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Abstract

In this paper, we consider the global consensus problem for discrete-time multi-agent systems with input saturation constraints under fixed
undirected topologies. We first give necessary conditions for achieving global consensus via a distributed protocol based on relative state
measurements of the agent itself and its neighboring agents. We then focus on two special cases, where the agent model is either neutrally
stable or a double integrator. For the neutrally stable case, any linear protocol of a particular form, which solves the consensus problem for
the case without input saturation constraints, also solves the global consensus problem for the case with input saturation constraints. For
the double integrator case, we show that a subset of linear protocols, which solve the consensus problem for the case without saturation
constraints, also solve the global consensus problem for the case with input saturation constraints. The results are illustrated by numerical
simulations.

Key words: Global Consensus; Input Saturation Constraints; Multi-Agent Systems

1 Introduction

In recent years, the distributed coordination of a multi-agent
system (MAS) has received substantial attention due to its
wide application areas, including consensus computation
(Tsitsiklis, 1984; Jadbabaie, Lin, and Morse, 2003; Olfati-
Saber and Murray, 2004; Bai, Arcak, and Wen, 2011), syn-
chronization (Wu and Chua, 1995), distributed processing
(Lynch, 1996), and network flow control (Low, Paganini,
and Doyle, 2002; Wen and Arcak, 2004). When it comes
to the consensus problem, each agent has to implement a
distributed protocol based on the limited information about
itself and its neighboring agents.

The design of consensus protocols can be generally divided
into two categories depending on whether the agent mod-
els are continuous-time or discrete-time. Much attention
has been devoted to the continuous-time case. The existing
works here can be categorized into two directions depend-
ing whether the agent models are identical or not. The con-
sensus problem for homogeneous networks (i.e., networks
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where the agent models are identical) has been considered
(e.g., Olfati-Saber and Murray, 2004; Ren and Beard, 2005;
Xiao and Wang, 2008; Scardovi and Sepulchre, 2009; Seo,
Shim, and Back, 2009; Shi and Hong, 2009; Li, Duan, Chen,
and Huang, 2010; Li, Du, and Lin, 2011a; Yu, Chen, and
Cao, 2010; Yang, Roy, Wan, and Saberi, 2011; Seyboth,
Dimarogonas, and Johansson, 2013), while the consensus
problem for heterogenous networks (i.e., networks where
the agent models are non-identical) has been a recent focus
(e.g., Wieland, Sepulchre, and Allgöwer, 2011; Zhao, Hill,
and Liu, 2011; Grip, Yang, Saberi, and Stoorvogel, 2012).
The studies on the discrete-time case are rather limited, but
some results can be found in (e.g., Jadbabaie et al., 2003;
Blondel, Hendrickx, Olshevsky, and Tsitsiklis, 2005; Tuna,
2008; Moreau, 2005; Ren and Beard, 2005; Zhang and Tian,
2009; You and Xie, 2011).

Most consensus literature does not consider the case where
the agents are subject to input saturation. However, in almost
every physical application, the actuator has bounds on its
input, and thus actuator saturation is important to study. The
protocol design for achieving consensus for the case with in-
put saturation constraints is a challenging problem, and only
few results are available for continuous-time agent models
(e.g., Cortés, 2006; Li, Xiang, and Wei, 2011b; Meng, Zhao,
and Lin, 2013; Du, Li, and Ding, 2013; Yang, Stoorvogel,
Grip, and Saberi, 2012a). For the single integrator case, Li
et al. (2011b) showed that any linear protocol based on the
relative state information, which solves the consensus prob-
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lem for the case without input saturation constraints under
fixed directed network topologies, also solves the global
consensus problem in the presence of input saturation con-
straints. Meng et al. (2013) proposed a linear protocol based
on the relative state information to solve the global con-
sensus problem for a MAS with input saturation constraints
under fixed undirected network topologies and time varying
network topologies. Yang et al. (2012a) studied semi-global
regulation of output synchronization for heterogeneous net-
works under fixed directed network topologies.

