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Abstract— Motivated by next-generation air transportation
systems, this paper investigates the relationship between traffic
volume and congestion in a multi-agent system, assuming that
the agents can communicate their intentions with one another.
In particular, we consider » independent mobile agents, each
assigned an origin and a destination point, and study how the
minimum time necessary to safely transfer all agents from their
origin to their destination scales with the number of agents n.
We provide an algorithm for which the transfer time scales
logarithmically in n. This is an improvement over previous
results that rely on more conservative conflict models because
the agents do not leverage inter-agent cooperation to the same
degree, resulting in transfer times that scale as /n.

I. INTRODUCTION

The current air transportation system (ATS) is being forced
to operate ever closer to its critical capacity, leading to
increases in both the frequency and duration of delays. This
strain is expected to worsen alongside a projected two- to
three- fold increase in the demand for air travel [1]. It is
widely acknowledged the current ATS lacks the operational
scalability to meet this demand, and that there is an urgent
need for sweeping change in how the National Airspace
(NAS) is managed. To achieve improvements in system
efficiency, while safely increasing the capacity of the NAS,
there has been a growing movement to embrace the notion of
free-flight and afford aircraft greater autonomy in planning
routes and during flight [1]. Such a move would represent
an epoch-defining shift from predominantly centralized, pre-
planned operations under the close supervision of human
air-traffic controllers, to more flexible, primarily autonomous
operations relying on inter-agent communication and coor-
dination to maintain a well-functioning airspace.

While an autonomous airspace holds the promise to ad-
dress many of the issues that plague the current ATS, the
task of instituting new regulatory policies is complicated by
the need to ensure safety on a system-wide level, and by the
wide assortment of feasible regulatory policies. In order to
make informed decisions about which next-gen policies to
put in place, it is necessary to have a precise understanding
of the performance that is and, perhaps more importantly,
is not possible in such systems. In other words, we must
establish quantifiable relationships between key metrics that
measure how efficiently the airspace is used, such as delay
and throughput, and environmental parameters, such as traffic
intensity, navigational uncertainty, and the onset of inclement
weather, that may degrade during operation.
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Research efforts aimed at coordinating the motion of
multiple autonomous, mobile agents have yielded an array of
techniques for moving agents between specified points in a
shared workspace, while avoiding collisions (see, for exam-
ple, [2]-[9]). Often, it is prudent to consider the complexity
of these methods from various perspectives, including, for
example, the computational complexity of the algorithm, for
which a number of results have been developed (see [10]
for a timeline). Recently, researchers have begun to address
other facets of complexity, including the communication
complexity (the amount of information that must be gathered
and or shared among agents) and time complexity (the
actual time required to complete the task) [11]. In [10],
the authors investigate how the time required to transfer
n agents between specified origin and destination points,
without conflicts, scales as the number of agents gets large.
They consider various conflict models and assume agents do
not communicate with one another.

In many applications, including the air transportation sys-
tems of future generations, the agents that make up the sys-
tem will have the ability to communicate with one another.
In this paper, we show that, given this added functionality,
there exists a transfer policy that is free of conflicts and
scales logarithmically in the number of agents. It is worth
reinforcing that although we are interested in determining
performance limitations associated with the traffic density in
an autonomous airspace, the discussion to follow is probably
also applicable to other domains in which large numbers of
autonomous agents navigate in a shared environment. For this
reason, we use the terms agent and aircraft interchangeably.

This paper is organized in sections. Section II provides the
formulation of the problem we consider, as well as a brief ac-
count of related work that has been reported in the literature.
Section III provides a new way to model conflicts among
agents operating in a shared environment. In Section IV, we
provide an algorithm capable of safely transferring all agents,
and, by developing bounds on the transfer time, conclude
our algorithm is optimal in an asymptotic sense. Simulation
results in Section V demonstrate the essential features of
our algorithm. Finally, Section VII closes with concluding
remarks.

