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ABSTRACT

The present Thesis addresses the problem of speci�cation and veri�cation of com-

municating systems with value passing. We assume that such systems are described

in the well-known Calculus of Communicating Systems, or rather, in its value passing

version. As a speci�cation language we propose an extension of the Modal �-Calculus,

a poly-modal �rst-order logic with recursion. For this logic we develop a proof system

for verifying judgements of the form b ` E : � where E is a sequential CCS term

and b is a Boolean assumption about the value variables occurring free in E and

�. Proofs conducted in this proof system follow the structure of the process term

and the formula. This syntactic approach makes proofs easier to comprehend and

machine assist. To avoid the introduction of global proof rules we adopt a technique

of tagging �xpoint formulae with all relevant information needed for the discharge

of reoccurring sequents. We provide such tagged formulae with a suitable semantics.

The resulting proof system is shown to be sound in general and complete (relative

to external reasoning about values) for a large class of sequential processes and logic

formulae. We explore the idea of using tags to three di�erent settings: value passing,

extended sequents, and negative tagging.

Examiners:

Dr. B.M. Kapron, Supervisor (Department of Computer Science)

Dr. H.A. M�uller, Supervisor (Department of Computer Science)

Dr. M.H.M. Cheng, Departmental Member (Department of Computer Science)

Dr. N. Dimopoulos, Outside Member (Department of Electrical and Computer En-

gineering)

Dr. M. Greenstreet, External Examiner (Department of Computer Science, UBC)



CONTENTS iii

Contents

Contents iii

List of Figures v

Acknowledgement vi

Dedication vii

1 Introduction 1

2 Models, Logics, and Veri�cation 9

2.1 Labelled Transition Systems : : : : : : : : : : : : : : : : : : : : : : : 9

2.2 Calculus of Communicating Systems : : : : : : : : : : : : : : : : : : 12

2.3 Modal Logics and �-Calculi : : : : : : : : : : : : : : : : : : : : : : : 19

2.4 Model Checking : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26

3 Veri�cation of Value Passing CCS Processes 33

3.1 A �-Calculus for Value Passing Processes : : : : : : : : : : : : : : : : 34

3.1.1 Syntax : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37

3.1.2 Semantics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 38

3.2 A Compositional Proof System : : : : : : : : : : : : : : : : : : : : : 40

3.2.1 Sequents : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41

3.2.2 Rules : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42

3.2.3 Greatest Fixpoints : : : : : : : : : : : : : : : : : : : : : : : : 45

3.2.4 Least Fixpoints : : : : : : : : : : : : : : : : : : : : : : : : : : 48

3.2.5 Extensions and Derived Rules : : : : : : : : : : : : : : : : : : 50

3.3 Example Proofs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 51

4 Correctness of the Proof System 60

4.1 Soundness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 60

4.2 Completeness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 66

4.2.1 Canonical Proofs : : : : : : : : : : : : : : : : : : : : : : : : : 68

4.2.2 Termination : : : : : : : : : : : : : : : : : : : : : : : : : : : : 75

4.2.3 Completeness Conditions : : : : : : : : : : : : : : : : : : : : : 76



CONTENTS iv

5 Extensions 77

5.1 Compositionality : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 77

5.2 Negative Tagging : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82

6 Conclusion 89

6.1 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 89

6.2 Evaluation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 90

6.3 Directions for Improvement : : : : : : : : : : : : : : : : : : : : : : : 91

Bibliography 92



LIST OF FIGURES v

List of Figures

2.1 A small LTS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

2.2 Transition rules for processes. : : : : : : : : : : : : : : : : : : : : : : 18

3.1 Denotation of formulae. : : : : : : : : : : : : : : : : : : : : : : : : : 40

3.2 Proof Rules. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43

3.3 Derived Rules. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 51

5.1 Fixpoint Rules. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 79



ACKNOWLEDGEMENT vi

Acknowledgement

I would like to thank my supervisors Dr. Bruce Kapron and Dr. Hausi M�uller for

their guidance and support throughout the time of my graduate studies.

I would also like to thank Dr. John Ellis, Dr. Mantis Cheng and many graduate

students from the Department for creating a stimulating research atmosphere.

Finally, I would like to thank my wife Elena and all my friends which made my

stay at the University a remarkably pleasant experience.

Last but not least, I would like to acknowledge Dr. Iwan Tabakow, the person

whom I owe my academic career.



DEDICATION vii

Dedication

To Vladimir Vysotskij,

whose horses

never stopped.



Chapter 1

Introduction

Communicating Systems Since their invention, computers have evolved from

simple calculators to extremely complex devices which have been entrusted with a

wide range of information processing responsibilities. Alongside with information pro-

cessing, interaction has become an increasingly crucial aspect of computer systems.

For many types of systems this aspect is in fact the more important one. Communi-

cation protocols, telephone switching systems and mobile robot control systems are

examples of systems, which ful�ll their primary goals by interacting with other sys-

tems rather than by processing information. The terms reactive and real-time systems

often refer to systems of the above type. In this thesis we use the term communicat-

ing system to refer to any system for which the information processing aspect can be

considered less relevant, and whose interaction behaviour is of main interest.

Interaction can be understood di�erently depending on the properties of the com-

munication medium. It can also be viewed on di�erent levels of abstraction. Here we

consider only a most basic type of interaction, namely handshake-type atomic inter-

action between two agents, on which Milner's Calculus of Communicating Systems

(CCS) is based [Mil89]. This calculus has been designed to serve as a theoretical

foundation for the study of concurrency rather than as a speci�cation language for

real-world applications; nonetheless, there are numerous practical examples where

this economic language has proved adequate. We also assume that actions (as inter-
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actions are called in CCS) can have parameters, so that values in some data domain

can be transmitted via actions. This phenomenon is called value passing; the resulting

version of CCS is usually referred to as Value Passing CCS.

One signi�cant conceptual di�erence between communicating systems and infor-

mation processing systems in general is presented by the rôle of termination. While

termination is usually a desired property for information processing applications, in-

dicating that some task has been successfully completed, for communicating systems

it has to be considered rather a catastrophe: termination of a communicating system

implies that no communication with the system is henceforth possible. Most existing

formal techniques for functional analysis and synthesis of systems rely on the notion

of termination, representing the behaviour of a system as a mapping from some set

of allowable initial con�gurations to some set of desirable �nal con�gurations. This

approach is not adequate for describing the ongoing behaviour of communicating sys-

tems. One alternative operational approach is to consider not the overall behaviour,

but just the result of a single communication, as a mapping between con�gurations;

the resulting formal notion is called a Labelled Transition System (LTS) and provides

a semantic framework for many formal notations for describing ongoing systems be-

haviour, including CCS.

Another important characteristic of communicating systems is that they are inher-

ently distributed: a communicating system is usually interacting with other systems

of the same type, so the overall system consists of components which are commu-

nicating systems themselves. This brings about the question of how to represent

adequately global con�gurations as (possibly structured) collections of local con�g-

urations, and how to compose component behaviours to form the behaviour of the

composite system. The approach taken by Milner is to interleave these behaviours,

but other approaches are also possible, notably the partial order semantics approach

advocated by Petri in [Pet76].
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Communicating Systems Design A rigorous systematic design methodology for

communicating systems would include the following design phases:

� Speci�cation: from an informal description of the requirements to the system's

behaviour a formal speci�cation, written in a suitable formal (e.g., logic) lan-

guage is derived;

� Modelling: guided by the formal speci�cation, a formal model of the desired

system's behaviour is obtained;

� Veri�cation: the formal model is checked against the formal speci�cation to

ensure all requirements are met. If these are not met, the Modelling phase is

reentered;

� Test Generation: from the model, test suites are derived to test (validate) the

system after it has been implemented;

� Implementation: the veri�ed model is implemented in hardware/software (This

phase can be performed concurrently with the previous one);

� Validation: the implemented system is tested using the test suites generated

earlier.

Such a rigorous methodology is rarely used in practice due to the enormous compe-

tition and pressure for early delivery of software products. Producers of safety-critical

systems, however, cannot a�ord risk and have to ensure the correct functioning of

their products. This means that they have to follow a more or less rigorous design

methodology like the above one. The techniques we develop here assume such a for-

mal approach and address the speci�cation and mainly the veri�cation phases, but

are necessarily related to the modelling phase as well, since these three phases cannot

be considered separately.

There are two main approaches to formally specifying a communicating system.

In the �rst of these, the speci�cation is itself a model and is described in the same
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modelling language in which the system is modelled later. This model describes the

behaviour of the system as seen from the environment (in other words, its interface

behaviour), and does not show the system's internal organization. Then, to verify the

model resulting from the modelling phase means to show that the two models, i.e.,

speci�cation and actual model, are equivalent according to some suitable notion of

behavioural equivalence. One such notion is bisimulation equivalence (or observation

congruence) [Mil89].

The second approach, which we follow here, is a logical one: a communicating

system is speci�ed with a set of logic formulae expressing the properties which the

interface behaviour of the system is required to possess. Then, to verify the model

means to check whether all formulae in the set hold in this particular model. The

process of accomplishing this is usually called model checking.

These two approaches can complement each other if one wants to start with a very

high-level speci�cation, which is best given as a set of properties, and then to produce

a high-level interface model, and �nally to obtain through a sequence of re�nements

a model detailed enough to be implemented.

