1), the order of the robots is preserved, and
robots do not need to e.g., exchange identifiers.

Now, we discuss the joint connectivity of the network. We
prove that each robot i = 1, . . . , n meets its neighbors i− 1
and i+ 1 after some bounded amount of time.

Proposition 5.2 (Joint connectivity): Algorithm (4.3) un-
der Assumptions (A1), (A2), gives rise to a network which
is jointly connected infinitely often.

Proof: Considering the discrete asynchronous behavior
(Def. 5.1) of the algorithm, we represent the system as n
boundaries and n robots placed at the boundaries. As we
show next, the system cannot experience blocking, and the
meetings propagate through the network.
Blocking: The only possible blocking situation is one with
each robot waiting (STwait) at a different boundary since,
as long as two robots fall in a common boundary, a meeting
event takes place, making the system evolve. At the blocking,
robots with oi(t) > 0 would be at their right boundary,
and robots with oi(t) < 0 at their left boundary, with
these boundaries being the unique common points between
the disjoint regions of each robot (Lemma 5.2(ii)). From
Assumption (A2), at least one robot has a different initial
orientation than the others, and by Lemma 5.2 (i) this
remains like this during all the execution of the method.
Thus, at least two robots will fall at the same boundary,
giving rise to a meeting event.
Propagation: After robots i, i + 1 meet, they move to their
opposite boundaries, thus propagating the process to the
preceding and following robots i − 1 and i + 2, since the
order of the robots is preserved (Lemma 5.2 (iii)). Repeating
the same reasoning with robots i − 1, i + 2, we conclude
that meetings are propagated through the network. The only
reasons not to propagate would be either a blocking (we
proved this is not possible), or that the same subset of robots

would be meeting each other, without involving the others.
But in order for i, i+1 to meet again, there must have been
a meeting between i − 1, i and i + 1, i + 2, so this case is
discarded as well.
Bounded times: The discrete asynchronous behavior
(Def. 5.1) does not exhibit blocking and ensures propagation
of the meetings, and behavior (STmove) has a fixed time
associated to it (Lemma 5.1). Therefore, the time required
for the network to be jointly connected is bounded.

D. Traversing, Revisiting, and Inter–meeting times

Up to now, we have presented a method that allows
the robots to converge to a configuration with common
traversing times t? (15), i.e., the time each robot i employs
to move at its maximum speed between its two boundaries.

Definition 5.2 (Revisiting and Inter–meeting times): :
We define the revisiting time as the time required for a
robot to visit a particular point in the cycle graph, arriving
back at the point with the same orientation as the first time.
As a metric for the revisiting time, in our simulations we
use the inter–meeting time fi(t), which is the time elapsed
between consecutive meetings of robots i and i + 1, and
which is in fact the revisiting time of the yi(t) boundary.

The asymptotic revisiting time trev includes:
• 2t? to traverse the robot region in both directions

and getting back to the original point with the same
orientation, plus

• the time robot waits (STwait) at the boundaries.
In all our simulations, we have observed that, when the

number of robots with positive oi(t) > 0 and negative
oi(t) < 0 orientations is the same (balanced situation), robots
asymptotically achieve a configuration where they never wait
at the boundaries, and thus their inter–meeting times fi(t)
converge to the asymptotic revisiting time trev = 2t? + 0.
We are currently researching on a formal characterization
of these balanced and unbalanced situations and a proof of
convergence to these scenarios.

E. Simulations

Figure 3 shows a simulation with n = 8 robots traversing a
cycle graph with length L = 1000m. The black line between
position 0 and L represents the position of robots in the
cycle graph (Fig. 1). Note that n is not equal to the number
of links in the task–tree. Robots have maximum speeds
{v1, . . . , vn} = {0.6, 0.1, 0.5, 0.3, 0.7, 0.2, 0.8, 0.4}m/s,
and communication radii equal to 20m apart from r3 =
50m and r7 = 100m. They start randomly placed in the
cycle graph, with their communication regions non over-
lapping, and with initial orientations o1, . . . , o4 = −1, and
o5, . . . , o8 = +1. Asymptotically, robots reach a configu-
ration where their regions have common traversing times t?
which, in this balanced configuration, equals trev/2. A video
can be found at https://youtu.be/RPggY5A_DOc.

