
Interface Abstraction for Compositional Verification

Dilian Gurov
Royal Institute of Technology

Kista, Sweden
dilian@imit.kth.se

Marieke Huisman
INRIA Sophia Antipolis
Sophia Antipolis, France
marieke.huisman@inria.fr

Abstract

To support dynamic loading of applications on portable
devices, one needs compositional reasoning techniques to
ensure that newly loaded applications cannot break the
overall security of a device. In earlier work, we developed
an algorithmic verification technique for control flow based
safety properties of smart card applications, which allows
global system properties to be inferred from the properties
of the components. Application of the technique requires
knowledge of the names of all methods implemented by
these components. In a truly compositional setting, how-
ever, one only knows thepublic interfaceof the new applet
and does not have access to any implementation details. To
compositionally verify interface properties of applets, one
therefore has to combine our verification technique with an
abstractionwhich preserves theinterface behaviourand re-
duces the set of implemented methods to the set of public
methods. In this paper, we develop such an abstraction tech-
nique: we formally define the notion of interface behaviour,
and propose aninlining transformationwhich we prove to
preserve the interface properties expressible in our specifi-
cation language. In addition, we show on a concrete case
study how the reduction in the number of methods resulting
from the interface abstraction drastically improves the per-
formance of the computationally most expensive step of the
compositional verification technique.

1 Introduction

With the emergence of small and mobile personal de-
vices, such as smart cards and mobile phones, security has
become a major concern. Typically, such personal devices
contain privacy–sensitive information,e.g. financial data,
health care information or electronic identities. Thus, for
the widespread acceptance of the use of such devices, secu-
rity of private information needs to be guaranteed.

Ideally, a smart device user should have the flexibil-
ity to install new applications (usually calledapplets) by

need. To enable this, efficient verification techniques are
needed for checking, prior to loading a new applet, whether
it could break the security of the device. In earlier work,
we developed a control–flow based compositional verifica-
tion technique supporting post–issuance loading of applets,
and showed its feasibility by means of an industrial case
study [7, 12]. The technique is based on a program model
suggested by Jensen and others (see [8]), and addresses
safety properties of inter–procedural control flow. These are
either structural,i.e. properties of the control–flow graph,
or behavioural,i.e. applet interaction properties describing
safe sequences of method invocations. In our set–up, global
properties are structural or behavioural, while local proper-
ties are structural1. Following our technique, compositional
verification includes the following steps:

1. Specify a global property� that should hold of the
composed system.

2. For each appletA
i

, specify a structural local prop-
erty�

A

i

.

3. Verify the correctness of the property decomposition
(i.e., that the local properties guarantee the global one)
by computing, for each appletA

i

, its maximal model
Max(�

A

i

), and by checking that their composition
satisfies�, i.e.Max(�

A

1

) ℄ : : : ℄Max(�

A

n

) j= �.

4. Whenever the implementation of appletA
i

becomes
available, verify thatA

i

j= �

A

i

prior to loading it on
the device.

Notice that the approach also allows a different scenario,
where a new applet comes with its own local property, and
step 3 is repeated (possibly on–device) to ensure that this lo-
cal property is sufficient to ensure the security of the whole
system.

The maximal model construction of step 3 is the centre-
piece of the technique; the remaining verification tasks are

1Dealing with local behavioural properties would require restricting the
logic and a non-standard maximal model construction.

1

standard model checking problems for finite state machines
(step 4) resp. pushdown automata (step 3). It is inspired by
a similar construction due to Grumberg and Long (see [6]),
forming the basis of an automatic modular verification tech-
nique. Our construction takes a structural property and a
set of method names, and returns an applet which satisfies
the property and implements the set of methods, and which
in addition is maximal, in the sense that it simulates, both
structurally and behaviourally, all other such applets. Fur-
thermore, properties are preserved by simulation, and sim-
ulation is preserved by composition. So, by composing the
respective maximal models and by checking that their com-
position satisfies the global property, one can show that any
applet implementations satisfying the respective structural
properties and implementing the respective sets of meth-
ods, when put together will satisfy the given global prop-
erty. Notice, however, that the maximal model construction
needs the names of all methods implemented by the given
applets. The correctness of a property decomposition can
thus only be established for applets with a known interface.
This is a limitation of the proposed technique, since in a
truly compositional setting one only knows the public inter-
face of yet unavailable applets and one does not know their
implementation details. Component properties can hence
only be specified at the public level. Moreover, the lack of
a mechanism for abstraction from private methods causes a
blowup in the size of the formulae and hence of the max-
imal models used for the verifications, since these are pa-
rameterized on the interface considered. For example, in
the industrial case study we considered an electronic purse
applet which implemented 367 methods, of which only 4
were public, all others were private.

To be able to abstract from internal, private behaviour
and apply our compositional verification method to inter-
face properties of applets, one therefore needs anabstrac-
tion techniquewhich (i) preserves the interface behaviour
of applets, while (ii) reducing their set of methods to the set
of public methods. The latter requirement comes from the
maximal model construction. In this paper we propose an
abstraction based oninlining of private methods. We define
the notion ofinterface behaviour, and show the abstraction
to be sound with respect to public interface properties: ev-
ery property that holds for the interface behaviour of the in-
lined applet (which coincides with its behaviour since it has
no private behaviour) also holds for the interface behaviour
of the original applet. Moreover, in case the concrete imple-
mentation is last-call recursive (that is, recursive callsare
not followed in the control flow graph by any other method
calls2), the abstraction technique is also complete with re-
spect to public interface properties: if such a property does
not hold of the inlined applet it does not hold of the origi-

2This notion is a generalization of the notion of tail recursivity, where
recursive calls are the last statements of their methods.

nal applet either. Completeness, however, does not hold in
general, since the abstraction transformation can introduce
new observable behaviours.

Using the abstraction techniques described in this paper,
our improved scenario for secure post-issuance loading be-
comes:

1. Identify the set of public methodsM used for interac-
tion between appletsA

1

; : : : ;A

n

.

2. Specify a public global property� overM that should
hold of the composed system.

3. For each appletA
i

, specify a structural local property
�

A

i

which only mentions (public) methods inM .

4. Compute, for each appletA
i

, its maximal model
Max(�

A

i

), and check that their composition satis-
fies�, i.e.Max(�

A

1

) ℄ : : : ℄Max(�

A

n

) j= �.

5. Whenever the implementation of appletA
i

becomes
available, compute the abstraction�

M

(A

i

), and verify
that�

M

(A

i

) j= �

A

i

.

In addition, we show that specifying structural properties
for an inlined applet allows some natural properties to be ex-
pressed which are not expressible as properties of the orig-
inal applet. For instance, reachability properties of the call
graph can only be expressed as structural properties of the
inlined applet, since there are no explicit inter-method call
arcs in our program model.

The present paper shows that all verifications can be
done efficiently. In particular, Section 7 reconsiders the case
study [7].

