
Distributed Model Based
Event-Triggered Control for

Synchronization of Multi-Agent Systems

Davide Liuzza ∗ Dimos V. Dimarogonas ∗∗
Mario di Bernardo ∗ Karl H. Johansson ∗∗

∗Department of Electrical Engineering and Information Technology,
University of Naples Federico II, Italy,

{davide.liuzza,mario.dibernardo}@unina.it.
∗∗ School of Electrical Engineering, Royal Institute of Technology

(KTH), Stockholm, Sweden, {dimos,kallej}@kth.se.

Abstract: This paper investigates the problem of event-based control for the synchronization
of networks of nonlinear dynamical agents. A distributed model based approach able to
guarantee that all the agents converge to an adjustable synchronization region is derived. In
such control scheme all the agents use a model of their neighborhood in order to generate
triggering instants in which the local controller is updated and, if needed, local information is
broadcasted to neighboring agents. The existence of a minimum lower bound between inter-event
times is proven both for broadcasted information as well as for control signal updating, thus
allowing implementation of the proposed strategy in applications where both the communication
bandwidth and the maximum updating frequency of actuators are critical.

1. INTRODUCTION

The problem of controlling a large scale multi-agent system
in order to reach a cooperative behaviour has been widely
exploited in literature. In general, the problem is to design
a distributed control law able to coordinate an ensemble
of N interacting dynamical systems which communicate
over a network of interconnections, see for example Boc-
caletti et al. [2006]. In particular, referring to this general
problem, synchronization of dynamical systems has been
investigated in Boccaletti et al. [2006], DeLellis et al.
[2010], Zhao et al. [2011] as a paradigm for more specific
behaviours like consensus algorithms see Olfati-Saber and
Murray [2004] and platooning and formation control, see
Arcak [2007], Dimarogonas and Kyriakopoulos [2008].
Distributed control algorithms able to solve the cited
problems have been, in general, realized in a continuous
time fashion. However, continuous time control laws for
such kind of networks are typically not easy or even not
possible to be implemented in real applications. Indeed, in
a future scenario a large number of dynamical systems
is supposed to communicate over a wireless communi-
cation media, which represents a shared resource with
limited throughput capacity. Classical time-driven con-
trol in Åström and Wittenmark [1997] require sampling
the systems at a pre-specified time interval. This creates
both the problem of synchronization of sampling instants
among the interconnected systems and the simultaneous
transmission of all the information over the network. Con-
versely, an event-triggered approach (see Tabuada [2007])
seems to be a better solution in decentralized control of
multi-agent systems. Indeed, the control is updated only
when an event criterion is satisfied, generally related to the
state of the plant, thus saving computational and hardware

resources. Event-triggered has been successfully developed
for consensus algorithms and for control and synchroniza-
tion of linear dynamical systems. In particular, the case
of consensus among single integrator agents is studied in
Dimarogonas and Johansson [2009], Dimarogonas et al.
[2012] both for a centralized and a decentralized solution.
In Dimarogonas and Johansson [2009], the value of the
control input for each agent is updated when a triggering
condition defined as a function of its and neighbours’ state
is fulfilled. Consensus is then proved while the network is
guaranteed not to reach an undesired accumulation point,
so Zeno behaviour (Johansson et al. [1999]) are excluded.
The case of controlling a network of general linear systems
is addressed in Guinaldo et al. [2011]. Also in this paper
the triggering events are defined for each node thanks to
a function of the error between the current state and the
previous broadcasted value. In the paper also a model-
based solution is proposed, where the control input is
now a continuous time function evaluated at the local
level of each node using its own dynamical model and
the (uncoupled) dynamical models of the neighbours. In
this case for each node an event is generated any time
the error between the real state and the predicted state
exceeds a certain threshold. A similar idea to the proposed
model-based solution can be found in Demir and Lunze
[2012] where synchronization of linear dynamical agents is
studied. Also in this case the control signals are continuous
in time while the communication signals are piecewise
constant.
In the current paper we will instead study a novel dis-
tributed event-triggered control scheme able to guaran-
tee synchronization of nonlinear multi-agent systems by
looking at distributed information related to each pair of
connected agents. In particular, we will consider the sce-