Aim of the Thesis This thesis addresses the following veri�cation problem: Given

a system, described in Value Passing CCS, and a system property, described as a

formula in a suitable logic language, check whether the system possesses the property

(i.e. the model satis�es the formula). The logic language we consider is the Modal

�-Calculus, introduced by Kozen in [Koz83], which we extend with appropriate (�rst-

order) constructs to take into account the values being communicated. We present a

proof system for proving satisfaction between a process and a formula which is sound

and complete for a large class of sequential processes (i.e., processes not involving

parallel composition

1

) and logic formulae. Soundness of the proof system means that

one cannot derive satisfaction unless it really holds. Completeness on the other hand

1

Parallel composition is handled separately with the help of an additional proof system; this shall

be discussed later.
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guarantees that one can always derive such a satisfaction when it holds. Together,

these two properties of the proof system guarantee that one can prove (in this proof

system) that a process satis�es a formula exactly when this is really the case. Due

to the expressive power of the logic, our completeness result is necessarily a relative

one: we assume that all reasoning concerning the values being communicated is done

externally to the present proof system.

Proof systems of the above kind have been the focus of many research papers and

dissertations. These papers di�er from our approach in that they refer to the LTS

of the system being veri�ed instead of the process description itself (as for example

in [Cle90, SW91, Bra92, BS92, And93, Dam93, HL95, Rat97, RH97]), or in that

they consider propositional modal �-calculus formulae only, i.e. do not address value

passing (as in most of the above references, as well as in [ASW94, Dam95]).

Value Passing Our interest in value passing comes from the fact that many com-

municating systems do not just carry around values, but also use values to achieve a

desired distributed behaviour. For example, in the Alternating Bit Protocol (ABP)

special values are passed during the communication between sender, receiver, and

medium, to assure the correct transmission of data. If the value domain necessary

to achieve a desired distributed behaviour is �nite (as it is the case with the ABP),

one could abstract from the values thus simplifying the veri�cation process. This,

however, is not always possible. It would also require the formulae from the speci�-

cation to be translated accordingly, which might result in huge and unreadable ones.

Another drawback of abstracting from the values being communicated is that the

resulting process description becomes even more abstract and unrealistic, creating a

dangerous conceptual gap between model and implementation. After all, what mat-

ters is whether the �nal system operates correctly, and not just whether the model

is correct. It is our belief that, if a proof system has been designed properly, the

complexity of proving a system property should be a�ected by the complexities of
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the property and the system's behaviour, and not so much by the complexity of the

speci�cation and modelling languages. So, if values are treated properly (for example

symbolically) they should not make a proof more complicated unless the proof really

depends on the values being communicated.

Compositionality The model checking problem is undecidable for in�nite state

systems in general and �-calculus formulae. This means that veri�cation for value

passing processes is in general not fully automatable. It can be substantially machine

assisted, but human guidance cannot be dispensed with completely. A proof assistant

would reduce the initial veri�cation goal, consisting in our case of a value passing CCS

term and a �-calculus formula, to sub-goals, and would repeat this process, guided

by the user, until all sub-goals are evidently true (for example axioms or memorised

theorems in the proof system). To be able to guide the derivation process, however,

the user has to be able to interpret the intermediate sub-goals; in other words, the

sub-goals should be represented in a way which is intuitive and meaningful to the

user. A natural solution is to represent sub-goals in the same way as the initial goal,

namely, in our case, as pairs consisting of a value passing CCS term and a �-calculus

formula (such pairs are usually called sequents). In this case the proof of a sequent

could be guided not just by the structure of the formula but also by the structure of

the process term. Such proof systems are usually termed compositional.

2

There is also another reason for using compositional proof systems. An important

aspect of a design methodology ismodularity. A design of a compound system is called

modular if the system's components have been designed independently by taking into

account the requirements for putting them together. One immediate bene�t from

using a methodology which facilitates modular design is that in the case of repeated

or similar components much e�ort can be saved. This is called design reuse. In our

context, the important issue is modular speci�cation and veri�cation, which requires

2

This term is also used in a weaker sense, meaning that it handles \compositionally" processes

composed in parallel.
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systems to be speci�ed in such a way that the correctness of the components of a

system imply the correctness of the composite system. Then, verifying a system

reduces to verifying the components. Compositional proof systems facilitate modular

veri�cation in a natural way by reducing the proof of system properties to proving

properties of components.

Another important problem which compositional proof systems aim to solve is the

infamous state explosion problem: the global state space of a communicating system

composed of several components running in parallel is of size roughly the product of

the sizes of the state spaces of the constituent processes. This phenomenon makes

veri�cation intractable even for relatively small practical systems. Compositionality

attacks this problem by reducing the veri�cation of a global property of a system to

verifying local properties of its components. Because of the signi�cance of parallel

composition to system design, and because of some technical reasons to be explained

in later chapters, it is useful to separate the treatment of this operator on processes

from the rest. Following Stirling [Sti87], we divide our proof system in two parts,

the �rst of which treats all process combinators except parallel composition, and the

second for inferring properties of a process from its parallel components.

Contributions The main contributions of the present thesis are the development

of a suitable logic for specifying value passing processes, and the development of a

compositional proof system which is sound and complete for a large class of processes.

A unifying theme in our research has been the attempt to adapt the so called technique

of tagging (to be explained in later chapters) to the di�erent parts of our proof system.

This technique allows global proof rules to be avoided, and simpli�es considerably the

machine-assistance of the proof system.

Credits The research presented here is partly joint work with Sergey Berezin from

Carnegie Mellon University. More speci�cally, the second part of our proof system,

namely the one dealing with parallel composition, was originally developed by Sergey
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in his M.Sc. Thesis [Ber95]. For this part of the proof system, our contribution

lies in collaborating with Sergey on modifying this proof system to employ tags, and

adopting a suitable semantics for tagged formulae to facilitate an economic proof of

soundness and completeness. The study of \negative" tagging presented here has been

performed independently. Part of the results have been published in [GBK96, BG97].

Organisation The thesis is organised as follows. The next chapter presents the

background necessary to understand and evaluate the contributions of the present

work. Chapter 3 introduces a �rst-order extension of the Modal �-Calculus as a suit-

able speci�cation language for sequential CCS processes with value passing, presents

a proof system which is compositional in the term structure of the processes and em-

ploys a technique known as tagging to eliminate the need for global inference rules, and

illustrates the use of this proof system on some illuminating examples. The following

chapter is dedicated to the correctness of the proof system. Chapter 5 investigates

other settings in which tagging may be a suitable choice, notably negative tagging.

The last chapter summarises the accomplishments of this thesis, draws conclusions

about the merits and de�ciencies of the chosen approach, and proposes directions for

improvement and future research.
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Chapter 2

Models, Logics, and Veri�cation

In this chapter we give the background needed to appreciate the results presented

later. We �rst present Labelled Transition Systems (LTS) as a semantic domain

for representing the behaviour of communicating systems. We next present Milner's

Calculus of Communicating Systems (CCS) [Mil89]. Then, we discuss the Modal �-

Calculus as a process logic. The last section explains the ideas behind model checking

as a technique for verifying systems behaviour.

2.1 Labelled Transition Systems

The semantics, or meaning, of a process language or a process logic is best given in a

well understood semantic domain for representing communicating systems behaviour.

As discussed already in the Introduction, the approach of representing the behaviour

of a system as a mapping from some set of allowable initial con�gurations to some

set of desirable �nal con�gurations is not adequate for describing the ongoing be-

haviour of communicating systems. Instead, one can consider as a mapping between

con�gurations the result of a single communication. But communicating systems are

inherently distributed. This brings about the question how to treat local con�gura-

tions. A conceptually simple approach is to abstract from these and to interleave local

behaviours. Other approaches are also possible, notably the partial order semantics

approach advocated by Petri [Pet76].
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The interleaving approach described above leads to a simple model of behaviour

in which the structure of states is irrelevant: a state is characterised only by the

sequences of choices among communications which are o�ered from this state. The

resulting mathematical structure, called labelled transition system (LTS), can be de-

�ned as a triple

(S; T; f

t

�!� S � S j t 2 Tg)

consisting of a set S of states, a set T of transition labels, and a set of transition

relations for each transition label [Mil89]. We shall use the in�x notation s

t

�! s

0

for

(s; s

0

) 2

t

�!, and call s

0

a t-derivative of s.

If the size of S is small, an LTS can be visualised as a graph whose nodes are the

states and whose edges are labelled. For example, consider a system which allows

the user to depress one of two buttons and then, depending on the button depressed,

makes a "beep" sound or a "boop" sound, and stops.

1

If we denote the four events as

labels depe, depo, beep, and boop, respectively, an LTS describing the above behaviour

could be graphically depicted as

2

:

s1 s2

s0

s3 s4

depe

beep

depo

boop

Figure 2.1: A small LTS

Such a semantics is called branching-time semantics, since it contains information

about what choice of actions is available at any particular state. In the case of com-

municating systems, we shall interpret labels as "handshake"-type communications,

also called actions. The set Act of actions is formed from a set A of names, the

1

This is not really a communicating system, since these actions are not really "handshake"-type,

but the notion of LTS is more general and does not interpret the nature of the labels.

2

To be exact, the behaviour of the system is characterized by its initial state, namely by s

0

.
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corresponding set A of co-names, and a pre-de�ned silent action � . Since actions

are handshakes between two agents, each action l 2 A [ A has its co-action l; the

result of a handshake is the silent action. If the above system is to be interpreted as

a communicating system, then in its initial state it o�ers the user to communicate

either through action depe or through action depo; the user (as a system) has con-

sequently to o�er the corresponding co-actions depe or depo to be able to engage in

a communication with the system. A system engaging in the silent action � means

that there is internal communication taking place somewhere between components of

the system. The user has no inuence on this action, hence its identity is considered

irrelevant; even more, its identity is considered as information that one would like to

ignore in order to be able to produce manageable descriptions of large behaviours.