Related work The inlining procedure as described in
this paper closely resembles standard inlining procedures
used in compiler optimisations, seee.g.[9]. However, com-
piler optimisationsmustbe behaviourally equivalent, while
our verification technique only requires that all existing be-
haviours are preserved by inlining. We believe that our ap-
proach for proving property preservation is applicable to
such compiler optimisations as well.

The approach of combining property preserving abstrac-
tion with verification is standard, seee.g.[3]. Usually, the
goal of applying abstraction is to obtain a smaller or simply
finite model for verification. In our case, the primary pur-
pose of applying the inlining transformation is different:to
reduce the set of methods to the set of public methods while
preserving the interface behaviour.

Typically, the behaviour of programs with recursion is
modeled as pushdown systems, ase.g. in [5]. The notion
of interface behaviour presented in the present paper also
defines a pushdown system, and hence inlining is generally
not needed for the verification of behavioural properties. In

2

our approach, the need for inlining comes from the require-
ments of the maximal model construction.

Finally, we should mention the temporal logic of calls
and returns CARET [1]. This logic allows to specify prop-
erties in terms of method calls and returns. A special verifi-
cation strategy is defined, that is able to jump over internal
computations. Our approach is in a way the opposite: we
compute an abstract model, and use standard verification
techniques to verify properties – expressed in a standard
temporal logic – on this abstract model.

Overview of the paper The remainder of this paper is or-
ganised as follows. Sections 2 and 3 introduce the necessary
background, and in particular the logic and program model
that we use. Section 4 defines the behaviour of an applet
w.r.t. a set of public methods. Next, Section 5 presents the
inlining algorithm that forms the basis of our abstraction
technique, and proves that it is property preserving. Sec-
tion 6 describes formally how the abstraction techniques are
used for compositional reasoning. Finally, Section 7 revis-
its the industrial case study, and shows the practical impact
of the abstraction techniques, while Section 8 draws more
general conclusions on the applicability of our method.

2 Simulation and Logic

First, we briefly recall some definitions and results that
form the basis for our compositional verification method.
For a full overview, the reader is referred to [11, 12]. We use
a subset of the modal�-calculus [10] as our specification
language. We exploit that formulae in this subset can be
characterised by simulation, and vice versa, therefore we
call this logicsimulation logic. Throughout, we fix a set
of labelsL, a set of atomic propositionsA, and a set of
propositional variablesV .

Definition 2.1. (Simulation Logic)The formulae ofsimu-
lation logicare inductively defined by:

� ::= p j :p j X j �

1

^ �

2

j �

1

_ �

2

j [a℄� j �X:�

wherep 2 A, a 2 L andX 2 V .

Next, we define a general notion of model and specifica-
tions.

Definition 2.2. (Model) A model is a structureM =

(S;L;!; A; �), whereS is a set of states,!� S � L� S

a transition relation, and� : S ! P(A) a valuation, assign-
ing to each states the atomic propositions that hold ins. A
specificationS is a pair(M; E), whereM is a model and
E � S is a set of states.

Intuitively, one can think ofE as the set of entry states of
the model. For specifications, we define the usual notions
of satisfactionj= and simulation� (where related states sat-
isfy the same atomic propositions). This simulation relation
preserves (backwards) logical properties.

Theorem 2.3. S
1

� S

2

andS
2

j= � impliesS
1

j= �

Proof. Corollary 2.16 in [12]

Weak simulation and logic. In Section 4 we show how
private method calls can be abstracted away into internal
transitions, labelled with the distinguishedsilent action".
When abstracting in such a way from part of the concrete
behaviour of a system, one also has to abstract from the in-
ternal behaviour, and instead consider the visible behaviour
in terms ofweaktransitions. We use the standard definition
of weak transitionss

a

) t in terms of strong transitions:

s

"

) t whenevers(
"

�!)

�

t, ands
a

) t whenevers
"

)

a

�!

"

) t,
for all a 6= ". Weak simulation�

w

is then defined as sim-
ulationw.r.t. weak transitions. Similarly, for the weak satis-
faction relationj=

w

, we interpret the box modality over the
weak transitions. As above, the weak simulation relation
preserves weak satisfaction of logical properties.

Theorem 2.4. S
1

�

w

S

2

andS
2

j=

w

� impliesS
1

j=

w

�

Proof. Immediate consequence of Theorem 5 in [11].

Finally, a standard transformation from weak to strong
formulae exists [13]. This transformation, which we de-
noteÆ, can be characterised as follows.

Proposition 2.5. S j=
w

� iff S j= Æ(�).

3 Applet Structure and Behaviour

Our program model, inspired by [8], is control–flow
based and thus over–approximates actual program be-
haviour. It defines two different views on applets: a struc-
tural and a behavioural view. Both views are instantiations
of the general notions of model and specification, allowing
the results presented above to be instantiated at both levels.
Notice in particular that these instantiations yield a struc-
tural and a behavioural version of simulation and simulation
logic. Again, we refer to [11, 12] for more detail.

Applet Structure Since we abstract away from all data,
applet structure is defined as a collection of call graphs for
the methods the applet implements. Further, since smart
cards are our primary application domain, we only consider
sequential methods3. LetMeth be a countably infinite set
of method names. A method specification is an instance of
the general notion of specification.

3With the possible emergence of multi-threaded smart card platforms
the techniques presented here will have to be generalized accordingly.

3

Definition 3.1. (Method specification)A method graphfor
m 2 Meth over a setM � Meth of method names is a
finite model

M

m

= (V

m

; L

m

;!

m

; A

m

; �

m

)

whereV
m

is the set of control nodes ofm,L
m

= M [f"g,
A

m

= fm; rg, and�
m

: V

m

! P(A

m

) is so thatm 2

�

m

(v) for all v 2 V

m

(i.e. each node is tagged with its
method name). The nodesv 2 V

m

with r 2 �

m

(v) are
calledreturn points. A method specificationform 2Meth

overM is a pair(M
m

; E

m

), whereM
m

is a method graph
for m overM andE

m

� V

m

is a non–empty set ofentry
pointsof m.

We write�
Meth

(v) to denote the function returning the
name of the method to whichv belongs.

Next we define the notion of applet interface. For each
applet, we distinguish animplementation interface,defin-
ing all methods provided and required by the applet, and a
public interface,defining all methods that are visible to and
used from other applets.

Definition 3.2. (Applet interface)An applet interfaceis a
pair I = (I

+

; I

�

), whereI+; I� � Meth are finite sets
of names ofprovidedand required methods, respectively.
Thecompositionof two interfacesI

1

= (I

+

1

; I

�

1

) andI
2

=

(I

+

2

; I

�

2

) is defined byI
1

[I

2

= (I

+

1

[I

+

2

; I

�

1

[I

�

2

).

To formally define the notionapplet with implementa-
tion interface, we use the notion of disjoint union of spec-
ificationsS

1

℄ S

2

, where each state is tagged with1 or 2,
respectively, and(s; i)

a

�!

S

1

℄S

2

(t; i), for i 2 f1; 2g, if and
only if s

a

�!

S

i

t.