II. THE TRANSFER PROBLEM

We consider the problem of transferring n agents between
arbitrary source and destination points in a manner that
is free of conflicts and scales favorably as n gets large
[10]. Such a scenario is representative of operations in a
so-called super-density traffic environment. We label the
agents arbitrarily as 4y,...,4,. The workspace of interest



is denoted by % C R? and is assumed to be of fixed area
A. The position and velocity of 4; at time ¢ are denoted
by gi(t) € W and v; (t) € R?, respectively, for i = 1,...,n.
It proves advantageous to conduct the analysis to follow in
terms of a polar coordinate frame. To this end, we express
gi in terms of the radial and angular component of 4; as
qi (t) = (ri(t),8; (¢)), where 6;(¢) € [0,2m).

Associated with each 4; is an origin point O; and a
destination point D;. At some point during the transfer, 4;
travels along a path that starts at O; and terminates at D;.
For a particular conflict-free transfer policy, 2, we define the
transfer time, Ty (n), to be the total amount of time required
to transfer each 4; from O; to D;. We define the optimal
transfer time, T* (n), to be the minimum amount of time
needed to transfer each 4; from O; to D; without conflicts.
Note that 7* (n) < T, (n) for any #. In this paper, we are
interested in how T, (n) and T*(n) scale as n gets large
for various distributions of origin and destination points.
Unsurprisingly, the answer depends on how a conflict is
defined, which in turn is tied to how we relate interactions
between agents in the workspace to our notion of what
constitutes safe operation.

In [10], the authors consider various conflict models for
agents that do not share their intentions with one another,
and investigate the associated transfer time as a function
of n. A traditional approach to model conflicts in multi-
agent systems is to assign to each 4; a safety disc, M; (1),
of radius r; > 0 centered about g;(¢). A system is said to
be free of conflicts if a¢;(t)Nar;(r) =0 for i,j=1,...,n,
i # j, Vt. The question of defining safety then reduces to one
of defining r;. In [10], the authors show that if the safety
radius is lower bounded by a constant, i.e., r; > r,, then
T*(n) = ©(n). In the same work, the authors consider a
safety radius with affine dependence on v;, the velocity of 4;.
They show that if ; = r (n) + {|v;| where { > 0 is a constant,
and r(n) = O(1/+/n) from above, then T* (n) = @ (y/n).

In the next section, we argue that, in many cases, it is
the relative, rather than the absolute, velocity of agents that
is most important when describing safety, and define the
relative-velocity conflict model that we use in the remainder
of this paper.

III. A SYSTEM MODEL

For each 4;, in addition to 4;’s position and velocity, at
each time instant, we associate 4; as being in either an
inactive or active state. We exclude inactive agents when
considering the conflict condition, which we define shortly.
Therefore, it is only among the active agents that conflicts
must be avoided. We believe this formalism makes sense
in a number of settings. For example, in air traffic control,
airplanes docked in hangars or parked at terminal gates on
the ground (i.e, in an inactive state) do not pose a safety risk
to planes already in the sky until they take off (at which time
they become active).

In systems where agents are able to communicate with one
another, as in the proposed next-gen ATS, it is the relative,
rather than the absolute, velocity of agents that has the

greatest impact on safety. For these systems, it is appropriate
for a first-order analysis to base the minimum separation
distance between two agents entirely on the difference in
their velocities.

Definition 1 A transfer is free of conflicts, in the relative-
velocity sense, if for every pair of active agents, 4;, 4;,

i (1) = qi (0)] > |vi (t) —v; ()] Vi j € 1,...on, Ve, (1)

where X > 0 is a constant. ¢

We use the relative-velocity conflict model throughout the
remainder of this paper. The presentation of our algorithm, in
the next section, requires we define the dispersion associated
with a set of points. Let s = {0y, ...,0,,Dy,...,D,} denote
the set of all origin and destination points in % . The
dispersion, denoted rygisp, is defined to be the radius of the
largest circle that can be inscribed in % and does not contain
any of the points in § [12]. Mathematically, the dispersion
can be expressed as