3

A natural question is when to consider two states in an LTS as corresponding

to the same behaviour (i.e., as being behaviourally equivalent). The usual automata-

theoretic notion of equivalence (trace equivalence) is often too weak for practical

purposes since it is not sensitive to deadlocks: two systems can be trace equivalent

so that the �rst is deadlock-free while the second is not. The main reason for this

insensitivity is that traces do not reect the branching structure of behaviours. Since

we found branching time semantics as being appropriate for communicating systems

we should rather choose an equivalence notion sensitive to branching. The main

guideline should be the question as to what constitutes a legal experiment, i.e., what

do we consider to be our means of distinguishing between two behaviours? Then, two

behaviours should be considered equivalent if and only if they cannot be distinguished

by any allowable experiment. In the case of communicating systems it is natural to

assume that experiments are sequences of interactions, and that experimenters are

communicating systems themselves. If we assume that the experimenter is able to

\see" at every state the choice of actions o�ered by the systems to be compared,

then one naturally comes to the notion of experimental equivalence introduced by de

3

This and the following considerations are introduced in [Mil89] at the level of CCS. They are,

however, of semantic nature, and are therefore presented here.
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Nicola and Hennessy [NH84]. If the experimenter is also allowed to create identical

copies of the behaviours in any state, then to perform experiments on the copies, and

�nally to combine the results, one arrives at the notion of equivalence with respect

to duplicator experiments [BM92]. Milner prefers an even �ner equivalence, namely

bisimulation, also called observation congruence, originally proposed by Park [Par81].

Its strong version, called strong bisimulation, is given in [Mil89] as follows:

4

P and Q are equivalent i�, for every action �, every �-derivative of P is

equivalent to some �-derivative of Q, and conversely.

For practical purposes, strong bisimulation is too strong an equivalence notion be-

cause it does not abstract from the unobservable internal communication represented

by silent actions taking place in a system. For this reason Milner also introduces the

weaker equivalences weak bisimulation and observation congruence.

Many other equivalence notions have been proposed in the literature. Choosing

a \good" one is particularly important if one has adopted the approach of describ-

ing both the speci�cation and the model in the same process notation, and to do

veri�cation by showing the two descriptions equivalent. Then, one should choose an

equivalence notion which is �ne enough to catch important di�erences between spec-

i�cation and model, and is coarse enough to guarantee that veri�cation would not

fail because of unimportant ones. The experimenter is in this case the user of the

system; it is hence the capabilities of the user which should also guide the choice of

an appropriate equivalence.

2.2 Calculus of Communicating Systems

The process language on which we focus our attention is CCS and its value passing

extension. CCS is an algebraic language which de�nes atomic behaviours and opera-

4

The experiments corresponding to these notions of equivalence can be described nicely in terms

of games [Sti96].
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tors for constructing more complicated behaviours from simpler ones. We start with

an informal overview of the language and its semantics.

Expressions in the language are termed processes. The only atomic process is the

nil process, denoted 0, which is not capable of participating in any action. If a is

an action, and P is a process, then we can construct out of them a new process a:P

which can initially engage in a only, and behave as P afterwards. So \a:" can be

understood as a unary operator on processes, called pre�x. So, process tick:0 can

just participate in one tick action. The behaviour of tick:0 can be given by an LTS

having as states the two processes tick:0 and 0, and a single tuple tick:0

tick

�! 0.

If P and Q are processes, then P +Q denotes a process which can behave either

as P or as Q, depending on the �rst action chosen. For example, a:P + b:Q o�ers

to the environment a choice between participating in a or participating in b. If a

is chosen, the process continues to behave as P , otherwise as Q. In the case of

a:b:0+ a:c:0 we have non-deterministic choice: after choosing a the process decides

non-deterministically whether to continue as b:0 or as c:0 . This behaviour is better

explained by viewing its LTS:

�

�

�

�

�

��

@

@

@

@

@

@R

-

-

a.b.0+a.c.0

0

0

b.0

c.0

a

a

b

c

It should be distinguished from the behaviour of a:(b:0+ c:0), where after a the

choice between b and c is still to be resolved by the environment:
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-

�

�

�

�

�

�>

Z

Z

Z

Z

Z

Z~

0

0

b.0+c.0

a

b

c

a.(b.0+c.0)

Using process constants and de�ning equations, one can give names to speci�c

processes. For example, the notation P

�

= a:b:0 de�nes process P as a:b:0. Using

recursive de�nitions one can de�ne processes with ongoing behaviour: e.g., process

Clock

�

= tick:Clock has the ability to engage in an in�nite sequence of consecutive

tick actions. Another example is a simple vending machine, which can accept a

one-cent or a two-cent coin, after which a little or a big button may be depressed

depending on the coin inserted, and �nally a little or a big item may be collected,

upon which the vending machine enters its initial state:

V en

�

= 1c:V enl+ 2c:V enb

V enl

�

= little:collectl:V en

V enb

�

= big:collectb:V en

The LTS of process Ven is as follows:

�

�

�

�

�

�

�>

Z

Z

Z

Z

Z

Z

Z~

-

-

�

�

�

�

�

�

�

�

�

�

�

�

�

�)

P

P

P

P

P

P

P

P

P

P

P

P

P

Pi

Ven

Venl

Venb

collectl.Ven

collectb.Ven

1c

2c

little

big

collectl

collectb

Given two processes P and Q, process P jQ denotes their composition, i.e., a new
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process, which is like P and Q taken together, but allows also P and Q to inter-

act. Let Bu�er

1

�

= in:transmit:Bu�er

1

and Bu�er

2

�

= transmit:out:Bu�er

2

be two

one-element bu�er processes. Then Bu�er

1

jBu�er

2

is a process, which can engage

in an in action and become transmit:Bu�er

1

jBu�er

2

, or engage in transmit and

become Bu�er

1

jout:Bu�er

2

. Process transmit:Bu�er

1

jBu�er

2

can engage in both

transmit and transmit, but can also engage in an internal communication, i.e.

perform a � -action, between Bu�er

1

and Bu�er

2

and become Bu�er

1

jout:Bu�er

2

.

If we wish to stop the environment from interfering in this internal communica-

tion, we can hide transmit and transmit using the CCS restriction operator: pro-

cess (Bu�er

1

jBu�er

2

)nftransmitg can engage initially in in only, thus becoming

(transmit:Bu�er

1

jBu�er

2

)nftransmitg, then in � only, becoming (Bu�er

1

jout:Bu�er

2

)

nftransmitg, which can engage in both in and out. A renaming operator is also pro-

vided to allow for reuse of already de�ned processes. For example, both Bu�er

1

and

Bu�er

2

can be de�ned via Bu�er

�

= in:out:Bu�er as follows:

Bu�er

1

�

= Bu�er[transmit=out]

Bu�er

2

�

= Bu�er[transmit=in]

So, a two-element bu�er can be de�ned using two one-element bu�ers as:

TwoBu�er

�

= (Bu�er[transmit=out]jBu�er[transmit=in])nftransmitg

Of course, at this high level of abstraction there is no di�erence between process

Bu�er

�

= in:out:Bu�er and Clock

�

= tick:tock:Clock except for the di�erent names

of actions; what is missing in Bu�er to be really appreciated as a one-element bu�er

are the values being communicated. The version of CCS providing a notation for

communicated values is called Value Passing CCS; in this language we could specify

Bu�er as follows:
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Bu�er

�

= in(x):out(x):Bu�er

where x ranges over some pre-de�ned domain D of values. If D is the set of natural

numbers, then Bu�er can engage initially in any of the actions in(1), in(2), in(3),

etc., becoming respectively out(1):Bu�er , out(2):Bu�er , out(3):Bu�er , etc. Thus,

input actions have binding power in the Value Passing CCS.

The original de�nition of CCS has instead of the binary choice operator + the

operator

P

i2I

called summation (also having binding power), where I is an indexing

set. In our value passing version of CCS we choose I to coincide with the domain D

of values, and use values instead of indices.

5

For example, the process �x out(x):0 is

ready to put out any value from the respective domain.

A more interesting example showing the higher modelling power of the value pass-

ing extension would be a simple teller machine which accepts and o�ers cash without

giving credit:

Teller(balance)

�

= Deposit(balance) + Withdrawal(balance)

Deposit(balance)

�

= deposit(amount):T eller(balance+ amount)

Withdrawal(balance)

�

= �amount

if 0 < amount � balance

then withdraw(amount):T eller(balance� amount)

After this informal introduction to CCS,

6

we are ready to present the formal

syntax and semantics of the language. We assume a set A of names, ranged over by

a, each name having a non-negative arity. Let L denote the set A[A of labels, ranged

over by l, and let a denote a. We also assume a set D of values, value expressions

e and Boolean expressions b built from variables x; y; z; : : : (possibly indexed), value

constants d and arbitrary operator symbols de�ned in the domain. We use tt and �

to denote the usual Boolean constants \true" and \false."

5

This does not decrease the expressiveness of the language, provided we drop the convention that

input actions have binding power.

6

We shall henceforth always understand under CCS the value passing version of the calculus.
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Agent expressions E over A and D are generated by the grammar:

7

E ::= 0 j �:E j E + E j �~x E j EjE j EnU j Ef�g j if b then E j A(~e)

� ::= a(~x) j a(~e) j �

Here A are agent constants, each having a de�ning equation

A(~x)

�

= E

where the right-hand side E may contain no free variables except the ones in ~x. U � L

are restriction sets, and � : L ! L are relabelling functions satisfying �(l) = �(l)

and �(� ) = � . Input actions and in�nite summation have binding power. Closed

agent expressions (i.e., expressions with no free variables) are termed processes and

are ranged over by P;Q; : : :

The semantics of a CCS process

8

is given in terms of an LTS whose states are

processes, i.e., closed agent expressions, and whose transition labels are actions, i.e.,

either � or of the form l(

~

d), where l 2 L and

~

d 2

~

D. The set of actions is denoted Act

and is ranged over by �. What remains to be de�ned is the set of transition relations

of the LTS.

