
Contract Based Embedded Software
Design

Christian Lidström(B) and Dilian Gurov(B)

KTH Royal Institute of Technology, Stockholm, Sweden
{clid,dilian}@kth.se

Abstract. In embedded systems development, contract based design is
a design paradigm where a system is divided hierarchically into compo-
nents and developed in a top-down manner, using contracts as a means
to divide responsibilities and manage the complexity of the system. Con-
tract theories provide a formal basis for reasoning about the properties
of the system, and of the contracts themselves. In previous work, we
have developed a contract theory for sequential, procedural programs,
that is defined abstractly, at the semantic level. The theory fulfils well-
established, desired properties of system design. In this paper, we present
a methodology for applying the contract theory in real embedded soft-
ware design. We show how to instantiate the contract theory with con-
crete syntaxes for defining components and contracts, and how the con-
tract theory enables formal reasoning about the resulting objects. In
order to cope with the need for different behavioural models at differ-
ent levels of abstraction in an embedded system, we extend the contract
theory through parametrisation on the semantic domain. We illustrate
the application of the proposed methodology on a small, but realistic
example, where the temporal logic TLA is used for reasoning at the
system level, while lower level components are specified using pre- and
post-conditions in the form of ACSL, a specification language for C.

1 Introduction

A contract for a software component is a means to specify the behaviour (or
result) the component has to produce, called the guarantee, provided that the
user (or client) of the component fulfils certain constraints on how it interacts
with the component, called assumptions. Software contracts were pioneered by
the works of Floyd [14] and Hoare [15]. In Hoare logic, meaning is assigned to
sequential programs axiomatically, through so-called Hoare triples, allowing the
desired relationship between initial and final values of certain variables to be
specified. Specifying contracts in this way has been advocated by Meyer with
the design methodology Design-by-Contract [23]. The methodology is well-suited
for independent implementation and verification, meaning that development of
software components occurs independently, without knowledge of any implemen-
tation details of other components, but instead relying on the contracts of the
latter. Contract based design as an approach to systems design thus provides a
way to deal with the complexity of large systems, making explicit the assump-
tions on each component’s environment. In a top-down design flow, contracts are
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. David and M. Sun (Eds.): TASE 2023, LNCS 13931, pp. 77–94, 2023.
https://doi.org/10.1007/978-3-031-35257-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35257-7_5&domain=pdf
https://doi.org/10.1007/978-3-031-35257-7_5

78 C. Lidström and D. Gurov

iteratively decomposed into sub-contracts [7,9,17,28], and the typical task then
is to show that the composition of the sub-contracts refines the original contract.
Contract refinement and composition enable the independent development and
reuse of components. Further, contract conjunction allows the superimposition
of contracts over the same component, when they concern different aspects of
its behaviour. Contract theories formalise the abstract notion of a contract [8],
and define operations and relations on contracts mentioned above.

Motivation. In previous work [21], we proposed a contract theory for reasoning
about procedural programs, and takes therefore procedures as the basic building
block (i.e., component). The theory is abstract in that it is developed purely
at the semantic level, in terms of standard denotational semantics. We showed,
in the context of a simplistic imperative programming language with proce-
dures, that Hoare logic contracts and their procedure-modular verification can
be cast naturally in our contract theory. We also showed that the contract the-
ory instantiates the meta-theory of Benveniste et al. [8], and thus fulfils certain
well-established and desired properties of embedded systems development. In a
follow-up work [2], we showed in practice how to combine state-of-the-art ver-
ification tools for different semantic domains, and presented a proof-of-concept
tool chain for this purpose. We also sketched how the contract theory can serve
as formal basis for this approach, but left out a fully formal justification.

To illustrate the usefulness of the contract theory, the present paper presents
a methodology of how to apply it in embedded systems development. In embedded
systems, the type of behaviour that is of interest typically differs at different lev-
els in the hierarchy of the system. At lower levels, software components are often
understood as state transformers, i.e., as components the purpose of which is to
transform certain initial values to certain final values, where the intermediate
values are just implementation details irrelevant to the computed function. Such
programs are appropriately specified using Hoare logic contracts in the form of
pre- and post-conditions. At higher levels, however, such specifications are usu-
ally not sufficient, since the behaviour depends on interaction between several
software sub-systems. Here, specifications are typically of a temporal nature, and
the intermediate states of the program execution cannot be ignored. Since our
previous work only dealt with the former case, we will show here that our frame-
work is also fit for reasoning about the temporal behaviour of programs. Even
more, we extend the contract theory to handle the combination of the different
notions of behaviour, as needed for embedded systems development.

Example. Embedded systems typically interact with their environment through
sensors and actuators, and have the goal to maintain certain temporal properties.
Say we want to design a system, which (among other things) uses a sensor to
measure the temperature of a part of the system, and displays it to a user. The
temperature is measured in the unit of Kelvin, but should be displayed to the
user in Celsius. A desired temporal property of this system is:

At any point in time, when the temperature is read from the sensor
it must eventually be displayed, in Celsius.

(1)

Contract Based Embedded Software Design 79

Fig. 1. Division of the example system into components

A formalised specification, or contract, of this property would be the starting
point for the design of the system. Then, the system is divided into appropriate
proto-components (i.e., components yet to be specified), defining the intended
system architecture, and the contract is decomposed into contracts for those
components, in such a way that their composition refines the top-level contract.
Reasonably, such a system will have a function that reads the sensor value, and
checks for potential erroneous inputs, such as in the case of potential hardware
faults. The system will then have a function that converts the sanitised sensor
value, and displays it (which we will model as writing to a variable). Finally,
a main, scheduling component will continuously execute the other components.
Figure 1 illustrates the system architecture, where the arrows indicate proce-
dure calls between components. As pointed out, the top-level property is of a
temporal nature, whereas the two sub-components perform computations of a
transformational nature. This has to be reflected by their respective contracts.