To the best of the authors’ knowledge, all the existing works
on the consensus problem for a MAS with input saturation
constraints are restricted to continuous-time agent models.
This motivates us to consider the consensus problem for
the case where the agents models are discrete-time, as such
models are relevant for many practical sampled-data sys-
tems. As a first step, in this paper, we assume that the net-
work topology is fixed and undirected. This paper may be
seen as a continuation of the work of Meng et al. (2013). We
extend their continuous-time results for fixed topologies to
a discrete-time setting. The extension is considerable. First,
Meng et al. (2013) considered the leader-follower case while
we consider the leaderless case. Second, we use a completely
new set Lyapunov stability theory argument.

The remainder of the paper is organized as follows. In Sec-
tion 2, some preliminaries and notations are introduced. In
Section 3, we first formulate the global consensus problem
with input saturation constraints, and then give necessary
conditions for achieving global consensus under fixed undi-
rected topologies. In Sections 4 and 5, we consider the case
where the agent model is neutrally stable and a double in-
tegrator, respectively. Simulation examples are presented in
Section 6 followed by conclusions.

2 Preliminaries and Notations

In this paper, we assume that the network topology among
the agents is described by a fixed undirected weighted graph
G = (V ,E ,A ), with the set of agents V = {1, . . . ,N}, the
set of undirected edges E ⊆ V ×V , and a weighted adja-
cency matrix A = [ai j] ∈ RN×N , where ai j > 0 if and only
if ( j, i) ∈ E and ai j = 0 otherwise. In this paper, we also as-
sume that ai j = a ji for all i, j ∈ V , and that there are no self-
loops, i.e., aii = 0 for i ∈ V . The set of neighboring agents
of agent i is defined as Ni = { j ∈ V |ai j > 0}. A path from
node i1 to ik is a sequence of nodes {i1, . . . , ik} such that
(i j, i j+1) ∈ E for j = 1, . . . ,k − 1 in the undirected graph.
An undirected graph is said to be connected if there exists
a path between any pair of distinct nodes.

For an undirected weighted graph G , a matrix L = [ℓ]i j ∈
RN×N with ℓii = ∑N

j=1 ai j and ℓi j =−ai j for j ̸= i, is called
Laplacian matrix associated with graph G . It is well known
that the Laplacian matrix has the property that all the row
sums are zero. If the undirected weighted graph G is con-
nected, then L has a simple eigenvalue at zero with cor-

responding right eigenvector 1 and all other eigenvalues
are strictly positive. All the eigenvalues can be ordered as
0 = λ1 < λ2 ≤ . . .≤ λN ≤ 2∆, where ∆ = maxi∈V ℓii.

Given a matrix A, AT denotes its transpose and ∥A∥ denotes
its induced norm. A symmetric matrix A is positive (nega-
tive) definite if and only if all its eigenvalues are positive
(negative), and is positive (negative) semi-definite if and only
if all its eigenvalues are non-negative (non-positive). We de-
note by A⊗B the Kronecker product between matrices A and
B. For two column vectors a and b of the same dimensions,
a < (≤)b means that each entry of a− b is negative (non-
positive), while a > (≥)b means that each entry of a− b
is positive (non-negative). IN denotes the identity matrix of
dimension N ×N. 1N denotes the column vector with each
entry being 1. For column vectors x1, . . . ,xN , the stacked
column vector of x1, . . . ,xN is denoted by [x1; . . . ;xN ].

3 Problem Formulation

We consider a MAS of N identical discrete-time agents

xi(k+1) = Axi(k)+Bσ(ui(k)), i ∈ V , (1)

where xi(k) ∈ Rn, ui(k) ∈ Rm,

σ(ui(k)) = [σ1(ui,1(k));σ1(ui,2(k)); . . . ;σ1(ui,m(k))],

and each σ1(u) is the standard saturation function

σ1(u) =


1 if u > 1,
u if |u| ≤ 1,
−1 if u <−1.

The only information available for agent i comes from the
network. In particular, agent i receives a linear combination
of its own state relative to that of neighboring agents, i.e.,

ζi(k) = ∑
j∈Ni

ai j(xi(k)− x j(k)).

