
Robotics and Autonomous Systems 145 (2021) 103866

M
P
D
a

b

c

d

e

f

a
v
t
t
e

v
p
s
e
t
c

a
i

h
0

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Adaptive heterogeneousmulti-robot collaboration from formal task
specifications
Philipp Schillinger a,∗, Sergio García b, Alexandros Makris c, Konstantinos Roditakis c,
ichalis Logothetis d, Konstantinos Alevizos d, Wei Ren e, Pouria Tajvar e,
atrizio Pelliccione b,f, Antonis Argyros c, Kostas J. Kyriakopoulos d,
imos V. Dimarogonas e

Bosch Center for Artificial Intelligence, Renningen, Germany
Chalmers | University of Gothenburg, Gothenburg, Sweden
Institute of Computer Science, FORTH, Heraklion, Greece
Control Systems Lab, Department of Mechanical Engineering, National Technical University of Athens, Greece
School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
Gran Sasso Science Institute (GSSI), Italy

a r t i c l e i n f o

Article history:
Available online 17 August 2021

Keywords:
Robotics
Multi-robot
Temporal logic
HRI
Heterogeneous robots
Task decomposition
Task allocation
Abstraction

a b s t r a c t

Efficiently coordinating different types of robots is an important enabler for many commercial
and industrial automation tasks. Here, we present a distributed framework that enables a team of
heterogeneous robots to dynamically generate actions from a common, user-defined goal specification.
In particular, we discuss the integration of various robotic capabilities into a common task allocation
and planning formalism, as well as the specification of expressive, temporally-extended goals by non-
expert users. Models for task allocation and execution both consider non-deterministic outcomes of
actions and thus, are suitable for a wide range of real-world tasks including formally specified reactions
to online observations. One main focus of our paper is to evaluate the framework and its integration
of software modules through a number of experiments. These experiments comprise industry-inspired
scenarios as motivated by future real-world applications. Finally, we discuss the results and learnings
for motivating practically relevant, future research questions.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

In the area of industrial automation, effectively coordinating
team of autonomous robots poses significant challenges in

arious aspects of the system [1]. This ranges from infrastructure
opics, e.g., the definition of a communication protocol or con-
rolling the individual robots, up to conceptual research topics,
.g., task decomposition and allocation.
A multi-robot system becomes particularly challenging if it in-

olves a flexible number of heterogeneous robots, such as mobile
latforms or manipulators by different manufacturers [2]. Con-
equently, suitable abstraction layers need to be introduced for
stablishing communication between the robots [3]. This includes
o find the right level of abstraction for enabling meaningful
ollaboration, but requiring only sparse interactions.
At the same time, a human operator of the system needs to be

ble to specify the behavior of the robots [4,5]. With the increas-
ng complexity of the underlying system, especially considering

∗ Corresponding author.
E-mail address: philipp.schillinger@de.bosch.com (P. Schillinger).
ttps://doi.org/10.1016/j.robot.2021.103866
921-8890/© 2021 Elsevier B.V. All rights reserved.
the variable number of heterogeneous agents, it becomes less
practically feasible to explicitly program individual robots. Thus,
it is required that the system accepts high-level goals in a format
general enough to be processed by all robots. Based on such goals,
the system needs to act autonomously.

Finally, when given a symbolic specification of the expected
behavior, it remains computationally challenging to coordinate a
team of robots efficiently. This task is even more difficult when
there is significant uncertainty regarding the actions required by
the robots, for example, due to uncertainty in action execution or
uncertainty regarding future observations [6,7].

In this work, we build upon recent advances in multi-robot
task planning under uncertainty and integrate diverse state-of-
the-art robot capabilities into a comprehensive framework for
automated task decomposition, allocation, and execution. As a
basis, we formulate so-called skill models to encode the capabil-
ities in one consistent formalism and present how to formulate
them specifically for the considered example systems, see Fig. 1.
In addition, we present the user-friendly formulation of task
specifications in order to conveniently instruct the system and

generate the desired behavior from the defined skills.

https://doi.org/10.1016/j.robot.2021.103866
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2021.103866&domain=pdf
mailto:philipp.schillinger@de.bosch.com
https://doi.org/10.1016/j.robot.2021.103866

P. Schillinger, S. García, A. Makris et al. Robotics and Autonomous Systems 145 (2021) 103866

C
r
p
o
l
m
T
a
b
s

1

s
m
e
d
g
c
a
e
t
t

b
i
t

P

i

Fig. 1. Our framework enables to combine different types of robots for
automatically executing industry-motivated tasks.

The presented work is a result of the research project
o4Robots.1 Motivated by the integration efforts for transferring
esearch results to industrial use cases, the main focus of this pa-
er is the presentation of a conceptual framework, both in terms
f theoretical foundation and software implementation, that al-
ows for automatically composing and adapting heterogeneous
ulti-robot behavior from a set of individual robot capabilities.
hus, this system focus of the paper aims particularly at providing
‘‘bigger picture’’ for the employed methods and is followed
y a number of case study experiments in application-inspired
cenarios to discuss major findings and learnings.

.1. Problem statement

As a motivating example for the sort of applications we con-
ider, assume that a fleet of robots in a factory needs to repeatedly
onitor a set of machines and supply them with resources when-
ver a need is determined. Some robots may only be able to
etermine a supply need, others can only do transportation. In
eneral, each of these capabilities needs to be expressed in a
ommon formalism and the robots need to allocate required tasks
ccording to a specification given to the whole team. In this
xample, a particular challenge for task allocation results from
he non-determinism of required supply transportation, of which
he need only gets known during execution.

Motivated by such applications, we consider the following
uilding blocks of our proposed framework. First, robot engineers
mplement basic, re-usable capabilities of the robots to abstract
heir functionality.

roblem 1 (Skill Formulation). Define a layer of abstraction, called
skills, that is general enough to describe various types of robotic
capabilities (e.g., perception, navigation, manipulation) and that is
specific enough to enable task planning as well as feedback during
operation for task adaptation.

Second, industrial workers without robotics expertise need
to define and parametrize application-specific tasks, irrespective
from the available robots.

Problem 2 (Task Specification). Define a set of parametrizable task
templates that is expressive enough to specify common industrial
automation tasks (e.g., transportation, assembly) in a formal way
which enables the automatic synthesis of reactive multi-agent
policies.

Based on this input, the core problem addressed in this paper
is to construct a task model that uses the skills of all available
robots to dynamically decompose, allocate, and execute tasks
according to the goal specification. Particularly, we consider tasks
that require a significant amount of online adaptation.

1 EU H2020 Research and Innovation Programme, GA No. 731869. Further
nformation can be found at www.co4robots.eu.
2

Problem 3 (Cooperative Task Execution). Given a set of skills and
a task specification, dynamically determine and execute suitable
actions for all available heterogeneous robots in a distributed
fashion so that the system cooperatively achieves the specified
task goal.

Finally, the transfer of theoretical results to the implemen-
tation of a practical system is important. Consequently, we ex-
emplarily use the framework to coordinate different robots and
discuss the major findings during the realization of case study lab
experiments which follow the motivated application scenarios.

1.2. Framework overview

Our main contribution is a complete framework that enables
the use of existing robot capabilities for planning and reactively
executing tasks by multiple robots as given by a single temporal
logic goal specification under consideration of a stochastic envi-
ronment. A conceptual overview of this proposed framework is
illustrated in Fig. 2 and outlined in the following.

On the left side of Fig. 2, different skills can be defined. We
illustrate the practical use of the framework by discussing the
integration of several robot capabilities, summarized in Section 3.
However, these are only examples and the skill formulation de-
scribed in Section 4 enables the abstraction of such capabilities in
our framework.

On the right side of Fig. 2, a task specification can be selected
from a set of task-specific patterns and parametrized as intended,
e.g., selecting a target for inspection or delivery. Details on the
task specification are presented in Section 5. The specification is
then given to all robots in the system.

Both the skills and the specification are combined to a task
model as indicated in the middle of Fig. 2. While this task model
includes all robots in the system, we propose a distributed formu-
lation of this model where each robot only models a local subset
of the complete system. This is described in Section 6. During
execution, the robots can operate mostly decoupled from each
other based on this model formulation.

2. Related work

There exists a wide range of frameworks for different robotic
applications and specific use cases. To list some examples, the
work of Perico et al. [8] proposes a multi-robot coordination
framework for a robot soccer application. Sheng et al. [9] and
Rozo et al. [10] consider human–robot collaborative manipula-
tion and propose frameworks for learning motion from human
demonstration, e.g., in the context of industrial assembly. Fur-
ther examples are the frameworks described by Charalampous
et al. [11] and by Hawes et al. [12] for social mobile robots,
including perception and navigation capabilities. However, we
consider here no specific type of robots as many use cases in
industrial applications of robots require multiple different robotic
capabilities including perception, manipulation, and navigation.

Another relevant concern is the practical implementation of a
theoretical framework. While ROS [13] is widely used for realizing
various robot systems, the implementation of a complex multi-
agent system is still challenging. Malavolta et al. [14] analyzed a
multitude of existing ROS packages to derive general guidelines
on the implementation of robotic systems in ROS. In order to
establish communication between multiple individual robot sys-
tems, approaches such as the ROS multi-master framework [15]
or, for larger applications, a cloud infrastructure [16] can be used.

In the following, we specifically discuss work related to the
problems formulated in Section 1.1 for coordinating among indi-
vidual heterogeneous robotic systems to collaboratively achieve
user-defined goals.

http://www.co4robots.eu

P. Schillinger, S. García, A. Makris et al. Robotics and Autonomous Systems 145 (2021) 103866

o
e
c
b
t
o

m
s
a
i
p

v
a
f
D
f
e
c
f
a
o
h

2

r
r
N
f
r
c
C
t
h
c
n
b

Fig. 2. Overview of the proposed structure. During development, skills are defined for all robots based on their capabilities. The term ‘‘developer’’ refers to robot
engineers who implement basic capabilities for a specific hardware system. For executing a task, the user may compose a specification from combining suitable
specification patterns. The term ‘‘user’’ refers to an application expert without deep robotics knowledge, but using the robots to achieve a task goal. Based on this
input, the system is able to construct a task model and to autonomously execute required skills by repeatedly following an adaptive skill selection and execution
loop. The skill selection includes a communication phase between the robots to adjust task allocation.
2.1. Skill formulation

The motivation behind formulating some sort of skill is to
btain a certain formalism for representing actions that can be
xecuted by an agent. For example, finite state machines are
lassical high-level descriptions of a system’s behavior and can
e considered as abstract skills. However, there is a sensible
rade-off between the generality of a skill and the mathematical
perations that can be performed.
In the area of robotic manipulation, commonly used skill for-

alisms include TP-GMMs [17] and ProMPs [18], both to repre-
ent variations of trajectories to perform some sort of abstract
ctions. A skill formalism that focuses on the state representation,
n particular on states corresponding to sensory inputs, has been
roposed by [19] with the goal of enabling task planning.
In a broader context, Discrete Event Systems (DES) [20] pro-

ide a general formalism to express reactions to observed events
s often required for robotic skills. MDP Options [21] are a useful
ormalism to denote skills in the context of discrete Markov
ecision Processes (MDP), a specific type of DES to reason about
uture costs and system evolution [22]. In this direction, Amato
t al. [23] use options as a layer of abstraction to reduce the
omplexity of policy planning. Similarly, Liu et al. [24] use options
or denoting sub-tasks that can be composed by a robot for
chieving temporal logic goals. In our paper, we follow this line
f research and implicitly formulate skills as MDP Options for a
igh-level task model.

.2. Task specification

Many mechanisms have been studied for specifying tasks to
obotic applications, that is, specifying the sequence of actions a
obotic team must perform. Among those mechanisms are Petri
ets [25] and Statecharts [26], solutions based on them provide
ormalism while being expressive. However, those solutions often
equire a step-by-step description of the robots’ task. On the
ontrary, formal temporal logics, as Linear Temporal Logic (LTL) or
omputation Tree Logic (CTL) allow a declarative specification of
he tasks robots must perform [27,28]. The research community
as studied these languages for robotic task specification as they
an be automatically processed by planners, i.e., software compo-
ents able to synthesize a set of actions or a plan to be achieved

y the robots. An attempt to standardize a language for planning

3

tasks is the Planning Domain Definition Language (PDDL) [29],
which has been applied in the robotics domain [30,31].