Contributions. We present a methodology for designing embedded software, for-
mally underpinned by our contract theory [21]. The contract theory provides a
formal basis for system design as per the principles of contract based design.
The contract theory is abstract, allowing instantiations with different specifica-
tion and implementation languages, and is based on procedures, making it fit for
software development. To allow the combination of different execution domains,
we generalise here the contract theory of [21] through parametrisation on the
domain of execution behaviour of system components.

We show how to instantiate the parametrised contract theory using, in com-
bination, two semantic domains of executions: state pairs and infinite traces. We
use established languages and tools to support this instantiation, such as the
Frama-C [18] (whose specification language is ACSL [4]) and TLA [19,20] frame-
works. We show how high-level, temporal contracts expressed in TLA can be
decomposed into lower-level, state-transformation contracts expressed in ACSL.
This enables procedure-modular verification of embedded software implemented
in C, relative to procedure contracts, while satisfying the high-level contracts.
The whole system design process is exemplified on industrial-like software.

Structure. The paper is organised as follows. Section 2 introduces the concepts
of contract based design, contract theories and meta-theories. Section 3 presents
our abstract, and parametrised, contract theory. Section 4 describes abstractly

80 C. Lidström and D. Gurov

how the contract theory can be applied, and what is required to instantiate
it. Section 5 shows how the contract theory can be instantiated with concrete
languages for specifying contracts, in two different domains. Section 6 shows
how components can be concretely defined (that is, implemented) using the
C language, and describes procedure-modular verification in the context of the
two domains. Section 7 illustrates the application of the contract theory on our
running example. Section 8 details the related work. We conclude with Sect. 9.

2 Contract Based Design and Contract Theories

Contract based design [8,23] is a systems design paradigm where the design of a
system is performed in a top-down manner, through the use of contracts. Top-
level properties are specified as a contract for the system as a whole. The sys-
tem is then divided, conceptually, into components intended to perform specific
tasks, defining the system architecture. The top-level contract is decomposed
into contracts for the components of the system, documenting their intended
behaviour. Base components (i.e., components which are not further divided)
are then implemented individually and independently, by relying on the con-
tracts of other components. Finally, the components are assembled iteratively,
in a bottom-up manner, until the whole system is formed. Contracts must thus
expose enough information to the other components about the provided func-
tionality, and state the expectations on the rest of the system.

A common design pattern are assume-guarantee contracts. Here, a contract
consists of a set of assumptions and a set of guarantees. The assumptions specify
how the component expects the system, or environment, to behave. For example,
it may require that certain other components exist, and that they can be inter-
faced with in a specific way. The guarantees specify how the component obliges
itself to behave, e.g., how it can be interfaced with, and what computations it
performs, under the condition that the assumptions are adhered to.

Our focus here is on the design of embedded software, where the end-goal is to
fulfil some system-wide properties. Thus, as contracts are decomposed and com-
ponents are implemented to satisfy them, it is important that this is performed
so that, when the final system is assembled, the top-level properties hold. Ben-
veniste et al. [8] examined existing system design methodologies, and identified
two properties as essential for any design framework: independent implementa-
tion, and reuse, of components. To this end, one should be able to decompose
and compose components as well as contracts. In addition, the framework must
also allow for the refinement and abstraction of contracts, in order to expose
only the information appropriate at specific levels of abstraction.

Contract Theories and Meta-Theories. Contract theories provide formal frame-
works for contract based system design, defining the basic units of reasoning,
and the operations and relations over them. In turn, contract meta-theories sys-
tematise such contract theories by axiomatising the desired properties of their
relations and operations, instead of defining them explicitly. Benveniste et al. [8]

Contract Based Embedded Software Design 81

develop such a meta-theory, which systematises contract theories for system
design in cyber-physical systems. As such, it states that a contract theory must
have a notion of component and a notion of contract. Further, there must be
composition operators over both notions, a binary refinement relation between
contracts, and a conjunction operator over contracts. While their definitions are
left abstract, the meta-theory formulates axioms that must be fulfilled by con-
tract theories in order to enable proper design-chain management. For instance,
one axiom stated by the meta-theory postulates that when a contract C1 refines
another contract C2, written C1 � C2, then every implementation of C1 must also
implement C2. This ensures that contracts can be extracted and implemented
at the appropriate level of abstraction, while not affecting the higher-level con-
tracts. For a comprehensive view of the axioms, see the original monograph [8],
or the paper in which our contract theory was originally presented [21]. In Sect. 3,
we present an extended version of our contract theory, in which the semantic
domain of component behaviour is left as a parameter.

3 An Abstract Parametrised Contract Theory

We have previously proposed an abstract contract theory for procedural lan-
guages [21], based on a denotational semantics over the domain State× State,
where State denotes the set of states. The contract theory was solely defined
at the semantic level, without proposing any concrete languages for defining
contracts and components. In this paper, we generalise the contract theory by
parametrising the semantic domain. This enables the use of arbitrary domains,
allowing a wider range of concrete syntaxes, and, in turn, types of properties to be
specified. As we shall see, the new contract theory supports also the combination
of several domains, depending on their relevance for the respective component.
As in the original work, it supports the design-by-contract methodology devel-
oped by Meyer [23], and satisfies the axioms of the meta-theory of Benveniste et
al. [8]. Thus, the contract theory satisfies important properties desired in system
design methodologies, such as independent development, and reuse, of compo-
nents. This section summarises the generalised abstract contract theory, leaving
out the technical details not needed to follow this paper. The full definition of
the contract theory can be found in [2].

We focus on procedural languages, and assume a finite set of procedure
names P. We consider an abstract notion of behaviour, called a run, representing
a single execution of a system. Let Run denote the set of all runs. For any set
of procedure names P ⊆ P, a procedure environment EnvP = P → 2Run maps
procedure names to corresponding sets of runs. We define a partial order relation
on procedure environments as point-wise set inclusion: for any ρ ∈ EnvP and
ρ′ ∈ EnvP ′ , ρ � ρ′ iff P ⊆ P ′ and ∀p ∈ P.ρ(p) ⊆ ρ′(p). Let Env =

⋃
P⊆P EnvP .