Our goal is to design distributed protocols ui(k) for i ∈ V
by using ζi(k) to solve the global consensus problem, i.e.,
for any initial conditions xi(0), where i ∈V , limk→∞(xi(k)−
x j(k)) = 0 for all i, j ∈ V .

Each agent is subject to the input saturation constraints.
These nonlinearities make the protocol design for achieving
consensus difficult since we have to guarantee that consensus
is achieved for all initial conditions.

3.1 Necessary Conditions

Assumption 1 The agent model (1) is asymptotically null
controllable with bounded controls (ANCBC), i.e., the pair
(A,B) is stabilizable and all the eigenvalues of the matrix A
are within or on the unit circle.
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Based on the results in Yang, Sontag, and Sussmann (1997)
and Saberi, Stoorvogel, and Sannuti (2012, Section 4.2), we
have the following result.

Proposition 1 A MAS of N agents (1) achieves global con-
sensus via distributed protocols ui(k) = fi(ζi(k),k), i ∈ V ,
only if Assumption 1 is satisfied.

From the saturation literature (e.g., Sussmann, Sontag, and
Yang, 1994; Teel, 1992), it is evident that, in general, we
need to design a nonlinear protocol to solve the global con-
sensus problem. In this paper, we shall concentrate on a lin-
ear protocol

ui(k) = Kζi(k) = K ∑
j∈Ni

ai j(xi(k)− x j(k)), i ∈ V , (2)

as such a protocol may suffice in some cases.

Given a fixed undirected graph and Assumption 1, it follows
from You and Xie (2011, Theorem 3.1) that a network of
N agents (1) in the absence of input saturation achieves
consensus via the protocol (2) if and only if the following
assumption is satisfied.

Assumption 2 The graph G is connected.

This together with Proposition 1 yields the following result.

Proposition 2 A MAS of N agents (1) achieves global con-
sensus via distributed protocols (2) only if Assumptions 1
and 2 are satisfied.

There is limited knowledge regarding which discrete-time
linear time-invariant systems subject to actuator saturation
allow for global stabilization via linear state feedback control
laws. It is known that for some special discrete-time cases,
such as open-loop neutrally stable systems 1 (Bao, Lin, and
Sontag, 2000), and a double integrator (Yang, Stoorvogel,
and Saberi, 2012b), there exist saturated globally stabilizing
linear state feedback control laws. Hence, in the following
sections, we consider the global consensus problem for such
special cases. We show that Assumptions 1 and 2 are also
sufficient for achieving global consensus for these cases by
explicitly specifying the matrix K for (2).

4 Neutrally Stable Agent Model

In this section, we consider the case where the agent model
(1) is open-loop neutrally stable.

1 A discrete-time system is said to be open-loop neutrally stable
if all its open-loop poles are within or on the unit circle with those
on the unit circle being simple.

Under Assumption 1, there exists a non-singular state trans-
formation T−1, such that

A = T−1

[
Ac 0

0 As

]
T, B = T−1

[
Bc

Bs

]
,

where AT
cAc = I, As is Schur stable (i.e., all its eigenvalues are

within the unit circle), and the pair (Ac,Bc) is controllable.

As shown in You and Xie (2011), the asymptotically stable
modes can be ignored since we can set the corresponding
gain matrix to zero. Thus, without loss of generality, we
make the following assumption in this section.

Assumption 3 ATA = In and the pair (A,B) is controllable.

Under Assumption 3, controllability of the pair (A,B) is
equivalent to stabilizability of the pair (A,B).

Consider the following control law

ui(k) =−εBTA ∑
j∈Ni

ai j(xi(k)− x j(k)), i ∈ V . (3)

Note that (3) is of the form (2) with K =−εBTA, where ε is
a designed parameter. The following lemma shows that the
protocol (3) with a properly chosen ε solves the consensus
problem for a MAS without input saturation.

Lemma 1 Consider a MAS of N agents (1) in the absence of
input saturation constraints. Assume that Assumptions 2 and
3 are satisfied. Then any protocol (3) with ε ∈ (0, 2

λN∥BTB∥ ),
where λN is the largest eigenvalue of the corresponding
Laplacian matrix, solves the consensus problem.