9

A denotational approach to giving semantics for a process would de�ne

the LTS of the process through the LTSs of the sub-expressions of the process; for

example, it would de�ne the LTS for a:P through the LTS for P , possibly by extending

the latter with the state a:P and with the tuple a:P

a

�! P . Milner preferred to give

a transitional semantics to his calculus by giving transition rules for inferring the

transitions of a composite process from the transitions of its component processes.

Figure 2.2 presents such a set of transition rules. We use the usual notation for term

substitution, and use [[~e ]] and [[b]] to denote the values of ~e and b, respectively.

An LTS of the type described above is called transition closed if whenever the

hypotheses of a rule are satis�ed (i.e., there are processes in the set of states of the

7

We use vectors of variables, expressions etc. when the arity is of no particular relevance.

8

We shall not give a semantics for open agent expressions here.

9

Since processes are states themselves in such a LTS, there is no need to identify an initial state.
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R(� )

�

�:P

�

�! P

R(in)

�

a(~x):E

a(

~

d )

�! E[

~

d=~x]

R(out)

�

a(~e):P

a([[~e ]])

�! P

R(+l)

P

1

�

�! P

0

1

P

1

+ P

2

�

�! P

0

1

R(+r)

P

2

�

�! P

0

2

P

1

+ P

2

�

�! P

0

2

R(�)

E[

~

d=~x]

�

�! P

�~x E

�

�! P

R(j)

P

1

l(

~

d )

�! P

0

1

P

2

l(

~

d )

�! P

0

2

P

1

jP

2

�

�! P

0

1

jP

0

2

R(jl)

P

1

�

�! P

0

1

P

1

jP

2

�

�! P

0

1

jP

2

R(jr)

P

2

�

�! P

0

2

P

1

jP

2

�

�! P

1

jP

0

2

R(n)

P

l(

~

d )

�! P

0

PnU

l(

~

d )

�! P

0

nU

l; l 62 U R(�)

P

l(

~

d )

�! P

0

Pf�g

l

0

(

~

d )

�! P

0

f�g

�(l) = l

0

R(if)

P

�

�! P

0

if b then P

�

�! P

0

[[b]] = tt R(

�

=)

E[

~

d=~x]

�

�! P

A(

~

d )

�

�! P

A(~x)

�

= E

Figure 2.2: Transition rules for processes.

LTS which are in the corresponding transition relations), then the conclusion also

holds (i.e., the two processes occurring in the conclusion are in the set of states of the

LTS, and they are in the respective transition relation). Given a set of processes, we

are interested in the least transition closed LTS containing these. This LTS has the

property that two processes are in a given transition relation if and only if this can be

derived using the rules. It is by such LTSs that we give meaning to processes. This

style of providing a semantics for processes is not very intuitive, since it is not always

obvious, as it is for example in the case with Petri nets, what transitions are enabled

in a CCS process involving several parallel components. It is, however, technically

very elegant and economic, which makes it preferable for theoretical investigations.

Let us see, for example, what behaviour these rules specify for process Bu�er

�

=

in(x):out(x):Bu�er. One would expect to be able to establish Bu�er

in(d)

�! P

d

and

P

d

out(d)

�! Bu�er for any d 2 D and appropriate processes P

d

. This can be achieved

as follows. Axiom rule R(in) implies that in(x):out(x):Bu�er

in(d)

�! out(d):Bu�er, and

axiom rule R(out) implies that out(d):Bu�er

out(d)

�! Bu�er. From the �rst of these

follows by rule R(

�

=) that Bu�er

in(d)

�! out(d):Bu�er, and taking P

d

to be out(d):Bu�er

establishes the expected transition relations.
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2.3 Modal Logics and �-Calculi

When specifying a communicating system, we are usually interested in the observable

properties only, i.e., what sequences of choices of actions we observe when interacting

with the system. Since we are talking about capabilities for interaction it is natural

to use Modal Logics for describing such properties.

A simple modal logic for describing local capabilities for interaction is Hennessy-

Milner Logic (HML) [HM80]. The formulae of HML are easy to de�ne:

� the propositional constants tt and � are formulae;

� if � and 	 are formulae, then so are � _	 and � ^	; and

� if � is a formula and � is an action, then h�i� and [�] � are formulae.

The meaning of these formulae can be given in terms of LTS by specifying when

a process P of the LTS satis�es a formula �. This is denoted P j= �, and can be

de�ned as follows:

P j= tt always holds, i.e. tt means \true";

P j= � never holds, i.e. � means \false";

P j= � _	 i� P j= � or P j= 	;

P j= � ^	 i� P j= � and P j= 	;

P j= h�i� i� there is an �-derivative P

0

of P so that P

0

j= �.

P j= [�] � i� for every �-derivative P

0

of P , P

0

j= �;

We shall refer to this style of giving semantics to formulae as local, or intensional,

semantics.

For example, P j= hai tt means simply that P can engage in an a action, while

P j= [a]� means that it can not. For the vending machine process V en described in

the previous subsection, V en j= h2ci hbigi hcollectbi tt ^ [1c] [big]�, i.e., V en o�ers a
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big item to be selected after 2c have been inserted, but not if only 1c has been inserted.

The lack of negation in the logic is not incidental; it can easily be shown (by referring

to deMorgan-type equivalences) that every HML formula involving negation (if we

allow negation in the logic) has a negation-free equivalent.

HML is in fact a poly-modal logic: instead of having just the two modalities [ ] and

hi as is the case with Classical Modal Logic where there is just a single \accessibility"

(i.e., transition) relation, HML has a whole family of such modalities, namely a \box"

modality and a \diamond" modality for each action corresponding to the respective

transition relations.

The properties that are expressible in HML are local, or next-step, properties

in the sense that they allow only the immediate capabilities for interaction (and

internal action) of a process to be described. Properties of more general temporal

character like \always �" or \eventually �" are not expressible in this logic. This

concerns also silent actions. For example, we can express in HML a property of the

form \process P can perform a silent action and o�er a afterwards"; however, when

specifying the interaction behaviour of a system we shouldn't discriminate between

one or more silent actions in a row, but should rather be only able to speak of internal

activity in general, like "process P can engage in some internal activity and o�er a

afterwards". Additional modalities have been suggested in the literature for specifying

such properties [Sti96].

If we are to specify properties like \always �" or \eventually �" we enter the

realm of Temporal Logics. Computation Tree Logic (CTL), proposed by Clarke and

Emerson [CE81], is just one example for such a logic. It has explicit constructs for

\always", \eventually" and \until," as well as path quanti�ers. A more economic

approach, leading at the same time to a more powerful logic, is to use HML as a

basis and to add recursion; the price to be paid is the intuitiveness of the resulting

logic. Consider the recursive equation Z � haiZ, where Z is a propositional variable.

A property would be a solution to this equation if every process satisfying it has
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an a-derivative satisfying the same property. Fortunately every such equation has

a solution; unfortunately however it is not necessarily unique. � is one solution to

the above equation, since � � hai�, but this solution is of little interest. Another

property satisfying the equation would be the capability of engaging in an in�nite

sequence of a actions. There can be other solutions as well; the mentioned two

properties however (the second of which is not expressible in HML) are the least and

the greatest ones w.r.t. logic implication, and are hence uniquely characterizable. In

fact, any equation of the sort Z � �, where � is allowed to include occurrences of the

propositional variable Z, has a least and a greatest solution denoted �Z:� and �Z:�,

respectively. This is an immediate consequence of Tarski's �xedpoint

10

theorem for

complete lattices [Tar55].

The logic resulting from adding least and greatest �xpoint formulae to HML is

called the Modal �-Calculus, which was introduced by Kozen [Koz83], but was de-

veloped earlier by Park [Par69] in a more general relational setting. Stirling [Sti92]

suggests a slight generalization of this logic by allowing sets K of actions to appear in

the \box" and \diamond" modalities, and by using the notation \�K" to abbreviate

\Act �K" and \�" to abbreviate \Act � fg" (i.e. Act itself). The resulting logic

allows many other logics, like Dynamic Logic and CTL, to be conveniently encoded

(see, e.g., [Dam94]).

Let us consider some properties which are often important in practical applica-

tions, and give their formalisation in (Stirling's extension of) the Modal �-Calculus:

� A communicating system is called deadlock free if regardless of how we interact

with it there is always a communication, possibly an internal one, in which

the system can engage. Deadlock freedom can be expressed by the formula

�Z: h�i tt ^ [�]Z, saying that some action is enabled, and whatever action is

taken the same property holds again. In other words, there is always some

action which is enabled. Note that the least �xpoint wouldn't be of any use

10

The term �xedpoint or �xpoint of a mapping f refers to any solution of the equation f(x) = x.
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here since it is equivalent to \false".

� Action a is always enabled: �Z: hai tt^[�]Z. In general, �Z:�^[�]Z formalises

the safety, or invariant, property \always �".

� A livelock is the capability of engaging in internal chatter, i.e. in an in�nite

sequence of � actions. Livelock freedom can be formalised as �Z: [� ]Z.

� The property that action a can potentially become enabled is formalisable as

�Z: hai tt _ h�iZ (i.e. either a is enabled right away, or otherwise we can

do something so that the same property holds afterwards, and so on, but not

forever).

� Action a is eventually to be chosen: �Z: h�i tt^ [�a]Z (i.e. if we interact with

the system but avoid choosing a, then sooner or later we will arrive at a point

where only a is o�ered).

