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Abstract— A distributed feedback control architecture that
guarantees collision avoidance and destination convergence for
multiple sphere world holonomic agents is presented. The
well established tool of Decentralized Navigation Functions
is redefined to cope with the communication restrictions of
the system. Each agent plans its actions without knowing the
destinations of the others and the positions of those agents
lying outside its sensing neighborhood. The stability properties
of the closed loop system are checked via Lyapunov stability
techniques for hybrid systems. The collision avoidance and goal
convergence properties are verified through simulations. The
key advantage of the proposed algorithm with respect to the
previous ones is the significant decrease of computational load
and its applicability to large scale groups.

I. INTRODUCTION

Navigation of multiple agents is a field that has recently
gained increasing attention in the robotics community, due
to the need for autonomous control of more than one
mobile robotic agents in the same workspace. While most
approaches in the past had focused on centralized plan-
ning, specific real-world applications have lead researchers
throughout the globe to turn their attention to decentralized
concepts. The basic motivation of our work comes from two
application domains: (i) decentralized conflict resolution in
air traffic management ([10]) and (ii) the field of micro
robotics ([17],[10]), where a team of autonomous micro
robots must cooperate to achieve manipulation precision in
the sub micron level.

The reduced computational complexity and increased ro-
bustness with respect to agent failures makes decentralized
approaches more appealing compared to the centralized ones.
There have been many different approaches to the decen-
tralized motion planning problem. Open loop approaches
use game theoretic and optimal control theory to solve
the problem taking the constraints of vehicle motion into
account; see for example [2], [11], [23], [24]. On the
other hand, closed loop approaches use tools from classical
Lyapunov theory and graph theory to design control laws
and achieve the convergence of the distributed system to a
desired configuration both in the concept of cooperative ([8],
[13]) and formation control ([1], [9], [14], [21],[22]).

Closed loop strategies are apparently preferable to open
loop ones, mainly because they provide robustness with
respect to modelling uncertainties and agent failures and
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guaranteed convergence to the desired configurations. How-
ever, a common point of most work in this area is devoted
to the case of point agents. Although this allows for variable
degree of decentralization, it is far from realistic in real world
applications, even in the field of microrobotics, where the
non-zero volume of each robot cannot be disregarded due
to the fact that the surrounding objects are of comparable
size. Another example is conflict resolution in Air Traffic
Management, where two aircraft are not allowed to approach
each other closer than a specific “alert” distance. The con-
struction of closed loop methods for decentralized non-point
multi-agent systems is both evident and appealing.

A closed loop approach for single robot navigation was
proposed by Koditschek and Rimon [12] in their seminal
work. This navigation functions’ framework had all the
sought qualities but could only handle single, point-sized,
robot navigation. This framework was extended to multiple
sphere world agents in a recent series of papers. In [15] this
method was successfully extended to take into account the
volume of each robot in a centralized multi-agent scheme,
while a decentralized version of this work has been presented
in [25],[7],[6] for multiple holonomic agents with global
sensing capabilities. In these papers, the decentralization
factor lied in the fact that each agent had knowledge only of
its own desired destination, but not of the desired destinations
of the others. In [22], Tanner and Kumar considered the prob-
lem for point agents, taking the limited sensing capabilities
of each agent into account. Limited sensing issues for sphere
world agents have been considered by the authors in [4].

The level of decentralization in [4] lied in the fact that each
agent had only local knowledge of the positions of the other
agents at each time instant. However, the computational load
required for the realization of the algorithm was restricted
by the fact that each agent should have knowledge about
the exact number of agents in the group. In this paper, we
propose an improved algorithm with respect to the one in [4],
which allows each agent to neglect any knowledge about
the number of agents in the group and hence, reduces the
computational load significantly with respect to the afore-
mentioned paper. The convergence analysis is performed
using the extension of LaSalle’s Invariance Principle for
Hybrid Systems. The key drawback of the method proposed
in this paper wrt the algorithms of [4], [6], is that global
convergence cannot be guaranteed in every case. This issue
is discussed in detail in the stability analysis section.