Proof: It is well known that (e.g. Seo et al., 2009; Zhang
and Tian, 2009) the consensus problem for a network of N
identical agents is equivalent to the simultaneous stabiliza-
tion problem of N−1 systems. Hence, it can be verified that
consensus is achieved via (3) if all the matrices A−ελiBBTA,
where λi, i ∈ {2, . . . ,N} (i.e., the nonzero eigenvalues of the
Laplacian matrix) are Schur stable. It then follows from Shi,
Saberi, and Stoorvogel (2003, Lemma 4.2) that all these ma-
trices are Schur stable if ε ∈ (0, 2

λN∥BTB∥ ).

The following theorem shows that (3) with ε ∈ (0, 2
λN∥BTB∥ )

also solves the global consensus problem for a MAS.

Theorem 1 Consider a MAS of N agents (1). Assume that
Assumptions 2 and 3 are satisfied. Then any protocol (3)
with ε ∈ (0, 2

λN∥BTB∥ ) solves the global consensus problem.

Proof: Define x(k) = [x1(k); . . . ;xN(k)] and u(k) =
[u1(k); . . . ;uN(k)]. To simplify the notation, sometimes x or
u without explicitly indicating the time instant will refer to
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x(k) or u(k) respectively. With these definitions, we obtain
the following dynamics

x(k+1) = (IN ⊗A)x(k)+(IN ⊗B)σ(u(k)), (4a)
u(k) =−ε(L⊗BTA)x(k). (4b)

Motivated by the Lyapunov function in (Cortés, 2006;
Zhang, Lewis, and Qu, 2012), we consider the Lyapunov
candidate

V (x(k)) =
1
2

xT(k)(L⊗ In)x(k).

Define a manifold where all the agent states are identical

M := {x ∈ RNn|x1 = x2 = . . .= xN}.

Note that V (x) ≥ 0 and V (x) = 0 if and only if x ∈ M.
Let us now evaluate ∆V (x(k)) =V (x(k+1))−V (x(k)). We
sometimes drop the dependency of V (x(k)) and ∆V (x(k))
on x(k) for notational simplification when it is clear from
the context. From the dynamics of (4), we obtain

∆V =
1
2

σ T(u)(L⊗BTA)x+
1
2

xT(L⊗ATB)σ(u)

+
1
2

σ T(u)(L⊗BTB)σ(u)

=−1
ε

σ T(u)u+
1
2

σ T(u)(L⊗BTB)σ(u)

≤−σ T(u)(
1
ε

INm − 1
2

L⊗BTB)σ(u),

where we have used that L = LT for undirected graphs and
that zTσ(z)≥ σ T(z)σ(z) for any column vector z.

Since ε ∈ (0, 2
λN∥BTB∥ ), ∆V ≤ 0 and ∆V = 0 if and only if

(L⊗BTA)x = 0. We shall show that (L⊗BTA)x = 0 if and
only if x∈M, which in turn implies that ∆V = 0 if and only if
x ∈ M. We first note that if x ∈ M, then (L⊗BTA)x = 0 since
the graph is connected. We then show that (L⊗BTA)x = 0
implies that x ∈ M. Note that (L⊗BTA)x = 0 implies that
(L̃ ⊗ BTA)q = 0, where the relative state q = [q2; . . . ;qN ],
qi = xi − x1 for i ∈ {2, . . . ,N}, and

L̃ =


ℓ2,2 − ℓ1,2 . . . ℓ2,N − ℓ1,N

...
. . .

...

ℓN,2 − ℓ1,2 . . . ℓN,N − ℓ1,N

 ∈ R(N−1)×(N−1). (5)

Since the graph is connected, it follows from Zhang and Tian
(2009, Lemma 1) that the eigenvalues of L̃ are the nonzero
eigenvalues of the matrix L, which are positive. Thus, the
matrix L̃ is non-singular, i.e., rank(L̃) = N −1.