Then, (Env,�) is a complete lattice, since for every subset of Env there exists a
greatest lower bound (glb) and a least upper bound (lub). The respective glb and
lub operations on environments are denoted by � and 	. For two environments
ρ1 ∈ EnvP1 and ρ2 ∈ EnvP2 , ρ1 � ρ2 is the environment ρ ∈ EnvP1∩P2 such
that ∀p ∈ P1 ∩ .ρ(p) = ρ1(p) ∩ ρ2(p).

82 C. Lidström and D. Gurov

An interface I = (P−, P+) is a pair of disjoint sets of procedure names. Both
components and contracts are equipped with interfaces. P+ are the procedures
provided by a component, i.e., procedures that are (or will be) implemented
within it. Conversely, P− are the procedures required by the component, i.e.,
those called from it but not implemented in it. A component m with inter-
face Im = (P−

m , P+
m) is a monotonic mapping of type m : EnvP −

m
→ EnvP+

m
,

i.e., a function giving the behaviour of provided procedures, depending on the
behaviour of required procedures. Two components m1 and m2 are composable
if and only if P+

m1
∩ P+

m2
= ∅, and the (sequential) composition is defined in

terms of fixed-points. A denotational contract c with interface Ic = (P−
c , P+

c)
is a pair (ρ−

c , ρ+c), where the required procedure environment ρ−
c ∈ EnvP −

c
and

the provided procedure environment ρ+c ∈ EnvP+
c

. The rationale behind these
definitions is that a component m, when given the environment ρ−

c , implements
the contract, denoted m |= c, if the resulting procedure environment is at least
as strict as ρ+c , under some additional restrictions on their interfaces. Further-
more, contract c refines contract c′, denoted c � c′, if and only if ρ−

c′ � ρ−
c

and ρ+c � ρ+c′ . Contract composition has similar restrictions on the interfaces
as for components, and for every procedure required by one contract and pro-
vided by the other, the provided behaviour must be at least as strict as the
required one. Then, the composition of two composable contracts c1 = (ρ−

c1 , ρ
+
c1)

and c2 = (ρ−
c2 , ρ

+
c2) with interfaces Ic1 = (P−

c1 , P
+
c1) and Ic2 = (P−

c2 , P
+
c2) is the

contract c1 ⊗ c2
def= (ρ−

c1⊗c2 , ρ
+
c1 	 ρ+c2), where ρ−

c1⊗c2 is the glb of ρ−
c1 and ρ−

c2 ,
but restricted to those procedures not provided by one of the contracts.

The following two theorems correspond to Theorem 1 and 2 in [21]. Since
the original proofs do not rely on any particular domain of runs, they apply also
here, and are therefore omitted.

Theorem 1. Component composition is well-defined, i.e., the involved fixed-
points exist, and the resulting components are monotonic mappings.

Note that for this result to hold, when instantiating with a concrete semantics,
one must restrict the base components to be monotonic.

The next result captures the essential properties of composition.

Theorem 2. For any composable contracts c1 and c2, and any implementations
m1 |= c1 and m2 |= c2, m1 and m2 are composable. Furthermore, c1 ⊗ c2 is the
least contract w.r.t. the refinement order for which the following holds:

(i) m1 × m2 |= c1 ⊗ c2, and
(ii) if m is an environment to c1 ⊗ c2, then m1 ×m is an environment to c2 and

m × m2 is an environment to c1.

4 The Contract Theory as Basis for System Design

This section describes how the abstract contract theory can be applied for the
design of, and reasoning about, real systems. By applying the contract theory,

Contract Based Embedded Software Design 83

we mean casting the concrete specification and implementation languages in its
framework, thus showing that the desired properties of system design method-
ologies hold. We first describe how the parametrised contract theory can be
instantiated with concrete languages, possibly using several semantic domains,
and then discuss procedure-modular verification in this setting.

4.1 Instantiating the Contract Theory

Instantiating the parametrised contract theory requires certain steps to be taken.
Concretely, the following elements must be provided:
1. A semantic domain for runs.
2. A syntax for defining components, i.e., a programming language.
3. A syntax for defining contracts, i.e., a specification language.
4. A contract-relative semantics mapping concretely defined components and

contracts to abstract ones, as denotations over the chosen semantic domain,
under certain conditions.

The last item requires some explanation. We take the view of contracts as being
separate from their implementation, and desire a program S to satisfy its con-
tract C, denoted S |= C, precisely when [[S]] ⊆ [[C]], where [[C]] ∈ 2Run is some
given denotational semantics of C. Equivalently, one can require that the deno-
tational semantics for contracts be defined so that the following holds:

[[C]] =
⋃

S|=C

[[S]] (2)

Following the design-by-contract methodology, the semantics of procedures
should be given relative to the contracts of the other procedures. Assuming that
every procedure p is equipped with a contract Cp, we introduce the contract
environment ρc, defined by ρc(p)

def= [[Cp]] for all p ∈ P , and use it to define
a contract-relative semantics [[S]]cr def= [[S]]ρc

. In particular, the denotation of
procedure calls is obtained from this environment (and not from solving fixed-
point equations). This semantics naturally induces a contract-relative satisfac-
tion relation Sp |=cr Cp, where Sp is a procedure-body and Cp its contract. The
contract-relative semantics must fulfil the following properties:
1. All base components must be monotonic mappings.
2. For any two disjoint sets of functions P+

1 and P+
2 , abstracted individually

into components m1 and m2, respectively, and P+
1 ∪P+

2 abstracted into com-
ponent m, we must have m1 × m2 = m.

3. For any procedure p with procedure contract Cp, abstracted into compo-
nent mp with contract cp, we must have Sp |=cr Cp whenever mp |= cp.

The first restriction is needed for Theorem 1 to hold. The second restriction
establishes, together with the commutativity and associativity of component
composition, that the order in which we choose to abstract and compose compo-
nents is unimportant. The third restriction establishes that contract satisfaction
at the concrete level is consistent with that at the abstract level. The latter two
restrictions enable procedure-modular verification, which we now discuss.