Definition 3.3. (Applet)An appletA with implementation
interfaceI , writtenA : I , is defined inductively by

� (M

m

; E

m

) : (fmg;M) if (M

m

; E

m

) is a method
specification form 2Meth overM , and

� A

1

℄A

2

: I

1

[I

2

if A
1

: I

1

andA
2

: I

2

.

An applet isclosedif I� � I

+, i.e. it does not require
any external methods.

The public interfaceof an appletA : I is characterised
by a set of methodsM such thatM � I

+: the set of meth-
ods publicly provided by the applet isM , while the set of
publicly required methods isI� � (I

+

�M); thus applet
A : I has public interface(M; I

�

� (I

+

�M)). The left-
hand column of Figure 1 on page 6 is an example of a closed
applet with one public methodm and two private methods
a andb.

Simulation and satisfaction, instantiated to this particu-
lar type of models are called structural simulation�

s

, and
structural satisfactionj=

s

, respectively.

(transfer)
m 2 I

+

v !

m

v

0

v j= :r

(v; �)

"

�! (v

0

; �)

(call)

m

1

;m

2

2 I

+

v

1

m

2

��!

m

1

v

0

1

v

1

j= :r

v

2

j= m

2

v

2

2 E

(v

1

; �)

m

1

allm

2

������! (v

2

; v

0

1

� �)

(return)
m

1

;m

2

2 I

+

v

2

j= m

2

^ r v

1

j= m

1

(v

2

; v

1

� �)

m

2

retm

1

������! (v

1

; �)

Table 1. Applet Transition Rules

Applet Behaviour Next we instantiate specifications on
the behavioural level.

Definition 3.4. (Behaviour) Let A = (M; E) : I be a
closed applet whereM = (V; L;!; A; �). Thebehaviour
of A is described by the specificationb(A) = (M

b

; E

b

),
whereM

b

= (S

b

; L

b

;!

b

; A

b

; �

b

) is such thatS
b

= V �

V

�, i.e. states are pairs of control points and stacks,L

b

=

fm

1

k m

2

j k 2 fall; retg; m

1

;m

2

2 I

+

g [f"g, !
b

is
defined by the rules of Table 1,A

b

= A, and�
b

((v; �)) =

�(v).
The set of initial statesE

b

is defined byE
b

= E � f�g,
where� denotes the empty sequence overV .

Note that applet behaviour defines a pushdown automa-
ton. We exploit this by using a model checker for PDAs to
verify behavioural properties (see,e.g., [2] for a survey of
verification techniques for infinite process structures).

Also on the behavioural level, we instantiate the defini-
tions of simulation�

b

and satisfactionj=
b

. Any two applets
that are related by structural simulation, are also relatedby
behavioural simulation (Theorem 3.9 in [12]), but the con-
verse is not true (since behavioural simulation only requires
reachable states to be related).

For convenience, below we will often write the states of
the behavioural model as a simple sequence of states,i.e.v �
�, instead of(v; �). We use reverse indexing to denote the
i

th element from the back of a sequence, so that(v ��)

j�j

=

v (wherej�j denotes the length of a sequence�), and use
last(�) to denote�

0

.

4 Interface Behaviour

The next section defines an inlining algorithm that trans-
forms a concrete applet implementation into an applet that
contains only method calls to public methods. We want to
prove that for any closed applet, every behaviour of the con-
crete applet is also a behaviour of the inlined applet. How-
ever, for this to hold, we have to abstract the concrete be-
haviour to the level of public methods. Therefore, we intro-

4

duce the notion ofinterface behaviourof an appletw.r.t. a
set of public methodsM .

First we define thetoppublic methodw.r.t.M , which for
a given callstack� is the first public method to which a node
in the call stack belongs.

top_indexM (�) = Max(fi j 0 � i < j�j ^

�

Meth

(�

i

) 2Mg)

top

M

(�) = �

Meth

(�

top_indexM (�)

)

Using these definitions, we can define a relabelling�

M

of transition labels to the public level. Labels for calls and
returns between public methods are left unchanged. A call
from a private to a public method is relabelled as a call from
the top public method in the pending call stack. A return
from a public to a private method is relabelled as a return to
the top public method. All other transitions get labelled as
silent actions.

�

M

((v; �); `) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

` if ` = m

1

fall=retgm

2

^

m

1

;m

2

2M

top

M

(v � �) allm

2

if ` = m

1

allm

2

^

m

1

62M;m

2

2M

m

1

ret top

M

(�) if ` = m

1

retm

2

^

m

1

2M;m

2

62M

" otherwise

Now we are ready to define the interface behaviour of
appletA w.r.t. a set of public methodsM .

Definition 4.1. (Interface behaviour)LetA : I be a closed
applet with behaviourb(A) = ((S;L;!; A; �); E). Let
M � I

+ be a set of public methods. Theinterface be-
haviour ofAw.r.t.M is defined asbM (A) = ((S;L

M

;!

M

; A

M

; �

M

); E

M

), where

� L

M

= f"g [fm

1

k m

2

j m

1

;m

2

2M^

k 2 fall; retgg

� !

M

= f ((v; �); `; (v

0

; �

0

)) j 9a 2 L:

(v; �)

a

! (v

0

; �

0

) ^ �

M

((v; �); a) = ` g

� A

M

=M [frg

� �

M

= (v; �) 7! ftop

M

(v � �)g [

if(v 2M ^ v j= r) then frg else?

� E

M

= fv j v 2 E ^ �

Meth

(v) 2Mg.

The interface behaviour of an applet also defines a push-
down automaton.

Proposition 4.2. The interface behaviour ofA w.r.t. I+ is
identical to its behaviour,i.e. bI

+

(A) = b(A).

We define behavioural interface simulationA �

M

b

B as
b

M

(A) � b

M

(B), and weak behavioural interface simu-
lation A �

M

b;w

B as bM (A) �

w

b

M

(B). Notice thatA
andB need not have the same interfaces – we only require
M � I

+

A

andM � I

+

B

. Similarly, for any formula� in sim-
ulation logic overLMandAM , we define behavioural inter-
face satisfactionA j=

M

b

� asbM (A) j= �, and weak be-
havioural interface satisfactionA j=

M

b;w

� asbM (A) j=

w

�.

5 The Inlining Transformation

Next we define an inlining algorithm�
M

that, given a
set of public methodsM , transforms an applet graph by
inlining all private calls. Recursive calls to private meth-
ods are not inlined, but create loops in the resulting graph.
We prove that the interface behaviour of the original ap-
pletA is simulated by the behaviour of the inlined applet
�

M

(A), thus (by Theorem 2.3) all properties� of the lat-
ter, i.e. �

M

(A) j=

b

�, are also properties of the former,
i.e. A j=

M

b

�. Moreover, we prove that if the applet is
last-call recursive, the two behaviours are weak simulation
equivalent – thus both applets satisfy exactly the same ob-
servable properties at the public interface level.

Notice that the inlining algorithm does not require the
applet to be closed and treats all external methods as public.