nario where each agent is equipped with its own embedded
processor and that can gather only information from a
subset of the agents it directly communicates. Between
each pair of connected agents, relative information of their
state mismatch is considered in order to generate local
events and update the control law. So, differently from
the recent related literature, the event conditions will be
defined on the relative state errors between coupled pairs
of agents, rather than on their own states. The proposed
idea follows a model based approach since each agent
knows the dynamical model of its neighbours and pre-
dicts their state evolutions between any two consecutive
triggering events. We will show how the dynamical agents
achieve synchronization with appropriate event-triggered
policies. Both the control and communication signals will
be piecewise constant and, furthermore, we will also ensure
that the overall switched system does not exhibit Zeno
behaviour. In addition to this, we will also guarantee that
with an appropriate triggering policy that the control law
for each agent will be updated with a lower bound for the
inter-event times.

2. BACKGROUND AND PROBLEM STATEMENT

2.1 Algebraic Graph Theory and Mathematical Background

Given a set of N nodes (also called vertices) N =
{1, 2, . . . , N} and a set of edges E ⊆ N × N , a graph
G(N , E) can be represented by the adjacency matrix A =
A(G) = [aij ] ∈ RN×N , where aii = 0 for all i, and aij = 1,
with i 6= j, if there is an edge between nodes i and j,
i.e. (i, j) ∈ E , while it is aij = 0 otherwise. In the case
of undirected graphs, the matrix A is symmetric and so
aij = aji. When aij 6= 0, for i 6= j, the two nodes i and j
are said to be adjacent or neighbours. Using the adjacency
matrix, we can easily describe the neighbourhood of a
generic node i ∈ {1, . . . , N} as Ni ⊆ N = {j : aij 6= 0},
while we indicate with Ni = |Ni| the number of neighbours
of node i, also called degree of node i.
A path from node i to node j is a sequence of nodes in
the graph starting from i and ending with j such that
consecutive nodes are adjacent.
An undirected graph is said to be connected if for any pair
of nodes i and j there exists a path between them.
The Laplacian matrix L = L(G) ∈ RN×N is defined as
L = ∆ − A, where ∆ is the diagonal matrix of all nodes’
degrees, i.e. ∆ = diag{N1, N2, . . . , NN}. A Laplacian
matrix has at least one zero eigenvalue and in case of
undirected graph all the eigenvalues are real and can be
ordered as 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λN (L). If the graph
is connected, the zero eigenvalue is unique and λ2(L) > 0.
Here we now give the definition of Lipschitz function and
one-sided Lipschitz function, see for instance Agarwal and
Lakshmikantham [1993].
Definition 1. A function f(x) = Rn 7→ Rn is said to be
globally Lipschitz if there exists a constant Lf > 0 such
that ‖f(x)− f(y)‖2 ≤ Lf‖x− y‖2, for all x, y ∈ Rn.
Definition 2. A function f(x) = Rn 7→ Rn is said to be
one-sided Lipschitz if there exists a constant L′f > 0 such
that [f(x)− f(y)]T (x− y) ≤ L′f‖x− y‖2

2, for all x, y ∈ Rn.

Notice that it is immediate to prove that a Lipschitz
function with Lipschitz constant Lf is also one-sided
Lipschitz with the same constant.