From the fact that ATA = In, we see that (L̃⊗BTA)q = 0
implies qT(L̃⊗A−1B) = 0. Also note that q(k+1) = (IN−1⊗
A)q(k), since u(k) =−ε(L⊗BTA)x(k) = 0. Therefore

(L̃⊗BTA)q(k+1) = (L̃⊗BTA2)q(k),

which is equivalent to qT(L̃⊗A−2B) = 0. By iteration, we
obtain qT(L̃⊗A−rB) = 0 for r = 3,4, . . . ,n+1. Hence,

qT
(

L̃⊗A−(n+1) [AnB ... AB B ]
)
= 0. (6)

Note that rank([AnB ... AB B ]) = n since the pair (A,B) is
controllable. This together with the fact that the matrix A is
non-singular implies that rank

(
A−(n+1) [AnB ... AB B ]

)
= n.

Finally, using the property of Kronecker product, we obtain

rank
(

L̃⊗A−(n+1) [AnB ... AB B ]
)

= rank
(
L̃
)

rank
(

A−(n+1) [AnB ... AB B ]
)
= (N −1)n.

Therefore, the only solution of (6) is q = 0, which is equiv-
alent to x1 = . . . = xN , i.e., x ∈ M. Hence, we have shown
that ∆V (x)≤ 0 and ∆V (x) = 0 if and only if x ∈ M.

Since ∆V (x(k)) = V (x(k+ 1))−V (x(k)) ≤ 0, we conclude
that V (x(k)) is non-increasing in k. Thus, limk→∞ V (x(k)) =
V∗ for some V∗ ≥ 0 since V ≥ 0. This implies that
∆V (x(k)) → 0 as k → ∞ and hence x(k) → M as k → ∞.
Hence, global consensus is achieved.

Remark 1 Note that the continuous-time counterpart was
considered in Meng et al. (2013, Theorem 4.1). They consid-
ered the leader-follower case while we consider the leader-
less case. It results in a completely different analysis which
relies on set Lyapunov stability theory argument.

5 Double Integrator Agent Model

In this section, we consider the case where the agent model
(1) is a double integrator.

Assumption 4 The matrices A and B are of the form

A =

[
1 1

0 1

]
, B =

[
0

1

]
.

Let us first recall the following result which gives a necessary
and sufficient condition on the feedback gain parameters for
achieving consensus without input saturation constraints.

Lemma 2 Xie and Wang (2012) Consider a MAS of N
agents described by[

xi(k+1)

vi(k+1)

]
= A

[
xi(k)

vi(k)

]
+Bui(k), i ∈ V . (7)

Assume that Assumptions 2 and 4 are satisfied. Then the
protocol (2) with K =− [α β ] :

ui(k)=−α ∑
j∈Ni

ai j(xi(k)−x j(k))−β ∑
j∈Ni

ai j(vi(k)−v j(k)),

(8)
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solves the consensus problem if and only if

0 < α < β <
α
2
+

2
λN

. (9)

The following theorem shows that a subset of the protocols
(8), which solve the consensus problem for a MAS without
input saturation constraints, also solve the global consensus
problem for a MAS with input saturation constraints.

Theorem 2 Consider a MAS of N agents (1). Assume that
Assumptions 2 and 4 are satisfied. Then the protocol (8) with

0 <
√

3α < β <
3

2λN
, (10)

solves the global consensus problem.

Proof: Let x(k)= [x1(k); . . . ;xN(k)], v(k)= [v1(k); . . . ;vN(k)],
u(k) = [u1(k); . . . ;uN(k)], yi(k) = [xi(k);vi(k)], and y(k) =
[y1(k); . . . ;yN(k)]. To simplify the notation, sometimes x,
v, u or y without explicitly indicating the time instant will
refer to x(k), v(k), u(k) or y(k) respectively. With these
definitions, we obtain the following dynamics

y(k+1) = (IN ⊗A)y(k)+(IN ⊗B)σ(u(k)),
u(k) = (L⊗ [−α −β ])y(k).