84 C. Lidström and D. Gurov

Fig. 2. View of procedure-modular verification, assuming c1 ⊗ c2 � c

4.2 Procedure-Modular Verification

The contract-relative semantics provides a basis for procedure-modular verifica-
tion, which is performed at the syntactic level. Figure 2 illustrates how procedure-
modular verification of concrete implementations against concrete specifications
enables us to show, in the end, that the composition of the parts of a system
fulfils some higher-level contract. We shall explain the scheme in a top-down
manner. Given that c1 ⊗ c2 � c has already been established (i.e., the top-level
contract c has been refined and decomposed), we obtain from the properties of
refinement within the contract-theory, and Theorem 2, that for the final result
to hold, each sub-component must be shown to implement its contract. The
properties listed in Sect. 4.1 entail that this can be shown by establishing con-
tract satisfaction at the concrete level, which in turn follows from (syntactic)
verification, assuming that the latter is sound w.r.t. the contract-relative seman-
tics. Thus, the problem of proving high-level properties in a system composed of
many, independently implemented components, is reduced to procedure-modular
verification (at the syntactic level), and to showing refinement and decomposi-
tion of contracts. Syntactic, procedure-modular verification is supported by a
variety of existing frameworks such as Frama-C [18] and OpenJML [13]. In the
next sections, we will see concretely how, by treating contracts in one domain
as a subset of another domain, we can procedure-modularly verify contracts
expressing temporal properties relative to transformational contracts.

5 Specifying and Decomposing Contracts

Following the principles of contract based design outlined in Sect. 2, a system is
designed in a top-down manner. Many formal languages for specifying contracts
already exist, and this section describes how two such languages can be used
to instantiate the contract theory. We chose, at the higher hierarchical level,
to instantiate it with TLA [20], a well-known high level language for tempo-
ral reasoning about systems. On the lower level, we chose ACSL [4], the spec-
ification language of Frama-C [18], a mature tool for verification of software

Contract Based Embedded Software Design 85

written in C, one of the programming languages most commonly used in embed-
ded systems. Frama-C includes plugins for deductive verification of C functions
against contracts [5]. The two languages have different semantic domains, and
are thus appropriate for specifying different aspects of the system. We show how
to combine the two domains within the contract theory, and how to decompose
contracts written in one language to contracts written in both.

5.1 Specifying Temporal Contracts with TLA

In embedded systems development, the top-level properties that are of greatest
interest are typically of temporal nature, such as various safety and liveness prop-
erties. For this reason, we consider the domain of infinite traces (i.e., sequences
of states) σ = s1, s2, . . ., over states si ∈ State, which we still leave abstract,
but for which we assume that in a particular state we know the values of the
variables. We denote the set of all traces by Stateω.

Temporal Logic of Actions. (TLA) [19,20] is a logic for reasoning about the tem-
poral behaviour of (usually concurrent) systems. Central to TLA is the notion
of action, which is a state predicate containing variables, constants, and logical
operators. Variables can be either so-called flexible or rigid variables. Flexible
variables represent the program variables, whereas rigid variables are constant
but unknown values, and can be used to express relations between states. Rigid
variables are implicitly universally quantified. Actions are evaluated over pairs
of states, representing a (transition) relation between the old state and the new
state. Flexible (i.e., program) variables can either be primed or unprimed. In
an action, unprimed occurrences of a variable are evaluated in the first state,
whereas primed occurrences are evaluated in the second. For example, x′+1 = x
is an action asserting that the value of x in the old state is one added to the
value of x in the new state. The denotational semantics of an action A, written
[[A]], is defined as a set of state pairs as expected.

TLA formulas consist of actions, logical operators, and temporal operators,
and are evaluated over infinite traces. To give actions a meaning in the context
of traces, we define their trace-semantics as follows:

[[A]]ω def= {s1, s2, s3, . . . ∈ Stateω | (s1, s2) ∈ [[A]]}
TLA includes the two temporal operators � and ♦, with their usual meaning,
where F is a formula:

[[�F]]ω def= {s1, s2, s3, . . . ∈ Stateω | ∀n ∈ N. sn, sn+1, sn+2, . . . ∈ [[F]]ω}
[[♦F]]ω def= {s1, s2, s3, . . . ∈ Stateω | ∃n ∈ N. sn, sn+1, sn+2, . . . ∈ [[F]]ω}

Finally, we define (similarly to e.g. [25]) a TLA contract as a pair C = (P, F),
where P is a state predicate (the pre-condition), and F a TLA formula as above
(the post-condition), with the following semantics:

[[C]]ω def= {σ = s1, s2, s3, . . . ∈ Stateω | s1 |= P → σ ∈ [[F]]ω}

86 C. Lidström and D. Gurov

5.2 Specifying Hoare-style Contracts with ACSL

For certain system components, one is not interested in their temporal behaviour,
but rather in that they compute the correct outputs from the inputs (or formally,
in the state transformer they embody). For this, it is sufficient to specify a
relation between the pre- and post-states of the computation, and State×State
is thus a suitable domain of runs. We will therefore use Hoare-style pre- and
post-conditions to specify contracts for such components.

In ACSL, contracts are written as annotations in the source code, as C com-
ments beginning with an @-symbol. Here, we shall limit ourselves to three
ACSL constructs for writing contracts. The keyword requires specifies the pre-
condition P of a function, which callers must satisfy before calling the function.
The keyword ensures specifies the post-condition Q, which the function must
guarantee upon return (w.r.t. partial correctness). The keyword assigns speci-
fies the frame condition, i.e., a set of memory locations L that are allowed to
change value during the call. In addition, ACSL supports so-called ghost vari-
ables, or logical variables, which may be used in specifications. Thus, viewing an
ACSL contract as a triple C = (P,Q,L), we define its semantics as:

[[C]] def= {(s, s′) | ∀I. (s |=I P ⇒ s′ |=I Q) ∧ ∀l �∈ L. s(l) = s′(l)} (3)

where I ranges over all possible interpretations of logical variables. We also note
that any variables occurring in the pre-condition or frame condition, or param-
eters occurring in the post-condition, are evaluated in the pre-state. Variables
(except parameters) occurring in the post-condition are evaluated in the post-
state. The special keyword \old is used to enforce evaluation in the pre-state.