Domain-Specific Languages (DSLs) [32]) are a type of language
that is tailored to a domain and therefore allows the easy descrip-
tion of the user’s concerns. In robotics, DSLs have been developed
to cover different aspects of robotic applications development,
as detailed in the survey of Nordmann et al. [33]. Among those
aspects is mission and task specification, a field to which the
community has expended considerable effort to conceive solu-
tions that include features that support roboticists. Examples of
such features are mechanisms to easily allow the robotic team to
handle fault recovery or react to events [34,35].

2.3. Cooperative task execution

Various methods exist to generate the behavior of multiple
robots from a given task goal. For example, Ulusoy et al. [36,37]
study LTL-based synthesis for surveillance problems, but assume
fully deterministic actions and optimize the repetitive behavior.
In this line of work, the formalism of trace-closed languages [38]
is used to coordinate the agents [39]. Similarly, in our previous
work [4], we decompose a specification into independent parts to
reduce the coordination effort between the agents. However, all
above methods consider deterministic execution and centralized
planning.

To incorporate uncertain outcomes of actions, MDPs [40] can
be used to model the agents, e.g., for obtaining probabilistic guar-
antees [41–43] or to design robust policies [44–46]. For instance,
Ding et al. [47] use constrained MDPs [48] to incorporate con-
straints from an LTL specification in an MDP. As investigated by
Mosca et al. [49] and Hawes et al. [50], the topic of scheduling and
congestion requires special attention when dealing with prob-
abilistic execution. Finally, game theoretic analysis as proposed
by Fu et al. [51] can be used to reason about suitable concur-
rent actions by multiple robots for achieving a specification. In
summary, these methods all address some of the aspects we are
considering here. However, they do not enable autonomous oper-
ation of a heterogeneous multi-robot team from a single temporal
logic specification under consideration of stochastic execution,
in particular together with integration of state-of-the-art robot
capabilities.

P. Schillinger, S. García, A. Makris et al. Robotics and Autonomous Systems 145 (2021) 103866

c
s
c
i
c

a
t
w
i
i
o
s
R
t

3

v
a
s
m
t
t
t

3

t
s
e
p
a
s

a
f
u
S
(
q
u
r

Fig. 3. Example result for the perception methods considered in our application.
(left) Human, hands, and objects tracked during work procedure, but no reaction
required. (right) Activation gesture detected and pointing towards one of the
objects is recognized.

3. Preliminaries: Robot capabilities

A robotic system typically consists of a number of different
apabilities, e.g., navigation or manipulation, that each contribute
ome functionality to the system. This is even more diverse when
onsidering heterogeneous multi-robot systems. Consequently,
t is an important first step to assess these capabilities when
onsidering how to automatically compose them.
In the following, we describe the capabilities of a specific ex-

mple system in the context of an industrial application scenario
hat is used throughout this paper. While the proposed frame-
ork is not limited to these capabilities, they are used to discuss

n detail how different sorts of capabilities can be integrated
nto the framework. Similarly, when using the framework for any
ther robot or system, the typical development workflow would
tart with an assessment of existing capabilities, e.g., relevant
OS packages or implemented methods, and afterwards, abstract
hem to skills as covered in Section 4.

.1. Perception capabilities

The role of the perception module is considered here to pro-
ide a number of different capabilities to the robots. Detection
nd tracking of multiple rigid objects is required to observe the
tate of the environment and identify objects of interest. Further-
ore, human detection and tracking is considered for enabling

he interaction of the system with a human worker. Beyond
racking the human as a whole, specifically hand gestures need
o be recognized.

.1.1. Multiple rigid objects detection and tracking
We adopt a system for multiple rigid object detection and

racking that operates using either RGB or RGB-D input. The con-
idered method is able to handle multiple objects and performs
fficiently under occlusions. More specifically, the algorithm em-
loys a 3D model for each object. First, it learns the object’s
ppearance by detecting local features [52] in a training image
et and registering them onto the surface of the 3D object model.
To detect the object in an RGB image, the following steps

re performed: (i) Local feature detection and matching with the
eatures of the learned object template. (ii) Estimation of the pose
sing the 3D model to 2D image correspondences and a Random
ample Consensus (RANSAC) algorithm to deal with outliers [53].
iii) Use of depth information (when available) to calculate a
uality metric for the solution. This quality metric is particularly
seful when dealing with situations with occlusions that might
esult in erroneous detections.
4

Fig. 4. move_base architecture overview as considered in this paper.

3.1.2. Human body pose estimation
For the human body pose estimation problem, we consider

a method that is robust against occlusions, which are common
in cluttered environments with multiple interacting agents. More
precisely, we rely on a recent hybrid human 3D body pose esti-
mation method that uses RGB-D input [54]. The method relies on
a deep neural network to get an initial 2D body pose. Using depth
information from the sensor, a set of 2D landmarks on the body
are transformed in 3D. Then, a multiple hypothesis tracker uses
the obtained 2D and 3D body landmarks to estimate the 3D body
pose.

In order to safeguard from observation errors, each human
pose hypothesis considered by the tracker is constructed using a
gradient descent optimization scheme that is applied to a subset
of the body landmarks. Landmark selection is driven by a set
of geometric constraints and temporal continuity criteria. The
resulting 3D poses are evaluated by an objective function that cal-
culates densely the discrepancy between the 3D structure of the
rendered 3D human body model and the actual depth observed
by the sensor. See [54] for details on the method.

3.1.3. Gestures recognition
The gesture recognition module builds upon the detected pose

of each human (which includes the detailed hand pose) to detect
static body–hand gestures. A static gesture is detected by mea-
suring the Euclidean distance between the template gesture pose
and the detected pose of each frame. Temporal filtering ensures
that the posture is detected in several consecutive frames before
accepting it as valid, thus avoiding spurious detections.

For example, for the industrial application considered in this
paper, we define a pointing gesture used to select appropriate
objects for the performed task. When the gesture is detected,
the pointing direction is used to determine the selected object.
Example detection results are shown in Fig. 3.

3.2. Navigation capabilities

The navigation module provides capabilities for the mobile
robots to navigate from one location in the floorplan to a different
one, while avoiding any obstacle or restricted area. The navigation
methodology consists of two main algorithms that are integrated
with the ROS Navigation Stack (move_base).2 Its architecture is
depicted in Fig. 4.

2 See https://wiki.ros.org/move_base.

https://wiki.ros.org/move_base

P. Schillinger, S. García, A. Makris et al. Robotics and Autonomous Systems 145 (2021) 103866

a
t
h
c
s

m
E
i

b
i
o
c

Fig. 5. Transformation of a real workspace to a punctured disk.

3.2.1. Global path planner
The first method is based on Harmonic Potential Fields [55]

nd used as a global planner. This technique is selected due
o its reduced computational requirements and the ability to
andle large and complex workspaces. Additionally, it guarantees
ollision-free navigation with the goal configuration being the
ole stable equilibrium.
In short, the method constructs a transformation Tm which

aps: (i) the robot’s workspace Wmp ⊂ R2 to the punctured
uclidean plane, (ii) the outer boundary C0 of the workspace to
nfinity, (iii) all obstacle boundaries C1, C2, . . . , CNmp

obs
to qimp,o, ∀i ∈

(1, 2, . . . ,Nmp
obs) ∈ R2, and (iv) the goal positions pdmp ∈ R2 to

distinct points qdmp ∈ R2 as shown in Fig. 5.
Refer to [55] for further details on the notation and the

method. In summary, a feasible path can be computed effi-
ciently in the resulting workspace Wmp that connects the current
configuration of the robot with the desired one.

3.2.2. Local path planner
The Time Elastic Band approach [56] is adopted for the lo-

cal planner. The initial path generated by the Harmonic Maps
technique is optimized with respect to minimizing the trajectory
execution time, obstacle avoidance, and compliance with kinody-
namic constraints such as satisfying input and state constraints.
Moreover, it complies with non-holonomic kinematic constraints
by solving a sparse scalarized multi-objective optimization prob-
lem.

Let pmp,k = [xk, yk, θk]⊤ denote a robot pose at a discrete point
in time k, where xk, yk, θk ∈ R represent the planar position
and orientation of the robot. Then, a discretized trajectory can
be described as T = {pmp,k|k = 1, 2, . . . , n}. The Time Elastic
Band method augments the trajectory representation with time
intervals τ = {∆Tk ∈ R+|k = 1, 2, . . . , n − 1} for where each
∆Tk > 0 denotes the time that is required for the robot to reach
the pmp,k+1 from pmp,k. Consequently, we obtain the augmented
trajectory representation B := (T , τ).

Finally, it is required to solve an optimization problem to find
ody velocity commands for the mobile robot, minimizing time
ntervals

∑n−1
k=1 ∆T 2

k and considering constraints for kinematics,
bstacle avoidance, and maximum velocity. The maximum exe-
ution time ∆Tn−1 is defined by the user, while the initial pmp,1 =

pmp,c and the final pmp,n = pmp,f robot pose are set by the
global path planner. We refer to [56] for further details on this

optimization.

5

Fig. 6. Configuration of the control strategy for the manipulator.

3.3. Manipulation capabilities

The considered manipulation capabilities enable to move the
end-effector of a robotic arm between target configurations of
interest, e.g., to realize an assembly sequence or execute pick-
and-place tasks. We follow a data-driven dynamic modeling
approach to synthesize point-to-point motions and formulate
an abstraction-based controller to guarantee safety during each
motion. Initial collision-free paths are generated by the Rapidly-
exploring Random Tree (RRT) algorithm, specifically
RRT-Connect [57] implemented in the Moveit toolbox [58]. This
control strategy is summarized in Fig. 6.

3.3.1. Dynamical modeling of the arm
To achieve the safe control synthesis, we first construct a

discrete-time model as in [59]. That is, we model the arm dy-
namics as x+

∈ Ax + Bu + c ⊕ W with the state x ∈ X , the
input u ∈ U , and the disturbance W . The model is constructed
through sampling of command and position data-points along
with a number of prescribed trajectories. We then model the arm
dynamics as a piecewise-affine system with bounded disturbance
by dividing the state space into various regions using hyper-
planes and estimate the dynamics in each region by an affine
function. See [59] for further details.

In a high-dimensional problem (i.e., 14 in case of a 6-DOF arm
plus a 1-DOF gripper), using pre-defined regions is computation-
ally intractable. Therefore, we include the region division as part
of the optimization problem that is formulated as a Mixed-integer
Linear Program [60].

3.3.2. Abstraction-based control design
Given the reference trajectory for the manipulator, an

abstraction-based control design is used, see [61]. First, given an
initial state x0 ∈ X0 ⊆ X , we choose a bounded region S0 ⊂ X0
such that x0 ∈ S0 and thus, S0 can be set as the initially chosen
region. The intersection between the region S0 and the reference
trajectory is treated as the local specification.

Next, starting from the initial region S0, we construct a local
symbolic abstraction by approximating both state and input sets.
Based on the local symbolic abstraction, a standard algorithm
can be applied to determine the control inputs such that the
manipulator moves to the local specification. Here, we use the
common fixed-point algorithm [62].

Third, if the local specification is satisfied, we choose the
next bounded region and determine the next local specification.
Following the previous mechanism, the local symbolic abstraction
is constructed for this chosen region, and then the local control
strategy is established similarly. Iterating the above mechanism,
the global control strategy is derived and the global specification
can be achieved.