� There is a sequence of interactions so that a is enabled in�nitely often along

this sequence: �Z:�Y: haiZ _ h�aiY . This property is not expressible in CTL.

As mentioned above, the formulae of this logic are often di�cult to interpret. We

gave little justi�cation as to why the above formulae express the mentioned properties.

Unlike CTL which formalises notions of time about which humans have a strong

intuition, the Modal �-Calculus is a typical example of a logic language which is the

product of theoretical investigations in a search for expressive power, economy, and

elegance, rather than intuitiveness. Therefore, using this formalism requires some

training and thorough understanding of its formal semantics, which we are about to

explain.

The formulae of the Modal �-Calculus can be de�ned as follows:

� Propositional variables are formulae;

� if � and 	 are formulae, then so are � _	 and � ^	;
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� if � is a formula and � is an action, then h�i� and [�] � are formulae; and

� if � is a formula and Z is a propositional variable, then �Z:� and �Z:� are also

formulae.

The logic constants � and tt are de�nable as �Z:Z and �Z:Z, respectively.

It is not easy to give a local semantics for �xpoint formulae; this we do later by

employing approximant formulae. It is far more convenient to present the semantics

of Modal �-Calculus formulae extensionally, i.e., by de�ning for every formula the

set of processes satisfying it. We call this set the denotation of the formula. The

denotation has to be de�ned relative to a LTS and a valuation V mapping subsets of

the set of states of the LTS to propositional variables, since � or some sub-formulae of

it can contain free occurrences of propositional variables. For a �xed LTS, we de�ne

the denotation k�k

V

of a Modal �-Calculus formula � inductively as follows:

kZk

V

�

= V(Z)

k� _	k

V

�

= k�k

V

[ k	k

V

k� ^	k

V

�

= k�k

V

\ k	k

V

kh�i�k

V

�

= kh�ik

V

(k�k

V

)

k[�] �k

V

�

= k[�]k

V

(k�k

V

)

k�Z:�k

V

�

= �X: k�k

V[X=Z]

k�Z:�k

V

�

= �X: k�k

V[X=Z]

where �X:f(X) and �X:f(X) denote the least and the greatest �xpoints of a map-

ping f , and where the following state transformers are used:

kh�ik

V

�

= �X:fP j 9P

0

2 X: P

�

�! P

0

g

k[�]k

V

�

= �X:fP j 8P

0

:P

�

�! P

0

implies P

0

2 Xg

The valuation V[X=Z] is as V but mapping the set X to Z. We can de�ne satisfaction

(now relative to a valuation) through denotation, namely:
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P j=

V

�

�

� P 2 k�k

V

As mentioned above, the existence of least and greatest �xpoints is guaranteed

by Tarski's �xedpoint theorem for complete lattices [Tar55]. This theorem says that

every monotone mapping over a complete lattice has a least and a greatest �xpoint.

The lattice we have in our case is formed by the set S of states (processes) together

with set inclusion �. It is simple to show that in the absence of negation in our logic

the transformers �X: k�k

V[X=Z]

are all monotone w.r.t. set inclusion (i.e., X

1

� X

2

implies k�k

X

V[X

1

=Z]

� k�k

X

V[X

2

=Z]

).

There are two main ways of characterising �f and �f for monotone mappings on

complete lattices. One one hand, they can be presented as:

�f =

T

fX j X � f(X)g

�f =

S

fX j X � f(X)g

The other approach is to refer to �xpoint approximants. This characterisation often

leads to a better understanding of the formulae of the Modal �-Calculus. Let Ord

denote the class of all ordinals, and let  and � range over ordinals and limit ordinals,

respectively. Fixpoint approximants are de�ned inductively as follows:

�

0

f

�

= fg �

0

f

�

= S

�

+1

f

�

= f(�



f) �

+1

f

�

= f(�



f)

�

�

f

�

=

S

<�

�



f �

�

f

�

=

T

<�

�



f

It can be shown that the following equations hold:

�f =

S

2Ord

�



f

�f =

T

2Ord

�



f

The term approximant is justi�ed by the fact that (since f is monotone):

�

0

f � �

1

f � �

2

f � : : : � �f
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�

0

f � �

1

f � �

2

f � : : : � �f

Furthermore, �f and �f are approximants themselves; this means that the above

sequences stabilise after some ordinal, called the closure ordinal of �f and �f , re-

spectively, and become equal to �f and �f . The closure ordinal is the �rst ordinal

� such that �

�

f = �

�+1

f resp. �

�

f = �

�+1

f:, and its cardinality is bound by the

cardinality of the carrier set of the complete lattice.

In the context of the Modal �-Calculus we can de�ne approximant formulae (using

in�nite conjunctions and disjunctions) as follows:

�

0

Z:�

�

� � �

0

Z:�

�

� �

�

+1

Z:�

�

� �[�



Z:�=Z] �

+1

Z:�

�

� �[�



Z:�=Z]

�

�

Z:�

�

�

W

<�

�



Z:� �

�

Z:�

�

�

V

<�

�



Z:�

and we obtain the following characterisation of satisfaction

11

:

P j=

V

�Z:� i� P j=

V

�



Z:� for some :

P j=

V

�Z:� i� P j=

V

�



Z:� for all :

As a consequence, least �xpoint formulae are suitable for expressing liveness (i.e.

eventuality) properties, while greatest �xpoint formulae are suitable for expressing

safety (i.e. invariant) properties. The more complicated reactivity properties

12

usu-

ally necessary for specifying communicating systems require nesting (alternation) of

�xpoints of di�erent kind.

Let us now see how this de�nition helps in understanding Modal �-Calculus for-

mulae. Let us consider the formula �Z: [a]Z. Its �rst few �xpoint approximants are:

11

These two clauses, together with the ones we gave above for HML formulae, can be considered

as giving a local semantics for the Modal �-Calculus.

12

For a classi�cation of program properties see for example [MP92].
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�

0

Z: [a]Z � �

�

1

Z: [a]Z � [a]�

�

2

Z: [a]Z � [a] [a]�

�

3

Z: [a]Z � [a] [a] [a]�

.

.

.

Process a:a:0 satis�es �

3

Z: [a]Z and hence also �Z: [a]Z. Obviously, every process

that can engage only in �nitely many consecutive a actions satis�es the formula.

What is less obvious is that the opposite holds as well: if a process satis�es one of

the approximants, then all its a-derivatives satisfy smaller approximants. Since the

ordinals are well-founded (i.e. all strictly decreasing sequences of ordinal numbers are

of �nite length) this amounts to saying that a process satis�es �Z: [a]Z if and only if

it cannot engage in in�nitely many consecutive a actions.

2.4 Model Checking

The idea of model checking was pioneered by Clarke and Emerson in [CE81], where it

is described as a technique for automatic veri�cation of �nite state reactive systems

speci�ed in CTL. The term is now used in a wider sense, and refers here to determining

satisfaction P j= � between a model P and a property �.

The characterisation of �xpoints using �xpoint approximants presented in the

previous section suggests a straightforward procedure for computing the least and

greatest �xpoints of a monotone mapping f on a complete lattice, which is guaranteed

to terminate when the state space is �nite: starting with the empty set (resp. the

set of all states), compute its image under f , then the image of the image, and so

on, until a set is found which is equal to the set obtained at the previous step, and

stop. The set obtained in this way is the least (resp. the greatest) �xpoint of f . Of

course, this procedure can be quite ine�cient, and, if the state space is in�nite, not

even e�ective, but it serves as a systematic basis for automatic veri�cation of �nite

state systems in the Modal �-Calculus, since determining P j= � can be understood

as computing the denotation k�k of � and checking whether P is in this set.
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Techniques as the above, where the whole denotation of a formula is computed,

are termed global. More e�cient (in average) are local techniques which consider only

those states in the state space necessary for determining the required satisfaction.

In the worst case all states have to be investigated anyway, but in many cases it is

possible to obtain the needed result even when the whole state space is in�nite and

global model checking is not applicable. Local model checking was �rst suggested

by Larsen [Lar88] for a sub-logic of the Modal �-Calculus, but the term itself was

proposed only later by Stirling and Walker [SW91], who deal with the full calculus.

The following approach can be used as a basis for local model checking in the

Modal �-Calculus. The goal P j= � to be checked is successively reduced to sub-goals

until all resulting subgoals can be resolved trivially. This reduction can be performed

for all non-�xpoint formulae (i.e. not of shape �Z:� or �Z:�) following the local

semantic clauses we gave for HML formulae. For example, checking P j= � _ 	 is

reduced to checking P j= �, and if this fails, then P j= 	 is checked. A goal of the

form P j= tt can be resolved successfully.

The di�culty of local model checking lies in reducing �xpoint formulae. If the

state space is �nite, and if we know the closure ordinal of the respective formula (or at

least some upper bound � on the number of states, which would also provide an upper

bound for the closure ordinal), then a na��ve approach would be to use approximants

by referring to the following local semantic clauses:

P j= �Z:� i� P j= �

�

Z:�

P j= �

0

Z:� false

P j= �

+1

Z:� i� P j= �[�



Z:�=Z]

P j= �Z:� i� P j= �

�

Z:�

P j= �

0

Z:� true

P j= �

+1

Z:� i� P j= �[�



Z:�=Z]

i.e. �xpoint formulae are unfolded, but at most � times, and if the 0-th approximant

is reached, the sub-goal is discharged successfully in the case of greatest �xpoints and
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unsuccessfully otherwise.

Termination and correctness of this procedure follow immediately from the seman-

tic clauses. The drawbacks of this na��ve approach, however, are obvious: it works for

�nite state systems only (we would not be able to handle limit ordinals in the same

way), and it is quite ine�cient since one and the same state might be investigated

for the same property more than once, which is certainly redundant.