The rest of the paper is organized as follows: section
II presents the multi-agent system in hand and defines the
problem addressed in this paper. In section III the concept of



decentralized navigation functions, introduced in [7],[25],[6]
to cope with navigation of multiple holonomic agents with
global sensing capabilities, is reviewed and appropriately
redefined in order to cope with the restrictions of the situation
in hand. The multi-agent system is modelled as a hybrid
system and convergence analysis based on LaSalle’s Invari-
ance Principle for Hybrid Systems is performed in section IV.
Section V contains a nontrivial computer simulation based
on the proposed algorithm while section VI summarizes
the results and indicates some relevant future directions of
research.

II. SYSTEM AND PROBLEM DEFINITION

Consider a system of N agents operating in the same
workspace W C R?. Each agent i occupies a disc: R; =
{g € R?*:|| ¢ — ¢ ||< 7} in the workspace where ¢; € R?
is the center of the disc and r; is the radius of the agent.
The configuration space is spanned by ¢ = [q1,...,qn]T.
Figure 1 shows a five-agent conflict situation. In the case of
holonomic agents, the motion of each agent is described by
the single integrator:

Gi=ui, ieN=I1,...,N] (1)

The desired destinations of the agents are respectively de-
noted by the index d: g4 = [qa1,- - .,qu]T. We make the
following assumptions:

1) Each agent 7 has knowledge of the position of only
those agents located in a cyclic neighborhood of spe-
cific radius dgo at each time instant, where do >
maz; jenr(ri+7;), so that it is guaranteed to be larger
than the maximum sum of two agents radii. The disc
T, = {q: |l¢g — ¢l < d¢} is called the sensing zone
of agent .

2) Each agent has knowledge only of its own desired
destination gg; but not of the others gq;,j 7# 1.

3) Spherical agents are considered.

4) The workspace is bounded and spherical.
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Fig. 1. A conflict scenario with five agents. Each agent 7 occupies a
disc R;(black discs) of radius r; centered at g;. Each agent’s sensing zone
T;(white discs) is centered at g; and has radius d¢.

The first two assumptions reveal the decentralized nature
of this frame-work, as well as its specific limitations. Each
agent needs to know the exact position only of agents found

within its sensing zone at each time instant(ass.2). Further-
more, knowledge of the desired destinations of the other
agents is unnecessary(ass. 1). In this paper, the navigation
Sfunctions ([12],[25],[7],[4]) tool is redefined in order to cope
with assumptions 1,2.

Assumptions 3,4 regarding the spherical shape of the
agents and the workspace do not constrain the generality
of this work since it has been proven that navigation prop-
erties are invariant under diffeomorphisms ([12]). Arbitrarily
shaped agents diffeomorphic to spheres can be taken into
account. Methods for constructing analytic diffeomorphisms
are discussed in [20] for rigid body agents.

III. DECENTRALIZED NAVIGATION FUNCTIONS: A
TOTALLY DISTRIBUTED PERSPECTIVE

A. Preliminaries

Navigation functions (NF’s) are real valued maps realized
through cost functions ¢(q), whose negated gradient field is
attractive towards the goal configuration and repulsive with
respect to obstacles [12]. It has been shown by Koditschek
and Rimon that strict global navigation (i.e. the system ¢ = u
under a feedback control law of the form v = — KV admits
a globally attracting equilibrium state) is not possible, and
a smooth vector field on any sphere world with a unique
attractor, must have at least as many saddles as obstacles
[12].

A navigation function is defined as follows:

Definition 1: [12]: Let F C R?Y be a compact connected
analytic manifold with boundary. A map ¢ : F' — [0,1] is
a navigation function if:(1) it is analytic on F, (2) it has
only one minimum at gg € int(F), (3) its Hessian at all
critical points (zero gradient vector field) is full rank, and
@) limg_ore(q) = 1.

