Interface Abstraction for Compositional Verification

Dilian Gurov

Royal Institute of Technology, Stockholm

Marieke Huisman

INRIA Sophia-Antipolis

SEFM 05, Koblenz September 9, 2005

Overview

- 1. (A Rather Lengthy) Motivation
- 2. Interface Behaviour
- 3. The Inlining Transformation
- 4. A Compositional Verification Method
- 5. Conclusions

Smart Cards and Security

Smart cards

- store privacy–sensitive data
- require strong guarantees of security: formal verification

Multiple interacting applets (e.g. JavaCard applets)

- communication via method invocation over shared interfaces
- example: electronic purse applet and several loyalties

Post-issuance loading

- ability to load new applets after the card has been issued to the user
- requires compositional verification

Compositional Verification

Compositional Verification Principle

$$\begin{array}{c|c} \models A: \psi & X: \psi \models X \otimes B: \phi \\ \hline & \models A \otimes B: \phi \end{array} \end{array}$$

premises: local property of A and correctness of decomposition

Scenarios for secure post-issuance loading

- 1. card issuer specifies ϕ and ψ and checks property decomposition; pre-load check of $\models A : \psi$
- 2. card issuer provides only ϕ , applet provider specifies ψ ; pre-load check of $\models A : \psi$ and property decomposition

Maximal Models

In certain setups:

- property preserving simulation preorder
- for any formula ψ , the set of models for ψ has a maximal element $Max(\psi)$ wrt. the preorder: maximal model
- ullet simulation preorder preserved by composition \otimes

Maximal Model Principle [Grumberg & Long '94]

 $\frac{\models Max(\psi) \otimes B : \phi}{X : \psi \models X \otimes B : \phi}$

Compositional Verification Principle

$$\frac{\models A:\psi \qquad \models Max(\psi) \otimes B:\phi}{\models A \otimes B:\phi}$$

Previous Work

Theory [Sprenger, Huisman, Gurov: MEMOCODE'04]

- formal framework
- maximal model construction

Case Study [Huisman, Gurov, Sprenger, Chugunov: FASE'04]

- electronic purse with loyalty programmes
- by smart card provider Gemplus
- verified absence of illicit applet interactions

Models, Simulation and Logic

Applets unified treatment of structure and behaviour, control-flow based

Model Labelled transition system + Valuation

Simulation Preorder \leq standard

Simulation Logic modal logic with box modalities and gfp recursion: $\phi ::= p \mid \neg p \mid X \mid \phi_1 \land \phi_2 \mid \phi_1 \lor \phi_2 \mid [a] \phi \mid \nu X.\phi$

Maximal Models $Max(\psi)$

• exist

• exponential construction, lazy

Applet Structure

Applet \mathcal{A}

- control-flow graph represented as model
- structural simulation and properties

Maximal Model for property ψ is not necessarily a legal applet structure!

- interface $I = (I^+, I^-)$ of provided and required methods
- formula ϕ_I axiomatizing applets with interface I

Maximal Applet $Max_I(\psi)$

• is the maximal model $Max(\phi_I \wedge \psi)$

Applet Behaviour

- Applet structure \mathcal{A} induces applet behaviour $b(\mathcal{A})$
 - configurations: pairs (v, σ) of control point and call stack
 - labels: ε , $m_1 \, call \, m_2$, $m_2 \, ret \, m_1$
 - transitions: standard, induced in a context-free manner
- Behavioural simulation and properties
 - applet interaction properties
- Applet behaviour is not axiomatizable within the logic... ...but at least structural simulation implies behavioural simulation!

Operational Semantics

$$\frac{m_1, m_2 \in I^+ \quad v_1 \xrightarrow{m_2}_{m_1} v'_1 \quad v_2 \models m_2 \land e}{(v_1, \sigma) \xrightarrow{m_1 \text{call } m_2} (v_2, v'_1 \cdot \sigma)}$$

(return)
$$\frac{m_1, m_2 \in I^+ \quad v_2 \models m_2 \land r \quad v_1 \models m_1}{(v_2, v_1 \cdot \sigma) \xrightarrow{m_2 \operatorname{ret} m_1} (v_1, \sigma)}$$

(transfer)

$$\frac{m \in I^+ \quad v \to_m v'}{(v,\sigma) \xrightarrow{\varepsilon} (v',\sigma)}$$

Verification Method

Compositional Verification Principle

$$\frac{\mathcal{A}\models_{s}\sigma \quad \mathcal{M}ax_{I_{\mathcal{A}}}(\sigma)\uplus\mathcal{B}\models_{b}\psi}{\mathcal{A}\uplus\mathcal{B}\models_{b}\psi} \mathcal{A}:I_{\mathcal{A}}$$