The Inlining Algorithm. The algorithm is applied to
each public method and (recursively) inlines all calls to pri-
vate methods. Intuitively, constructing the transformed (or
inlined) graph for a public methodm corresponds to exe-
cuting the interface behaviour ofm, where method calls to
public methods are skipped and recursion is replaced by it-
eration. The nodes of the inlined applet can thus be seen
as states of the (interface) behaviour of the original applet,
modulo an abstraction function which replaces recursion by
iteration.

During the inlining, each edge that represents internal
transfer or a call to a public method is left unchanged. Each
edge that represents a call to a private method is replaced by
two internal edges: one from the calling point to the entry
point of the method; and another from the return point of
the method to the destination of the calling edge4. The pri-
vate method is inlined recursively. Each node is replaced by
a sequence denoting the fragment of the call stack from the
activation of the public method up to the current node (ex-
cept for the case of a recursive call). Since we keep track
of the pending call stack, we can recognise recursive calls
to private methods. In that case, the appropriate initial frag-
ment of the call stack is used to decide the exact new edges.

For the formal definition of the inlining algorithm, we
need some new notions. LetA : I be an applet andM � I

+

4If a method has several entry or return points, several internal edges
are created.

5

m a b

a b

a a
v0

v1

v2

v7

v5 v6

v3

v4

m

m

v7.v3.v1

v4.v3.v1
v0 v2.v1

v1 v3.v1

v5.v3.v1 v6.v3.v1

m

Figure 1. Example applet before and after inlining

be a set of public methods. AnM -frame is a sequence of
nodes� of which only �

Meth

(�

0

) is in M . An M -frame
is callednormal, if all nodes in the frame belong to dif-
ferent methods. We choose to represent the nodes of the
inlined applet by normalM -frames derived from the be-
haviour of the original applet. The abstraction function
mentioned above (replacing recursion by iteration) is for-
malised by means of the (normalising) conditional rewrite
rule� � v � �0 � v0 � �00 ,! � � v � �

00 if �
Meth

(v) = �

Meth

(v

0

)

and�0 � v0 � �00 is a normalM -frame. Let�(�) denote the
normal form of� w.r.t. the rule. Note that if� is anM -
frame, then�(�) is a normalM -frame. Moreover, for any
(normal)M -frame� we havetopM (�) = �

Meth

(�

0

).
Further, we defineInt,Pub andPriv, denoting the sets

of internal, public and private edges of a methodw.r.t. a set
of public methodsM , respectively.

Int(m) = f(v; "; v

0

) j v �!

m

v

0

^ v j= :rg

Pub

M

(m) = f(v;m

0

; v

0

) j v

m

0

��!

m

v

0

^

v j= :r ^ m

0

2Mg

Priv

M

(m) = f(v;m

0

; v

0

) j v

m

0

��!

m

v

0

^

v j= :r ^ m

0

62Mg

The definition of the inlining algorithm uses auxiliary func-
tions� and�. The function� considers all edges related to
a method: it returns internal and public edges with renamed
nodes – using the pending call stack, and calls function�

on private edges. Function� adds edges to the entry point,
and from the return point of the private method, using the
pending call stack argument, and if necessary normalising
the result (this uses the fact that the pending call stack is
always a normalisedM -frame). Then it checks if the pri-
vate call is non-recursive, in which case the private method
is inlined recursively.

Definition 5.1. (Inlined applet)LetA : I be an applet, and

let M be a set of public methods, such thatM � I

+. Let
M

0 be the setM [(I

�

� I

+

). We define theinlined applet
�

M

(A) = ((V

0

; L

0

;!

0

; A

0

; �

0

); E

0

), where

� V

0

= fw 2 V

+

j w is a normalM -frameg,

� L

0

=M

0

[f"g,

� !

0

=

S

m2M

�(m; �) where

�(m;�) =

f(v � �; `; v

0

� �) j (v; `; v

0

) 2 Int(m) [Pub

M

0

(m)g[

S

�(�; (v;m

0

; v

0

))

�(�; (v;m

0

; v

0

)) =

f(v � �; "; �(e � v

0

� �)) j e j= m

0

^ e 2 Eg[

f(�(rt � v

0

� �); "; v

0

� �) j rt j= (m

0

^ r)g[

if :9i: (0 � i � j�j ^ (v

0

� �)

i

j= m

0

)

then �(m

0

; v

0

� �)

else ?

� A

0

=M [frg

� �

0

= � 7! f�

Meth

(�

0

)g [

if (j�j = 1 ^ �

0

j= r) then frg else ?

� E

0

= fv 2 E j �

Meth

(v) 2Mg.

Example Before discussing properties of the inlining al-
gorithm, we first show a simple example. Suppose we have
an applet as depicted in the left-hand column of Figure 1.
Inlining this applet with the public method setfmg results
in the applet depicted in the right-hand column of Figure 1.
Notice that all internal and public edges are preserved,
while private method calls are replaced by two edges: to
the entry and from the return point of the called method,
respectively.

6

Properties We state several useful properties of the inlin-
ing algorithm. First of all, the inlining algorithm computes
an applet having as interface the public interface of the orig-
inal applet.

Proposition 5.2. LetA : I be an applet andM � I

+ a set
of public methods. The inlined applet�

M

(A) has interface
I

�

M

(A)

= (M; I

�

� (I

+

�M)), i.e. �
M

(A) : (M; I

�

�

(I

+

�M)).

By Proposition 4.2 we thus get:

b

M

(�

M

(A)) = b(�

M

(A))

Since the inlining transformation�
M

only inlines methods
not inM , �

I

+ is the identity operation.

Proposition 5.3. LetA : I be an applet. Then�
I

+
(A) =

A.

Finally, the inlining algorithm enjoys the following dis-
tributivity property.

Proposition 5.4. LetA : I

A

andB : I

B

be applets,M
A

�

I

+

A

andM
B

� I

+

B

be disjoint, and letI�
A

� I

+

A

� M

B

and
I

�

B

� I

+

B

�M

A

. Then

�

M

A

[M

B

(A ℄ B) = �

M

A

(A) ℄ �

M

B

(B)

Simulation Results. As already mentioned, the interface
behaviour of the original applet is preserved by the inlining
algorithm, i.e. every execution of the interface behaviour
of A is an execution of the behaviour of�

M

(A). This is
due to the close correspondence between the interface be-
haviour ofA and the structure of�

M

(A). We provide an
“inlining” transformation�0

M

on the states ofbM (A) by
defining�0

M

(v; �) = (hd(); tl()), where = �

M

(v � �)

and where�
M

(�) denotes the sequence of normalisedM -
frames. Notice that we always havehd(hd()) = hd(v ��).
We show that�0

M

is a simulation relating the original inter-
face behaviour with the inlined behaviour.

Theorem 5.5. LetA : I be a closed applet, and letM �

I

+. ThenbM (A) � b(�

M

(A)).

Proof. We show by co-induction that�0
M

is a simula-
tion betweenbM (A) and b(�

M

(A)), i.e., we show that
(1) the valuations of(v; �) in b

M

(A) and �0
M

(v; �) in

b(�

M

(A)) agree, and (2) if(v; �)
l

�!(v

0

; �

0

) in b

M

(A),

then�0
M

(v; �)

l

�! �

0

M

(v

0

; �

0

) in b(�

M

(A)). The result
then follows since�0

M

maps the entry states ofbM (A) to
entry states ofb(�

M

(A)) (in fact, the entry states coincide,
and�0

M

maps every entry state to itself). It is easy to check
that the valuations agree; for the proof that the transitions
are simulated, we refer to Appendix A.