In this definition, F' represents the “free space” of robot
movement, i.e. the subset of the workspace which is free of
collisions.

B. Decentralized Navigation Functions

In previous work, the authors extended the Navigation
Functions method for multiple robots. In [15], the navigation
functions method has been extended to the case of multiple
mobile robots with the use of centralized Multi-Robot navi-
gation functions (MRNF’s).

In the form of a centralized setup [15], where a central
authority has knowledge of the current positions and desired
destinations of all agents ¢ = 1,..., N, the sought control
law v = [uy...upn] is of the form: v = —KVp(q)
where K is a gain. The extension to the case when each
agent has only partial knowledge has given birth to the
concept of decentralized navigation functions (DNF’s) in
the series of papers [25], [7], [4],[6]. In particular in [4],
decentralized navigation functions have been defined and
used for navigation of multiple sphere world agents with
local sensing capabilities. The level of decentralization was
however limited due to the fact that each agent should have
been aware of the exact number of agents in the whole
workspace at each moment. On the other hand, a proof of



guaranteed convergence based on nonsmooth analysis was
provided.

The objective of this paper is to treat the framework of
[4] in a totally distributed manner. Hence each agent does
no longer need to know the exact number of agents in the
workspace.

Following the procedure of [4] we consider the following
class of decentralized navigation functions(DNF’s):

vai + fi
pi(g) = . R 2)
(i + 120" + G:)
where k is a positive scalar parameter, and vq; =| ¢ —qai ||%,

is the squared metric of the current agent’s configuration g;
from its destination q4;. The definition of the function f; will
be given later. Function G; has as arguments the coordinates
of agent ¢ and all the agents belonging to its sensing zone,
ie.

Gi = Gi(4i,@), 4 = {gjlg; € T;}

and is used to encapsulate all possible collision schemes of
agent ¢ with the agents that are within 7;;. Hence the notation
g; is used to denote the stack vector of the configurations of
all agents belonging to 7; at each time instant.

C. The f; function

Function f; is defined in such a way to ensure that the
repulsive potential vanishes when inter-agent distances are
sufficiently large. This function was introduced in ([25]),[4]).
In these papers, the function f; is defined by:

3 A
ag + alG’z, G; <X
fGy =] ©T 2w

= 3)
0, G;>X

where X,Y = f;(0) > 0 are positive scalar constants. The
parameters a; are evaluated so that f; is maximized when
G; — 0 and minimized when G; = X. It is also required that
fi 1s continuously differentiable at X. Therefore we have:

-3Y 2Y
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D. The G; function

In this subsection, we review the construction of the G;
function from [4]. In that reference the function GG; had as
arguments the coordinates of all agents. In this paper, we
impose the restriction that the G; function of each agent
depends only on its own coordinates and the coordinates of
the agents belonging to its sensing zone at each time instant.
We note that the following paragraphs are a revision of the
construction in [4], [7]. The reader is referred to those papers
for a thorough analysis.

The “Proximity Function” between two agents ¢, j is given
by

Bi = llai — a;|° — (ri +75)?
Consider now a situation similar to the one in figure 1

where we have five agents. For an agent ”R”, we proceed
to define function Gr. We denote by O;,02, 03,04 the

remaining four agents in this scenario. To encode all possible
inter-agent proximity situations, the multi-agent team is
associated with an (undirected) graph whose vertices are
indexed by the team members. The following are discussed
in more detail in [6], [25], [7] .

Definition 2: A binary relation with respect to an agent
R is an edge between agent R and another agent.

Definition 3: A relation with respect to agent R is defined
as a set of binary relations with respect to agent R.

Definition 4: The relation level is the number of binary
relations in a relation with respect to agent R.

The notation (R;); is used to denote the jth relation of
level-l with respect to agent R. The notation

(Rj)l = {{R’A}v{RaB}v{R’C}v}

is used to denote the set of binary relations in a relation with
respect to agent R, where {A, B,C,...} the set of agents
that participate in the specific relation. where we have set
arbitrarily j = 1.