VI. CONCLUSIONS

We presented a method to ensure a robot team keeps
the network intermittently connected. Robots move forward

Fig. 3. Robots running the method in Section IV with different maximum
speeds and communication radii (circles around the robots). They move
forward (red) and backward (blue) at their maximum speeds between
their boundaries yi(t) (black dashed, in vertical), which converge to the
boundaries y?i (17)(gray solid, in vertical) associated to the common
traversing time t? (15). Left: Final configuration. Right: Evolution of ei(t)
(gray) and fi(t) (blue) compared to t? (black) and trev (red).

and backward on their regions, meeting intermittently with
their previous and next neighbors. Simultaneously, they run
a weighted consensus method to update their boundaries, so
that the final regions associated to each robot can be traversed
by them in a common time, that depends on the robots max-
imum speeds and communication radii. Future extensions
include methods to balance the orientations, formal proofs
of synchronization to balanced and unbalanced scenarios,
and the consideration of more realistic robot dynamics and
communication models.

APPENDIX

In this section, we let matrix V , scalar εi, and matrices
Pi, P̃i, Li, L̃i associated to the link (i, i+ 1), be

V = diag(v1, . . . , vn), εi = (vivi+1)/(vi + vi+1),

Pi = I− (diag(v1, . . . , vn))
−1εiLi, (24)

P̃i = V 1/2PiV
−1/2 = I− L̃i, L̃i = V −1/2εiLiV

−1/2,

where the entries in Pi, P̃i, Li, and L̃i are given by

[Pi]j,j′ = 0, except for (25)
[Pi]i,i = 1− (εi/vi), [Pi]i+1,i+1 = 1− (εi/vi+1),

[Pi]i,i+1 = εi/vi, [Pi]i+1,i = εi/vi+1,

[Pi]j,j = 1, for all j 6= i, j 6= i+ 1,

[Li]j,j′ = 0, except for (26)
[Li]i,i = 1, [Li]i+1,i+1 = 1, [Li]i,i+1 = −1, [Li]i+1,i = −1,

[L̃i]j,j′ = 0, except for (27)

[L̃i]i,i = vi+1/(vi + vi+1), [L̃i]i+1,i+1 = vi/(vi + vi+1),

[L̃i]i,i+1 = [L̃i]i+1,i = −
√
vi
√
vi+1/(vi + vi+1),

[P̃i]j,j′ = 0, except for (28)

[P̃i]i,i = 1− vi+1

vi + vi+1
, [P̃i]i+1,i+1 = 1− vi

vi + vi+1
,

[P̃i]i,i+1 = [P̃i]i+1,i =
√
vi
√
vi+1/(vi + vi+1),

[P̃i]j,j = 1, for all j 6= i, j 6= i+ 1.

Lemma 6.1: The eigenvalues matrices Pi, P̃i defined in
(24), for all (i, i+ 1) links, with i = 1, . . . , n− 1, satisfy:

λ(Pi) ∈ (−1, 1] λ(P̃i) ∈ (−1, 1]. (29)
Proof: The eigenvalues of P̃i are

λ(P̃i) = 1− λ(V −1/2εiLiV
−1/2) = 1− λ(L̃i). (30)

Note that Li (24), (26) is the unweighted symmetric
Laplacian matrix associated to the link (i, i + 1), and thus
it is positive semidefinite [14]. Since εi > 0, and ma-
trix V −1/2 is positive definite and symmetric, then L̃i =
λ(V −1/2εiLiV

−1/2) (24) (27) is positive semidefinite [16,
Chapter 7.1], with eigenvalues larger than or equal to 0, and
with its largest eigenvalue begin smaller than or equal to the
infinite matrix norm ‖L̃i‖∞ = maxj(|[L̃i]j1|+· · ·+|[L̃i]jn|),

λmax(L̃i) ≤ ‖L̃i‖∞ =
max (vi, vi+1) +

√
vi
√
vi+1

vi + vi+1
(31)

≤ (max (vi, vi+1) + max (vi, vi+1))/(vi + vi+1) < 2.

From eqs. (30),(31), for all i = 1, . . . , n− 1,

−1 = (1− 2) < λ(P̃i) ≤ (1− 0) = 1, (32)

and since Pi is similar to P̃i (24), then Pi and P̃i have the
same eigenvalues, and we conclude (29).