Notice that in general we do not have behavioural sim-
ulation equivalence. The inlining construction introduces
transfer edges for calls to and returns from private methods.
Because of the latter, the behaviour of the inlined applet can
contain a silent transition corresponding to a return from a
private method (in the original applet), even when the in-
lined applet has not yet followed a silent transition corre-
sponding to a call to this private method (in the original ap-
plet). The inlining thus introduces new behaviours. Notice
however, that these new behaviours are only observable in
applets which are not last-call recursive.

A set of methods isrecursiveif every method in the set
contains a (reachable) call edge to some method in the set.
A call edge is recursive if the calling and the called meth-
ods belong to some minimal (and thus, mutually) recursive
method set. A program is calledlast-call recursiveif from
any destination node of any recursive call edge, only trans-
fer edges are reachable. In addition, we shall assume that a
return node is reachable from every such destination node.

For last-call recursive applets, we prove the reverse cor-
respondence for observable behaviours.

Theorem 5.6. LetA : I be a closed last-call recursive ap-
plet, and letM � I

+. Thenb(�
M

(A)) �

w

b

M

(A).

Proof. Consider a state(w;) in b(�

M

(A)), where
�

Meth

(hd(w)) =2M andhd(w) j= r. For last-call recursive
applets, the inlining transformation�

M

has the property
that for any suchw, the nodesw0 such that�(hd(w) �w

0

) =

w buthd(w) � w

0

6= w and which are structurally reachable
from w in �

M

(A) form (together withw) a strongly con-
nected component and are equivalentw.r.t. structural simu-
lation. As a consequence, inb(�

M

(A)), all states(w0;)
for a given also form a strongly connected component
and are weak simulation equivalent. Modulo such “return”
equivalence classes, we show by co-induction that(�

0

M

)

�1

is a weak simulation betweenb(�
M

(A)) andbM (A). More
exactly, we show that (1) the valuations of�0

M

(v; �) and

(v; �) agree, and (2) if�0
M

(v; �)

l

�! (w

0

;

0

) is a transi-
tion in b(�

M

(A)) other than a (silent) transition within a

return equivalence class, then(v; �)
l

) (v

0

; �

0

) in bM (A)

for somev0and �0 such that�0
M

(v

0

; �

0

) = (w

0

;

0

) (in
most cases we even show the corresponding strong transi-
tion). The result then follows since�0

M

maps entry states
of b(�

M

(A)) to entry states ofbM (A). Again, it is easy to
check that the valuations agree; for the proof that the tran-
sitions are simulated, we refer to Appendix B.

Since weak simulation contains simulation we have the
following.

Corollary 5.7. Let A : I be a closed last-call recursive
applet, and letM � I

+. ThenbM (A) �

w

b(�

M

(A)).

7

6 Interface Abstraction and Compositional
Reasoning

Using the results obtained above, we can state several
verification principles that can be used to prove properties
of applet interface behaviour. We first present two abstrac-
tion principles, and then show how these can be combined
with our compositional verification principle from [12] to
support the improved scenario for secure post–issuance
loading of applets on smart devices presented in the Intro-
duction.

Interface Abstraction. LetA : I be a closed applet, and
let M � I

+. With the results established above, we can
justify the following abstraction principle(abstract), where
 is a behavioural interface formula.

�

M

(A) j=

b

A j=

M

b

Theorem 6.1. Rule(abstract) is sound.

Proof. Follows from the definition of behavioural satisfac-
tion, Theorem A.1, Theorem 2.3, and the definition of be-
havioural interface satisfaction.

WhenA has last-call recursion, we can even provide a
faithful abstraction principle(weak-abstract) for properties
of the observable behaviour by using transformationÆ from
Section 2.

�

M

(A) j=

b

Æ()

A j=

M

b;w

Theorem 6.2. Rule(weak-abstract) is sound and complete.

Proof. Follows from the definition of behavioural satisfac-
tion, Proposition 2.5, Corollary 5.7, Theorem 2.4, and the
definition of weak behavioural interface satisfaction, allof
which are equivalences.

Compositional Reasoning. In earlier work [12] we pre-
sented the following sound and complete compositional ver-
ification principle(compos):

A j=

s

� Max

I

A

(�) ℄ B j=

b

A ℄ B j=

b

A : I

A

HereA andB are applets, such thatA℄B is a closed applet.
Further,� is a formula in simulation logic on the structural
level (i.e. boxes are interpreted over the edges in the call
graph), while is a property at the behavioural level5. Fi-
nally, Max

I

A

(�) is a construction described in [12] yield-
ing a so-calledmaximal applet w.r.t.� andI

A

, i.e.an applet

5A similar principle exists if is a structural property, since be-
havioural simulation contains structural simulation.

with interfaceI
A

that simulates all other applets with this
interface satisfying property�.

Observe that the maximal model construction can only
be applied if the complete interfaceI

A

of appletA is
known. The correctness of a property decomposition can
thus only be established for applets with a known inter-
face, and knowledge of the public interface only is hence
not sufficient. To allow compositional verification of public
interface properties, we combine the above rule with the ab-
straction principle(abstract) to obtain the following abstract
compositional verification principle(abstract-compos):

�

M

(A) j=

s

� Max

I

�

M

(A)

(�) ℄ B j=

b

A℄ B j=

M[I

+

B

b

A : I

A

;

I

�

B

� I

+

B

�M

Theorem 6.3. Rule(abstract-compos) is sound.

Proof. Follows from the abstraction and the compositional
verification principle, plus Propositions 5.3 and 5.4.

The improved scenario for secure post–issuance loading
of applets presented in the Introduction is based on the ver-
ification principle embodied by this rule. Notice that the
interface of required methods that is used for the maximal
model construction usesI�

A

� I

+

A

. Typically, this will cor-
respond to the public interface ofB, and for each imple-
mentation ofA it should be checked whether it respects this
public interface ofB.

Finally, similarly as for the abstraction principle, we can
state a faithful compositional verification principle(weak-
abstract-compos) for properties of the observable interface
behaviour of applets which are last-call recursive.

�

M

(A) j=

s

� Max

I

�

M

(A)

(�) ℄ B j=

b

Æ()

A ℄ B j=

M[I

+

B

b;w

A : I

A

;

I

�

B

� I

+

B

�M

Theorem 6.4. Rule (weak-abstract-compos) is sound and
complete.

7 Practical Impact of Inlining

As explained above, we are interested in studying the
abstract behaviour of applets, because in a truly composi-
tional setting nothing is known about the different compo-
nents, except (some properties of) their interface behaviour.
For a newly downloaded applet we only require that it im-
plements the shareable interface; we do not put any restric-
tions onhow it implements this shareable interface, except
that the implementation should respect the global security
requirements. Studying compositional verification at the
abstract level allows to specify the local and global proper-
ties at the abstract level, without taking any implementation

8

Max(�

L

) Max(�

L

) in [7] Max(�

P

) Max(�

P

) in [7]

#nodes 8 474 8 2786
#edges 120 277 700 88 603 128

constr. time 0.05 s. 25 min. 0.05 s. 13 hrs.