4. Skill formulation

A formalism of skills allows for representing the capabilities
of each individual robotic system in a uniform way and is the
basis for the theory behind our framework. In this section, we

P. Schillinger, S. García, A. Makris et al. Robotics and Autonomous Systems 145 (2021) 103866

d
s
f

P

M

t
S
f
t

t
i
s
b

s
p
s

e
n
s
t
t
M

t
m
o
t
t
i
a

4

i
i
d

s
a
R
a

o
p
c
D
s
S

u
t
s
a
E
d
c

n
w
s

efine how a skill is expressed in our framework and discuss the
pecific representation of the different types of robot capabilities
rom Section 3 in separate sub-sections.

Mathematically, we model a skill as a labeled Markov Decision
rocess (MDP) given by the tuple

= (S, A, p, R, λ)

with a discrete state space S and a discrete action space A. Transi-
tion probabilities p are defined as the function p: S×A×S → [0, 1]
where p(s′|s, a) denotes the probability that action a in state s will
result in the next state being s′. The reward function R: S×A → R
denotes for a skill how desirable a specific action a is in a certain
state s. Finally, the labeling function λ: S → 2AP assigns a subset
of atomic propositions AP to each state s ∈ S and exactly the
propositions in λ(s) are considered as being true at s.

The notion of these propositions AP is important for the
skill formulation because they create a layer of abstraction. The
labeling function λ defines for each skill which propositions hold
at which states. Similarly, the task patterns introduced in the next
section can be parametrized by these propositions. This creates
the required connection between the high-level specification and
the low-level skills.

To fully describe the probabilistic dynamics of a skill, a stochas-
tic policy π : S × A → [0, 1] defines the behavior of the robot
that executes the skill and π (a|s) denotes the probability of
performing action a in state s. In particular, π is determined to
drive the system dynamics towards a goal region Sg ⊆ S in
he state space while staying within a constrained, safe region
c ⊆ S. For the problem of finding such a policy π , we refer to the
ollowing sub-sections for specific formulations of this problem in
he domains of interest.

Together, M and π define an absorbing Markov Chain where
he set of absorbing states is given as Sg ∪ S̄c with S̄c = S \Sc , that
s, the set of all goal states and violating states. For some initial
tate distribution ŝ, several properties of the system dynamics can
e determined [63]. This includes the expected duration E[d(ŝ)]

until reaching an absorbing state, i.e., the expected execution
time of the skill. The distribution over absorbing states after
termination indicates the probability p(Sg |ŝ) of reaching a goal
tate, i.e., the success probability of the skill. These measures are
articularly useful during task allocation for comparing different
kill choices.
The choice of MDPs as skill formalism is motivated by the gen-

rality of MDPs to model skills from different domains like robotic
avigation or perception, as well as by their ability to describe
tochastic dynamics. Still, MDPs have some limitations that need
o be considered when defining skills. Most relevant examples are
hat it may not be trivial to define a state space which fulfills the
arkov assumption or to determine all transition probabilities.
Finally, note that skills are modeled for individual robots. On

he one hand, this has the limitation that collaboration between
ultiple robots is only considered on a higher level when co-
rdinating the skills between agents. But on the other hand,
his enables to fully abstract away from the robot capabilities
o a set of skills and the atomic propositions that these skills
nfluence. Consequently, the robots can have different state and
ction spaces, including completely separated workspaces.

.1. Perception skills

As a guideline for how to model perception skills, we describe
n the following how to model the specific perception capabilities
n Section 3.1 as a labeled MDPM. We define states s ∈ S with the
iscretized dimensions human ∈ [0, 1] denoting the confidence

of having detected a human pose, gesture ∈ [0, 1]n denoting the
detection confidence of the n gestures, object ∈ R3m denoting
6

the estimated position of the m objects, hand ∈ R3 denoting the
estimated hand position. Each action a ∈ A is given by a set
of activations of the perception modules, e.g., one action a can
include running human body pose estimation, recognize some
gesture i and track poses of objects j and k. The labeling function λ

can be understood as an interpretation of the perception results.
The policy π then denotes which modules to activate at each

moment and can be defined with respect to a goal region cor-
responding to a required detection result. For example, object
detection is not required if the goal does not specify an object
position. Similarly, it can be defined that a computationally ex-
pensive hand tracking is only activated after a human body pose
has been detected with high confidence. In the remainder of this
paper, the particular choice of π is not considered further and
may, for example, be defined manually.

In summary, a perception skill defines propositions that ab-
stract the perceived environment. In the experiments, we demon-
strate their use for enabling a human co-worker to indicate a
supply need at an assembly station, denoted with the proposition
Needr . All states s ∈ S with a high confidence of having detected a
pointing gesture and where an object r is close to the hand posi-
tion are thus labeled with this proposition Needr . Similarly, states
with a low detection confidence are labeled with Needunknown.

Finally, as a simple example of a different perception skill,
consider the detection of objects in the LIDAR scan of a mobile
robot. This skill is also used in the experiments further below. To
decide whether an object is ready for transportation, the mobile
robot repeatedly collects LIDAR scans of a (normally empty) re-
gion of interest and we model the state space to count the average
number of detections within this region over a certain duration
of time. The only action of the robot beyond termination is to
obtain another scan. States above a certain threshold are labeled
as positive detection, denoted by ASready.

4.2. Navigation skills

To model navigation capabilities, an intuitive choice for the
state space is the location of the robot. For modeling the specific
capability described in Section 3.2, we consider the location in a
compact workspace Wmp ⊂ R3 occupied by a set of inner obsta-
cles O ⊂ Wmp. Consequently, we denote by S = Wmp\O the state
pace and each state s = [x, y, θ] ∈ S denotes the grid location
nd orientation of the robot in the map reference. Similarly, each
i ⊆ S denotes a region of interest in the workspace and is labeled
ccordingly, i.e., i ∈ λ(s) for all s ∈ Ri.
Actions to navigate between two states are given by the set

f kinematically feasible velocity commands and a deterministic
olicy π (s) is given by the global planner. The local planner, in
ontrast, is considered transparently as a way of online recovery.
epending on the task, some of the above regions form the goal
et Sg ⊆ S of π while others are excluded from the allowed set
c ⊆ S.
The resulting policy for skill execution can be further eval-

ated during task planning as follows. The modeled probability
hat the robot in configuration s ∈ S reaches a desired goal
tate in sg ∈ Sg is π (sg |s) = 1 considering that the Wmp \ O is
topologically connected set. Moreover, the expected duration
[d(s0)] of the skill with respect to an initial state s0 ∈ S is
irectly obtained from the global planner based on the current
onfiguration s0 = [x, y, θ] and the specification of the robot.
In summary, a navigation skill defines propositions that de-

ote regions of interest in a workspace map. In the experiments,
e define such regions of interest for example to mark assembly
tations i as atAS .
i

P. Schillinger, S. García, A. Makris et al. Robotics and Autonomous Systems 145 (2021) 103866

4

t
w
a
e
b
s
s
t

.3. Manipulation skills

To integrate the manipulation skills, we consider as example
he capability summarized in Section 3.3 and formulate a skill
here the states S correspond to joint values discretized by the
bstraction-based control design. More specifically, we consider
ach cell in the abstraction as a state which corresponds to a
ounded region in the continuous space. Given robot-specific as-
umptions on a bounded model error and disturbance, the control
ynthesis algorithm guarantees that the probability of reaching
he subsequent planned state is 1.

In order to denote configurations of interest, e.g., pick, place,
and home positions as required for realizing an assembly skill,
states in the skill MDP are labeled accordingly. Planning a tra-
jectory to the next required label then provides the initialization
for the abstraction-based controller to move between the cells,
i.e., states of the MDP.

The expected duration of transitions between two consecutive
cells is equivalent to the sampling time of the controller and as
such, constant for each cell. As a result, the expected duration
of moving between two regions of interest is proportional to the
number of cells generated by the symbolic controller.

In summary, a manipulation skill defines propositions that
denote certain configurations of the robot, e.g., based on its end-
effector pose or joint values. In the experiments, we use it to
denote intermediate configurations of an assembly procedure in-
cluding the proposition Assembledi to denote for the manipulator
at station i that the assembly has been completed.

5. Task specification

Given a set of skills, it needs to be defined what should be
achieved with these skills, i.e., the task to be executed. In our
framework, a single, common task is given to the multi-robot
team and is formally expressed as a Linear Temporal Logic (LTL)
specification. Formally, an LTL specification φ classifies temporal
sequences σ :N → 2AP over atomic propositions AP as satisfying
(fulfills the task), denoted by σ ⊨ φ, or violating (does not fulfill
the task), denoted by σ ⊭ φ.

Together with the notion of atomic propositions in labeled
skill MDPs (see Section 4), LTL is used to specify goals and con-
straints for skill execution, see Fig. 7. This way, a task planner
can guarantee that only skills, as well as actions within the skill
MDPs, are selected that conform with the given specification.
In other words, any temporal sequence of propositions resulting
from the actions of the robots and the modeled dynamics of the
environment should satisfy the given task formula.

For a complete background on LTL and formal definitions,
we refer to [27,28]. In brief, LTL defines logical operators for
boolean operations (operations on multiple propositions of a
single time step) and for temporal operations (operations on
single propositions of multiple time steps). Boolean operators
include ¬ (negation), ∧ (conjunction), ∨ (disjunction), and ⇒

(implication). Temporal operators include ♢ (eventually in a sub-
sequent timestep) and □ (always in subsequent timesteps). These
operators can be combined to form expressive tasks, e.g., □♢
(always eventually) specifies repetitive tasks.

To specify the formula φ in a user-friendly way for non-
experts, we build upon a catalog of task patterns [64,65]. The
catalog maps recurrent robotic task specifications identified in
the literature to well-known solutions with proven effectiveness
expressed in temporal logic. Each of these patterns encodes a
formula that is hidden to the user, who only needs to select a
pattern and a set of parameters that are application-specific and
situation-dependent. In this way we support the user by adding
an abstraction layer that simplifies the task specification.
7

Fig. 7. The labeling function λ of a skill grounds atomic propositions AP to
states s ∈ S (bottom left). Similarly, task patterns are defined as parametrizable
LTL formulas (bottom right). Then, tasks can be specified by selecting multiple
patterns and parametrizing them with atomic propositions (top). The result is a
complete LTL task specification over atomic propositions.

The patterns catalog is supported by PsALM (Patterns bAsed
Mission specifier) [65], a toolchain that allows users to specify
complex tasks by composing patterns. In particular, PsALM uses
the ‘‘and’’ and ‘‘or’’ logical operators for such a composition of
patterns. To provide users with a more flexible and powerful tool
for mission specification that also composes the existing catalog
of patterns, we developed a Domain-Specific Language (DSL).
PROMISE3 (simPle RObot MIssion SpEcification) [35,66] provides
compositional operators that pave the usage of the proposed
patterns in practical scenarios. The operators are inspired by
Behavior Trees operators [67], a mathematical model of plan exe-
cution that allows composing tasks in a modular fashion through
a set of nodes representing tasks and connections among them.

As a result, the overall task specification can be composed
from an arbitrary number of generic or application-specific task
patterns as indicated on the right side of Fig. 2. For illustration,
we discuss in the following two example patterns that are used
for the experiments in this paper.

5.1. ‘‘Check supplies’’ pattern

The task to check whether one type of supplies is required and
to provide this kind of supplies is given by the LTL formula

φs(i, r) = □♢
(
atASi ∧ ¬Needunknown ∧ (

Needr ⇒ ♢Deliveredi,r)
)

∧

□
(
atASi ∧ ¬Needunknown ∧ Needr ⇒ □¬(

atASi ∧ ¬Needr ∧ ¬Needunknown)
)

for some assembly station i and one type of supplies r .
The first part of the first line of this formula states that the

need at the given assembly station i should not be unknown,
without stating any need explicitly (as this cannot be influenced
by the system). However, in the case that the need for resource
r is detected, as specified in the second part of the first line of
the formula, it is implied that the respective delivery needs to
be performed eventually. Finally, the operator □♢ states that this
task should be performed repeatedly.