2.2 Model-based Event-triggered

In this paper we will considerN identical dynamical agents
of the form:
ẋi = f(t, xi) + ui xi, ui ∈ Rn, t ≥ 0, ∀i = 1, . . . , N,

(1)
We aim at guaranteeing a coordinated motion (synchro-
nization) for the systems in (1) by considering a dis-
tributed event-triggered control law. More precisely, as
done in Sun et al. [2009], Zhao et al. [2011], we define
the average trajectory as x̄(t) = 1

N

∑N
j=1 xj(t), and the

synchronization errors as ei(t) = xi(t) − x̄(t), which in
stack form is e(t) =

(
eT

1 , . . . , e
T
N

)T ∈ RnN . We want to
prove the goal of a bounded (or practical) synchronization,
and so that there exists an ε > 0 sufficiently small such
that 1

lim
t→∞

||e(t)||2 ≤ ε. (2)

In order to ensure synchronization between systems in
(1), we imagine the scenario where each agent is able
to exchange information between a subset of the other
agents. The resulting communication network, that here
we suppose bidirectional, can be described by an undi-
rected adjacency matrix A. In other words, if aij 6= 0, there
exists a communication channel between nodes i and j.
Furthermore, we also consider that each agent is equipped
with its own embedded processor able to execute a local
control law based on the prediction of the evolution of its
neighbours. Thanks to this local information, each node
will execute an event-triggered update of its controller. In
particular, in the event-triggered scheme we propose, at
each node i we associate:
(1) {tijk }∞kij=0 : N 7→ [0,+∞) a time sequence of events

on node i referring to information from node j, where
aij 6= 0 and where kij is the index of the sequence
related to the pair (i, j);

(2) {tik}∞ki=0 : N 7→ [0,+∞) a time sequence of the
instants when node i updates its control input ui(t),
where ki is the index of the sequence related to the
updating of ui(t).

In both the cases, for any index kij ∈ N (or ki ∈ N) we
have that tijk ≤ t

ij
k+1 (or tik ≤ tik+1).

For each sequence {tijk }∞kij=0 we introduce the last function
lij(t) : [0,+∞) 7→ N defined as

lij(t) = arg min
kij∈N:t≥tij

k

{
t− tijk

}
.

So, for each time instant t, tijl(t) is the most recent event
occurred to i with respect to j, while with tijl(t)+1 we
indicate the next event.
1 With the symbol (2) we mean that for all ν > 0 there exists a
tν > 0 such that for all t > tν we have that ‖e(t)‖2 ≤ ε + ν. So,
this does not imply that the limit in (2) exists, but we use the same
mathematical notation as in the case of an existing limit due to the
analogy with the eventual boundedness of signal e(t).



Analogously, we define the function li(t) for the sequence
{tik}∞ki=0.

As will be clear in what follows, the last indices lij(t)
and li(t) will be used to generate implicitly the sequences
{tijk }∞kij=0 and {tik}∞ki=0. In particular, borrowing a nota-
tion used for hybrid systems Goebel and Teel [2006], after
an event the counter lij(t) will be updated to lij+ = lij +1,
where by lij

+ we mean the value of lij(t) immediately
after a new event. Analogously for the counter li(t) that
will be updated to li

+ = li + 1. It is worth mentioning
that, although the communication graph is undirected,
events related to coupled pairs (i, j) are, in general, not
synchronous and so tijl(t) 6= tji

l(t). For this reason sequences
{tijk }∞kij=0 and {tji

k }∞kji=0 are, in the general case, different.
We are now ready to write the control input ui(t) for each
i-th system in (1) as the piecewise constant signal

ui(t) = c

N∑
i=1

aijΓeij(tijl(t)) t ∈ [til(t), t
i
l(t)+1), (3)

where c > 0 is a coupling gain, Γ = ΓT > 0 is the inner
coupling matrix and where we define eij(t) = xj(t)−xi(t).
In this case eij(t) is evaluated at the time instant tijl(t).

The control input (3) leads to a diffusively coupled event-
triggered dynamical network of nodes’ dynamics

ẋi(t) = f(t, xi(t)) + c

N∑
i=1

aijΓeij(tijl ), t ∈ [til, til+1) (4)

where here and in what follows we omit the explicit
dependence of lij and li on time. The aim of the paper
is to study under which conditions and under which
sequences of triggering events {tijk }∞kij=0 and {tik}∞ki=0, for
all (i, j) ∈ E , the network (4) guarantees the bounded
synchronization defined in (2).