The complementary set (R]C)l of relation j is the set that
contains all the relations of the same level apart from the
specific relation j. A “Relation Proximity Function” (RPF)
provides a measure of the distance between agent ¢ and the
other agents involved in the relation. Each relation has its
own RPF. Let R;, denote the k'™ relation of level {. The
RPF of this relation is given by:

(br)i= > Birg )
JE(RK)1
where the notation j € (Ry); is used to denote the agents
that participate in the specific relation of agent R.
A “Relation Verification Function” (RVF) is defined by:
AR, )1
(bRk)l + (Bch)l

where A, h are positive scalars and

Bredi= [I (bw)

me(RY),

(9r, )1 = (br, )1 +

where as previously defined, (R{'); is the complementary set
of relations of level-/, i.e. all the other relations with respect
to agent ¢ that have the same number of binary relations with
the relation Rj.

It is obvious that for the highest level | = n — 1 only
one relation is possible so that (RY),—1 = 0 and (gr,); =
(bg,, )i for I = n — 1. The basic property that we demand
from RVF is that it assumes the value of zero if a relation
holds, while no other relations of the same or other levels
hold. In other words it should indicate which of all possible
relations holds. We have he following limits of RVF (using
the simplified notation ng(bRk,Bch) = g;(bs, b;)):

1) inILnO Elilglo Gi (bl, bl> =A

b;£0



These limits guarantee that RVF will behave in the way we
want it to, as an indicator of a specific collision.
The function GG; is now defined as

;o
in
np TRy

G =[1119r) (6)

1=1j=1

where 7} the number of levels and n%, the number of
relations in level-/ with respect to agent ¢. Hence G is the
product of the RVF’s of all relations wrt i.

The construction of the (; function is held in such a
way to ensure that the gradient motion imposed on agent
1 under the control strategy that is defined in the sequel is
repulsive with respect to the boundary of the free space. This
guarantees collision avoidance. More details are found in [7].

IV. CONTROL DESIGN AND STABILITY ANALYSIS

The major difference of the framework in [4] and the
current paper, is the fact that the DNF ¢, is discontinuous
whenever agents enter or leave the sensing zone of other
agents. Hence the stability analysis held in [4] is not valid
in this case. We analyze the convergence properties of our
framework using tools from hybrid systems literature.

A. Hybrid Automaton Modelling and Control Strategy

In order to capture the discontinuous behavior of the
system in hand, we model the system as a deterministic
hybrid system in which switches occur whenever an agent
enter or leaves the sensing zone of another.

The information pattern Z; of agent ¢ is defined as the set
of agents in its sensing zone at each time instant, namely

Zi ={j: lai — g;[l < dc} )

The whole scheme can be modelled as a (deterministic)
switched system ([3],[19]). Each mode of the switched
system is characterized by the global information pattern
of the system, namely Z = {Z;,...,Zn}. It is obvious that
G; can be rewritten as G; = G;(Z;) which shows that the G;
function for all ¢ is discontinuous whenever I; is updated,
i.e. whenever an agent enters/leaves the sensing zone of 3.
Hence ¢; can be rewritten as:

©i (I’L) _ Ydi + fz 1/k (8)

((Vdi + )+ G (Ii))

The proposed feedback control strategy for agent ¢ at each

mode Z = {Zy,...,Zy} of the switched system is defined
as
v = 5,228 oy 9)
9q;

where K; > 0 a positive gain. Hence the continuous
dynamics change discretely each time an agent enters/leaves
the sensing zone of another.