We also obtain that x(k+ 1) = x(k)+ v(k) and v(k+ 1) =
v(k)+σ(u(k)). Note that u(k) can be written in terms of
x(k) and v(k) as

u(k) =−αLx(k)−βLv(k). (11)

Hence, we obtain

u(k+1) = u(k)−αLv(k)−βLσ(u(k)). (12)

Motivated by the Lyapunov function in Yang et al. (2012b),
we consider the following Lyapunov candidate

V (y) =−σ T(u)σ(u)+2σ T(u)u+2ασ T(u)Lv+αvTLv.

We sometimes drop the dependency of V (y(k)) on y(k) for
notation simplification when it is clear from the context.
Similar to the proof of Theorem 1, we define a manifold
where all the agent states are identical

M := {y ∈ R2N |y1 = y2 = . . .= yN}.

Note that V (y) = 0 if y ∈ M. We will show that V (y) ≥ 0
and V (y) = 0 if only if y ∈ M. Since σ T(z)z ≥ σ T(z)σ(z) for
any column vector z, where the equality holds if and only if
−1 ≤ z ≤ 1, we obtain

V ≥ σ T(u)σ(u)+2ασ T(u)Lv+αvTLv (13)

=
[

σ(u)
Lv

]T [ 1 α
α 2

3 αβ

][
σ(u)
Lv

]
+ vT(αL− 2

3
αβLTL)v, (14)

where the equality of (13) holds if and only if −1 ≤ u ≤ 1.
Since β >

√
3α > 3

2 α > 0, the first term of (14) is non-
negative, and is equal to zero if and only if σ(u) = 0 and
Lv = 0. Note that from (11), we see that u =−αLx−βLv =
−αLx, therefore, Lx = 0 since α ̸= 0. Thus, the first term is
equal to zero if and only if y ∈ M. We next show that the
second term is also non-negative. Since L = LT, we see that
the eigenvalues of the matrix αL− 2

3 αβLTL are αλi(1−
2
3 βλi), where λi, i ∈ {1, . . . ,N} are the eigenvalues of the
Laplacian matrix L. Since βλN < 3

2 , the second term is non-
negative and equal to zero if and only if Lv = 0. Therefore,
V (y)≥ 0 and V (y) = 0 if and only if y ∈ M.

Next, we show that ∆V (y(k)) =V (y(k+1))−V (y(k))≤ 0.
We sometimes drop the dependency ∆V (y(k)) on y(k) for
notational simplification when it is clear from the context.
With some algebra, we obtain

V (y(k+1)) =−tTt +2tTu+2(α −β )tTLσ(u)+αvTLv
+2αvTLσ(u)+ασ T(u)Lσ(u),

where to simplify notation we have used t = σ(u(k+ 1)).
Note that −1 ≤ t ≤ 1 by the definition of the saturation
function. Thus,

∆V (y(k)) =V (y(k+1))−V (y(k))
=−tTt +2tTu+2(α −β )tTLσ(u)

+σ T(u)(αL+ I)σ(u)−2σ T(u)u.

Without loss of generality, we assume that ui > 1 for i ∈
{1, . . . ,N1} := Sp, |ui| ≤ 1 for i∈{N1+1, . . . ,N2} := Sm, and
ui <−1 for i ∈ {N2+1, . . . ,N} := Sq, since if this is not the
case, we can always relabel the nodes to achieve this. Note
that the sets Sp, Sm, and Sq may be empty. We then define the
partition t = [tp; tm; tq], u = [up;um;uq], where tp,up ∈ RN1 ,
tm,um ∈RN2−N1 , and tq,uq ∈RN−N2 are defined accordingly.
We partition the Laplacian matrix L accordingly

L =


Lpp Lpm Lpq

LT
pm Lmm Lmq

LT
pq LT

mq Lqq

 ,

where Lpp, Lpm, Lpq, Lmm, Lmq and Lqq are real matrices of
appropriate dimensions. With some algebra, we obtain

∆V =−tT
ptp − tT

mtm − tT
q tq +2tT

pup +2tT
mum +2tT

q uq

+2(α −β ) [ tT
p tT

m tT
q ]