Table 2. Size and timing for maximal model construction

details into account. Moreover, when considering shareable
interfaces only, the maximal models that we compute to ver-
ify the decomposition of the global property into the local
ones are significantly reduced in size, making the verifica-
tion much more efficient.

In order to show the impact of abstraction and inlining
on a realistic case study, this section revisits the electronic
purse case study [7], specifying an illicit interaction be-
tween appletsPurseandLoyalty. In the original case study
we computed maximal applets using the implementation in-
terfaces (containing about 300 methods per applet). This
was time-consuming (25 mins. to 13 hrs.) and moreover,
the size of the outcome was so large that verification was
unfeasible. However, the public interfaces (i.e. the share-
able interfaces) of these applets both provide only 4 meth-
ods. If we refer to the shareable interfaces asSI

P

(methods
provided byPursefor PurseandLoyalty) andSI

L

(Loyalty
for PurseandLoyalty), respectively, we can identify the fol-
lowing public interfaces:(SI

P

; SI

P

[SI

L

) for Purse, and
(SI

L

; SI

P

[SI

L

) for Loyalty.
We use the tool set described in [7], plus an implemen-

tation of the inlining algorithm in Ocaml to redo the case
study at the abstract level. For convenience we repeat the
global and local specifications, but this time specified at the
interface level; for further motivations we refer to [7].

The global specification says that a call toLoy-
alty.logFull does not trigger any calls to any other loy-
alty, including indirect communications, via thePurse.
The specification uses several abbreviations for readability
(whereA is an applet such thatA : (I

+

; I

�

) andM a set
of methods).

Always� = �Z: � ^ [L

b

℄Z

Withinm � = :m _ (Always�)
CanNotCallAM =

V

m2I

+

V

m

0

2M

[mallm

0

℄ false

() Within loyalty:logFull
CanNotCallLoyalty SI

L

^

CanNotCallPurse SI
L

For theLoyalty applet we exclude any external calls, ex-
cept those to the methodsPurse.isThereTransactionand
Purse.getTransaction(�

L

). For thePurseapplet we spec-
ify that both these methods do not make any external calls
(�

P

). Again we use several abbreviations.

Everywhere� = �Z: � ^ ["; I

�

℄Z

M HasNoCallsToM 0

=

�

V

m2M

:m

�

_

Everywhere[M 0

℄ false

HasNoOutsideCallsM = M HasNoCallsTo(I� nM)

(�

L

) loyalty :logFull HasNoCallsTo
(SI

P

[SI

L

)=fPurse:isThereTransation;

Purse:getT ransationg

(�

P

) HasNoOutsideCallsPurse:isThereTransation ^
HasNoOutsideCallsPurse:getTransation

These specifications refer to the inlined versions of the
applets. To exclude external calls from a method of an in-
lined applet is equivalent to excludingtransitive external
calls made from the public method with the same name in
the original applet. Notice that such a property is not di-
rectly expressible in our logic (cf. [7]).

To redo the case study at the abstract level, we take the
following steps (whereP andL denote implementations of
PurseandLoyalty, respectively):

� compute Max

(SI

P

;SI

P

[SI

L

)

(�

P

) and
Max

(SI

L

;SI

L

[SI

P

)

(�

L

) using the Maximal Model
constructor [12, 7];

� model check Max

(SI

P

;SI

P

[SI

L

)

(�

P

) ℄

Max

(SI

L

;SI

L

[SI

P

)

(�

L

) j=

b

Æ() using a proto-
type implementation of a model checker for PDAs;

� compute�
SI

P

(P) and�
SI

L

(L) using the inlining al-
gorithm; and

� model check�
SI

P

(P) j=

s

�

P

and�
SI

L

(L) j=

s

�

L

using CWB [4].

Table 2 compares the outcome and timing for the maxi-
mal model construction with the corresponding step in the
original case study. Checking the correctness of the decom-
position took approximately 5 seconds. The inlining algo-
rithm took 0.6 seconds on bothLoyalty andPurse. Even
though theoretically the worst-case blowup in the number
of nodes of the inlined applets, determined by the number
of normal M-frames, is exponential in the number of private
methods, in practice this is not likely to happen. In our case,

9

we even observed a reduction in size of the graphs, due to
the fact that the inlining focuses on interaction with other
applets, and thus any code that is executed only when the
applet is selected and receives commands from the runtime
environment, is left out by the inlining. Verifying the local
properties of the inlined applets ofLoyaltyandPursetook
approximately 15 and 10 seconds, respectively.

8 Conclusions

In this paper, we propose a notion of interface behaviour
of program components which abstracts from the internal,
private behaviour. Based on this notion, behavioural prop-
erties can be specified at the public interface level without
requiring knowledge about the implementation. Focusing
on interface behaviour is significant from a methodological,
software engineering point of view. In particular, it supports
compositional verification by allowing global, program–
wide properties to be inferred from the interface properties
of the not yet available components.

We propose a program transformation based on inlining
of private methods, and show that it preserves the interface
behaviour. The inlining transformation reduces the number
of methods of a program to the number of its public meth-
ods. This is a necessary condition for applying the max-
imal model construction from [7, 12] in a truly composi-
tional manner, and gives rise to an improved scenario for
secure post–issuance loading of applets on smart devices.
The reduction in the number of methods resulting from the
interface abstraction drastically improves the performance
of the maximal model construction which is of exponen-
tial worst–case complexity. Finally, we observe that some
natural structural properties are only directly expressible as
properties of the inlined applet.

Acknowledgments

We would like to thank Gennady Chugunov for helping us
redoing the verifications, and Christoph Sprenger for nu-
merous suggestions for improvement on an earlier draft.

References

[1] R. Alur, K. Etessami, and P. Madhusudan. A tempo-
ral logic for nested calls and returns. In K. Jensen
and A. Podelski, editors,Tools and Algorithms for
the Analysis and Construction of Software, TACAS
04, number 2998 in LNCS, pages 467–481. Springer,
2004.

[2] O. Burkart, D. Caucal, F. Moller, and B. Steffen.
Verification on infinite structures. In J.A. Bergstra,

A. Ponse, and S.A. Smolka, editors,Handbook of Pro-
cess Algebra, pages 545–623. North Holland, 2000.

[3] E.M. Clarke, O. Grumberg, and D.E. Long. Model
checking and abstraction.ACM Transactions on Pro-
gramming Languages and Systems, 16(5):1512–1542,
1994.

[4] R. Cleaveland, J. Parrow, and B. Steffen. A seman-
tics based verification tool for finite state systems. In
Proc. 9th IFIP Symp. Protocol Specification, Verifica-
tion and Testing, 1989.