Many stability analysis tools for switched systems have
appeared in literature in the past decade; see [3],[16] to
name a few. In this paper we make use of the invariance
principle for hybrid systems of [16] to check the convergence

of our control algorithms. A hybrid system is modelled by
the following discontinuous differential equation:

i = fi(z),ie M={1,...,M}

where © € R™ and M the finite set of nodes of the hybrid
system. The switching sequence indexed by an initial state
g is defined as

S:xO;(i07t0)a(ilvtl)w-'v(ijatj)a--- (11)

where the notation (i;,t;) means that the system in node i,
i.e. & = f;;(x) in the time interval t; < ¢ < t;, . Denote by
T = {t1,...,t;,...} the set of switching instants. Coping
with the application in hand, we assume that the state of
the system is continuous at the switching instants, namely
z(t;) = x(tj)Vj. We now present the invariance principle
for hybrid systems we use in our approach:

Theorem 1: [16] Consider the hybrid system (10) and
let  be a compact invariant set. Assume there exists a
continuous function V' : 2 — R such that

1) for all z € Q,t € Rt \ 7, V is continuously
differentiable and V <0, and

2) forallt e 7, V(x(tT)) < V(z(t))
Define £y = {z € Q| 3t € R* \ 7 s.t. z(t) = = and
V(x(t)) =0} and By = {x € Q| 3t € T s.t. z(t) = x and
V(z(t)) = V(z(tT))}. Let L be the largest invariant subset
of E; |J Es. Then every trajectory in ) converges to L.

The inclusion of the subset Fs involves the possibility of
infinite switches in finite time,i.e. the inclusion of sliding
motion in the switching surfaces. We proceed by applying
Theorem 1 in the current framework.

(10)

B. Convergence Analysis

Let Iif = {1,...,N} = N denote the full information
pattern for agent ¢, i.e. the case where all agents belong to
the sensing zone of agent 4. Let 7/ = {I{, e ,IIJ:[} denote
the full global information pattern. Consider the candidate

Lyapunov function
V=3 w (1)

which is the sum of the Decentralized Navigation Functions
of all agents corresponding to the full information pattern.
This function is continuous everywhere, since the full
global information pattern remains constant throughout the
multi-agent system evolution, and is continuously differen-
tiable in between the switching instants since each ¢;(Z;)
is continuously differentiable for any constant Z;. A key
property of the candidate Lyapunov function is that it is
continuous at the switching instants, as pointed out pre-
viously, and hence the second condition of theorem 1 is
fulfilled. In fact, if we denote by 7 = {t1,...,t;,...}
the set of switching instants, i.e. the times at which an
agent enters/leaves the sensing zone of another, the candidate
Lyapunov function satisfies: t € 7, V(q(t")) = V(q(t)).
The next proposition states that the candidate Lyapunov
function also satisfies the first condition of theorem 1:

(12)



Proposition 2: The time-derivative of the candidate Lya-
punov function is negative semi-definite in between switch-
ing instants, for all possible global information patterns,i.e.
for all possible nodes of the hybrid system. In mathematical
terms

Vte RT\T : V(g(t) <0

The proof of this proposition follows the exact same steps
as the proof of Proposition 2 in [5] and is omitted here due
to lack of space. In fact, following the procedure in [5] we
can show that the largest invariant set contained in the set
Ey ={q]| 3t € R"\T st qt) = q and V(q(t)) =
0} is simply ¢ = qq, i.e. the desired destination points of
the agents. By virtue of Theorem 1 and Proposition 2, the
following is derived directly:

Proposition 3: The trajectories of the system (1) under the
control law (9) converge to the largest invariant set contained
in the set

B = {aa} U{aFi,j € N)i # jst. lla; — ;) = do}

This proposition reveals the main drawback of the
proposed approach. While the energy of the system re-
mains bounded (i.e. the hybrid system is stable) agents
might get ”stack” in a point in the set FEy =
{q|3i,j € N,i # js.t.||¢i — gj|| = dc'}. The invariance of
this set cannot be checked easily due to the asymmetric
properties of the control strategy. In essence, the control
design cannot guarantee global stability. However, following
the same line of thought as in [14],[18], we state that the
events in which the system reaches blocking behavior on the
set Es are very rare, so the algorithm can achieve conver-
gence to the goal configuration in most cases. Guaranteed
convergence is achieved whenever the switching stops. The
following is an immediate corollary of Proposition 3:

Corollary 4: Suppose that the system reaches a config-
uration at a time instant tg,in which the global information
pattern remains constant V¢ > t. Then the trajectories of the
system (1) under the control law (9) converge to the desired
destination qg.