1. a) Specify global property ψ as a behavioural property

b) For applet \mathcal{A} , specify local property σ as a structural property

- 2. Verify the correctness of the property decomposition:
 - a) compute maximal applet $\mathcal{M}ax_{I_{\mathcal{A}}}(\sigma)$

b) model check $\mathcal{M}ax_{I_{\mathcal{A}}}(\sigma) \uplus \mathcal{B} \models_{b} \psi$

3. When implementation of \mathcal{A} available, verify $\mathcal{A} \models_s \sigma$

Main Shortcomings

- 1. Requires knowledge of the complete interface, but in a truly compositional setting we can only assume knowledge of the names of the public methods
- 2. Interfaces are significantly larger than public ones, which is critical for the applicability of the (exponential) maximal model construction

Present Paper

Public and Private Methods M a set of public methods

Transformation transforms applet \mathcal{A} with interface (I^+, I^-) into a simulating applet $\alpha_M(\mathcal{A})$ with interface $(M, I^- - (I^+ - M))$

Modified CVP

$$\frac{\alpha_{M}(\mathcal{A}) \models_{s} \sigma \quad \mathcal{M}ax_{I_{\alpha_{M}(\mathcal{A})}}(\sigma) \uplus \mathcal{B} \models_{b} \psi}{\mathcal{A} \uplus \mathcal{B} \models_{b}^{M \cup I_{\mathcal{B}}^{+}} \psi}$$

- simulation: w.r.t. public behaviour, or interface behaviour
- transformation: inlining of private methods

2. Interface Behaviour

An abstraction on applet behaviour wrt. $M \subseteq I_{\mathcal{A}}^+$

- keep configurations unchanged
- relabel configurations
 - current control is in the top–most public method of $v \cdot \sigma$
- relabel transitions accordingly
 - configuration-dependent relabelling

• denoted $b^M(\mathcal{A})$

3. The Inlining Transformation

Inlining replace method call by method body

• need to: guarantee termination, prove simulation

Transformation For each (public) method $m \in M$

- execute *m* so that:
 - \circ label local calls and returns by ε
 - o treat calls to public methods as local transfer, but keep label
 - \circ replace recursion by iteration
- result denoted $\alpha_M(\mathcal{A})$

• introduces more interface behaviour!

SEFM 05, Koblenz (September 9, 2005)

15-1

Simulation Results

Theorem Let $\mathcal{A} : I$ and $M \subseteq I^+$. Then $b^M(\mathcal{A}) \leq b(\alpha_M(\mathcal{A})) = b^M(\alpha_M(\mathcal{A}))$.

Last-call recursion call edges are followed by transfer edges only

Theorem Let $\mathcal{A} : I$ be last-call recursive, and $M \subseteq I^+$. Then $b^M(\mathcal{A}) \equiv_w b(\alpha_M(\mathcal{A})) = b^M(\alpha_M(\mathcal{A}))$.

4. A Compositional Verification Method

Modified CVP

$$\frac{\alpha_{M}(\mathcal{A}) \models_{s} \sigma \quad \mathcal{M}ax_{I_{\alpha_{M}}(\mathcal{A})}(\sigma) \uplus \mathcal{B} \models_{b} \psi}{\mathcal{A} \uplus \mathcal{B} \models_{b}^{M \cup I_{\mathcal{B}}^{+}} \psi}$$

- 1. a) Specify global property ψ as an interface behavioural property b) For applet \mathcal{A} , specify local property σ as a structural property of $\alpha_M(\mathcal{A})$
- 2. Verify the correctness of the property decomposition: a) compute maximal applet $\mathcal{M}ax_{I_{\alpha_{M}}(\mathcal{A})}(\sigma)$ b) model check $\mathcal{M}ax_{I_{\alpha_{M}}(\mathcal{A})}(\sigma) \uplus \mathcal{B} \models_{b} \psi$
- 3. When implementation of \mathcal{A} available: a) compute $\alpha_M(\mathcal{A})$
 - b) verify $lpha_M(\mathcal{A}) \models_s \sigma$

Practical Impact of Inlining

- Knowledge of public interfaces suffices for applying the verification method
- Reconsider the case study from [Huisman, Gurov, Sprenger, Chugunov: FASE'04]

	$\mathcal{M}ax(\sigma_L)$	in [HGSC'04]	$\mathcal{M}ax(\sigma_P)$	in [HGSC'04]
#nodes	8	474	8	2786
#edges	120	277 700	88	603 128
constr. time	0.05 s.	25 min.	0.05 s.	13 hrs.

• Some natural structural properties are only expressible as properties of the inlined applet

5. Conclusions

We presented

- Notion of interface behaviour
- Inlining transformation which
 - reduces applet interfaces to public interfaces
 - extends/preserves interface behaviour
 - supports compositional verification

Future work

• multi-threaded applets

New Slide

• blah

EFM 05, Koblenz (September 9, 2005)