5.3 Abstraction to Denotational Contracts

We will now show how the concrete contracts, i.e., the TLA and ACSL contracts,
can be abstracted into contracts in our abstract theory. The abstraction is based
on the procedures’ callees and the semantics defined in Sects. 5.1 and 5.2.

Definition 1 (From concrete to denotational contracts). For procedure p
calling other procedures P−, equipped with concrete contract Cp, we define its
denotational contract cp

def= (ρ−
cp , ρ

+
cp) with interface P+

cp

def= {p} and P−
cp

def= P−,

so that ρ+cp(p)
def= �Cp�, and ∀p′ ∈ P−. ρ−

cp(p
′) def= �Cp′�.

In our instantiation of the contract theory, Run takes two different meanings,
and thus the resulting denotations are over different semantic domains.

6 Implementing and Verifying Components

After having defined the components of the system, and specified them in the
form of contracts, they can be implemented. The implementation is performed
individually, under the assumption that the other components fulfil their con-
tracts. This section presents a contract-relative semantics for the C language [16].
and shows how the example system can be implemented within it.

Contract Based Embedded Software Design 87

6.1 Infinite Traces over Program States

While we will not define here a full semantics for the C language (see e.g. [10] for
a trace-based operational semantics for a subset of C, or [27] for a denotational-
style semantics), this section describes how, given a semantics, the contract the-
ory can be instantiated with C as the concrete implementation language, and
specifically how to treat procedures as components. Programs are defined in the
context of a finite set P of declared function names. We assume that function
names are unique, i.e., there cannot be functions with the same name but with
different types or number of parameters. The set of program states State is con-
ventionally defined as the set of mappings from references to memory locations,
and from memory locations to contents (as in, e.g., [10,26]).

For any finite set of function names P , we define the set of function envi-
ronments EnvP = P → 2Run containing the possible mappings from func-
tion names to traces, representing the effect of executing the respective func-
tion. Interfaces for sets of functions are defined as for components in Sect. 3.
The semantics of a statement S is then defined in the context of an interface
(P−, P+) and environments ρ− ∈ EnvP − and ρ+ ∈ EnvP+ , denoted [[S]]ρ

+

ρ− , and

[[S]]ρ
+

ρ− ⊆ Run. For example, the semantics of a function call without parameters,

[[p();]]ρ
+

ρ− , then depends on whether p is provided or required, and is defined as
ρ+(p) if p ∈ P+, and as ρ−(p) if p ∈ P−.

Given an environment ρ− ∈ EnvP − , we define the function ξ : EnvP+ →
EnvP+ as ξ(ρ+)(p) def= [[Sp]]

ρ+

ρ− for any ρ+ ∈ EnvP+ and p ∈ P+. Then,
(EnvP+ ,�) is a complete lattice and ξ is monotonic, and thus, by Tarski’s
Fixed-Point Theorem [29], ξ has a least fixed-point ρ+0 . In the context of an

interface (P−, P+) and environment ρ− ∈ EnvP − , we define [[S]]ρ−
def= [[S]]ρ

+
0

ρ−

as the standard denotation of statements, where ρ+0 is the least fixed-point of ξ.
Essentially, this ensures that the denotation of the function body of a proce-
dure p is equal to the denotation of a call to p. In the above setting, we could
instantiate Run to a variety of different domains (or combination thereof), such
as State × State or Stateω.

6.2 Abstraction to Components

Using the above notation, we can now define an abstraction from C programs
to components of our abstract contract theory.

Definition 2 (From C functions to components). For any set of functions
P+ calling functions P ′, we define component m : EnvP −

m
→ EnvP+

m
with P−

m
def=

P ′ \ P+
m and P+

m
def= P+, by ∀ρ−

m ∈ EnvP −
m

. ∀p ∈ P+
m . m(ρ−

m)(p) def= [[Sp]]ρ−
m
.

Following the scheme outlined in Sect. 4.1, we obtain a contract-relative
semantics by using ρc as the relativising environment for the concrete semantics.

88 C. Lidström and D. Gurov

6.3 Procedure-Modular Verification of Components

When the components of the system have been implemented, the components can
be verified against their contracts, assuming that the other components satisfy
theirs. As long as the full contract-relative semantics of our concrete languages
fulfils properties 2 and 3 stated in Sect. 4.1, and we have a proof system that
is sound w.r.t. the semantics, the functions can be individually verified, and if
this verification succeeds, the composition of all components is guaranteed to
implement the top-level contract.

7 Designing the Example System

We now return to the example system introduced in Sect. 1, and design it accord-
ing to the methodology proposed above.

7.1 Specifying the System

The task is to design a system fulfilling Property (1), and since we have shown
how TLA can instantiate the contract theory, we use it to express the property:

Fsys = � ((in_temp′ = sensor ∧ in_temp′ = t0) → ♦ (out_temp = t0 − 273))

Here, the variables sensor, in_temp and out_temp are (to be) program variables,
or flexible variables in TLA terminology. They represent the sensor value, the
read sensor value, and the value outputted to be displayed, respectively. The
variable t0 is a rigid variable, meaning that it is implicitly universally quantified,
and used to relate read and displayed values in different states. The subformula
in_temp′ = sensor ∧ in_temp′ = t0 is a TLA action, denoting all state pairs
where the value of in_temp in the second state equals the value of sensor in the
first, with the intention of capturing that the sensor value has just been read.
The subformula (out_temp = t0 − 273) is a state predicate, which is a special
case of an action, only evaluated in the first state; we model displaying the
temperature as writing it to the variable out_temp. Thus, the denotation [[Fsys]]

ω

will be the set of traces where for every value of in_temp read from the sensor,
there eventually is a state where out_temp is assigned the converted value. In this
case we will not impose any particular pre-condition, thus Psys = true, forming
the TLA contract Csys = (Psys , Fsys). In the abstracted denotational contract,
we will have P−

sys = ∅, since the full system should not depend on additional
functions. For the provided functions, ρ+csys (main) = [[Csys]], since main is the
entry-point to the system, while for all other functions we allow any behaviour,
since at the system level we are not interested in how they are implemented.
Since displaying the temperature is only part of the system functionality, the
full contract would be a conjunction of Csys and several other contracts.