V. SIMULATIONS

To demonstrate the navigation properties of our decen-
tralized approach, we present a simulation of 32 holonomic
agents that have to navigate from an initial to a final config-
uration, avoiding collisions with each other. Each agent has
no knowledge of the positions of those agents lying outside
its sensing zone. The chosen configurations constitute non-
trivial setups since the straight-line paths connecting initial
and final positions of each agent are obstructed by other
agents. The following have been chosen for the simulation
of figure 2:

Initial Conditions:

30 agents form a 5x6 square. The 2 remaining agents are
placed above and below the square.

Final Conditions:

The agents’ final position form the initials of the Control
Systems Laboratory: CSL

Parameters:

k:110,7“1 :T2:T3:T4:.1,dcz.25
A=1h=5X=.0001,Y = .1

Pictures 1-6 of Figure 2 show the evolution of the team
configuration within a horizon of 50000 time units. One can
observe that the collision avoidance as well as destination
convergence properties are fulfilled. This simulation is an
example of the significant reduce of computational load with
respect to the method of [4].
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Fig. 2. Destination Convergence and Collision Avoidance for 32 Agents

A. Computational Load

The methodology’s main advantage in respect to the
methodology presented in ([7],[4]) is the reduction of the
computational load. Therefore the methodology’s real time
implementation on large scale groups becomes possible.
The computational load w.r.t. the agents’ visibility radius
is demonstrated with the following scenario; the agents are
arranged on a parallelogram, where each agent’s radius is R,,
and the distance between two agents’ centers ,belonging in
the same row or column, is 3R, (Fig. 3). Using different
visibility radii we calculate the time needed by a single
controller for one step.

Table 1
Case do T(sec) | Visible agents
1 3*x R, | 0.077 4
2 4x R, | 0.087 8
3 5% R, | 0.782 12
4 6 R, | 4930 20




One can observe from the table above, that even though
the number of visible agents increases linear w.r.t. to the
visibility radius there is an exponential increase of the
computational time and load. However these results are satis-
factory since the time needed for the three first cases is small
enough to allow application to large scale groups. Please note
that the methodology in [4] forces each agent to take into
account all the other agents. It is evident that our proposed
algorithm is much more tractable and computationally less
expensive.

g
() [ |
_/ \ ]
S~
Case 1 Case 2
‘ | [ \
! / \ |
Case 3 Case 4

Fig. 3. Sensed Agents w.r.t. Agent Sensing Radius

VI. CONCLUSIONS

A distributed feedback control architecture that guarantees
collision avoidance and destination convergence for multiple
sphere world holonomic agents has been presented. The well
established tool of Decentralized Navigation Functions has
been redefined to cope with the communication restrictions
of the system. Each agent plans its actions without knowing
the destinations of the others and the positions of those
agents lying outside its sensing neighborhood. The stability
properties of the closed loop system have been checked
via Lyapunov stability techniques for hybrid systems. The
collision avoidance and goal convergence properties were
verified through simulations. In most cases, the proposed
scheme achieves navigation of the multi-agent team to the
desired configuration. The key advantage of the proposed
algorithm with respect to the previous ones is the significant
decrease of computational load and its applicability to large
scale groups.

Current research focuses on extending the proposed
control scheme to the case of nonholonomic sphere
world agents as well as comparing our algorithm wrt
the method of [4] in an experimental setup. A formal
analysis of the invariance properties of the set Fy =
{q|3i,j e N,i # jst.|lgi — q;|| =dc} is also currently
pursued.
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