Proposition 6.1: Let matrices Pi(t), P̃i(t) be as in (24).
If the sequence of matrices that appear infinitely often are
jointly connected, then, for all z(0), e(0), the iterations
z(t+) = P̃i(t)z(t), e(t+) = Pi(t)e(t), with

z(t) = V 1/2e(t), e(t) = V −1/2z(t), (33)

and V as in (24), converge respectively to

z? = (V 1/211TV 1/2/1TV 1)z(0), (34)

e? = (11T /1TV 1)V e(0).

Proof: Consider the matrix P̃i1:ij associated to a
particular jointly connected sequence ij . . . i1 (the sequence
takes place in the opposite order to matrix multiplication),

P̃i1:ij = P̃i1 P̃i2 . . . P̃ij . (35)

For this matrix,

ρ(P̃i1:ij) ≤ ‖P̃i1:ij‖2 ≤ ‖P̃i1‖2‖P̃i2‖2 . . . ‖P̃ij‖2
= ρ(P̃i1)ρ(P̃i2) . . . ρ(P̃ij) = 1, (36)

where we have used Lemma 6.1 (λ(P̃i) ∈ (−1, 1] for all
i = 1, . . . , n − 1), and the fact that P̃i1 , P̃i2 , . . . , P̃ij are
symmetric, and their spectral norms equal their spectral
radius, ‖P̃i‖2 = ρ(P̃i) = max(|λ(P̃i)|). Thus, all the
eigenvalues of matrix P̃i1:ij are between [−1,+1].

Now we pay attention to the structure of matrix P̃i1:ij .
Every matrix P̃i (28) has all the entries equal to zero, but for

the diagonal terms (1, 1) . . . (n, n), and the entries (i, i+1),
(i + 1, i), which are strictly positive. After multiplying
matrices P̃i1 , . . . , P̃ij , we get a nonnegative matrix P̃i1:ij

that has at least the following elements strictly positive (the
remaining entries may be zero, or positive elements): the
diagonal terms (1, 1) . . . (n, n), and all the (i1, i1 + 1) and
(i1 + 1, i1) entries associated to all the i1, i1 + 1 links that
appear in each associated matrix Pi1 . Since matrix P̃i1:ij

contains at least all matrices associated to the n−1 different
boundaries, then its structure contains at least positive ele-
ments in all the entries (i, i) for i = 1, . . . , n, and (i, i+1),
(i+1, i) for i = 1, . . . , n−1. Thus, matrix P̃i1:ij is primitive
and [17], [16] among its n eigenvalues, there is exactly one
with the largest magnitude, and this eigenvalue is the only
one possessing an eigenvector with all positive entries, and
the remaining n − 1 eigenvalues are all strictly smaller in
magnitude than the largest one. From (36), this eigenvalue
has modulus smaller than or equal to 1.

Now note that for each matrix Pi (24),

Pi1 = 1, and that

P̃i1:ij = P̃i1 P̃i2 . . . P̃ij = V 1/2Pi1Pi2 . . . PijV
−1/2. (37)

From (37), we conclude that V 1/21 is the eigenvector of
P̃i1:ij associated to the eigenvalue 1,

P̃i1:ijV
1/21 = V 1/21. (38)

This eigenvector has all its entries positive, and it is asso-
ciated to the largest modulus eigenvalue, which has to be 1
and not −1. Matrix P̃i1:ij is also paracontractive (e.g., [18,
Corollary 2], using span(V 1/21) instead of span(1)).

From [19, Theorem 1] [20, Theorem 2]: suppose that a
finite set of square matrices {W1, . . . ,Wj} are paracontrac-
tive, and denote J the set of integers that appear infinitely
often in the sequence. Then, for all z̃(0), the sequence of
vectors z̃(k+1) =Wi(k)z̃(k) has a limit z? ∈ ∩i∈JH(Wi),
with H(Wi) = {z|Wiz = z}. In our case, we use the
fact that all our possible jointly connected matrices have the
common eigenvector V 1/21 associated to the eigenvalue 1
and it is the only one. Thus, z̃(k + 1) = P̃i1:ij (k)z̃(k), and
thus z(t+) = P̃i(t)z(t), converge to z? in (34). Due to (33),
e(t+) = Pi(t)e(t) converges to e? (34).

REFERENCES

[1] M. Guo, J. Tumova, and D. V. Dimarogonas, “Communication-free
multi-agent control under local temporal tasks and relative-distance
constraints,” IEEE Transactions on Automatic Control, vol. 61, no. 12,
pp. 3948–3962, 2017.