3. BOUNDED EVENT-TRIGGERED
SYNCHRONIZATION

In this paper we assume exact knowledge of the dynamic
model (1) describing the dynamics of the nodes. Further-
more, each node is supposed to know the initial conditions
of its neighbours (or the value of the state at a specific
time instant, for example at the first trigger). Therefore,
each node i can compute from any event at time tijk the
evolution

ϕf (t− tijk , t
ij
k , xj(tijk )), ∀j ∈ Ni. (5)

The case where exact knowledge of the dynamical model is
not available is more cumbersome and cannot be studied
here due to space limitation. Such case will be presented
later in a journal publication.
Obviously, in order to evaluate (5), node i must also have
information on the current control input uj(t) acting on
each of its neighbours. Later we will present an algorithm
able to guarantee that this information is shared among
nodes. However, we firstly focus on the triggering events
occurring at a generic node i.
For all (i, j) ∈ E we define the trigger error

ẽij(t) := eij(tijl )− eij(t), t ∈ [tijl , t
ij
l+1). (6)

Notice that, as we said before, events referred to node i
with respect to j are, in general, not synchronous with the
events referred to j with respect to i. For this reason, the
pair (i, j) is treated here as an oriented link and in general
ẽij(t) 6= ẽji(t).
For all pairs (i, j), we define the trigger function

pij(t, ẽij(t)) = ‖ẽij(t)‖2 − ςij(t), (7)
where ςij(t) is a continuous-time nonincreasing threshold
function. Then, an event occurs when the following condi-
tion is violated

pij(t, ẽij(t)) < 0. (8)
Using the trigger function, we generate the sequence of
events for each node i ∈ N according to the following
distributed algorithm:
Algorithm 1.

1. Node i broadcasts to its neighbours the triplet
(ti0, xi(ti0), ui(ti0)). This information represents the
first triggering event and allows the nodes j ∈ Ni

to initialize the algorithm;
2. Node i broadcasts the value of its current control

input ui(til);
3. Node i computes the flows in (5) for all its neigh-

bouring nodes j ∈ Ni using the dynamical model
ẋj = f(t, xj(tjl )) + uj(tjl ). Thanks to the evaluation
of the neighbours’ flows, node i can compute the
trigger error (6) and monitor condition (8) for all of
its neighbours;

4. Once condition (8) is violated, say for a certain
node h ∈ Ni, node i updates the value eih(tihl ) to
eih(tihl+1). Then, after the event the counter lih(t) will
be updated to lih

+ = lih + 1. At the same time
the current value ẽih(t = tihl ) will be reset by (6)
evaluated at the new event lih + 1;

5. Node i computes the new control law ui and updates
li

+ = li + 1. Hence, the last updating event of
the controller happens once the new value eih is
considered and, therefore, til = tihl . The control input
takes the value

ui(t) =
N∑

j=1
aijeij(tijl ), t ∈ [til, til+1), (9)

Thus, the new value of the input is held until the next
output trigger of node i;

6. Repeat from step 2.

Note that, as every node that triggers changes its control
input (step 5) and broadcast it to its neighbours (step
6), then all the nodes j ∈ Ni can update their dynamic
model of i taking into account the new input ui(til) and
the current state xi(til) (step 3). As we have already said
in Section 2, the time event tijl , with j generic neighbour
of node i, and the last update event of the control input
til implicitly define the sequences {tijk }∞kij=0 and {tik}∞ki=0.
Remark 1. It is worth to notice that due to the updating
criterion expressed in the step 5, in control input (9) each
eij holds the value from its past event at tijl . So, in general,
tijl 6= tihl , with h, j ∈ Ni being two different neighbours
of node i. On the other hand, due to the symmetry of
the trigger condition expressed by (6)-(7)-(8), if we choose
ςij(t) = ςji(t) then when node i triggers and updates its



control because of the (8) with respect to node j does not
hold anymore, then also node j triggers for the same reason
and we have that tijl = tji

l . This implies the symmetry of
the coupling strengths between any connected pairs (i, j).