In addition, the remaining lines state an additional technical-
ity, that is, a supply need cannot be fulfilled by simply checking
the need again in the expectation that it would disappear. Oth-
erwise, task planning could consider such a re-checking as a
more efficient way of fulfilling the specification. Such a required
technical addition to the task specification is likely not obvious to
most users and thus, undermines the significant benefit of using
expert-defined task patterns.

3 See https://github.com/SergioGarG/PROMISE_implementation.

https://github.com/SergioGarG/PROMISE_implementation

P. Schillinger, S. García, A. Makris et al. Robotics and Autonomous Systems 145 (2021) 103866

5

t

φ

f

s
a
i
a
s
r

i
f
r
s

6

d
F
t
l

t

s
f
W
t
a
b

t
f

6

f
a
t
2

B

w
p
d
a

b

a

T

C

q
i
H
p

t
l
O
k
t
r
f

6

l

.2. ‘‘Check and deliver’’ pattern

A delivery task of potentially available products is specified as
he formula

d(i, f) = □♢
(
atASi ∧ ¬ASunknown ∧ (

ASready ⇒ ♢Deliveredf ,i)
)

∧

□
(
atASi ∧ ¬ASunknown ∧ ASready ⇒ □¬(

atASi ∧ ¬ASready ∧ ¬ASunknown)
)

∧

□
(
atASi ∧ ¬ASunknown ∧ ¬ASready ⇒ □¬(

atASi ∧ ASready)
)

or assembly station i and the final delivery location f .
The structure of this formula is similar to the one above. It

pecifies that the assembly station status in terms of the product
vailability may not be unknown and in case the product is ready,
t should be delivered to the final location. Furthermore, the
dditional technical statements of the formula in the other lines
tate that the availability of a product cannot change by simply
e-checking the status.

This similarity is possible here because only the goal is spec-
fied, not the particular actions done by the robots. Thus, the
ormula is independent of the available robots. Any team of
obots, for which the model defines a way to achieve the specified
ymbols in the formula, can be used to fulfill the task.

. Cooperative task execution

The skills described in Section 4 and the task specification
efined in Section 5 are used to form a so-called Task Model (recall
ig. 2). In order to semantically connect skill MDPs with the LTL
ask specification, we use the notion of atomic propositions AP as
ayer of abstraction. Considering a skill, the labeling function λ
of the MDP associates states of the respective robot system with
such propositions (recall Section 4). During runtime, a sequence
of states as resulting from the controlled system dynamics of the
respective skills introduces a symbolic sequence σ over proposi-
tions. At the same time, the LTL specification φ classifies whether
he resulting σ is satisfying (recall Section 5).

Since the robots are heterogeneous, their sets of atomic propo-
itions might be different. Following the semantics of the labeling
unction λ, undefined propositions are considered to be false.
hen propositions are shared by multiple robots, conditions over

hem can be fulfilled by any of these robots. This enables an
bstraction from individual robots and allows for collaboration
etween the robots by fulfilling different parts of a specification.
In the following, we describe the distributed construction of

he task model and how it is used by the robots to cooperatively
ollow their common task.

.1. Distributed task model

As a basis for the task model construction, we employ the
ormalism of a so-called Büchi Automaton (BA) for representing
given task specification φ in an automaton format derived from
he LTL formula, particularly suitable for model construction [27,
8]. A BA is defined as the tuple

= (Q ,Q0, α, δ, F)

ith virtual progress states Q towards task completion, a set of
ossible initial states Q0 ⊆ Q , an alphabet of symbols α, a non-
eterministic transition relation δ ⊆ Q ×α ×Q , and a set of final
ccepting states F ⊆ Q .
In particular, it is well-known [27] how to construct a BA B

ased on an LTL formula φ such that B and φ are equivalent in
8

Fig. 8. Proposed hierarchical definition of a skill option. On the upper layer
(left), an option is considered as a transition in the task automaton. On the
lower layer (right), an option corresponds to a policy planning problem to the
goal states of a skill.

the following sense: For any sequence σ it holds that σ ⊨ φ if and
only if the respective transitions in B lead from an initial state in
Q0 to an accepting state in F . In the case that σ is infinite, F is
visited infinitely often.

Based on this notion, the Task Model for some task φ is defined
s a Semi-MDP [21] given by the tuple

= (Q ,O, p, d)

with the state space Q , a set of options O, transition probabili-
ties p:Q × O × Q → [0, 1] and probabilistic option durations
d:Q × O → R>0 as cost function, i.e., rewards are given by the
negative expected duration. This follows the definition proposed
by Schillinger et al. [63].

In particular, the state space Q of T is identical to the state
space of the BA B constructed for the task φ. Accordingly, each
state q ∈ Q can be considered as denoting some progress towards
task completion and some states q are accepting states q ∈ F in
B, i.e., denote successful task completion.

Similarly, the options O are chosen such that each o ∈ O can
be associated with a transition in δ of B as follows. For each
transition (q, ϕg , qt) ∈ δ, we define a set of options Oqt

q and
accordingly, O =

⋃
q,·,qt∈δ O

qt
q . We construct one option o ∈ Oqt

q
for each robot in the case that there exists a feasible policy π .
Here, the policy π refers to a policy for the MDP of the robot
composed of its defined skills.

A policy π is generally determined by constructing a con-
strained policy planning problem for the MDP. The above tran-
sition condition ϕg denotes the goal of π , and the condition ϕc
of the self-loop transition (q, ϕc, q) ∈ δ denotes the constraints
of π . Note here that each of these conditions ϕ implies a set of
states {s ∈ S: λ(s) ⊨ ϕ} in M. This relation is illustrated in Fig. 8.
onsequently, the policy π is planned to reach an MDP state in

the goal set while remaining within the constraints set.
Due to the probabilistic nature of skill execution, an option o

is not guaranteed to reach its target progress state qt . Instead,
each o may result in one of multiple subsequent progress states

′ with some probability p(q′
|q, o). In addition, the execution of o

n progress state q requires a probabilistic amount of time d(q, o).
owever, these measures can be estimated from evaluating the
olicy for a certain initial MDP state distribution [63].
Finally, the task model T is realized as a distributed model in

he following sense. Each robot receives the common task φ and
ocally constructs the model under consideration of all options
that represent the robot itself. Consequently, each robot only

nows a subset of O and in order to plan a team policy in the
ask model, the robots need to communicate and exchange the
elevant information for selecting between alternative options or
or taking transitions for which no own option exists.

.2. Repetitive skill selection

Given the task model Semi-MDP T in which each robot can
ocally construct options for its individual skills, it remains to

P. Schillinger, S. García, A. Makris et al. Robotics and Autonomous Systems 145 (2021) 103866

d
a

d
a
o
a

e
t
r
c
d
s
e
a

l
t
d
r
o

i
h
u
i
s
r
s
o
r
e
t

c
m
r
i

6

T
i

b
a
r
t

b
a
t

c
n
i

i
b

f
t
a

etermine a task policy µ:Q → O for the team of robots to
ppropriately select the options o ∈ O to execute at each progress

state q ∈ Q .
We follow the sequential auctioning algorithm proposed

in [63] to define such a policy µ online. This is motivated by the
istributed nature of the system model, as well as the consider-
ble environment dynamics that require frequent adjustment to
nline observations. In the following, the most relevant aspects
re summarized, but refer to the original work for all details.
The robots follow multiple subsequent auction rounds and in

ach auction, they share bids of possible next options for them
o execute, determined from their locally known skills and cur-
ent states. Then, the auction determines the preferred allocation
hoice for the team across all shared bids. In particular, [63]
escribes a value calculated for each bid such that the auction
elects the skill which approximately minimizes the overall task
xecution time and the approximation is improved over time by
n online learning procedure.
The auction rounds are repeated until each robot is assigned at

east one option to follow next. Afterwards, each robot executes
he local policy of its assigned option either until termination,
enoting the completion of the current sub-task, or until another
obot requests the next auctioning procedure, e.g., due to the
ther robot completing its current sub-task.
To illustrate the skill selection procedure, consider the follow-

ng corner cases. First, assuming that all robots are different and
ave skills with unique propositions, each robot would individ-
ally select among its skills that can be executed next. Second,
n the case of a homogeneous team where each robot has the
ame skills, the first auction round would select the skill of the
obot that promises shortest execution time based on the current
tates of the robots. If the task requires further skills, the same or
ther robots would be assigned these further skills in subsequent
ounds. For repetitive tasks, multiple robots can be assigned to
xecute the same skill to already prepare future iterations of the
ask.

Worst-case complexity of a single auction round is O(|Q |) for
alculating the bids, occurring in the case of a fully connected task
odel. This is required in each auction round in parallel for each

obot, leading to O(N · |Q |) for N robots because one assignment
s decided in each round.

.3. Adaptive collaboration

The dynamics of task execution are captured by the task model
and the skill selection procedure µ as follows. The team starts

n an initial state q ∈ Q0 and selects one option o ∈ O for each
robot to follow, according to their skills. Eventually, the option of
one robot terminates, causing a transition from q to q′ as given
y the transition relation δ and new options for each robot are
gain determined by the sequential auctions. This procedure is
epeated until q′

∈ F and the task is completed or, for repetitive
asks, for any number of iterations.

In this context, collaboration between the robots is achieved
y sharing a common task progress q ∈ Q of T and each robot is
ble to cause a new transition in T based on the atomic proposi-
ions AP in its skills. The role of the auctions is the coordination
of transitions that each robot works towards. Also, by repeating
the auctions whenever q changes to a new q′, the team of robots
an adapt their allocated skills to the, potentially unexpected,
ew progress q′. As given by LTL, such a new progress state can
mply different constraints or additional sub-tasks.

The distributed formulation of T has the benefit that only an
ncomplete representation of T needs to be constructed locally
y each robot and a centralized planning phase can be avoided.
9

Fig. 9. Illustration of the layered software structure for task execution.

Furthermore, due to the employed auctioning procedure, the in-
formation exchange between the robots is reduced both in terms
of data amount and frequency of initiation.

Considering the motivation of this paper, the distributed model
enables that a robot can contribute regardless of the particular
team composition. For example, a task specification might require
both navigation and manipulation skills. Without knowing the
skills of the rest of the team, a mobile robot can bid for solving
the navigation tasks while at the same time a manipulator bids for
the manipulation tasks. This form of collaboration is particularly
useful when re-using existing skills instead of newly developing
each application for a specific team of robots. Similarly, repetitive
auctions allow the robots to adapt flexibly. If for example the
mobile robot fails in the navigation task and reaches a different
progress state in the task model than desired, the same or also a
different robot might bid to execute a recovery task in accordance
with the specification.

7. Case studies

In order to analyze how effectively our presented framework
is suitable to address the motivating problems, we present in
the following a number of experiments to resemble relevant use
cases. This includes a presentation of the technical details and an
illustration of the usage of the framework in practice.

7.1. Software description

For all the experiments, our software implementation of the
framework uses ROS and relies on several standard ROS packages.
Each robot runs a set of ROS nodes to implement the different ca-
pabilities, to control execution, and to coordinate with the rest of
the robots. To prevent software conflicts and control the commu-
nication between the robots, each robot runs its own ROS master
and uses a specific topic namespace for global communication.
This essentially isolates each robot in terms of software and only
permits the highest software layer to exchange information in a
well-defined protocol.

The implementation consists of a layered structure, see Fig. 9,
where the highest layer covers task decomposition, planning, and
communication during the task auctions. As a result, it commands
towards the lower layer a policy over robot skills that needs to be
executed locally in order to follow the overall task specification.
This policy is tracked on the second layer, which determines and
commands the respectively next skill.

Each skill is interfaced as one FlexBE4 [68] behavior and con-
igured in the planning model. When executing a skill as de-
ermined by the policy, FlexBE runs the corresponding behavior
nd interprets the outcome after the skill terminated to provide

4 See http://flexbe.github.io.

http://flexbe.github.io

P. Schillinger, S. García, A. Makris et al. Robotics and Autonomous Systems 145 (2021) 103866

a
t

Fig. 10. Different types of robots used in the experiments. From left to right:
(1) TIAGo Base by PAL Robotics, (2) Panda by Franka Emika, (3) A-2085-06 by Hebi
Robotics.

feedback about the result. The skill behavior interfaces with all
the low-level components that realize the skill.