A more sophisticated approach would be to use the approximants implicitly, by

performing simple unfolding of the �xpoint formulae, justi�ed by:

P j= �Z:� i� P j= �[�Z:�=Z]

P j= �Z:� i� P j= �[�Z:�=Z]

but keeping track (for each �xpoint formula separately) of the states at which we

unfold the formulae. Finding a \loop" establishes a transitive dependence on the

0-th approximant, and the sub-goal can be discharged accordingly. Termination is

still guaranteed for �nite state spaces only, but now there is at least the possibility

of successfully checking a local property even in an in�nite state system. To keep

track of the states visited, one can tag the �xpoint formulae, an idea �rst suggested

by Winskel [Win91].

Let us illustrate the above ideas on a small example. Consider process Clock

de�ned by Clock

�

= tick:Clock, and let us prove that it has the property of being

able to engage in in�nitely many consecutive tick actions, which is formalisable as

�Z: htickiZ. Our initial goal is then to show that:

Clock j= �Z: htickiZ

We now unfold the formula, and tag the �xpoint just unfolded (with the singleton set

fClockg) to indicate that the formula has already been unfolded once at state Clock:



CHAPTER 2. MODELS, LOGICS, AND VERIFICATION 29

Clock j= hticki �ZfClockg: htickiZ

According to the local semantic clause for the "diamond" modality, the above goal

is equivalent to P j= �ZfClockg: htickiZ for some tick-derivative P of Clock. But

there is only one such derivative, namelyClock itself, so our new sub-goal can only be:

Clock j= �ZfClockg: htickiZ

Here the tag tells us (without having to trace back our proof) that �Z: htickiZ has

already been unfolded at Clock. As discussed above, this establishes a direct de-

pendence on the 0-th approximant of the formula, which for all greatest �xpoints

is just \true", and the sub-goal can be trivially discharged as successful. Since

there are no other sub-goals to be dealt with, this establishes also the truth of

Clock j= �Z: htickiZ.

The above ideas are central, in one or another way, to most approaches to model

checking �nite state systems in the Modal �-Calculus [Cle90, SW91, Win91, ASW94].

In our Thesis we deal predominantly with systems which are inherently in�nite state

due to the in�nite domains of communicated values. These can be treated as above,

but with no guarantee for termination. Since the model checking problem becomes

undecidable in this case, and human intervention in the proof process unavoidable,

presenting proofs in a way intuitive to the human becomes of crucial importance. On

one hand, to limit the number of sub-goals simultaneously generated when treating

some goal, one has to be able to treat sets of processes, for example by allowing goals

of type P j= �, where P denotes a (possibly in�nite) set of processes, and where the

meaning of such goals is simply that all processes in P satisfy �. On the other hand,

to limit the length of the proof, one has to introduce inference rules like widening,

where a goal is reduced to a sub-goal having the same formula as the goal but a larger
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set of processes, as well as more sophisticated rules for dealing with least �xpoints

13

.

In this way it becomes possible to produce �nite proofs even for in�nite state systems,

and these proofs can be nicely presented as proof trees [BS92, Bra92, And93, Sti96].

All the above considerations suggest that model checking in the Modal �-Calculus

for in�nite state systems can be done conveniently in a proof-theoretic style employing

proof systems. Proof systems consist of a set of axioms and a set of inference rules

14

for deriving sequents of the form P ` �, the syntactical counterpart to P j= �. Such

a sequent is called valid if P j= � holds, and it is called derivable in a proof system

if it can be constructed starting from the axioms and using the proof rules of this

proof system, i.e. if there is a proof for this sequent. A proof system is called sound

if derivability of P ` � implies its validity; if the reverse holds, the proof system

is termed complete. Together, soundness and completeness guarantee that what we

can derive really holds and vice versa. Notice that completeness only guarantees the

existence of a proof, and does not say there is an e�ective procedure for constructing

proofs for arbitrary sequents; if this is the case, the system is called decidable.

Proofs can be viewed nicely as �nite proof trees (tableaux) with axiom leaves.

Since we usually start with the goal to be proven, and then reduce this goal until

axioms are obtained, it is convenient to present both the rules and the proofs in a

goal directed fashion (i.e., as reversed trees).

In our example proof above we implicitly referred to the transition semantics of

CCS when applying the rules. We had to do so, because the process was de�ned in

CCS, but the semantics of the formula is given in terms of LTS. If we are to fully

guarantee the correctness of our proof, we should refer to an external proof system

for inferring semantic sets like the set of all �-derivatives of a CCS process. The

presentation of a \complete" proof has to mix these two types of inferences. A more

convenient and intuitive approach, in our opinion, is to require the proof system for

13

The problem of dealing with least �xpoints in �nitely many steps requires inductive reasoning

to be used. This is the most complicated aspect of applying these ideas in practice; therefore, the

greatest care should be taken to facilitate easy and intuitive application of induction.

14

Axioms can also be represented as proof rules, but with an empty set of premises.
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sequents of type P ` �, where P is a CCS term, to refer directly to the structure of

P to determine the resulting sub-goals. Such proof systems are called compositional

and inevitably have a larger set of inference rules since all combinations of possible

forms of P and � have to be covered by such rules.

There are at least two other important reasons for using compositional proof

systems. The �rst is that they greatly facilitate reuse of proofs, which is part of

design reuse. For example, suppose we have constructed a proof for P + Q ` � by

reducing it to P ` �

1

and Q ` �

2

. If for some reason the speci�cation of Q had to

be changed without changing the one for P +Q, then we would only have to redo the

proof for Q ` �

2

, and not the whole proof.

The second and more important problem at the solving of which compositional

proof systems aim is the infamous state explosion problem: given a communicat-

ing system composed of several processes running in parallel, its global state space

would be of size roughly the product of the sizes of the constituent processes. This

phenomenon makes veri�cation intractable even for relatively small practical systems.

One way to avoid this exponential blowup of states is not to construct the global state

space at all, but rather to represent it in some economic form suitable for manipula-

tion. A breakthrough in the magnitude of the number of states that can be model

checked automatically in reasonable time was achieved through the introduction of

symbolic model checking [McM92], where the global state graph is represented as a

Binary Decision Diagram [Bry86]. This technique, however, has proven successful in

hardware veri�cation mainly, due to the higher architectural regularity of hardware

systems compared with software systems.

Since the only operator of CCS causing state explosion is parallel composition,

reducing a goal of type P jQ ` � to sub-goals P ` �

1

and Q ` �

2

would essentially

solve the problem, provided of course that the size of these formulae is comparable.

Unfortunately, and not incidentally, it is exactly the parallel composition operator of

CCS which is quite di�cult to be treated in such a purely compositional way. The
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core of the problem is that �nding algorithmically appropriate formulae �

1

and �

2

in

the above sequents is, in the worst case, as expensive a problem as checking the global

state space. In practice, however, they can often be guessed if one understands the

system well. The following approach, suggested by Stirling [Sti87], seems particularly

attractive: a separate proof system is introduced for proving sequents of the form

�

1

;�

2

` � meaning that any two processes satisfying �

1

and �

2

, when put in parallel,

satisfy � as a composite process. We can then reduce P jQ ` � to proving P ` �

1

and Q ` �

2

and �

1

;�

2

` � for suitable formulae �

1

and �

2

. The state explosion

problem can thus be avoided, or to be more precise, be converted into the problem

of �nding the local properties of the components yielding the corresponding global

property of the whole system.

We are now ready to present the di�culties arising in the presence of value passing,

and our approach to verifying communicating systems with value passing.
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Chapter 3

Veri�cation of Value Passing CCS

Processes

In this chapter we address the problem of extending the techniques presented in

the previous chapter to the case when processes are capable of communicating and

storing values, and making decisions as to how to continue based on these values.

As a process description language we assume the value passing extension of the CCS

presented earlier.

Value passing can signi�cantly inuence the behaviour of a system. For example,

consider the teller machine process de�ned in the previous chapter:

Teller(balance)

�

= Deposit(balance) + Withdrawal(balance)

Deposit(balance)

�

= deposit(amount):T eller(balance+ amount)

Withdrawal(balance)

�

= �amount

if 0 < amount � balance

then withdraw(amount):T eller(balance� amount)

If we assume the domain of values to be the set of integers, then it is a property

of this system that it cannot participate in an in�nite sequence of withdrawals. If we

abstract from the values, however, we obtain the following value-free version of the

same process:

Teller

�

= deposit:T eller+ withdraw:Teller
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which no longer has the above property.

In this example the property did not explicitly mention any values. However, this

is usually not the case when specifying value passing processes. Consider for example

the following process modelling a memory cell [Dam93]:

Mem(x)

�

= out(x):Mem(x) + in(y):Mem(y)

It has the property that the value being read out is always the last value which has

been written. This is a property which cannot be described in the propositional

Modal �-Calculus.

These considerations motivated our search for a suitable extension of the Modal

�-Calculus for speci�cation, and a compositional proof system for veri�cation of com-

municating systems described in the Value Passing CCS.

3.1 A �-Calculus for Value Passing Processes

In searching for a suitable extension of the Modal �-Calculus to handle values it seems

to us a natural approach �rst to augment HML with values, and then to add �xpoint

formulae.

The de�nition of the memory process given above describes in fact a whole fam-

ily of processes. For example, it speci�es process Mem(3) as out(3):Mem(3) +

in(y):Mem(y). Process Mem(3) has the property that it can put out 3, but it cannot

put out 4. In HML this property is formalisable as:

�

�

� hout(3)i tt ^ [out(4)]�

In fact, Mem(3) cannot put out any value di�erent from 3. This property, however,

cannot be expressed in HML unless we add quanti�ers to the language. Using value
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variables and quanti�ers, it is expressible as:

�

3

�

� 8y: [out(y)]y = 3

i.e., if y is an arbitrary value in the value domain, and if y can be put out, then y

equals 3.