Tdisp =max{min g — p|2}. (2)
qeEW PES

We also refer to the circle with radius r4;sp as the dispersion
circle and denote its center by gc. Moreover, for large
n (i.e., the super-density case we are interested in), the
dispersion can be shown to satisfy the asymptotic bound

rdisp = Q(l/\/ﬁ) [12].
IV. THE SPIRAL ALGORITHM

In this section, we propose a new transfer algorithm,
show it is safe under the relative-velocity conflict model,
and investigate how its transfer time scales as n gets large.
The proposed algorithm, called the SPIRAL ALGORITHM, is
composed of two phases: a SPIRAL-IN phase, followed by a
SPIRAL-OUT phase. The basic idea is to have all of the agents
congregate inside the dispersion circle during the SPIRAL-IN
phase and then send them off to their respective destination
points during the SPIRAL-OUT phase. Before discussing each
phase in detail, assume, for notational simplicity, but without
loss of generality, that the workspace is a circle of radius
R, and the dispersion circle is centered at the origin. The
SPIRAL-IN and SPIRAL-OUT phases are described below.

A. Phase I: SPIRAL-IN

At the beginning of the SPIRAL-IN phase, all aircraft are in
an inactive state. This is consistent with aircraft being on the
ground at their outset airports, such that no aircraft poses a
safety risk to another aircraft. During the SPIRAL-IN phase,
4; is active over the interval [—z;(,0], where —f;; < 0 is
the time 4; is activated and leaves its origin point. Once
activated, 4; travels inward from O; along a logarithmic
spiral trajectory emanating from gc. Along this path, the
polar coordinates of 4; evolve according to the dynamics

o= —ar; 3)
6,’ = O, (4)

where o > 0 and ® > 0 are constants. That is, 4; travels
with a speed proportional to its distance from g¢ and at a
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Fig. 1. Relevant geometry of two agents, 4; and 4, in W.

fixed angle inward from the vector tangent to its direction of
motion (see Figure 1). If we let O; = (ri,,0;,), then solving
(3) and (4) gives g; (0) = (7;(0),6;(0)), where

ri (0) ripe” %l 5)
0;(0) = 6o+ 0. (6)

B. Phase II: SPIRAL-OUT

The SPIRAL-OUT phase begins at ¢ = O, just after the
SPIRAL-IN phase has ended. During the SPIRAL-OUT phase,
4; is active over the interval [0, 2], where #; > 0 is the time
4; reaches its destination. We adopt the convention that 4; is
deactivated (i.e., returned to an inactive state) once it reaches
its destination. In the case of aircraft, this is indicative of an
aircraft reaching its destination and landing. The SPIRAL-
OUT phase is analogous to the SPIRAL-IN phase, with two
important exceptions. First, all agents begin the SPIRAL-OUT
phase at time zero, but, in general, are deactivated at different
times. Second, the radial coordinate of 4; increases, rather
than decreases, throughout the SPIRAL-OUT phase until the
time at which an agent reaches its destination point and is
deactivated. In this case, the polar coordinates of 4; evolve
according to the dynamics

i o= or; 7
0 = o 8)

Note the heading angle of 4; continues to increase during
the SPIRAL-OUT phase, just as it did during the SPIRAL-
IN phase. Were we to use 6; = —® during the SPIRAL-OUT
phase, instead of (7), 4; would retrace the route it took from
Si, making it impossible to transfer 4; to destination points
not residing on this path.