Due to the dynamic environment, execution needs frequent
adjustments and recovery. This is realized by a feedback loop
within each layer and, if recovery fails, it is escalated upwards to
the respective next layer. For example, the navigation component
can attempt to perform local obstacle avoidance to reach a goal. If
this fails, the skill behavior may select a recovery waypoint within
the scope of the current skill or adjust the motion parameters.
If this fails as well, the policy executor receives an update and
may select a different skill according to the planned policy, e.g., a
substantially different waypoint or some recovery action. Finally,
if this all fails, e.g., because a symbol used in the task specification
is affected, communication between the robots can be initiated to
re-allocate tasks or to incorporate additional requirements.

7.2. Hardware description

The experiments involve different robots as summarized in the
following and shown in Fig. 10. For each robot, the required ca-
pabilities are implemented on the Components layer as described
in Section 3 to integrate them with each other.

The TIAGo Base5 by PAL Robotics is a mobile platform for au-
tomating indoor transportation. Here, we use two of these robots
to execute delivery tasks and use their onboard sensors to detect
objects in front of them. The Panda6 robot by Franka Emika is a 7-
DoF static manipulator that can be used at collaborative industrial
assembly stations. Here, we use the robot to follow an assembly
routine of an existing Bosch product and show its integration
into the overall coordination system. To integrate the collabora-
tive assembly station into the system for our experiments, we
added an RGBD camera (Intel RealSense D415) to perform gesture
recognition as required for human–robot interaction. The A-2085-
06 robotic arm7 from Hebi Robotics is another static manipulator
with 6 DoFs, here endowed with a custom end-effector including
a gripper and an ATI Mini 45 force/torque sensor. Here, we use
the robot to illustrate the integration of manipulation skills into
the system.

7.3. Workspace description

As initially motivated by the factory application use case (re-
call Section 1.1), we consider an industrial setting for conducting
our experiments as given by the Robotics Lab at the Bosch Cor-
porate Research Campus in Renningen, Germany. This location
is suitable to reflect a factory-inspired environment including
assembly stations for the transportation tasks and for human–
robot collaboration. In addition, we repeated the experiments in
the office environment of PAL Robotics in Barcelona, Spain, to
show the transferability of the developed system.

5 See http://pal-robotics.com/robots/tiago-base.
6 See https://www.franka.de/panda.
7 See https://www.hebirobotics.com/a-2085-06.
10
Fig. 11. Maps of the experiment workspaces. Annotated for illustration are
the relevant locations of interest as explained in the respective experiment
descriptions.

In both cases, we used one of the mobile robots to record a
SLAM map and annotated it with the respective locations of in-
terest. In addition, virtual obstacles have been added manually to
prevent the robots from leaving the workspace area. The resulting
maps as used by the mobile robots are shown in Fig. 11, including
the annotated locations of interest.

7.4. Experiments

Each of the following experiments is defined by skills modeled
for the robots and task patterns to achieve. The experiments are
sorted by increasing complexity and each one focuses on one
specific aspect of the framework. The final experiment combines
all previous aspects and can be considered as focusing on their
integration.

Experiment I: Distribution of collaborative tasks

In the first scenario, two TIAGo Base mobile platforms operate
in a workspace with specific regions of interest as depicted in
Fig. 11. Repeatedly, the assembly stations denoted by A1, A2, and
A3 should be checked if there are products ready for delivery. If
a product is detected, the task includes to deliver it to the final
location denoted by F . This task is given by the specification

φ1 = φd(A1, F) ∧ φd(A2, F) ∧ φd(A3, F)

nd we refer to Section 5.2 for the formulation of the selected
ask pattern φd(·). See Fig. 12 for an illustration of this task.

Each of the two mobile robots is independently modeled as
follows. The state space is given by a floor plan for navigation
Smap, see background of Fig. 11, as well as the discrete state
variables Scarry and Sstatusi . The set

Scarry = {n, pA1, pA2, pA3}

denotes carrying a product and n models carrying nothing while
pi denotes that one of the products from the respective assembly
stations is carried. The sets

Sstatus,i = {u, b, r}

for i ∈ {A1, A2, A3} denote the status of the respective assembly
station i as known to the robots where u denotes unknown, b
denotes busy, and r denotes that a product is ready for pick-up.

The robots have a navigation skill, realized as described in
Section 3.2 and abstracted as described in Section 4.2. In addition,
each robot has three more skills: Two skills for loading a product
at each of the assembly stations and for unloading a product at
the delivery location, as well as one skill for determining the

http://pal-robotics.com/robots/tiago-base
https://www.franka.de/panda
https://www.hebirobotics.com/a-2085-06

P. Schillinger, S. García, A. Makris et al. Robotics and Autonomous Systems 145 (2021) 103866

w
t

φ

w
a

a
t
p

h
s
v
p
t
u
a

Fig. 12. Example situations during Experiment I. Shown top are cases when the
robot did not (left) or did (right) observe a product for delivery. Shown bottom
is the transportation process.

status of an assembly station. Here, we assume that loading and
unloading are done manually by the worker at the respective
station. For recognizing whether a product can be delivered and
whether loading has been done, we use the LIDAR scanner of
the robots and implement the skill as simple perception skill
following the example in Section 4.1.

In summary, this experiment indicates the collaboration and
adaptability of two homogeneous robots in a simple delivery
scenarios. It can be observed that the robots effectively allocate
sub-tasks to check the individual assembly stations and, when-
ever a finished product is observed, consider transportation as
another sub-task that needs to be allocated eventually. More
details are discussed in Section 8.

Experiment II: Specification of human–robot interaction

For the second experiment, we consider heterogeneity and
model the assembly station A1 in more detail. That is, we consider
a human worker and a Panda static manipulator working collabo-
ratively at the station. While the manipulator follows an external
assembly routine, as would be the case when retro-fitting our
framework to an existing factory, the human worker monitors the
process and needs to request some supplies s1 and s2 whenever
required. This is expressed by the task

φ2 = φs(A1, s1) ∧ φs(A1, s2)

and we refer to Section 5.1 for the formulation of the selected
task pattern φs(·). See Fig. 13 for an illustration of this task.

We extend the model of a mobile robot by two pick-up loca-
tions for supplies, marked S1 and S2 in Fig. 11. Also, the state
variable Scarry is extended by the values {s1, s2} to model the
two types of supplies being carried. For loading and unloading
of supplies, we re-use the previously defined skills.

In addition, we partially model the assembly station A1 as
a third agent to demonstrate the integration of human–robot
collaboration. The assembly station has one state variable

Sneed = {n, s1, s2, u}

that denotes whether no supplies are required (n), one of them
is needed (s1 or s2), or the need is unknown (u).

One perception skill is considered that enables the assembly
station to determine the need if unknown. Such a need is indi-
cated by the worker with a pointing gesture towards one of the
two supply indicator objects or no gesture when no supplies are
required. The skill is implemented as described in Section 3.1 and

abstracted as discussed in Section 4.1.

11
Fig. 13. Example situations during Experiment II. The assembly station follows
an assembly routine (top left) and the human worker requests supplies when
needed (top right). Shown bottom is the delivery of requested supplies.

This experiment illustrates the ability of the framework to
consider a completely different sort of agent and use the com-
bination of agents to realize the task. Since the mobile robots
themselves cannot observe a supply need, the perception skill of
the assembly station is used to transition in the shared task model
to a state where the need is known, enabling in turn the mobile
robots to bid for the respectively needed transportation.

Experiment III: Integration of assembly routines

The third experiment considers the explicit modeling of the
assembly task, leading to a more fine-grained integration of the
manipulator. We use the A-2085-06 manipulator at station A1 and
model an exemplary assembly routine for it. That is, we define a
simple pick-and-place sequence and require that the sequence is
completed before the supply need can be checked.

To let a user define such an additional task, we introduce a
new task pattern together with implementing the new robot:

φa(i) = □♢Assembledi ∧ □(¬Assembledi ⇒ Needunknown)

to denote that the supply need cannot be known before the
assembly sequence at station i has been completed. If such a con-
straint would not be desired, the pattern φ′

a(i) = □♢Assembledi
ould be sufficient to only denote the repetitive completion of
he sequence. Consequently, the task specification is given as

3 = φs(A1, s1) ∧ φs(A1, s2) ∧ φa(A1)

hich extends φ2 by the new assembly sequence. See Fig. 14 for
n illustration of this extension.
The assembly sequence is implemented by manipulation skills

s described in Section 3.3 and integrated as described in Sec-
ion 4.3. For determining the need for supplies, we still use the
revious perception skill and can leave it unchanged.
Building upon the previous experiment, this one demonstrates

ow a new task pattern can be added to capture a newly defined
kill. Based on the constraint specified in the new task, the obser-
ation of a supply need requires to first complete the assembly
rocedure and thus, demonstrates both manipulation and naviga-
ion tasks coordinated in the framework. This integration can be
seful when no external assembly routine is required and enables
closer coordination of the agents.

P. Schillinger, S. García, A. Makris et al. Robotics and Autonomous Systems 145 (2021) 103866
Fig. 14. Example situations during Experiment III. The assembly station is
explicitly modeled by a pick-and-place routine (left) and only when done, the
human worker may request supplies (right).

Experiment IV: Dynamic production assistance

In the final experiment, we combine the previous experi-
ments and demonstrate how the proposed multi-robot frame-
work enables the implementation of a robotic assistance system
in production scenarios.

Intuitively, combining the previous tasks should be simple.
Since the required skill implementations and individual robot
models are already defined, formulation of a task that requires
all of the previous capabilities is indeed just a concatenation of
the respective task patterns:

φ4 = φd(A1, F) ∧ φd(A2, F) ∧ φd(A3, F)
∧ φs(A1, s1) ∧ φs(A1, s2)
∧ φa(A1)

Still, while minimal user effort is required to specify the task, the
complexity of the problem increases significantly, in particular
the planning complexity. We discuss our experience of running
this integration experiment in detail in Section 8.

8. Results & learnings

A video that includes experiments at both locations is available
online.8 In the following, we discuss the results of the experi-
ments and evaluate the suitability of the proposed framework to
address the motivating problems.

8.1. Engineering effort

A core motivation for the proposed framework is to provide an
engineering tool to represent re-usable skills developed for robots
(c.f. Problem 1) and parametrizable task patterns from which an
application engineer can choose (c.f. Problem 2).

Indeed, when realizing the experiments, only minimal effort
specific to the experiments was required to define a new scenario.
Overall, the same workflow was possible across all experiments,
despite their different application focus:

(1) Implement and model the skills of the robot, independent
of the specific task, as well as possible task patterns.

(2) Compose and parametrize task patterns for the specific
task, independent of the particular robot skills.

This clear separation alone already simplified the implementa-
tion significantly and indicates solving Problems 1 and 2 for the
considered multi-robot coordination.

Then, using the presented framework, the selection and ex-
ecution of skills according to the specification could be achieved
completely autonomously (c.f. Problem 3). When using the frame-
work with a fixed system as opposed to a number of different
single experiments like in this paper, only the above Step (2)

8 See https://www.youtube.com/watch?v=GdMmyrzIP8o.
12
Table 1
Variations of non-deterministic events (table columns) during the iterations
(table rows) of the mission shown in Fig. 15. For each event, ‘‘C’’ denotes the
robot which checked the status and ‘‘D’’ denotes the robot which performed the
delivery if required. Times denote respective completion.
Product at A1 Product at A2 Product at A3 Supplies

station busy station busy station busy need s2
C: M1 (2:04) C: M1 (1:20) C: M2 (1:31) C: AS (1:09)
D: – D: – D: – D: M2 (3:09)

station busy station busy station busy need s2
C: M1 (3:19) C: M1 (3:43) C: M2 (4:22) C: AS (3:27)
D: – D: – D: – D: M2 (5:32)

product ready product ready station busy need s1
C: M2 (6:07) C: M1 (5:36) C: M2 (7:27) C: AS (5:47)
D: M1 (10:08) D: M1 (8:21) D: – D: M2 (9:39)

product ready station busy station busy no demand
C: M2 (10:42) C: M2 (10:27) C: M1 (11:01) C: AS (10:20)
D: M2 (12:03) D: – D: – D: –

station busy station busy station busy no demand
C: M1 (12:49) C: M2 (13:10) C: M1 (12:06) C: AS (12:18)
D: – D: – D: – D: –

station busy station busy station busy need s2
C: M1 (13:48) C: M2 (13:45) C: M1 (14:16) C: AS (13:41)
D: – D: – D: – D: M1 (15:20)

is needed when changing the tasks. This requires significantly
less expert knowledge when composing a new task from a set
of application-specific task patterns.