Consider now the following simple process:

P (x)

�

= out(x):P (x+ 1)

P (1) is capable of putting out successively all natural numbers. Expressing this prop-

erty requires �xpoint formulae to be used. We introduce �xpoints again by considering

modal equations. Let Z range now not just over propositions, but also over predicates

over the value domain. Then the above property would be the Z(1) element of the

greatest solution to the following system of modal equations:

8x:(Z(x) � hout(x)iZ(x+ 1))

We would like, however, to express this as a single equation having just Z on the

left-hand side. To achieve this, we use the well-known lambda notation, i.e., we add

lambda abstraction and application to our logic. The equation can then be written as:

Z � �x: hout(x)iZ(x+ 1)

The greatest solution to this equation is denoted �Z:�x: hout(x)iZ(x + 1), and the

property of being able to put out successively all natural numbers becomes formalis-

able as:
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�

�

� (�Z:�x: hout(x)iZ(x+ 1))(1)

In other words, the greatest shift in thinking implied by these considerations is that

we have �xpoint predicates instead of �xpoint formulae. It is now predicates that have

�xpoint approximants, and these approximants are predicates of the same arity. For

example, the 0-th approximant of the above predicate �

�

� �Z:�x: hout(x)iZ(x+ 1)

is not tt but the one-argument predicate �x:tt. The �rst few approximants are (after

simpli�cation using �-reduction):

�

0

� �x:tt

�

1

� �x: hout(x)i tt

�

2

� �x: hout(x)i hout(x+ 1)i tt

�

3

� �x: hout(x)i hout(x+ 1)i hout(x+ 2)i tt

When applied to 1, these approximants yield:

�

0

(1) � tt

�

1

(1) � hout(1)i tt

�

2

(1) � hout(1)i hout(2)i tt

�

3

(1) � hout(1)i hout(2)i hout(3)i tt

which justi�es our claim that �

�

� �(1) formalises the property of being able to put

out successively all natural numbers.

As another example, the property of the teller-machine process of not being able

to o�er in�nitely many successive withdrawals can be formalised as:

�Z:8amount:

h

withdraw(amount)

i

Z
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After this intuitive introduction we are ready to present the syntax and semantics

of the resulting logic. We again assume a set A of names, ranged over by a, each

name having a non-negative arity. L denotes the set A [ A of labels, ranged over

by l, and a

�

= a. We also assume a set D of values, value expressions e and Boolean

expressions b built from value variables x; y; z; : : : (possibly indexed), value constants

d and arbitrary operator symbols de�ned in the domain. Vectors ~e of expressions or

~x of values are used where the arity is not important.

3.1.1 Syntax

In the syntax of formulae we distinguish the following syntactic categories: Boolean

expressions b, value expressions e, action expressions �, predicates �, and formulae

�. The syntax for Boolean and value expressions is left open.

The formulae of the logic are de�ned inductively as follows:

� Boolean expressions b are formulae;

� if � and 	 are formulae, then so are � _	 and � ^	;

� if � is a formula and � is an action expression of the form a(~e), a(~e), or � , then

h�i� and [�] � are formulae;

� if � is a formula, and x is a value variable, then 9x:� and 8x:� are formulae;

� zero-ary predicates are formulae;

� if � is a predicate, and ~e is a value expression of the same arity, then �~e is a

formula.

where predicates and their arity are de�ned by:

� predicate variables Z are predicates of no speci�c arity;

� formulae are zero-ary predicates;
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� if � is a formula, and ~x are value variables, then �~x:� is a predicate of arity

the length of ~x;

� if � is a predicate, and Z is a predicate variable, then �Z:� and �Z:� are

predicates of the same arity as �.

To illustrate these rules, we show that (�Z:�x: hout(x)iZ(x+ 1))(1) is a formula.

Since Z is a predicate of no �xed arity, Z(x+1) is a formula. Then hout(x)iZ(x+1)

is also a formula, and �x: hout(x)iZ(x + 1) is consequently a one-argument predi-

cate, and so is �Z:�x: hout(x)iZ(x+ 1). Therefore (�Z:�x: hout(x)iZ(x+ 1))(1) is a

formula.

We identify zero-argument predicates with formulae. Note that if we deal with

0-ary syntactic categories only, the above syntax coincides with the one of the propo-

sitional Modal �-Calculus.

The notions of free and bound variables are de�ned as usual. We also assume the

usual notion �[~e=~x] of capture-avoiding substitution.

3.1.2 Semantics

The semantics of formulae is given, as in the propositional case, by their denotation

relative to transition closed LTS with labels being either � or of the form l(

~

d), where

l 2 L and

~

d 2

~

D, and relative to a valuation V, which has to provide values not only

for predicate variables, but also for value variables. So, the modelsM which provide

interpretations for our formulae are pairs (T ;V), where T is a transition closed LTS,

and V is a valuation.

Given a model M, the semantics of a formula � is de�ned inductively by the

denotation k�k

M

of � w.r.t. M, i.e. by the set of states in S satisfying �. We write

k�k

T

V

for k�k

M

and often omit the superscript when understood from the context.

The denotation of the di�erent syntactic categories is of the following type:
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kbk

V

2 ftt;�g

k~ek

V

2

~

D,

k�k

V

2 Act,

k�k

V

� S, and

k�k

V

:

~

D ! }(S).

We assume that closed Boolean expressions b have a �xed truth value [[b]] 2 ftt;�g,

and closed value expressions e have a �xed value [[e]] 2 D. The notation b[V] and

e[V] denotes the expressions obtained from b and e by substituting all free variable

occurrences according to V.

Let E

~

D

, E

0

~

D

etc. range over the set [

~

D! }(S)] of mappings from

~

D to subsets of

S, and let E

~

d

stand for E

~

D

(

~

d ). We de�ne the partial ordering v on [

~

D ! }(S)] by

E

~

D

v E

0

~

D

�

� 8

~

d 2

~

D: E

~

d

� E

0

~

d

Let E � [

~

D! }(S)] . We de�ne:

tE

�

= �

~

d:

S

E

~

D

2E

E

~

d

uE

�

= �

~

d:

T

E

~

D

2E

E

~

d

The denotation of formulae � of the logic is de�ned inductively as shown in Fig-

ure 3.1.

The domain of predicates of a certain arity, together with v, forms a complete

lattice. Consequently, by referring to Tarski's �xpoint theorem [Tar55], the seman-

tics of �xpoint formulae can indeed be given by the corresponding �xpoints on the

predicate transformers �E

~

D

: k�k

V[E

~

D

=Z]

.

The denotation of closed formulae does not depend on valuations; we can hence

write k�k instead of k�k

V

when � is closed.
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k~ek

V

�

= [[~e[V]]] kZk

V

�

= V(Z)

ka(~e)k

V

�

=
a(k~ek

V

) k
a
(~e)k

V

�

= a
(k~ek

V

) k�k

V

�

=
�

kbk

V

�

=

(

S if [[b[V]]] = tt

fg otherwise

k�

1

^ �

2

k

V

�

= k�

1

k

V

\ k�

2

k

V

k�

1

_ �

2

k

V

�

= k�

1

k

V

[ k�

2

k

V

k[�]�k

V

�

= k[k�k

V

]k k�k

V

kh�i�k

V

�

= khk�k

V

ik k�k

V

k8x:�k

V

�

=

T

d2D

k�k

V[d=x]

k9x:�k

V

�

=

S

d2D

k�k

V[d=x]

k� ~ek

V

�

= k�k

V

k~ek

V

k�~x:�k

V

�

= �

~

d: k�k

V[

~

d=~x]

k�Z:�k

V

�

= �E

~

D

: k�k

V[E

~

D

=Z]

k�Z:�k

V

�

= �E

~

D

: k�k

V[E

~

D

=Z]

Figure 3.1: Denotation of formulae.

3.2 A Compositional Proof System

In this section we present a compositional proof system for sequential value passing

CCS processes. To simplify the analysis of soundness and completeness, we shall not

treat here the CCS operators of renaming and restriction. Our main interest is in

value passing, but these two operators do not a�ect the values being communicated.

1

,

and their treatment is standard [ASW94, Bru93]

A main concern in designing the proof system has been to allow for proofs to be

conducted in a way which follows our intuition nicely. For this reason, we started

our investigation with designing intuitive pseudo-proofs for many communicating sys-

tems and their properties, we then selected from these a set of candidate proof rules,

and tried to justify them semantically. After several iterations we arrived at a set of

proof rules which we �nd intuitive, and for which we can prove that they are sound

and complete relative to external reasoning about the value domain. We also aimed

at keeping the rules as syntactic as possible, i.e., replacing semantic relationships

between objects in sequents with syntactically checkable ones wherever this was pos-

sible. In our opinion, this simpli�es the veri�cation process since it minimises the

1

Only the channel names are renamed or restricted.
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cases in which a proof assistant would request help from an external tool handling

the reasoning about the values.