Note that step 5 can be substituted with the following
step:

5′. Node i updates li+ = li + 1, so til = tihl and computes
the control law ui using the expression

ui(t) =
N∑

j=1
aijeij(til), t ∈ [til, til+1), (10)

Then, all trigger errors (6) are reset, for all j ∈ Ni.
Basically, once the first trigger occurs, say for ẽih(t), then
not only the current value eih will be updated and the
corresponding trigger error (6) reset, but also all other
values eij with j ∈ Ni.
Remark 2. When using step 5′, all triggers related to
pairs (i, j), with j ∈ Ni, are forced to be synchronous
and, moreover, tijl = tihl for all j, h ∈ Ni. Conversely,
when step 5′ is used at a generic time instant t, we have
eij(t) 6= eji(t). So, considering (10) instead of (9) all eij

are updated at the same time but symmetry of the control
actions between coupled pairs (i, j) is lost.

We denote the algorithm obtained by using step 5′ as
Algorithm 1′. Notice that, both control schemes lead to
piecewise constant communication and control signals. We
now give a bounded synchronization result.
Theorem 3. Let us consider the event-triggered connected
network (4), where the function f(t, x) is Lipschitz contin-
uous with respect to x with Lipschitz constant Lf and let
us considering a coupling gain c such that

Lf − cλ2(L⊗ Γ) < 0. (11)
Let us also consider thresholds functions ςij(t) such that
limt→∞ ςij(t) = ς̄ij , with ς̄ij > 0 for all i, j such that aij 6=
0. Then both Algorithm 1 and Algorithm 1′ guarantee
bounded synchronization of the network. Furthermore, no
Zeno behaviours will occur.

Proof. We will split the proof in two steps. Firstly we
will prove bounded synchronization and then that no Zeno
behaviours occur. Firstly, we rewrite equation (4) as

ẋi(t) = f(t, xi) + c

N∑
i=1

aijΓeij(t) + (12)

c

N∑
i=1

aijΓẽij(t) ∀i = 1, . . . , N.

Step 1. Let us consider the candidate Lyapunov function
V (e(t)) = 1

2e
T e defined in the error space and let us

consider its derivative with respect to time. We obtain

V̇ (e(t)) =
N∑

i=1
eT

i ėi =
N∑

i=1
eT

i f(t, xi)−
N∑

i=1
eT

i
˙̄x−

ceT (L⊗ Γ) e+
N∑

i=1
eT

i

N∑
j=1

aijΓẽij .

Now, taking into account that
∑N

i=1 e
T
i

˙̄x = 0, adding and
subtracting

∑N
i=1 e

T
i f(t, x̄) and using the one-sided Lips-

chitz property in Definition 2, we can write the following
inequality

V̇ ≤ Lfe
T e− ceT (L⊗ Γ)e+ ‖e‖2

√
NNmax‖Γ‖2ς(t),

where Lf is the Lipschitz constant of the function f ,
Nmax ≤ N − 1 is the maximum degree of the graph A
and ς(t) = maxi,j ςij(t). Writing e = aê, where a = ‖e‖2 is
the module of the error and ê = 1

‖e‖2
e is the unitary vector

associated to e, the above inequality can be rewritten as
V̇ (e) ≤ (Lf − cλ2(L⊗ Γ)) a2 +c

√
NNmax‖Γ‖2ς(t)a. (13)

Now, since c is chosen in order to fulfill inequality (11),
then the error trajectory e(t) converges to the invariant
region ‖e(t)‖2 ≤ ε, where