Finally, the autonomous skill selection procedure and the
adaptive collaboration resulting from it effectively removed the
need for programming specific tasks for the robots and, instead,
enabled to specify on a high level the goal that should be achieved
by the team. Based on this experience, we conclude that the
framework proved to be a tremendous help as engineering tool
in realizing the described use cases and, in terms of engineering,
scales well to defining larger applications.

8.2. Experiment discussion

In the following, we take a detailed look at the resulting
behavior of the system in order to better understand the quality
of solutions. This indicates the sort of use cases that can be
achieved well with the proposed framework and the difficulties
that may become apparent in large-scale applications.

To evaluate performance in detail, Fig. 15 visualizes the skills
that have been executed by the two mobile robots (Mobile 1 and
Mobile 2) and the assembly station robot (Assembly) during a run
of Experiment IV of around 15 min of autonomous operation.
In addition, Table 1 shows the observed events and respective
task assignments during this run of the experiment. The given
task is repetitive and it can be seen that execution indeed varies
significantly in the shown six iterations depending on the trans-
portation and supply needs observed during operation. Online
adaptation and task allocation results from the auctions between
the robots.

We briefly highlight two important aspects that can be ob-
served during the execution of this experiment. First, at marker
1⃝ and subsequent iterations, the Assembly robot starts again to
execute the assembly sequence that we require before observing
a supply demand, even though the demand has already been
determined for the current iteration. This is due to the skill
selection (see Section 6.2) that seamlessly considers the next
iterations for task allocation to let the robots prepare future
required tasks in parallel as long as no current constraints are vio-
lated. Consequently, the robot can then check the supply demand
immediately in the next iteration.

https://www.youtube.com/watch?v=GdMmyrzIP8o

P. Schillinger, S. García, A. Makris et al. Robotics and Autonomous Systems 145 (2021) 103866

s
(
o
r
(
s
r

d
t
T
a
T
a
t
t
⃝

u
c
a
a
b
t
c
m
w
d
s

t
b
t
t
c
p
d
p
d
i
I
c

a
d
t
e
i
a
c

Fig. 15. Visualization of the skills that each of the mobile robots as well as the manipulator at station A1 executed during one real-world run of Experiment IV with
a duration of around 15 min of autonomous operation. Time progresses from left to right, dashed lines denote completion of one mission iteration at the stated
time. Data has been obtained by monitoring the ROS communication between the Policy Layer and the Skill Layer for each of the robots.
8

i
l
c
a

d
o
L
s
H
a
e
a
C
s

l
c
o
t
w
a
t
p
t
m
u
i
p
e

w
p
r
f
u
e
u
t
w

c
i
t
c
r
a

Second, at marker 2⃝, the mobile robots checked assembly
tations A1 and A2 and both detected a transportation request
c.f. Table 1, 3rd row). However, only Mobile 1 directly carries
ut the transportation task while Mobile 2 instead checks the
emaining station A3, which is further away from the other two
c.f. Fig. 11(b)). Afterwards, Mobile 2 can deliver the required
upplies and Mobile 1 also transports the other finished product,
esulting in an effective parallelization of the tasks.

Still, there are also some limitations and trade-offs that showed
uring the experiments. For example, it can be observed in Fig. 15
hat several parts of the execution are not fully parallelized.
his has multiple reasons. First, needs for transportation that
re detected late during an iteration can cause a bottleneck.
his is indeed considered by the skill selection procedure, which
ccounts for probabilistic task outcomes, and it can be observed
hat in most iterations, observation tasks are assigned before
ransportation, even if some needs are already known (c.f. marker
2). Second, our implementation of the communication phase for
pdating the task allocation requires that all robots finished their
urrent policy action. This is no issue if the individual actions
re fine-grained, but is visible here in particular for the coarse
ssembly sequence steps. In a commercial application, this should
e implemented to happen in parallel, which is possible with
he theoretical framework. Finally, we observed that communi-
ation via wifi often added notable latency (c.f. the gap after
arker 2⃝). To reduce this effect, we limited communication
hen one sub-task was close to being finished, i.e., has a very low
uration estimate. Consequently, short tasks are often executed
equentially.
In terms of efficiency, we measured that each agent sent a

otal of 82 bids during auctions in the experiment in Fig. 15. Each
id typically requires to evaluate multiple policies to estimate
he expected duration and the resulting state distribution. Thus,
o improve the planning efficiency, policies of the agents were
ached and re-used whenever suitable, as enabled by the used
olicy planner. After two days of experiments including the one
iscussed above, the cache for all robots together contained 245
olicies with a total file size of around 200 MB. The number of
ifferent policies mainly depends on the application complex-
ty and variations of task-level observations during execution.
n practice, for long-term applications, we suggest pruning the
ached policies to only store the most frequently used ones.
One consequence of the efficient and decentralized auctioning

pproach for task allocation, however, is the limited ability to
etect task infeasibility. The agents repeatedly coordinate up to
he minimally required horizon for assigning at least one task to
ach agent, which can be significantly shorter than one complete
teration of the task. In contrast, a centralized approach to plan in
dvance would detect such infeasibility, however, computational

omplexity would be significantly higher. e

13
.3. Scalability & future work

Scaling to real-world applications, like factory automation and
ndoor logistics, with tens of robots and tasks with a significantly
arger number of parametrized specification patterns is mainly a
hallenge for two parts in the system: initial model construction
nd the repetitive skill selection.
Definition of the skill models is done for each robot indepen-

ently, thus it is not influenced by the number of robots. The
nly challenge for model construction is the complexity of the
TL specification and it is well-known that LTL model checking
cales worst-case exponentially in the number of propositions.
owever, the use of task patterns provides the potential for
significantly more efficient model construction because rep-

titions of the formula structure can be exploited and indeed,
model template can be pre-computed for each pattern once.
ombination of these templates is significantly more efficient and
uggests a promising scalability.
For each skill selection, the number of auction rounds scales

inearly with the number of agents and the number of sub-task
hoices. While this is much worse for the exponential complexity
f a centralized planning approach, we expect it to become no-
iceable at some scale also for the proposed approach. In other
ords, there is generally a trade-off between the degree of par-
llel execution and a less extensive coordination phase for future
ask assignments. To address this, variations of the skill selection
rocedure, more specifically, termination conditions for the auc-
ion phase, should be considered in practical applications. This
ay include skipping of full auction rounds in cases when no
nexpected observations have been made and only re-allocate
n cases where required. This formal knowledge exists in the
lanning model since expected outcomes can be obtained from
ach skill in the MDP formalism.
For future work, balancing the described repetitive auctions

ith some centralized initial planning can be promising, e.g., by
erforming a number of formal checks before passing a task to the
obots. This is encouraged by the computational benefits obtained
rom caching of policies and models for task patterns. In partic-
lar, the repetitive nature of a task suggests the importance of
fficient long-term behavior. Still, in our practical experience, the
npredictable evolution of the environment limits the transfer of
heoretical guarantees to practice, so it remains subject to future
ork to find a reasonable balance.
Finally, an important practical direction for future work con-

erns increased robustness against communication failure. As
ndicated by the observed wifi issues, communication between
he different robots is a reliability bottleneck in practical appli-
ations. While this can be mitigated to some degree by using a
obust fleet management instead of a ROS multi-master network,
lso the theoretical framework should be improved in this regard,
.g., by considering lost agents.

P. Schillinger, S. García, A. Makris et al. Robotics and Autonomous Systems 145 (2021) 103866

9

r
a
f
t
e
t
n
m
e
t
t
t
a
f
p
p

p
i
r
b
a
d
l
b
a

D

c
t

A

I
t
f
p
B
p
e

A

o

R

. Conclusions

The paper presents and discusses a framework for multi-
obot collaboration in applications inspired by typical industrial
utomation tasks. As enabled by the pattern-based task speci-
ication, non-expert users are able to instruct a heterogeneous
eam of robots with a set of application-specific, temporally-
xtended tasks. The use of Linear Temporal Logic as the formalism
o express tasks and the combination with online auctions for dy-
amic task allocation allows for an automated decomposition and
eaningful collaboration between the different robots. When-
ver new online observations are obtained, the re-allocation of
asks ensures that the team always follows the specified reac-
ions and incorporates possible additional tasks. The basis for
his automated execution from a goal specification is given by
skill formalism using Markov Decision Processes. This allows

or a common abstraction of various robot capabilities and we
resent the integration of different state-of-the-art methods in
erception, navigation, and manipulation.
To summarize our learnings from the conducted case study ex-

eriments, a few remaining challenges have been identified. This
ncludes (1) improved robustness to communication issues and
untime failures of agents, (2) a careful and principled trade-off
etween extensive pre-planning and reactivity during execution,
s well as (3) satisfaction guarantees and completeness of the
istributed, receding horizon task allocation. Despite these chal-
enges, our framework proved to be useful in practice and may
e transferred to different robot capabilities, task patterns, and
llocation algorithms in the future.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This work was supported by the EU H2020 Research and
nnovation Programme under GA No. 731869 (Co4Robots). The au-
hors would like to thank all members of the project consortium
or their support in realizing the presented demonstrations. In
articular, thanks goes to PAL Robotics for providing the two TIAGo
ases as well as to Bosch Corporate Research and PAL Robotics for
roviding the infrastructure for preparation and execution of the
xperiments.

ppendix A. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.robot.2021.103866.

eferences

[1] A. Farinelli, E. Zanotto, E. Pagello, et al., Advanced approaches for multi-
robot coordination in logistic scenarios, Robot. Auton. Syst. 90 (2017)
34–44.

[2] H. Wang, W. Chen, J. Wang, Coupled task scheduling for heterogeneous
multi-robot system of two robot types performing complex-schedule order
fulfillment tasks, Robot. Auton. Syst. (2020) 103560.

[3] P. García, P. Caamaño, R. Duro, F. Bellas, Scalable task assignment for
heterogeneous multi-robot teams, Int. J. Adv. Robot. Syst. 10 (2) (2013)
105.

[4] P. Schillinger, M. Bürger, D. Dimarogonas, Simultaneous task allocation and
planning for temporal logic goals in heterogeneous multi-robot systems,
Int. J. Robot. Res. 37 (7) (2018) 818–838.

[5] Y. Carreno, R. Petrick, Y. Petillot, Towards long-term autonomy based on
temporal planning, in: Annual Conference Towards Autonomous Robotic
Systems, Springer, 2019, pp. 143–154.
14
[6] C. Menghi, S. García, P. Pelliccione, J. Tumova, Multi-robot LTL planning un-
der uncertainty, in: International Symposium on Formal Methods, Springer,
2018, pp. 399–417.

[7] P. Schillinger, M. Bürger, D. Dimarogonas, Improving multi-robot behavior
using learning-based receding horizon task allocation, in: Robotics: Science
and Systems, RSS, 2018.

[8] D. Perico, T. Homem, A. Almeida, I. Silva, C. Vilão, V. Ferreira, R. Bianchi,
Humanoid robot framework for research on cognitive robotics, J. Control
Autom. Electr. Syst. 29 (4) (2018) 470–479.

[9] W. Sheng, A. Thobbi, Y. Gu, An integrated framework for human–robot
collaborative manipulation, IEEE Trans. Cybern. 45 (10) (2014) 2030–2041.