Contract Based Embedded Software Design 89

Fig. 3. ACSL contracts for two functions in our system

7.2 Decomposing the System

As the next step, we want to decompose this system-level contract into contracts
for the three functions of the system. The main function, which continuously
calls the other functions, will be specified by the same contract, i.e. Csys =
Cmain . However, in order for the main function to satisfy this, some assumptions
(which are different from the precondition) on the helper functions are needed,
essentially stating that the called procedures fulfil their respective guarantees.
Thus, the two resulting denotational contracts will differ.

Two components then remain to be specified: a function read, reading and
checking the sensor value, and a function convert, converting a temperature
from Kelvin to Celsius. Contracts for these components, which we denote Cread

and Cconv , are given in Fig. 3. In the case of read, we want the function to
read a sensor value, given as a parameter value, and store it in in_temp, and
the frame condition specifies therefore that this is the only variable assigned to.
Furthermore, we want it to check that the value is valid, and if it is not lower
than 0 (the lowest temperature in Kelvin) it should be written to in_temp, and
otherwise be saturated to 0, before storing it. In the case of convert, we similarly
specify its frame condition. As the post-condition we specify that it should store
the converted value of in_temp in out_temp. However, it will not always be possible
to compute this value, since there is the possibility of underflow for very small
inputs. Thus, we also specify a pre-condition saying that the value must be
non-negative, meaning that for negative inputs the result is left undefined.

The denotation [[Cread]] will then consist of all state pairs (s, s′) such that
when s(value) ≥ 0 then s′(in_temp) = s(value) and otherwise s′(in_temp)
will be 0, where in both cases no other variables are changed. The denota-
tion [[Cconv]] will consist of all state pairs (s, s′) such that s(in_temp) ≥ 0 and
s′(out_temp) = s(in_temp) − 273, or s(in_temp) < 0 and for all program
variables v �= out_temp, s(v) = s′(v).

In the abstracted denotational contracts, we will have for the main function
that cmain = (ρ−

main , ρ+main), where ρ−
main(read) = [[Cread]], ρ−

main(convert) =
[[Cconv]], and ρ+main(main) = [[Cmain]]. The functions read and convert will have
no assumptions in their denotational contracts. Even without referring to a ded-
icated proof system, it should be obvious that cmain ⊗ cread ⊗ cconv � csys ;
since both csys and cmain specify the same behaviour for main, then so will the

90 C. Lidström and D. Gurov

Fig. 4. A simple C program consisting of three functions

composition, and since the composition restricts the other functions more than
csys . In the composition, the dependencies on other functions will also be resolved,
leaving no required functions. Thus, the composition is shown correct, and it
remains to implement the components and verify them against their contracts.

7.3 Implementing the System

Figure 4 shows how the functions in the example system can be implemented
in C. In a trace semantics setting, considering the three functions as a single
program, we can see that calling main will produce strictly infinite traces, where
in_temp is continuously assigned some value not less than 0, and shortly after
that out_temp is assigned the converted value.

Let us now consider abstraction of components, individually, using different
semantic domains as previously discussed. In the example, the read and convert
functions do not make any procedure calls, meaning P−

read = P−
conv = ∅, thus

mread (ρ−) and mconv (ρ−) are constant for all ρ−. We then have mread |= cread
and mconv |= cconv , since their interfaces are compatible and, in the case of
read, the denotations of the contract and the function body coindice exactly,
i.e., mread(read) = cread (read), whereas for convert, since the contract leaves
out_temp unspecified for in_temp < 0, its denotation is a superset of that of the
function body, and mconv (convert) ⊆ cconv (convert). For the main function we
consider a trace-based semantics, but where the mapping from the required func-
tions read and conv has pairs of states as the domain. The scheduling function
will then produce traces consisting of pairs of states, where the relation between
the states within pairs is dependent on ρ−(read) and ρ−(convert), that is, for
each function call is the assumed contract taken as a TLA action. Based on this,
one can establish that mmain |= cmain holds.

Contract Based Embedded Software Design 91

7.4 Verifying the System

In the example, the functions convert and display_temp are easily verified against
their ACSL contracts using the existing Frama-C framework. This verification is
in the context of state pairs, which can be considered the same domain as that
of actions in TLA. Thus, considering the contracts for the above functions as
TLA actions, the main function is verified procedure-modularly using TLC, by
transforming such contracts into TLA actions, and, for the rest of the program,
using standard procedures for converting programs into TLA specifications, as
described, e.g., in [30]. Tools already exist that automate parts of this process,
such as the Frama-C plugin C2TLA+ [22], which translates C programs to TLA.
In our previous work [2], we extended this method to replace function bodies
with their ACSL contracts at certain call sites, and, also with this method, the
main function is easily verified against its contract. (There exist other tools for
verifying C programs against temporal formulas [3,24], but we are not aware of
any such tool that is procedure-modular.)

We have now shown that the composition of the sub-contracts refines the
system contract, and verified that each component implements its contract. By
the properties of the contract theory, then, we have established that mmain ×
mread × mconv |= csys , utilising existing verification techniques and tools, where
components are individually implemented and verified.

8 Related Work

Modular design and formal reasoning about compositions of specifications and
components have long been an active area of research. One early study is [1]. We
mention here some additional works in the field. One main difference between
these works and our work, is our treatment of procedures as the central unit
of composition, enabling existing specification and verification frameworks to
naturally be cast in our theory.