ε = c
√
NNmax‖Γ‖2ς(t)

cλ2(L⊗ Γ)− Lf
, (14)

or, in compact form ε = εςς(t), in order to emphasize that
the value of the bound of the global synchronization error
e(t) depends on ς(t) times a finite positive constant. As
limt→+∞ ς(t) = ς̄ > 0, bounded synchronization is then
ensured.
Step 2. Let us consider the dynamics of the error between
a generic connected pair of nodes (i, h) ∈ E . Such dynamics
can be expressed as ėih(t) = ẋh(t)− ẋi(t) thus,

ėih = f(t, xh) + c

N∑
j=1

ahjΓehj(t) + c

N∑
j=1

ahjΓẽhj(t)−

f(t, xi)− c
N∑

j=1
aijΓeij(t)− c

N∑
j=1

aijΓẽij(t).

Then, we can write

‖ėih‖2 ≤ ‖f(t, xh)− f(t, xi)‖2 + (15)

c

N∑
j=1

ahj‖Γ‖2‖ehj(t)‖2 + c

N∑
j=1

ahj‖Γ‖2‖ẽhj(t)‖2 +

c

N∑
j=1

aij‖Γ‖2‖eij(t)‖2 + c

N∑
j=1

aij‖Γ‖2‖ẽij(t)‖2.

Now, taking into account that f is Lipschitz we have
‖eih(t)‖2 ≤ 2‖e(t)‖2 ≤ 2 sup

t′∈[t,+∞)
‖e(t′)‖2 ≤ 2b̃(t), (16)

where b̃(t) is the nonincreasing piecewise smooth continu-
ous function defined as

b̃(t) =
{
‖e(t)‖2 if ‖e(t)‖2 > εςς(t)
εςς(t) if ‖e(t)‖2 ≤ εςς(t).

(17)

Therefore, we can rewrite inequality (15) as

‖ėih(t)‖2 ≤ 2 [Lf + c‖Γ‖2(Nh +Ni)] b̃(t) + (18)
c‖Γ‖2(Nh +Ni)ς(t),

where Ni and Nh are the degrees of nodes i and h
respectively. Let p1 = 2 [Lf + c‖Γ‖2(Nh +Ni)] and p2 =
c‖Γ‖2(Nh +Ni), at the last trigger event t = tihl we obtain
from (18)

‖ėih(t)‖2 ≤ p1b̃(tihl ) + p2ς(tihl ), ∀t ≥ tihl . (19)



Now, in order to prove that Zeno behaviours do not occur
in the network, we will show that for all triggering instants
tihk there exists a nonzero lower bound τih(tihl ) for the inter-
event time between the last trigger event tihl and the next
tihl+1 for any generic pair (i, h) verifying the condition

tihk+1 − tihk ≥ τih(tihl ).

To do this, let us consider the dynamics of the triggering
error ẽih(t) at time instants t > tihl . Clearly, the following
considerations will be valid not only for the last event
instant tihl but for all instants tihk , since the sequence
{tihk }∞kih=0 is implicitly defined by the sequence of the last
events. We can write

‖ẽih(t)‖2 ≤
∫ t

tih
l

‖ ˙̃eih(s)‖2 ds = (20)∫ t

tih
l

‖ − ėih(s)‖2 ds =
∫ t

tih
l

‖ėih(s)‖2 ds.

Taking into account inequality (19) and considering t =
tihl +τih(tihl ) from the above formula we obtain the nonzero
lower bound

τih(tihl ) = ς̄ih

p1b̃(tihl ) + p2ς(tihl )
. (21)

Remark 3. It is easy to note that Theorem 3 holds both
for Algorithm 1 and for Algorithm 1′ since the proof is
independent from the choice of step 5 or step 5′. Despite
this, since in Algorithm 1′ all eij with j ∈ Ni are updated
at the same time instant til and the corresponding errors ẽij

reset, this leads to a non zero lower bound also between
any two consecutive updating events of the control law.
For this reason, Algorithm 1′ can be implemented in all
applications where criticality on actuators does not allow
to change the control input arbitrarily fast.