[10] L. Rozo, M. Guo, A. Kupcsik, M. Todescato, P. Schillinger, M. Giftthaler, M.
Ochs, M. Spies, N. Waniek, P. Kesper, M. Bürger, Learning and sequencing
of object-centric manipulation skills for industrial tasks, in: IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems, IROS, 2020.

[11] K. Charalampous, I. Kostavelis, A. Gasteratos, Robot navigation in large-
scale social maps: An action recognition approach, Expert Syst. Appl. 66
(2016) 261–273.

[12] N. Hawes, C. Burbridge, F. Jovan, L. Kunze, B. Lacerda, L. Mudrova, J. Young,
J. Wyatt, D. Hebesberger, T. Kortner, et al., The strands project: Long-
term autonomy in everyday environments, IEEE Robot. Autom. Mag. 24
(3) (2017) 146–156.

[13] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A.
Ng, ROS: An open-source robot operating system, in: ICRA Workshop on
Open Source Software, Vol. 3, Kobe, Japan, 2009, p. 5.

[14] I. Malavolta, G. Lewis, B. Schmerl, P. Lago, D. Garlan, How do you
architect your robots? State of the practice and guidelines for ROS-based
systems, in: Proceedings of the 42nd International Conference on Software
Engineering: Software Engineering in Practice, 2020.

[15] A. Tiderko, F. Hoeller, T. Röhling, The rOS multimaster extension for
simplified deployment of multi-robot systems, in: Robot Operating System
(ROS), Springer, 2016, pp. 629–650.

[16] I. Osunmakinde, R. Vikash, Development of a survivable cloud multi-robot
framework for heterogeneous environments, Int. J. Adv. Robot. Syst. 11
(10) (2014) 164.

[17] S. Calinon, A tutorial on task-parameterized movement learning and
retrieval, Intell. Serv. Robot. 9 (1) (2016) 1–29.

[18] A. Paraschos, C. Daniel, J. Peters, G. Neumann, Probabilistic movement
primitives, in: Advances in Neural Information Processing Systems, 2013,
pp. 2616–2624.

[19] G. Konidaris, L. Kaelbling, T. Lozano-Perez, From skills to symbols: Learn-
ing symbolic representations for abstract high-level planning, J. Artificial
Intelligence Res. 61 (2018) 215–289.

[20] C. Cassandras, S. Lafortune, Introduction to Discrete Event Systems,
Springer Science & Business Media, 2009.

[21] R. Sutton, D. Precup, S. Singh, Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning, Artif. Intell. 112 (1)
(1999) 181–211.

[22] J. Tsitsiklis, On the control of discrete-event dynamical systems, Math.
Control Signals Systems 2 (2) (1989) 95–107.

[23] C. Amato, G. Konidaris, L. Kaelbling, Planning with macro-actions in de-
centralized pOMDPs, in: International Conference on Autonomous Agents
and Multi-Agent Systems, International Foundation for Autonomous Agents
and Multiagent Systems, 2014, pp. 1273–1280.

[24] X. Liu, J. Fu, Compositional planning in Markov decision processes: Tem-
poral abstraction meets generalized logic composition, in: 2019 American
Control Conference, ACC, IEEE, 2019, pp. 559–566.

[25] V. Ziparo, L. Iocchi, D. Nardi, P. Palamara, H. Costelha, Petri net plans:
A formal model for representation and execution of multi-robot plans,
in: Proceedings of the 7th International Joint Conference on Autonomous
Agents and Multiagent Systems, Vol. 1, International Foundation for
Autonomous Agents and Multiagent Systems, 2008, pp. 79–86.

[26] U. Thomas, G. Hirzinger, B. Rumpe, C. Schulze, A. Wortmann, A new skill
based robot programming language using UML/P statecharts, in: 2013
IEEE International Conference on Robotics and Automation, IEEE, 2013, pp.
461–466.

[27] C. Baier, J.-P. Katoen, Principles of Model Checking, MIT press Cambridge,
2008.

[28] C. Belta, B. Yordanov, E. Gol, Formal Methods for Discrete-Time Dynamical
Systems, Vol. 89, Springer, 2017.

[29] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D.
Weld, D. Wilkins, PDDL-the planning domain definition language, Technical
Report CVC TR-98-003/DCS TR-1165, Yale Center for Computational, 1998.

[30] M. Cashmore, M. Fox, D. Long, D. Magazzeni, B. Ridder, A. Carrera, N.
Palomeras, N. Hurtos, M. Carreras, Rosplan: Planning in the robot operating
system, in: Twenty-Fifth International Conference on Automated Planning
and Scheduling, 2015.

[31] Y.-q. Jiang, S.-q. Zhang, P. Khandelwal, P. Stone, Task planning in robotics:
An empirical comparison of PDDL-and ASP-based systems, Front. Inf.
Technol. Electron. Eng. 20 (3) (2019) 363–373.

https://doi.org/10.1016/j.robot.2021.103866
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb1
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb1
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb1
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb1
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb1
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb2
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb2
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb2
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb2
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb2
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb3
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb3
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb3
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb3
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb3
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb4
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb4
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb4
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb4
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb4
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb5
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb5
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb5
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb5
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb5
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb6
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb6
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb6
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb6
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb6
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb8
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb8
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb8
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb8
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb8
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb9
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb9
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb9
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb11
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb11
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb11
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb11
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb11
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb12
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb12
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb12
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb12
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb12
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb12
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb12
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb13
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb13
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb13
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb13
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb13
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb15
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb15
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb15
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb15
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb15
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb16
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb16
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb16
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb16
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb16
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb17
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb17
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb17
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb18
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb18
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb18
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb18
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb18
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb19
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb19
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb19
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb19
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb19
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb20
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb20
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb20
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb21
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb21
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb21
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb21
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb21
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb22
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb22
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb22
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb23
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb23
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb23
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb23
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb23
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb23
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb23
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb24
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb24
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb24
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb24
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb24
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb25
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb25
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb25
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb25
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb25
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb25
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb25
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb25
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb25
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb26
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb26
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb26
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb26
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb26
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb26
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb26
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb27
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb27
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb27
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb28
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb28
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb28
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb29
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb29
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb29
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb29
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb29
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb31
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb31
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb31
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb31
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb31

P. Schillinger, S. García, A. Makris et al. Robotics and Autonomous Systems 145 (2021) 103866
[32] D. Schmidt, Guest editor’s introduction: Model-driven engineering,
Computer 39 (2) (2006) 25–31.

[33] A. Nordmann, N. Hochgeschwender, S. Wrede, A survey on domain-specific
languages in robotics, in: Simulation, Modeling, and Programming for
Autonomous Robots, Springer, 2014, pp. 195–206.

[34] P. Doherty, F. Heintz, D. Landén, A distributed task specification language
for mixed-initiative delegation, in: International Conference on Principles
and Practice of Multi-Agent Systems, Springer, 2010, pp. 42–57.

[35] S. García, P. Pelliccione, C. Menghi, T. Berger, T. Bures, High-level mission
specification for multiple robots, in: Proceedings of the 12th ACM SIGPLAN
International Conference on Software Language Engineering, 2019, pp.
127–140.

[36] A. Ulusoy, S. Smith, X. Ding, C. Belta, Robust multi-robot optimal path
planning with temporal logic constraints, in: International Conference on
Robotics and Automation, ICRA, IEEE, 2012, pp. 4693–4698.

[37] A. Ulusoy, S. Smith, X. Ding, C. Belta, D. Rus, Optimality and robustness
in multi-robot path planning with temporal logic constraints, Int. J. Robot.
Res. 32 (8) (2013) 889–911.

[38] A. Stefanescu, Automatic Synthesis of Distributed Transition Systems (Ph.D.
thesis), Universitaet Stuttgart, 2006.

[39] Y. Chen, X. Ding, A. Stefanescu, C. Belta, Formal approach to the de-
ployment of distributed robotic teams, IEEE Trans. Robot. 28 (1) (2012)
158–171.

[40] M. Puterman, Markov Decision Processes: discrete Stochastic Dynamic
Programming, John Wiley & Sons, 1994.

[41] X. Ding, S. Smith, C. Belta, D. Rus, LTL control in uncertain environments
with probabilistic satisfaction guarantees, IFAC Proc. Vol. 44 (1) (2011)
3515–3520.

[42] M. Lahijanian, S. Andersson, C. Belta, Temporal logic motion planning and
control with probabilistic satisfaction guarantees, IEEE Trans. Robot. 28 (2)
(2012) 396–409.

[43] J. Fu, U. Topcu, Probably approximately correct MDP learning and control
with temporal logic constraints, in: Robotics: Science and Systems, RSS,
2014.

[44] E. Wolff, U. Topcu, R. Murray, Robust control of uncertain Markov decision
processes with temporal logic specifications, in: Conference on Decision
and Control, CDC, IEEE, 2012, pp. 3372–3379.

[45] E. Wolff, U. Topcu, R. Murray, Efficient reactive controller synthesis for a
fragment of linear temporal logic, in: International Conference on Robotics
and Automation, ICRA, IEEE, 2013, pp. 5033–5040.

[46] C.-I. Vasile, V. Raman, S. Karaman, Sampling-based synthesis of maximally-
satisfying controllers for temporal logic specifications, in: 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS, IEEE,
2017, pp. 3840–3847.

[47] X. Ding, A. Pinto, A. Surana, Strategic planning under uncertainties via
constrained markov decision processes, in: International Conference on
Robotics and Automation, ICRA, IEEE, 2013, pp. 4568–4575.

[48] E. Altman, Constrained Markov Decision Processes, Vol. 7, CRC Press, 1999.
[49] A. Mosca, C.-I. Vasile, C. Belta, D. Raimondo, Multi-robot routing and

scheduling with temporal logic and synchronization constraints, in: Pro-
ceedings of the 2019 2nd International Conference on Control and Robot
Technology, 2019, pp. 40–45.

[50] N. Hawes, C. Street, B. Lacerda, M. Mühlig, Multi-robot planning under
uncertainty with congestion-aware models, in: Proceedings of AAMAS
2020, International Foundation for Autonomous Agents and Multiagent
Systems, 2020.

[51] J. Fu, H. Tanner, J. Heinz, Concurrent multi-agent systems with temporal
logic objectives: Game theoretic analysis and planning through negotiation,
IET Control Theory Appl. 9 (3) (2015) 465–474.

[52] E. Rublee, V. Rabaud, K. Konolige, G. Bradski, ORB: An efficient alternative
to SIFT or SURF, in: International Conference on Computer Vision, IEEE,
2011, pp. 2564–2571.

[53] M. Lourakis, X. Zabulis, Model-based pose estimation for rigid objects,
Springer, Berlin, Heidelberg, 2013, pp. 83–92.

[54] A. Makris, A. Argyros, Robust 3d human pose estimation guided by filtered
subsets of body keypoints, in: Machine Vision Applications, 2019.

[55] P. Vlantis, C. Vrohidis, C. Bechlioulis, K. Kyriakopoulos, Robot navigation in
complex workspaces using harmonic maps, in: International Conference
on Robotics and Automation, ICRA, IEEE, 2018, pp. 1726–1731.

[56] C. Rösmann, F. Hoffmann, T. Bertram, Integrated online trajectory planning
and optimization in distinctive topologies, Robot. Auton. Syst. 88 (2017)
142–153.

[57] J. Kuffner, S. LaValle, Rrt-connect: An efficient approach to single-query
path planning, in: Proceedings 2000 ICRA. Millennium Conference. IEEE In-
ternational Conference on Robotics and Automation. Symposia Proceedings
(Cat. No. 00CH37065), Vol. 2, IEEE, 2000, pp. 995–1001.

[58] D. Coleman, I. Sucan, S. Chitta, N. Correll, Reducing the barrier to entry
of complex robotic software: A moveit! case study, 2014, arXiv preprint
arXiv:1404.3785.
15
[59] P. Tajvar, A. Varava, D. Kragic, J. Tumova, Robust motion planning for non-
holonomic robots with planar geometric constraints, in: The International
Symposium on Robotics Research October 6–10, 2019, Hanoi, Vietnam,
2019.