If we let D; = (r;4,9;4), then solving (7) and (8) gives

ria = ri(0)e*i2 9)

0,0 = 6;(0)+ o, — 21k, for some k€ Z*. (10)

Combining (5) with (9) to eliminate r; (0), and (6) with (10)
to eliminate 6; (0) gives

fid = ri,oea(t’*rt’*l)

(11)
9,-,,1 = eiyo—i-(i)(t,"z—l—t,‘,l) — 27k, for some k € Z+.(12)

It follows that

1 Vid
tio—ti1 = —10g(—7
o Tio

(64,; — 6i 0+ 2mk)
(0]

The presence of the 2mk/® term in (10), (12), and (14)

resolves the fact that 4; may have encircled the origin one

or more times (during the the transfer) with our convention

that 6, 4 € [0,27). As such, #;; and #;, may be determined

by solving (13) and (14) for the smallest k € Z* such that

(1/a)log (riisP) and

o

13)

tia+ti = , for some k€ Z*. (14)

i1

ei,o

s5)

<
< (16)

ot; 1+ 0; g +27k.
The condition in (15) guarantees 4; make its way inside the
dispersion circle, while the condition in (16) addresses the
aforementioned multiple encirclements scenario.

To summarize, by solving (13) and (14), subject to (15)
and (16), we can calculate the activation time and deactiva-
tion time of each agent. It is important to note that inter-agent
coordination is critical to the success of this algorithm: agents
must schedule their motion according to a common clock in
order to ensure the SPIRAL-IN and SPIRAL-OUT phases end
and begin, respectively, at time zero. In the next section, we
show the algorithm is free of conflicts.

C. Safety of the SPIRAL-ALGORITHM

Concerning the safety of the SPIRAL ALGORITHM, we
have the following result:

Theorem 1 Under the relative-velocity conflict model,
the SPIRAL ALGORITHM is free of conflicts provided

K < 1/VoZ+o. o

Proof: We begin by noting that during the SPIRAL-IN
phase, all of the active aircraft move according to (3) and (4).
During the SPIRAL-OUT phase, all of the active aircraft move
according to (7) and (8). Also, the SPIRAL-IN and SPIRAL-
OUT phases span disjoint intervals of time. Therefore, at any
time, all of the active agents move by following a common
flow field.

Now consider any two aircraft, say 4; and 4;, that are
active at time ¢ during the SPIRAL-IN phase, as shown
previously in Figure 1. For convenience, we suppress the
dependence on time in the relations that follow. From Fig-

ure 1, the square of the distance separating 4; and 4; is
2
’qi—qj’ :r,z+rj2-—2rirlicos(9i—6.i). (17)

The speed of 4; is given by

|'|_ o, 2+ 2 2
il = ot "o
= rvo?+o’.

It follows, again from Figure 1, that the square of the
difference between the velocities of 4; and 4; is

’v,'—vj"z = ((X2+0)2) (ri2+rj2-—2rirjcos(9i—9j)). (18)



Combining (17) and (18) gives

1
49i—4qj| = —=—= Vi~ Vj|-
4= 0il = Zarra vl
Comparing the above expression with the relative-velocity
conflict model in (1), we see the transfer is free of conflicts
provided o and ® are chosen to satisfy

Vo2 +m? < %

A similar argument applies to any two agents that are active
during the SPIRAL-OUT phase. Therefore, for appropriately
chosen o and ®, we conclude the SPIRAL-TRANSFER algo-
rithm is free of conflicts. [ ]

We remark that the selection of Vo2 + ®?, and therefore
o, can be done independent of 7. In the next section, we use
this fact to develop an upper bound on the transfer time of
the SPIRAL ALGORITHM.

19)

D. An Asymptotic Upper Bound on Tsp (n)

In this subsection, we derive an upper bound on Tsp (n),
the time required for the SPIRAL ALGORITHM to transfer n
agents, when 7 is large. We have the following result:

Theorem 2 For any distribution of origin and destination
points, Tsp (n) = O(logn). ©

Proof: To investigate the transfer time for large n, note
that since the SPIRAL-IN and SPIRAL-OUT phases end and
begin, respectively, at ¢ = 0, the transfer time of the SPIRAL-
ALGORITHM can be expressed as

Tsp (n) =max f;] +max f;». (20)
l l

We begin by developing an upper bound for the leftmost
term on the right-hand side of (20). Let i = arg max; #;; and
note that the term in question represents the duration of the
SPIRAL-IN phase.