Notice that if we suppose different choices for the threshold
functions ςij(t) in the proposed event-triggered strategies,
other goals could be considered, i.e. asymptotic synchro-
nization. However, such study is beyond the scope of the
paper and will be presented elsewhere.

4. NUMERICAL EXAMPLE

In order to show the effectiveness of the strategy proven
in Theorem 3, we consider a network of Chua’s circuits,
see Matsumoto [1984]. The Chua’ system is a well studied
dynamical system and it is often taken in literature as
a paradigm for chaos (de Magistris et al. [2012]) and for
studying synchronization.
Specifically, we consider a connected graph of identical
Chua’s circuits, whose dynamical models ẋi = f(xi) have
expression

ẋi1 = α [xi2 − xi1 − ϕ(xi1)] ,
ẋi2 = xi1 − xi2 + xi3,

ẋi3 = −βxi2,

where, following Matsumoto [1984] we set α = 10, β =
17.30, and where ϕ(xi1) = bxi1 + (a − b)(|xi1 + 1| −
|xi1 − 1|)/2, with a = −1.34, b = −0.73. It is easy to notice
that the vector field of the Chua system is Lipschitz and
an upper bound for the Lipschitz constant is

Lf =

∥∥∥∥∥−α α 0
1 −1 1
0 −β 0

∥∥∥∥∥
2

+ α|a|,

which gives in this case Lf = 34.2.
We simulate a network of five Chua systems with adja-
cency matrix

A =


0 1 0 1 1
1 0 1 1 1
0 1 0 1 0
1 1 1 0 1
1 1 0 1 0

 ,
considering as matrix Γ the identity matrix and using the
coupling strategy proposed in Algorithm 1. In order to
guarantee inequality (11) these data lead to a minimum
coupling c = 13.7.
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Fig. 1. Time evolution of the state components x(2)
i (t) for

the network of Chua systems with static thresholds:
(a) uncoupled case; (b) coupled case.

Simulation in Fig. 1(a) shows the evolution of the uncou-
pled nodes considering random initial conditions in the
domain of the chaotic attractor. From the same initial con-
ditions and coupling the network it is possible to observe
bounded synchronization in Fig. 1(b). Simulations have
been performed applying Algorithm 1, setting an identical
static threshold ςij(t) = ς̄ for all connected pairs (i, j),
with ς̄ = 0.1, and choosing to plot the second state com-
ponents as representative of the whole state. The number
of triggers for each node in time intervals of unitary length
is reported in Tab. 1.



Table 1. Number of triggers in unitary intervals for the network of Chua systems with static
thresholds

[0, 1) s [1, 2) s [2, 3) s [3, 4) s [4, 5) s [5, 6) s [6, 7) s [7, 8) s [8, 9) s [9, 10] s
node 1 32 33 26 25 22 24 18 12 17 28
node 2 35 25 27 39 33 30 29 32 24 38
node 3 29 25 19 22 23 25 20 16 18 21
node 4 32 24 22 27 36 39 27 12 36 35
node 5 15 15 14 21 23 32 30 24 30 22

5. CONCLUSIONS

We presented a model based event-triggered strategy for
practical synchronization of networks of nonlinear dynam-
ical agents. Trigger conditions are defined on the relative
errors between connected pairs of agents.The knowledge
of the dynamical model of the agents and the broadcasted
information of the current value of the piecewise control
signal of each node to its neighbours allow each agent
to compute the dynamical flow of its neighbourhood and
to evaluate the trigger condition. The proposed strategy
guarantees practical synchronization with an adjustable
value of states’ mismatch among the agents. Furthermore,
the Zeno behaviour is excluded. The results of the paper
are supported through a numerical example. The case of
different choices of the threshold functions in order to
achieve asymptotic synchronization and the problem of
robustness to model uncertainties are more cumbersome
tasks and will be presented in a journal paper currently in
preparation.
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