[
Lpp Lpm Lpq

LT
pm Lmm Lmq

LT
pq LT

mq Lqq

][
1p
um
−1q

]
+α [1T

p uT
m −1T

q ]L
[

1p
um
−1q

]
+1T

p1p +uT
mum +1T

q1q

5

CONFIDENTIAL. Limited circulation. For review only

Preprint submitted to Automatica
Received October 7, 2013 09:12:29 PST



−2 [1T
p uT

m −1T
q ]
[ up

um
uq

]
= 2(tp −1p)

T(up −1p)+2tT
p1p −21T

p1p

+2(tq +1q)
T(uq +1q)−2tT

q 1q −21T
q1q

− tT
ptp +2tT

p

[
(α −β ) [Lpp Lpm Lpq ]

[
1p
um
−1q

]
+1p

]
−2tT

p1p

− tT
mtm +2tT

m

[
(α −β ) [LT

pm Lmm Lmq ]

[
1p
um
−1q

]
+um

]
− tT

q tq +2tT
q

[
(α −β ) [LT

pq LT
mq Lqq ]

[
1p
um
−1q

]
−1q

]
+2tT

q 1q

+α [1T
p uT

m −1T
q ]L

[
1p
um
−1q

]
+1T

p1p +1T
q1q −uT

mum.

Note that

− tT
ptp +2tT

p

[
(α −β ) [Lpp Lpm Lpq ]

[
1p
um
−1q

]
+1p

]
=−

{
tp −

[
(α −β ) [Lpp Lpm Lpq ]

[
1p
um
−1q

]
+1p

]}T

×
{

tp −
[
(α −β ) [Lpp Lpm Lpq ]

[
1p
um
−1q

]
+1p

]}
+

[
(α −β ) [Lpp Lpm Lpq ]

[
1p
um
−1q

]
+1p

]T

×
[
(α −β ) [Lpp Lpm Lpq ]

[
1p
um
−1q

]
+1p

]
.

Similar completion of squares for

−tT
mtm +2tT

m

[
(α −β ) [LT

pm Lmm Lmq ]

[
1p
um
−1q

]
+um

]
,

and

−tT
q tq +2tT

q

[
(α −β ) [LT

pq LT
mq Lqq ]

[
1p
um
−1q

]
−1q

]
,

yields

∆V = 2(tp −1p)
T(up −1p)+2(tq +1p)

T(uq +1p) (15)

−
{

tp −
[
(α −β ) [Lpp Lpm Lpq ]

[
1p
um
−1q

]
+1p

]}T

×
{

tp −
[
(α −β ) [Lpp Lpm Lpq ]

[
1p
um
−1q

]
+1p

]}
(16)

−
{

tm −
[
(α −β ) [LT

pm Lmm Lmq ]

[
1p
um
−1q

]
+um

]}T

×
{

tm −
[
(α −β ) [LT

pm Lmm Lmq ]

[
1p
um
−1q

]
+um

]}
(17)

−
{

tq −
[
(α −β ) [LT

pq LT
mq Lqq ]

[
1p
um
−1q

]
−1q

]}T

×
{

tq −
[
(α −β ) [LT

pq LT
mq Lqq ]

[
1p
um
−1q

]
−1q

]}
(18)

+ sTM̃s, (19)

where s = [1p;um;−1q] and M̃ = (α −β )2L2 +(3α −2β )L
since L = LT. Note that the two terms in (15) are negative
since tp −1p < 0, up −1p > 0, tq +1q > 0, uq +1q < 0, and
that the terms in (16), (17), (18) are all non-positive. In or-
der to show that ∆V ≤ 0, it is sufficient to show that the term
(19) is also non-positive, i.e., to show that the matrix M̃ is
negative semidefinite. It is easy to see that the eigenvalues of
the matrix M̃ are (α −β )2λ 2

i +(3α −2β )λi, i ∈ {1, . . . ,N}.
Hence, M̃ has one simple eigenvalue at zero with the corre-
sponding right eigenvector 1, while all other eigenvalues are
(α − β )2λ 2

i +(3α − 2β )λi, i ∈ {2, . . . ,N}. We shall show
that all these eigenvalues are negative. Since λi > 0 and
λi ≤ λN , it is sufficient to show that λN < 2β−3α

(α−β )2 . We note

that λN < 3
2β from (10). Thus, it is sufficient to show that

3
2β < 2β−3α

(α−β )2 . With some algebra, we see that this is equiv-

alent to show that β >
√

3α , which is true given (10).