In [11], a compositional specification theory supporting assume-guarantee
reasoning about the temporal ordering of input and output actions is presented.
Components can be modelled either operationally, thus closely resembling the
actual implementations, or more abstractly through declarative specifications.
The theory includes a refinement preorder, enabling reuse of components, and
operations such as parallel composition, conjunction, and quotienting, enabling
independent and incremental development.

A generic model of contracts for embedded systems design is presented
in [7], aimed at supporting a methodology of distributed development of dif-
ferent aspects of a system. The framework supports so-called “rich components”,
in which a diverse set of functional and non-function aspects can be expressed
and reasoned about. The contract-based formalisation of components makes an
incremental realisation of components and viewpoints possible.

Inspired by the previous work, an axiomatisation of the notion of specifica-
tions is presented in [6], from which it is then shown how a contract framework
can be built on such specification theories, by deriving the notion of contracts,

92 C. Lidström and D. Gurov

and their refinement and composition. The authors show that a trace-based
contract theory can fit into this framework.

This is built upon in [12], extending the framework with synchronous and
asynchronous (de)composition, with a focus on top-down design. To this end,
the authors develop a proof system, in which the decomposition of assume-
guarantee contracts generates proof obligations, which can be further reduced
to satisfiability problems, and when verified one can conclude the correctness of
the system. The framework can be instantiated with various temporal logics.

In [25], a trace-based logic for reasoning about the behaviour of While pro-
grams is presented. The framework includes a proof system that is both sound
and complete. As a main result, it is shown that the logic subsumes the stan-
dard partial and total correctness Hoare logic, in the sense that in one direction,
Hoare logic can be embedded in the presented logic, and in the other direction
the trace-based logic can be projected onto standard Hoare logic, meaning that
derivations in the former can be translated into derivations of the latter.

9 Conclusion

This paper presents a methodology for designing and reasoning about embedded
procedural software. The formal basis is a contract theory we previously proposed
in [21], generalised here by parametrisation on the semantic domain of runs,
which is to be instantiated depending on the given properties of interest. The
contract theory is applicable to real software in conjunction with existing formal
verification tools, as illustrated by an instantiation with well-known, concrete
specification and programming languages.

The proposed methodology follows the principles of contract based design,
where high-level contracts are specified for the system as a whole, and decom-
posed into contracts for sub-components of the system, in different concrete
languages and semantic domains. The implemented components are then veri-
fied modularly, thus, by virtue of the properties of the contract theory, ensuring
that the high-level contracts are fulfilled.

Future work includes the extension of the theory with mechanisms for inter-
action with the environment, such as input/output, concurrency or message
passing, in order for the theory to be useful in wider practical scenarios. This
may require our trace semantics to be extended with an explicit notion of events,
as well as with parallel composition. We also plan to instantiate the theory with
a domain capturing the notion of time, such as timed words. Finally, we plan to
develop a proof system for syntactically proving decompositions correct.

References

1. Abadi, M., Lamport, L.: Composing specifications. ACM Trans. Program. Lang.
Syst. 15(1), 73–132 (1993). https://doi.org/10.1145/151646.151649

https://doi.org/10.1145/151646.151649

Contract Based Embedded Software Design 93

2. Amilon, J., Lidström, C., Gurov, D.: Deductive verification based abstraction for
software model checking. In: Margaria, T., Steffen, B. (eds.) Leveraging Applica-
tions of Formal Methods, Verification and Validation. Verification Principles. pp.
7–28. Springer International Publishing, Cham (2022). https://doi.org/10.1007/
978-3-031-19849-6_2

3. Baranová, Z., et al.: Model checking of C and C++ with DIVINE 4. In: D’Souza, D.,
Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 201–207. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_14

4. Baudin, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI/ISO C Specification Language. http://frama-c.com/acsl.html

5. Baudin, P., Bobot, F., Correnson, L., Dargaye, Z., Blanchard, A.: WP Plug-in
Manual - Frama-C 23.1 (Vanadium). CEA LIST. https://frama-c.com/download/
frama-c-wp-manual.pdf

6. Bauer, S., et al.: Moving from specifications to contracts in component-based
design. In: Fundamental Approaches to Software Engineering, pp. 43–58 (2012).
https://doi.org/10.1007/978-3-642-28872-2_3

7. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis,
C.: Multiple viewpoint contract-based specification and design. In: Formal Methods
for Components and Objects, vol. 5382, pp. 200–225 (Oct 2007). https://doi.org/
10.1007/978-3-540-92188-2_9

8. Benveniste, A., et al.: Contracts for System Design, vol. 12. Now Publishers (2018).
https://doi.org/10.1561/1000000053

9. Benvenuti, L., Ferrari, A., Mangeruca, L., Mazzi, E., Passerone, R., Sofronis, C.:
A contract-based formalism for the specification of heterogeneous systems. In:
2008 Forum on Specification, Verification and Design Languages, pp. 142–147 (Sep
2008). https://doi.org/10.1109/FDL.2008.4641436

10. Blazy, S., Leroy, X.: Mechanized semantics for the Clight subset of the C language.
J. Autom. Reason. 43 (2009). https://doi.org/10.1007/s10817-009-9148-3

11. Chen, T., Chilton, C., Jonsson, B., Kwiatkowska, M.: A compositional specifi-
cation theory for component behaviours. In: Seidl, H. (ed.) ESOP 2012. LNCS,
vol. 7211, pp. 148–168. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28869-2_8

12. Cimatti, A., Tonetta, S.: Contracts-refinement proof system for component-based
embedded systems. Sci. Comput. Program. 97 (2015). https://doi.org/10.1016/j.
scico.2014.06.011

13. Cok, D.R.: JML and OpenJML for Java 16. In: Proceedings of the 23rd ACM
International Workshop on Formal Techniques for Java-like Programs, pp. 65–67.
Association for Computing Machinery, New York (2021). https://doi.org/10.1145/
3464971.3468417