When n is large, the dispersion satisfies rgisp = Q(1/1/n).
It follows there exists n, € Z* and finite ¢ > 0 such that for
all n > n, the dispersion satisfies rgisp > ¢//n.

For a worst case distribution of origin and destina-
tion points, 4; must travel from the workspace boundary
(ri (—t;,1) = R) to reach the edge of the dispersion circle and,
subsequently, rotate an additional 27 radians to reach the first
point that will take it to D; during the SPIRAL-OUT phase.
From the expression in (5), we can bound #;; by

llog (R\/ﬁ) + n
o c ®
= O(logn).

i1

)

IN

In the above, we have made use of a point that was noted
earlier, namely, that o can be chosen to provide safety
independent of n. A similar worst-case scenario applies in the
SPIRAL-OUT phase and leads to the bound #;, = O (logn).
Combining this result with the bound on #;; gives the upper
bound Tsp (n) = O (logn). [ |

For agents capable of communicating their intentions with
other agents, Theorem 2 indicates the adoption of the relative

velocity conflict model allows for a dramatic reduction in the
transfer time. The improvement in transfer time can then be
interpreted as a performance gain associated with systems
in which inter-agent communication allows for coordinated
trajectory planning.

E. An Asymptotic Lower Bound on T* (n)

In this subsection, we consider a lower bound on 7™ (n).
We begin by considering the transfer time complexity for a
favorable distribution of origin and destination points.

Proposition 1 Under the relative-velocity conflict model,
there exists a distribution of origin and destination points
for which T*(n) =Q(1). ¢

Proof: Consider an arrangement of origin and desti-
nation points for which Z(D;—0;) = Z(D;—0;) for all
i,j€l1,...,n If all agents travel with finite speed V4, along
straight-line paths from their origin to their destination point,
then |v;(r) —v;(¢t)| =0 for all i,j, ensuring there are no
conflicts. Furthermore, T* (1) < ¢1v/A/Viuar, Where ¢1 is a
finite constant dependent on the geometry of the workspace,
indicating the transfer time is independent of n. [ ]

The following result addresses a lower bound on T* (n) for
a more challenging configuration of origin and destination
points.

Theorem 3 Under the relative-velocity conflict model, there
exists a distribution of origin and destination points for
which T* (n) = Q(logn). ©

Proof: Consider an arrangement of origin and destina-
tion points that has the following properties:

« all source points are distributed inside a small region
such that |S; — S| < c1/n* for all i, j, where ¢ is a con-
stant dependent on the geometry of % . An appropriate
value for k will be specified later.

« the destination points are distributed in a separate region
of W such that |D; —Dj| > 2¢2/+/n for all i # j, where
¢y is a constant dependent on the geometry of W .

It is noted that the distribution of origin and destination
points is well-defined even for large n provided k is suffi-
ciently large. Now assume there is a time, say ¢ = 0 without
loss of generality, at which a constant fraction of the agents
(i.e., m=on, 0 <o <1) are active and inside the small
region. Number these agents as 4; through 4,, based on the
order in which they reach their destination points, with #; the
time at which 4; reaches D;. Then [0,#,) may be divided into
the intervals [0,71),[t1,22) ;.- , [tm—1,tm ), Where [f;_1,1;) is the
time interval in which only agents 4;,...,4,, are active.

It can be shown that the safety condition in (1) implies

lgi (82) — g (12) | < &7/ ¥|qi (1)) — q; (1),

foralli,j,ti, and 1o : t; <t <min(#;,¢;). Noting that T* (n) is
the minimum time required to transfer all agents, we proceed
by considering two cases.

21

CASE 1: There exists a pair of agents, say 4; and 4, such
that |g; (t) —q; (t)| > c2/+/n fort € [0,min(t;,¢;)). Then since



ISi—S;| < c1/nk, it follows that T* > log ((cz/cl)nk’O'S) and
for k > 0.5, we have T* (n) = Q(logn).