[60] C. Papadimitriou, K. Steiglitz, Combinatorial Optimization: aLgorithms and
Complexity, Courier Corporation, 1998.

[61] W. Ren, D. Dimarogonas, Dynamic quantization based symbolic abstrac-
tions for nonlinear control systems, in: IEEE Conference on Decision and
Control, IEEE, 2019, pp. 4343–4348.

[62] P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic
Approach, Springer Science & Business Media, 2009.

[63] P. Schillinger, M. Bürger, D. Dimarogonas, Hierarchical LTL-Task MDPs for
Multi-Robot Coordination through Auctioning and Learning, 2019.

[64] C. Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, T. Berger, Specification
patterns for robotic missions, IEEE Trans. Softw. Eng. (2019) 1.

[65] C. Menghi, C. Tsigkanos, T. Berger, P. Pelliccione, PsALM: Specification
of dependable robotic missions, in: Proceedings of the 41st International
Conference on Software Engineering: Companion Proceedings, IEEE Press,
2019, pp. 99–102.

[66] S. García, P. Pelliccione, C. Menghi, T. Berger, T. Bures, PROMISE: High-
level mission specification for multiple robots, in: Proceedings of the 42nd
International Conference on Software Engineering Companion, ICSE’20
Companion, 2020.

[67] M. Colledanchise, Behavior Trees in Robotics (Ph.D. thesis), KTH Royal
Institute of Technology, 2017.

[68] P. Schillinger, S. Kohlbrecher, O. von Stryk, Human-Robot Collabora-
tive High-Level Control with Application to Rescue Robotics, in: IEEE
International Conference on Robotics and Automation, 2016.

Philipp Schillinger is currently a research scientist
at the Bosch Center for Artificial Intelligence with
research interests to make autonomous robots more
intelligent and cooperative for improved human inter-
action. He received his B.Sc. (2013) and M.Sc. (2015)
degree in Electrical Engineering from TU Darmstadt,
Germany, as well as a Ph.D. (2019) degree from KTH
Royal Institute of Technology, Sweden. During his stud-
ies, he participated at multiple robot competitions
including the DARPA Robotics Challenge and Robocup.
In 2015, he released the widely used open-source

behavior engine FlexBE for ROS.

Sergio García is currently a Ph.D. student at the Uni-
versity of Gothenburg (Sweden). His main research
interests are in the intersection between robotics
and software engineering, striving to conceive well-
engineered processes to help developers and users
to create robotic applications. He received his B.Sc.
(2013) and M.Sc. (2016) degree in Electronics Engineer-
ing from the University of Alcalá, Spain. His current
research is involved with the Co4Robots H2020 EU
project.

Alexandros Makris (m) is currently a post-doctoral
researcher at ICS-FORTH. From 2010 to 2014 he was
associate researcher at INRIA Grenoble - Rhone-Alpes.
He obtained his Ph.D. in Computer Science from the
Department of Informatics of the University of Athens
in 2010. He holds a Diploma in Electrical and Computer
Engineering from the National Technical University
of Athens. His main research interests are computer
vision, perception for robotics, probabilistic models,
intelligent vehicles, and remote sensing.

Konstantinos Roditakis is a Ph.D. student of Computer
Science at the Computer Science Department (CSD),
University of Crete (UoC) and member of Computa-
tional Vision and Robotics Laboratory (CVRL) at the
Institute of Computer Science (ICS), Foundation for
Research and Technology-Hellas (FORTH) in Heraklion,
Crete, Greece. He received a B.Sc. (2014) and M.Sc.
degree (2017) in Computer Science from CSD-UoC. His
current research interests fall in the areas of com-
puter vision and machine learning, pose estimation and
fine-grained analysis of human activities. He is also

interested in applications of computer vision in the fields of robotics and virtual
reality.

http://refhub.elsevier.com/S0921-8890(21)00151-2/sb32
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb32
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb32
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb33
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb33
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb33
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb33
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb33
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb34
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb34
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb34
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb34
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb34
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb36
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb36
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb36
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb36
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb36
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb37
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb37
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb37
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb37
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb37
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb38
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb38
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb38
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb39
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb39
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb39
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb39
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb39
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb40
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb40
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb40
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb41
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb41
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb41
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb41
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb41
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb42
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb42
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb42
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb42
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb42
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb44
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb44
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb44
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb44
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb44
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb45
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb45
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb45
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb45
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb45
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb46
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb46
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb46
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb46
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb46
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb46
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb46
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb47
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb47
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb47
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb47
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb47
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb48
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb50
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb50
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb50
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb50
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb50
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb50
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb50
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb51
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb51
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb51
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb51
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb51
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb52
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb52
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb52
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb52
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb52
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb53
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb53
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb53
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb54
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb54
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb54
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb55
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb55
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb55
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb55
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb55
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb56
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb56
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb56
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb56
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb56
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb57
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb57
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb57
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb57
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb57
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb57
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb57
http://arxiv.org/abs/1404.3785
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb60
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb60
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb60
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb61
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb61
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb61
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb61
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb61
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb62
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb62
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb62
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb63
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb63
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb63
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb64
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb64
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb64
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb65
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb65
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb65
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb65
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb65
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb65
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb65
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb67
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb67
http://refhub.elsevier.com/S0921-8890(21)00151-2/sb67

P. Schillinger, S. García, A. Makris et al. Robotics and Autonomous Systems 145 (2021) 103866

j
b
f

Michalis Logothetis received a Diploma in Electrical
and Computer Engineering from National Technical
University of Athens (NTUA) in 2016 and is currently
pursuing a Ph.D. in Mechanical Engineering at the same
university. His main research interests involve motion
planning and control for cooperative manipulation and
transportation tasks using heterogeneous multi-robotic
systems (mobile or static manipulators and humans).
He has participated as a researcher in EU-funded and
National robotics projects.

Konstantinos Alevizos received a Degree in Physics
from National and Kapodistrian University of Athens
in 2016 and a MS Degree in Automation Systems
from National Technical University of Athens (NTUA)
in 2018. He is currently pursuing a Ph.D. in Mechanical
Engineering at NTUA. His main research interests focus
on motion planning and interaction control for coop-
erative human–robot systems. He has participated as a
researcher in EU-funded and National robotics projects.

Wei Ren received his B.Sc. degree from Hubei Univer-
sity, China, and his Ph.D. degree from the University of
Science and Technology of China, China, in 2011 and
2018. He was a visiting student at the University of
Melbourne, Victoria, Australia. Currently, he is a post-
doctoral fellow at KTH Royal Institute of Technology,
Stockholm, Sweden. His research interests include net-
worked control systems, nonlinear systems, symbolic
abstraction, multi-agent systems and hybrid systems.

Pouria Tajvar received the B.Sc. degree in electrical
engineering from the Ferdowsi University of Mashhad
in 2015 and M.Sc. Degree in automation and control
engineering from the Politecnico di Milano in 2017. He
is currently pursuing the Ph.D. degree in the robotics,
perception, and learning division (RPL) at the KTH royal
institute of technology under the supervision of Prof.
Jana Tumova. His research interests are in data-driven
control synthesis and primitive-based motion planning.

Patrizio Pelliccione (male) is an Associate Professor
at DISIM - University of L’Aquila and an Associate
Professor at the Department of Computer Science and
Engineering at Chalmers | University of Gothenburg.
He got his Ph.D. in 2005 at the University of L’Aquila
(Italy) and from February 1, 2014 he is Docent in
Software Engineering, title given by the University of
Gothenburg. His research topics are mainly in soft-
ware engineering, software architectures modeling and
verification, autonomous systems, and formal methods.
He has co-authored more than 120 publications in

ournals and international conferences and workshops in these topics. He has
een on the program committees for several top conferences, he is a reviewer
or top journals in the software engineering domain, and he organized as
16
program chair international conferences like ICSA2017 and FormaliSE 2018. He
is very active in European and National projects. He is the PI for Co4Robots
H2020 EU project for the University of Gothenburg. In his research activity he
has collaborated with several industries such as Volvo Cars, Volvo AB, Erics-
son, Jeppesen, Axis communication, Systemite AB, Thales Italia, Selex Marconi
telecommunications, Siemens, Saab, TERMA, etc. More information is available
at http://www.patriziopelliccione.com.

Antonis Argyros (m) is a Professor of Computer
Science at the Computer Science Department (CSD),
University of Crete (UoC) and a researcher at the
Institute of Computer Science (ICS), Foundation for
Research and Technology-Hellas (FORTH) in Heraklion,
Crete, Greece. He received a B.Sc. degree in Computer
Science (1989) and a M.Sc. degree in Computer Science
(1992), both from the Computer Science Department,
University of Crete. On July 1996, he completed his
Ph.D. on visual motion analysis at the same Depart-
ment. His current research interests fall in the areas of

computer vision and pattern recognition.

Kostas J. Kyriakopoulos received a Diploma in Me-
chanical Engineering from NTUA, in 1985 and the MS
& Ph.D. in Electrical, Computer & Systems Engineering
(ECSE) from Rensselaer Polytechnic Institute (RPI), Troy,
NY in 1987 and 1991, respectively. He did research
at the NASA Center for Intelligent Robotic Systems
and he was an Assistant Professor at ECSE-RPI and
the New York State Center for Advanced Technology
in Automation and Robotics. Since 1994 he has been
with the Control Systems Laboratory of the Mechanical

Engineering Department at NTUA, Greece, where he currently serves as a
Professor and Director for the Control Systems Lab. His current interests are
in the area of Nonlinear Control Systems applications in Sensor Based Motion
Planning & Control of multi-Robotic Systems: Manipulators & Vehicles (Mobile,
Underwater and Aerial) and Micro-& Bio-Mechatronics.

Dimos V. Dimarogonas was born in Athens, Greece, in
1978. He received the Diploma in Electrical and Com-
puter Engineering in 2001 and the Ph.D. in Mechanical
Engineering in 2007, both from the National Technical
University of Athens (NTUA), Greece. Between May
2007 and March 2010, he held postdoctoral positions at
KTH Royal Institute of Technology, Stockholm, Sweden
and at LIDS, MIT, Boston, USA. He is currently a Pro-
fessor at the Division of Decision and Control Systems,
School of EECS, at the KTH Royal Institute of Technol-
ogy. His current research interests include Multi-Agent

Systems, Hybrid Systems and Control, Robot Navigation and Networked Control.
He serves in the Editorial Board of Automatica and the IEEE Transactions on
Control of Network Systems and is a Senior Member of the IEEE. He received an
ERC Starting Grant from the European Commission for the proposal BUCOPHSYS
in 2014 and was awarded a Wallenberg Academy Fellow grant in 2015.

http://www.patriziopelliccione.com

	Adaptive heterogeneous multi-robot collaboration from formal task specifications
	Introduction
	Problem statement
	Framework overview

	Related work
	Skill formulation
	Task specification
	Cooperative task execution

	Preliminaries: Robot capabilities
	Perception capabilities
	Multiple rigid objects detection and tracking
	Human body pose estimation
	Gestures recognition

	Navigation capabilities
	Global path planner
	Local path planner

	Manipulation capabilities
	Dynamical modeling of the arm
	Abstraction-based control design

	Skill formulation
	Perception skills
	Navigation skills
	Manipulation skills

	Task specification
	``Check supplies'' pattern
	``Check and deliver'' pattern

	Cooperative task execution
	Distributed task model
	Repetitive skill selection
	Adaptive collaboration

	Case studies
	Software description
	Hardware description
	Workspace description
	Experiments
	Experiment I: Distribution of Collaborative Tasks
	Experiment II: Specification of Human–Robot Interaction
	Experiment III: Integration of Assembly Routines
	Experiment IV: Dynamic Production Assistance

	Results & learnings
	Engineering effort
	Experiment discussion
	Scalability & future work

	Conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References