[5] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon.
Efficient algorithms for model checking pushdown
systems. InComputer Aided Verification (CAV ’00),
number 1855 in LNCS, pages 232–247. Springer,
2000.

[6] O. Grumberg and D. Long. Model checking and mod-
ular verification.ACM Trans. on Prog. Lang. & Syst.,
16(3):843–871, 1994.

[7] M. Huisman, D. Gurov, C. Sprenger, and
G. Chugunov. Checking absence of illicit applet
interactions: a case study. In M. Wermelinger and
T. Margaria, editors,Fundamental Approaches to
Software Engineering, FASE 2004, number 2984 in
LNCS, pages 84–98. Springer, 2004.

[8] T. Jensen, D. Le Métayer, and T. Thorn. Verification
of control flow based security policies. InIEEE Sym-
posium on Research in Security and Privacy, pages
89–103. IEEE Computer Society Press, 1999.

[9] O. Kaser and C.R. Ramakrishnan. Evaluating inlining
techniques.Journal of Computer Languages (JCL),
24(2):55–72, 1998.

[10] D. Kozen. Results on the propositional�-calculus.
TCS, 27:333–354, 1983.

[11] C. Sprenger, D. Gurov, and M. Huisman. Simulation
logic, applets and compositional verification. Techni-
cal Report RR-4890, INRIA, 2003.

[12] C. Sprenger, D. Gurov, and M. Huisman. Composi-
tional verification for secure loading of smart card ap-
plets. InFormal Methods and Models for Co-Design
(Memocode 2004), pages 211–222. IEEE, 2004.

[13] C. Stirling. Modal and Temporal Logics of Processes.
Springer, 2001.

10

A Full Proof of Theorem A.1

Theorem A.1. LetA : I be a closed applet, and letM �

I

+. We havebM (A) � b(�

M

(A)).

Proof. We show by co-induction that�0
M

is a simula-
tion betweenbM (A) and b(�

M

(A)), i.e., we show that
(1) the valuations of(v; �) in b

M

(A) and �0
M

(v; �) in

b(�

M

(A)) agree, and (2) if(v; �)
l

�!(v

0

; �

0

) in b

M

(A),

then�0
M

(v; �)

l

�! �

0

M

(v

0

; �

0

) in b(�

M

(A)). The result
then follows since�0

M

maps the entry states ofbM (A) to
entry states ofb(�

M

(A)) (in fact, the entry states coincide,
and�0

M

maps every entry state to itself).
Let (v; �) be a configuration ofbM (A), and hence also

of b(A). Let �0
M

(v; �) = (w;); w is a normalM -frame
of A, and thus a node of�

M

(A). Note thathd(w) = v. It
is easy to check that valuations on(v; �) and(w;) agree,
so we focus on the second goal. We consider the differ-
ent cases leading to transitions from configuration(v; �) in
b(A), as induced by the transition rules for closed applets
given in Table 1. Notice that in the construction of�

M

(A)

the auxiliary function� initially is invoked with arguments
w

0

and�, and that eventually this results in a recursive call
of � with argumentshd(w) andtl(w).

(transfer) Let v !

m

v

0 and v j= :r. Then
(v; �)

"

�!(v

0

; �) in b(A), and hence also inbM (A).
Then, by definition of�

M

(edge in setInt
M

(m)) and
�

0

M

, w !

top

M

(w)

v

0

� tl(w) is an edge in�
M

(A),

and w j= :r. Therefore(w;)
"

�!(v

0

� tl(w);)

in b(�

M

(A)). By definition of �0
M

, �0
M

(v

0

; �) =

(v

0

� tl(w);), and hence�0
M

(v; �)

"

�! �

0

M

(v

0

; �).

(call) Let v
m

2

��!

m

1

v

0, v j= :r, v
2

j= m

2

andv
2

2 E.

Then(v; �)

m

1

callm
2

������! (v

2

; v

0

� �) in b(A). We con-
sider three cases, as induced by the renaming scheme
of �M .

1. m
1

2 M andm
2

2 M . Then (v; �)

m

1

callm
2

������!

(v

2

; v

0

� �) in bM (A) as well. Notice that in this case
tl(w) = �, and thusw = v. By definition of�

M

(edge
in setPub

M

(m

1

)) and�0
M

, v
m

2

��!

m

1

v

0 in �

M

(A),
wherev j= :r, v

2

j= m

2

andv
2

2 E

�

M

(A)

. There-

fore (v;)

m

1

callm
2

������! (v

2

; v

0

�) in b(�

M

(A)). By
definition of�0

M

, �0
M

(v

2

; v

0

� �) = (v

2

; v

0

�).

2. m
1

62 M andm
2

2 M . Then (v; �)

m callm
2

������!

(v

2

; v

0

� �) in b

M

(A), wherem = top

M

(v � �). By
definition of (normal)M -framesm = top

M

(w), and
by definition of�

M

and�0
M

, w
m

2

��!

m

v

0

� tl(w) in
�

M

(A) (sincev
m

2

��!

m

1

v

0 is an edge inPub
M

(m

1

)),
so thatw j= :r, v

2

j= m

2

and v
2

2 E

�

M

(A)

.

Therefore(w;)

m callm
2

������! (v

2

; (v

0

� tl(w)) �) in
b(�

M

(A)). By definition of�0
M

, �0
M

(v

2

; v

0

� �) =

(v

2

; (v

0

� tl(w)) �).

3. m
2

62 M . Then (v; �)

"

�! (v

2

; v

0

� �) in
b

M

(A). By definition of�
M

and�0
M

, w �!

top

M

(w)

� (v

2

� v

0

� tl(w)) in �

M

(A) (first set in�) andw j=

:r. Therefore(w;)
"

�! (� (v

2

� v

0

� tl(w)) ;) in
b(�

M

(A)). By definition of�0
M

, �0
M

(v

2

; v

0

� �) =

(� (v

2

� v

0

� tl(w)) ;).

(return) Let v j= m

2

^ r, � 6= � and hd(�) j= m

1

.

Then(v; �)
m

2

retm
1

������! (hd(�); tl(�)) in b(A). Again,
we consider three cases, as induced by the renaming
scheme of�M .

1. m
1

2 M andm
2

2 M . Then (v; �)

m

2

retm
1

������!

(hd(�); tl(�)) in b

M

(A) as well. Notice that in this
casetl(w) = � , thusw = v, = �

M

(�), 6= �,

and hd(hd()) j= m

1

. Therefore(v;)
m

2

retm
1

������!

(hd(); tl()) in b(�

M

(A)). By definition of �0
M

,
�

0

M

(hd(�); tl(�)) = (hd(); tl()).

2. m
1

62 M and m
2

2 M . Then (v; �)

m

2

retm
�����!

(hd(�); tl(�)) in bM (A), wherem = top

M

(�). Also
in this casetl(w) = �, thusw = v, = �

M

(�),
 6= �, andhd(hd()) j= m

1

. By definition of�
M

and

�

0

M

, m = top

M

(hd()); therefore(v;)
m

2

retm
�����!

(hd(); tl()) in b(�

M

(A)). By definition of �0
M

,
�

0

M

(hd(�); tl(�)) = (hd(); tl()).