Hence, we have shown that ∆V (y) ≤ 0. We then show that
∆V (y) = 0 if and only if y ∈ M. To show this, we first note
that ∆V < 0 if the first two terms (15) are not empty since
they are negative. Therefore, ∆V = 0 only if these terms
are empty. This is the case when |ui| ≤ 1 for all the agents
i ∈ {1, . . . ,N}, i.e., when the sets Sp and Sq are empty. In
this case, we have

∆V =−tTt +2tTu+2(α −β )tTLu+uT(αL− I)u

=−{t − [(α −β )L+ IN ]u}T {t − [(α −β )L+ IN ]u} (20)
+uTM̃u.

Note that the term in (20) is non-positive and is equal to
zero if and only if t = [(α −β )L+ IN ]u.

Recall that M̃ has exactly one zero eigenvalue with the cor-
responding right eigenvector 1, while all other eigenvalues
are negative. Therefore, the term uTM̃u is also non-positive
and it is equal to zero if and only if Lu = 0.

Hence, we conclude that ∆V = 0 if and only if t =
[(α −β )L+ I]u and Lu = 0. Since Lu = 0, we obtain t = u.
On the other hand, from (12), we obtain

t = σ(u(k+1)) = u(k+1) = u−αLv−βLσ(u) = u−αLv.

Thus, we see that Lv = 0 since α ̸= 0. Thus v1 = . . . = vN
since the graph is connected. From (11), we obtain u =
−αLx−βLv=−αLx. This together with the fact that Lu= 0
implies that L̃q = 0, where the relative state q = [q2; . . . ;qN ],
qi = xi−x1 for i∈{2, . . . ,N}, and L̃ is given by (5). Since the
matrix L̃ is non-singular, we see that q= 0, i.e., x1 = . . .= xN .
Therefore ∆V (y) = 0 if and only if y ∈ M.

Hence, we have shown that ∆V (y)≤ 0 and ∆V (y) = 0 if and
only if y ∈ M. It then follows from a similar analysis as in
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Fig. 1. Network with seven agents

the end of the proof of Theorem 1, that y(k)→ M as k → ∞.
Hence, global consensus is achieved.

Remark 2 Note that for the continuous-time case, Meng
et al. (2013, Theorem 5.1) shows that any linear protocols,
which solve the consensus problem for a MAS without in-
put saturation constraints, also solve the global consensus
problem for a MAS with input saturation constraints. In this
sense, the result of Theorem 2 is different since it requires
a more restricted condition given by (10) on the feedback
gain parameters of the linear protocol (8).

Remark 3 The Lyapunov function (14) has one additional
term ασ T(u)Lv compared to the Lyapunov function used in
Meng et al. (2013, Theorem 5.1) for the continuous-time
case. The stability analysis is substantially different from the
one in Meng et al. (2013, Theorem 5.1).

6 Illustrative Example

In this section, we illustrate our results on global consensus
with input saturation constraints for a network with N =
7 double integrators, whose topology is given in Fig. 1.
Choose α = 0.07 and β = 0.15 such that the condition (10)
is satisfied. The simulation results shown in Fig. 2 confirm
the results of Theorem 2.

7 Conclusions and Future Work

This paper considered the global consensus problem for
a MAS of discrete-time identical linear agents, where the
agent dynamics are either neutrally stable or a double in-
tegrator, with input saturation constraints under fixed undi-
rected network topologies. Extensions to directed topologies
and time-varying topologies are currently under investiga-
tion. Another interesting topic is to consider heterogeneous
networks.
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Fig. 2. Simulation results with input saturation constraint
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