Now assume CASE 1 does not occur. It must be that we
have the following case:

CASE 2: The agents, 4y,...,4, travel as a “pack”,
between the destination points D; through D,,, with any two
active agents always separated by less than ¢, /+/n. However,
since |D; —Dj| > 2¢2/+/n for all i # j, the transfer of agents
is done one agent at a time, implying the duration of each of
the intervals [0,71),[f1,22),. .., [fm—1,%m) is bounded from be-
low by ¢2/ (Vinax/n). The total transfer time is then bounded
from below by (0cav/n)/Vinax. However, since Tsp(n) =
O (logn), we are in contradiction with our definition of 7* (n)
as the minimum transfer time for a specific arrangement
of source and destination points. Therefore, CASE 1 must
always hold and 7* = Q (logn). [ |

This result implies that for certain arrangements of origin
and destination points the SPIRAL ALGORITHM is to within a
constant factor of the optimal transfer policy. The following
theorem summarizes this result formally.

Theorem 4 Under the relative-velocity conflict model,
for any distribution of origin and destination points,
T*(n) = O(logn). <

Proof: Given T*(n) < Tsp (n), the result follows di-
rectly from the upper bound in Theorem 2 and the lower
bound in Theorem 3. ]

It is noted that while 7*(n) = Q (1) for certain arrange-
ments and 7" (n) = Q(logn) for others, it remains to cate-
gorize the transfer time for a stochastic distribution of origin
and destination points. This is the subject of ongoing work.

V. SIMULATION RESULTS

This section demonstrates the functionality of the SPIRAL
ALGORITHM for a transfer of n = 20 agents. Figure 2 pro-
vides six snapshots that have been evenly spaced throughout
the time spanning the activation of the first agent to the
deactivation of the last agent, inclusively. For each of the n
origin/destination points, the radial and angular component
were selected by sampling uniformly over [0.2,0.75] and
[0.27), respectively. The remaining parameters used are o =
0.3 and ® = 2, so that the transfer is free of conflicts for
k <0.4975. The parameter values used were selected so the
dispersion circle is sufficiently large and the trajectories suit-
ably distinguishable from one another to ensure readability.

VI. A REVISED CONFLICT MODEL

Although we have argued that the relative-velocity conflict
model is appropriate for many applications, in some cases, it
is prudent to consider both the relative velocity and relative
position of agents when specifying a minimum separation.

Definition 2 A transfer is free of conflicts, in the spatial,
relative-velocity sense, if for every active pair, 4;, 4;,

|gi — q;] ZK% (vi—vj), (22)
j i

Vi,j€1,...,n, Vt, where x >0 is a constant. <

Under this conflict model, the minimum separation be-
tween 4; and 4; is mandated to be positive only if 4; and
A4; are heading “toward” each other. It turns out the results
pertaining to safety and transfer time are very similar to those
developed for the relative-velocity conflict model. We leave
presentation of the technical details to a future work.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

We introduced a new approach to model conflicts among
aircraft operating in a shared airspace. An algorithm was
presented that transfers n aircraft between origin and des-
tination points, is free of conflicts, and whose transfer time
scales logarithmically in n. The ideas reported have a number
of natural extensions. Presently, we are investigating transfer
schemes in which the velocity of aircraft deviates only mini-
mally from a constant value (rather than scaling linearly with
distance as in our algorithm), as this is more representative
of the velocity profile that is desired during flight. We are
also interested in a dynamic version of the transfer problem
in which requests by agents to move between points in the
workspace arrive stochastically on an ongoing basis. Finally,
it remains to quantify how restrictions in the available
workspace (due, for example, to inclement weather) affect
the transfer time in super-density traffic environments.
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Fig. 2. Progression of agent trajectories during transfer. Green triangles denote agents that have not left their origin point. Red crosses denote agents
that have reached their destination point. Blue circles denote agents in the process of being transferred. The time instant corresponding to each snapshot
is shown at the top center of each plot. The blue lines represent agent trajectories. To provide a sense for how fast the agents move, the last 0.3s of each
agent’s trajectory is shown in varying shades of blue; the darker the shade, the more recently the point was visited.