[2] Y. Gabriely and E. Rimon, “Spanning-tree based coverage of contin-
uous areas by a mobile robot,” Annals of mathematics and artificial
intelligence, vol. 31, no. 1-4, pp. 77–98, 2001.

[3] M. M. Zavlanos, M. B. Egerstedt, and G. J. Pappas, “Graph-theoretic
connectivity control of mobile robot networks,” Proceedings of the
IEEE, vol. 99, no. 9, pp. 1525–1540, 2011.

[4] D. Boskos and D. V. Dimarogonas, “Robustness and invariance
of connectivity maintenance control for multiagent systems,” SIAM
Journal on Control and Optimization, vol. 55, no. 3, pp. 1887–1914,
2017.

[5] T. Soleymani, E. Garone, and M. Dorigo, “Distributed constrained
connectivity control for proximity networks based on a receding
horizon scheme,” in American Control Conference, Chicago, IL, USA,
Jul. 2015, pp. 1369–1374.

[6] M. Schuresko and J. Cortes, “Distributed tree rearrangements for
reachability and robust connectivity,” SIAM Journal on Control and
Optimization, vol. 50, no. 5, pp. 2588 – 2620, 2012.

[7] M. Aranda, R. Aragues, G. Lopez-Nicolas, and C. Sagues,
“Connectivity-preserving formation stabilization of unicycles in local
coordinates using minimum spanning tree,” in American Control
Conference, Boston, USA, Jun. 2016, pp. 1968–1974.

[8] H. Poonawala and M. W. Spong, “Preserving strong connectivity in
directed proximity graphs,” IEEE Transactions on Automatic Control,
vol. 62, no. 9, pp. 4392–4404, 2017.

[9] A. Gasparri, L. Sabattini, and G. Ulivi, “Bounded control law for
global connectivity maintenance in cooperative multirobot systems,”
IEEE Transactions on Robotics, vol. 33, no. 3, pp. 700–717, 2017.

[10] T. Nestmeyer, P. R. Giordano, H. H. Bulthoff, and A. Franchi, “De-
centralized simultaneous multi-target exploration using a connected
network of multiple robots,” Autonomous Robots, vol. 41, no. 1, pp.
989–1011, 2017.

[11] Y. Kantaros and M. Zavlanos, “Distributed intermittent connectivity
control of mobile robot networks,” IEEE Transactions on Automatic
Control, vol. 62, no. 7, pp. 3109–3121, 2017.

[12] H. Wang and Y. Guo, “Synchronization on a segment without local-
ization: Algorithm, applications, and robot experiments,” Int. Journal
of Intelligent Control and Systems, vol. 15, no. 1, pp. 9–17, 2010.

[13] S. Susca, P. Agharkar, S. Martı́nez, and F. Bullo, “Synchronization of
beads on a ring by feedback control,” SIAM Journal on Control and
Optimization, vol. 52, no. 2, pp. 914–938, 2014.

[14] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings of the
IEEE, vol. 95, no. 1, pp. 215–233, 2007.

[15] W. Zhang, Z. Wang, Y. Guo, H. Liu, Y. Chen, and J. Mitola III,
“Distributed cooperative spectrum sensing based on weighted average
consensus,” in IEEE Global Telecommunications Conf., 2011, pp. 1–6.

[16] R. A. Horn, R. A. Horn, and C. R. Johnson, Matrix analysis.
Cambridge university press, 1990.

[17] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups
of mobile autonomous agents using nearest neighbor rules,” IEEE
Transactions on automatic control, vol. 48, no. 6, pp. 988–1001, 2003.

[18] G. C. Calafiore, “Distributed randomized algorithms for probabilistic
performance analysis,” Systems & Control Letters, vol. 58, no. 3, pp.
202–212, 2009.

[19] L. Elsner, I. Koltracht, and M. Neumann, “On the convergence of
asynchronous paracontractions with application to tomographic recon-
struction from incomplete data,” Linear Algebra and its Applications,
vol. 130, pp. 65–82, 1990.

[20] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor
fusion based on average consensus,” in Information Processing in
Sensor Networks, 2005. IPSN 2005. Fourth International Symposium
on. IEEE, 2005, pp. 63–70.