14. Floyd, R.W.: Assigning meanings to programs. Mathemat. Aspects Comput. Sci.
19, 19–32 (1967). https://doi.org/10.1007/978-94-011-1793-7_4

15. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259

16. ISO: ISO C standard 1999. Tech. rep. (1999). https://www.open-std.org/jtc1/
sc22/wg14/www/docs/n1256.pdf, ISO/IEC 9899:1999 draft

17. Jones, C.: Specification and design of (parallel) programs. In: Proceedings Of IFIP
1983, vol. 83, pp. 321–332 (Jan 1983)

18. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
A software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015).
https://doi.org/10.1007/s00165-014-0326-7

https://doi.org/10.1007/978-3-031-19849-6_2
https://doi.org/10.1007/978-3-031-19849-6_2
https://doi.org/10.1007/978-3-319-68167-2_14
http://frama-c.com/acsl.html
https://frama-c.com/download/frama-c-wp-manual.pdf
https://frama-c.com/download/frama-c-wp-manual.pdf
https://doi.org/10.1007/978-3-642-28872-2_3
https://doi.org/10.1007/978-3-540-92188-2_9
https://doi.org/10.1007/978-3-540-92188-2_9
https://doi.org/10.1561/1000000053
https://doi.org/10.1109/FDL.2008.4641436
https://doi.org/10.1007/s10817-009-9148-3
https://doi.org/10.1007/978-3-642-28869-2_8
https://doi.org/10.1007/978-3-642-28869-2_8
https://doi.org/10.1016/j.scico.2014.06.011
https://doi.org/10.1016/j.scico.2014.06.011
https://doi.org/10.1145/3464971.3468417
https://doi.org/10.1145/3464971.3468417
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1145/363235.363259
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf,
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf,
https://doi.org/10.1007/s00165-014-0326-7

94 C. Lidström and D. Gurov

19. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.
16(3), 872–923 (1994). https://doi.org/10.1145/177492.177726

20. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (June 2002)

21. Lidström, C., Gurov, D.: An abstract contract theory for programs with pro-
cedures. In: Guerra, E., Stoelinga, M. (eds.) Fundamental Approaches to Soft-
ware Engineering, pp. 152–171. Springer International Publishing, Cham (2021).
https://doi.org/10.1007/978-3-030-71500-7_8

22. Methni, A., Lemerre, M., Hedia, B., Haddad, S., Barkaoui, K.: Specifying and
verifying concurrent C programs with TLA+. In: Formal Techniques for Safety-
Critical Systems, vol. 476, pp. 206–222 (Nov 2014). https://doi.org/10.1007/978-
3-319-17581-2_14

23. Meyer, B.: Applying “design by contract”. IEEE Comput. 25(10), 40–51 (1992).
https://doi.org/10.1109/2.161279

24. Morse, J., Cordeiro, L., Nicole, D., Fischer, B.: Model checking LTL properties over
ANSI-C programs with bounded traces. Softw. Syst. Model. 14(1), 65–81 (2013).
https://doi.org/10.1007/s10270-013-0366-0

25. Nakata, K., Uustalu, T.: A Hoare logic for the coinductive trace-based big-step
semantics of While. Logical Meth. Comput. Sci. 11(1) (2015). https://doi.org/10.
2168/LMCS-11(1:1)2015

26. Nielson, H.R., Nielson, F.: Semantics with applications: an appetizer. Springer-
Verlag, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-1-84628-692-6

27. Papaspyrou, N.S.: Denotational semantics of ansi c. Comput. Stand. Interfaces
23(3), 169–185 (2001). https://doi.org/10.1016/S0920-5489(01)00059-9

28. Staden, S.: On rely-guarantee reasoning. In: Hinze, R., Voigtländer, J. (eds.) MPC
2015. LNCS, vol. 9129, pp. 30–49. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-19797-5_2

29. Tarski, A.: A lattice-theoretical fixedpoint theorem and its applications. Pac. J.
Math. 5, 285–309 (1955)

30. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,
L., Kropf, T. (eds.) Correct Hardware Design and Verification Methods, pp. 54–66.
Springer, Berlin Heidelberg, Berlin, Heidelberg (1999). https://doi.org/10.1007/3-
540-48153-2_60

https://doi.org/10.1145/177492.177726
https://doi.org/10.1007/978-3-030-71500-7_8
https://doi.org/10.1007/978-3-319-17581-2_14
https://doi.org/10.1007/978-3-319-17581-2_14
https://doi.org/10.1109/2.161279
https://doi.org/10.1007/s10270-013-0366-0
https://doi.org/10.2168/LMCS-11(1:1)2015
https://doi.org/10.2168/LMCS-11(1:1)2015
https://doi.org/10.1007/978-1-84628-692-6
https://doi.org/10.1016/S0920-5489(01)00059-9
https://doi.org/10.1007/978-3-319-19797-5_2
https://doi.org/10.1007/978-3-319-19797-5_2
https://doi.org/10.1007/3-540-48153-2_60
https://doi.org/10.1007/3-540-48153-2_60

	Contract Based Embedded Software Design
	1 Introduction
	2 Contract Based Design and Contract Theories
	3 An Abstract Parametrised Contract Theory
	4 The Contract Theory as Basis for System Design
	4.1 Instantiating the Contract Theory
	4.2 Procedure-Modular Verification

	5 Specifying and Decomposing Contracts
	5.1 Specifying Temporal Contracts with TLA
	5.2 Specifying Hoare-style Contracts with ACSL
	5.3 Abstraction to Denotational Contracts

	6 Implementing and Verifying Components
	6.1 Infinite Traces over Program States
	6.2 Abstraction to Components
	6.3 Procedure-Modular Verification of Components

	7 Designing the Example System
	7.1 Specifying the System
	7.2 Decomposing the System
	7.3 Implementing the System
	7.4 Verifying the System

	8 Related Work
	9 Conclusion
	References