3. m
2

62 M . Then(v; �)

"

�! (hd(�); tl(�)) in b

M

(A).
We make a case distinction on whetherhd(tl(w)) =

hd(�), i.e. whether the edge that we use to simulate
the return was created for a non-recursive call, or not.

� Casehd(tl(w)) = hd(�). By definition of�
M

and
�

0

M

, w !

top

M

(w)

tl(w) in �

M

(A), andw j= :r.

Therefore(w;)
"

�! (tl(w);) in b(�
M

(A)). By defi-
nition of�0

M

, �0
M

(hd(�); tl(�)) = (tl(w);).

� Otherwise there must be a nodew0 in �

M

(A) such
that�(v �w0) = w andhd(�) = hd(w

0

). By definition
of �

M

and�0
M

there must be an edgew !

top

M

(w)

w

0 in �

M

(A), andw j= :r. Therefore(w;)
"

�!

(�

0

� tl(w);) in b(�

M

(A)). By definition of �0
M

,
�

0

M

(hd(�); tl(�)) = (�

0

� tl(w);).

This concludes the proof.

B Full Proof of Theorem B.1

Theorem B.1. Let A : I be a closed last-call recursive
applet, and letM � I

+. Thenb(�
M

(A)) �

w

b

M

(A).

11

Proof. Consider a state(w;) in b(�

M

(A)), where
�

Meth

(hd(w)) =2M andhd(w) j= r. For last-call recursive
applets, the inlining transformation�

M

has the property
that for any suchw, the nodesw0 such that�(hd(w) �w

0

) =

w buthd(w) �w

0

6= w, and which are structurally reachable
from w in �

M

(A) form (together withw) a strongly con-
nected component and are equivalentw.r.t. structural simu-
lation. As a consequence, inb(�

M

(A)), all states(w0;)
for a given also form a strongly connected component
and are weak simulation equivalent. Modulo such “return”
equivalence classes, we show by co-induction that(�

0

M

)

�1

is a weak simulation betweenb(�
M

(A)) andbM (A). More
exactly, we show that (1) the valuations of�0

M

(v; �) and

(v; �) agree, and (2) if�0
M

(v; �)

l

�! (w

0

;

0

) is a transi-
tion in b(�

M

(A)) other than a (silent) transition within a

return equivalence class, then(v; �)
l

) (v

0

; �

0

) in bM (A)

for somev0and �0 such that�0
M

(v

0

; �

0

) = (w

0

;

0

) (in
most cases we even show the corresponding strong transi-
tion). The result then follows since�0

M

maps entry states of
b(�

M

(A)) to entry states ofbM (A).
Let (v; �) be a configuration ofbM (A), and let

�

0

M

(v; �) = (w;). Note thathd(w) = v, and that�
is invoked with arguments�

Meth

(hd(w)) andtl(w) in the
construction of�

M

(A). It is easy to check that the valu-
ations agree, so we focus on the transitions. We consider
the different cases leading to transitions from configuration
(w;) in b(�

M

(A)), as induced by the transition rules for
closed applets given in Table 1.

(transfer) Let m 2 M , w !

m

w

0 andw j= :r. Then
(w;)

"

�!(w

0

;) in b(�
M

(A)). By definition of�
M

,
there are three possible cases for the transfer edge
w !

m

w

0 to appear in�
M

(A), which we consider
in turn.

1. w0 = v

0

� tl(w) and v !

m

0

v

0 for somev0 and
m

0

= �

Meth

(v) = �

Meth

(v

0

), and v j= :r. Then
(v; �)

"

�!(v

0

; �) in b(A), and hence also inbM (A). By
the definition of�0

M

, �0
M

(v

0

; �) = (w

0

;).

2. (internal call)w0 = �(e�v

0

�tl(w)), e j= m

0 ande 2 E,

m

0

=2 M , there is a call edgev
m

0

��!

m

00

v

0 in A for

somem00, v j= :r. Then(v; �)
m

00 callm0

������! (e; v

0

� �)

in b(A), and hence(v; �)
"

�! (e; v

0

� �) in bM (A). By
definition of�0

M

, �0
M

(e; v

0

� �) = (w

0

;).

3. (internal return)w = �(v � w

0

), v j= m

0

^ r, m0

=2 M

and there is a call edgev0
m

0

��!

m

00

v

00 in A for v00 =

hd(w

0

) and somem00 andv0 such thatv0 j= :r. We
consider three sub-cases.

� hd(�) = v

00. Then(v; �)
m

0 retm00

������! (hd(�); tl(�)) in
b(A), and hence(v; �)

"

�! (hd(�); tl(�)) in b

M

(A).
By tdefinition of�0

M

, �0
M

(hd(�); tl(�)) = (w

0

;).

� hd(�) 6= v

00 andw = v � w

0. Then we are dealing
with a return from a recursive call inb(A), and there
must be a decomposition�0 � v00 � �00 of � such that
�

Meth

(�

0

) = m

0 and no node of�0 is in M . Since
A is last-call recursive, all nodes in�0 are either re-
turn nodes or nodes leading to return nodes via trans-
fer paths only. Therefore(v; �)

"

) (v

00

; �

00

) in bM (A).
By the definition of�0

M

, �0
M

(v

00

; �

00

) = (w

0

;).

� hd(�) 6= v

00 andw 6= v � w

0. Then(w;) and(w0;)
are in the same return equivalence class (see above), so
we do not have to consider this case.

(call) Letm
1

;m

2

2M , w
m

2

��!

m

1

w

0, w j= :r, w00 j= m

2

andw00 2 E. Then(w;)
m

1

callm
2

������! (w

00

; w

0

�) in
b(�

M

(A)). By definition of�
M

, we must havew0 =
v

0

� tl(w) for somev0 such that, inA, v
m

2

��!

m

v

0 and
v j= :r for some private methodm of m

1

. By defini-
tion of �0

M

, w00 = v

00 for somev00 such thatv00 j= m

2

and v00 2 E. Then (v; �)

m callm
2

������! (v

00

; v

0

� �) in
b(A), and since by definition of�0

M

, topM (v � �) =

m

1

, we have(v; �)
m

1

callm
2

������! (v

00

; v

0

� �) in bM (A).
By definition of�0

M

, �0
M

(v

00

; v

0

� �) = (w

00

; w

0

�).

(return) Let m
1

;m

2

2 M , w j= m

2

^ r, 6= � and

hd() j= m

1

. Then(w;)

m

2

retm
1

������! (hd(); tl())

in b

M

(�

M

(A)). By definition of �
M

and�0
M

, we
must havew = v andv j= m

2

^ r. Also, � 6= �

and hence(v; �)
m

2

retm
�����! (hd(�); tl(�)) in b(A) for

m = �

Meth

(hd(�)). By definition of�0
M

, topM (�) =

m

1

and hence(v; �)
m

2

retm
1

������! (hd(�); tl(�)) in
b

M

(A). By definition of �0
M

, �0
M

(hd(�); tl(�)) =

(hd(); tl()).

This concludes the proof.

12