3.2.1 Sequents

Following [HL95], the judgements, or sequents, of the proof system are of the form

b ` E : �, where b is a Boolean expression, called assumption, E is a value passing

CCS term, and � is a formula in our extension of the Modal �-Calculus. The intended

semantic counterpart b j= E : � of such judgments is: whenever b holds, then E

satis�es �. Consider for example the teller machine process described in the previous

chapter. The judgement

amount � balance j= Teller(balance) :

D

withdraw(amount)

E

tt

means that if some amount is not greater than the current balance of the teller

machine, then this amount can be withdrawn. We �nd judgements of this type very

intuitive. The Boolean conditions in sequents are needed to handle the Boolean

conditions that might occur in CCS expressions. Note that in the above example

we have an open Boolean condition, process term, and formula, but we somehow

assumed that variables occurring in di�erent parts of a sequent denote the same

value. To capture this intuition formally, we have to refer again to valuations V. We

have also to give meaning to open process terms relative to a valuation. We hence

de�ne the denotation kEk

V

of an agent expression E relative to a valuation V as the

process which is obtained from E by substituting all free variables in E according to

V, i.e.,

kEk

V

�

= E[V]

and de�ne the meaning of judgements by:

b j= E : �

�

� for any V; kbk

V

= tt implies kEk

V

2 k�k

V
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3.2.2 Rules

The proof rules of our proof system can be grouped according to the parts of a

judgement on whose structure they depend. There are also some rules which do not

look into the structure of any of these parts; they are referred to as general rules.

All rules are given in Figure 3.2 and are presented, for convenience of application,

in a \goal-oriented" fashion, i.e., with the conclusion above the premises. Axioms

are presented as rules with an empty premise, denoted by a dot. The names of the

rules appear on the left-hand side of each rule, while side conditions appear on the

right-hand side.

We shall briey discuss the rules and explain how they are to be applied. Several

small but instructive example proofs are given in the next section.

The �rst group of rules are the rules that look into the structure of the process

term only. We call these rules process rules, or E-rules. The �rst rule allows the

guarding condition of a process to be ignored if it is implied by the assumption of

the sequent. The notation b ) b

0

means that b implies b

0

under all valuations. The

second process rule deals with process constants by substituting them according to

their de�nitions. Note that the substitution of expressions for variables might have

to perform renaming of some variables to avoid variable capture.

The second group of inference rules are the so called logic rules, or �-rules, which

look only into the structure of the formula. The rules for dealing with conjunctions

and disjunctions are standard; the only peculiarity compared with applying these rules

in the propositional case is that in the presence of values each application of the rules

for disjunction will generally have to be preceded by an application of the cut-rule

given below. Universal quanti�ers can be eliminated due to the adopted semantics of

sequents where free variables are implicitly universally quanti�ed, but the quanti�er

variable has to be renamed if it occurs free somewhere in the sequent. Existential
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E(if)

b ` if b

0

then E : �

b ` E : �

b) b

0

E(

�

=)

b ` A(~e) : �

b ` E[~e=~x] : �

A(~x)

�

= E

�(^)

b ` E : �

1

^ �

2

b ` E : �

1

b ` E : �

2

�(_l)

b ` E : �

1

_ �

2

b ` E : �

1

�(_r)

b ` E : �

1

_ �

2

b ` E : �

2

�(8)

b ` E : 8x:�

b ` E : �[y=x]

y � fresh �(9)

b ` E : 9x:�

b ` E : �[e=x]

�(b)

b ` E : b

0

�

b) b

0

�(�)

b ` E : (�~x:�)~e

b ` E : �[~e=~x]

�(�0)

b ` E : (�ZfLg:�)~e

�

C

0

�(�1)

b ` E : (�ZfLg:�)~e

b ` E : (�[�Zfl; Lg:�=Z])~e

C

�

�(�0)

b ` E : (�ZfLg:�)~e

�

C

0

�(�1)

b ` E : (�ZfLg:�)~e

b

0

` E

0

: (�[�Zfl; Lg:�=Z])~e

0

C

�

E�(0; [ ])

b ` 0 : [�] �

�

E�(�; [ ])

b ` �:E : [�

0

] �

�

� 6� �

0

E�(�; hi)

b ` �:E : h� i�

b ` E : �

E�(�; [ ])

b ` �:E : [� ]�

b ` E : �

E�(a; hi)

b ` a(~x):E : ha(~e)i�

b ` E[~e=~x] : �

E�(a; [ ])

b ` a(~x):E : [a(~e)] �

b ` E[~e=~x] : �

E�(a; hi)

b ` a(~e):E : ha(~e)i�

b ` E : �

E�(a; [ ])

b ` a(~e):E : [a(~e

0

)] �

b ^ (~e = ~e

0

) ` E : �

E�(�; hi)

b ` �~x E : h�i�

b ` E[~e=~x] : h�i�

E�(�; [ ])

b ` �~x E : [�]�

b ` E[~y=~x] : [�]�

~y � fresh

E�(+l; hi)

b ` E

1

+ E

2

: h�i�

b ` E

1

: h�i�

E�(+r; hi)

b ` E

1

+ E

2

: h�i�

b ` E

2

: h�i�

E�(+; [ ])

b ` E

1

+ E

2

: [�]�

b ` E

1

: [�]� b ` E

2

: [�] �

E�(if ; [ ])

b ` if b

0

then E : [�]�

b ^ b

0

` E : [�] �

G(�)

b ` E : �

�

b � � G(Sub)

b[~e=~x] ` E[~e=~x] : �[~e=~x]

b ^ (~x = ~e) ` E : �

~x� fresh

G(Cut)

b ` E : �

b

0

` E : � b

00

` E : �

b) b

0

_ b

00

G(�)

b ` E : �

b ` E

0

: �

0

E �

b

E

0

; � �

b

�

0

Figure 3.2: Proof Rules.
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quanti�ers can also be eliminated, but the quanti�er variable has to be substituted

with a suitable expression. The validity of a sequent having a Boolean expression as

formula obviously depends only on the assumption. Hence, the rule for dealing with

such sequents does not generate sub-goals, i.e., it is an axiom rule. Lambda expres-

sions are naturally dealt with using �-reduction. So, the only logic rules requiring

special attention are the �xpoint rules; we therefore defer their consideration.

The only case where we cannot reduce a sequent without looking into the structure

of the process is when the formula is of the form [�]� or h�i�, since the semantics

of these modalities concerns the immediate next-step behaviour of processes. For

treating this case there is a group of rules, usually referred to as dynamic rules, or

E�-rules. The \nil" process 0 has no derivatives, and therefore possesses vacuously all

\box" properties. This explains the simplicity of the �rst rule which is an axiom. A

similar case is when the process starts with a pre�x action � which is not compatible

with the action �

0

of a leading \box" modality, denoted � 6� �

0

, i.e., when either

exactly one of them is � , or otherwise if � = l(~e) and �

0

= l

0

(~e

0

), then l 6= l

0

. The

� -rules are obvious. So are the other rules for treating pre�ces; the di�erence between

treating input and output actions is only due to the adopted convention that input

actions have binding power while output actions have not. It should only be noted,

that applications of rule E�(a; hi) have usually to be preceded by an application

of rule G(�), given below, to unify the two value expressions. The binary choice

operator on processes is handled similarly to disjunction in the logic rules, if the

formula is of type h�i�, and similarly to conjunction otherwise, which is a simple

consequence of their semantics. A similar correspondence exists between the rules for

in�nite summation on one hand, and the logical quanti�er rules on the other. The

last dynamic rule is for dealing with processes having guarding conditions. Note that

there is no dynamic rule for such processes for formulae of type h�i� - this case is

covered by rule E(if) discussed above.

The fourth and last group of rules are the so-called general rules for dealing with
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value expressions and assumptions. The �rst rule allows vacuously true sequents,

i.e., sequents based on a false assumption, to be discharged. The second rule allows

expressions to be "moved" to the assumption, and plays an important rôle in our proof

of completeness. The third rule is a "cut" rule. The last general rule is for unifying

expressions occurring in di�erent parts of a sequent. Its side condition requires E to

be identical to E

0

up to equivalence of terms under b, and the same for � and �

0

. For

example, E(x

2

) �

x=1

E(x) holds since x

2

and x are equal when x = 1.

The greatest di�culty in designing such a proof system is presented by the treat-

ment of �xpoint formulae. For this reason we present our approach in detail, starting

with intuitive considerations. To allow for a simpler treatment of �x-point formulae,

we impose the restriction on the syntax of formulae that all �x-point sub-predicates

of the root formula be closed. Note that all rules preserve this property. This restric-

tion does not a�ect the expressive power of the logic, since every formula containing

�x-point sub-predicates with free object variables can easily be converted into an

equivalent formula in which all �x-point sub-predicates are closed. For example,

�Z: ha(x)iZ is equivalent to (�Z:�x: ha(x)iZ(x))(x). We begin with the easier case

of treating greatest �xpoints.

3.2.3 Greatest Fixpoints

Consider a parametrised process capable of putting out in�nitely many successive

numbers:

P (x)

�

= out(x):P (x+ 1)

�

�

� �Z:�x: hout(x)iZ(x+ 1)

and let us attempt to show that

` P (x) : �(x)

Before focusing on the process term, we manipulate the formula using logic rules until
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a formula of the form [�]� or h�i� is obtained. We start by unfolding the �xpoint

predicate:

` P (x) : (�x: hout(x)i�(x+ 1))(x)

and apply �-reduction to obtain:

` P (x) : hout(x)i�(x+ 1)

Now we unfold the process constant according to its de�nition:

` out(x):P (x+ 1) : hout(x)i�(x+ 1)

After applying the respective dynamic rule we obtain:

` P (x+ 1) : �(x+ 1)

which is actually a partial case of the initial goal: this can be made explicit by

applying universal substitution (a derived rule presented below):

` P (x) : �(x)

We have reached the same sequent from which we started, but implicitlywe descended

the approximant hierarchy, thus allowing the sequent to be discharged successfully.

To avoid the necessity for using global proof rules, i.e., investigating the whole

proof tree, and to simplify the theoretical investigation of our proof system, we employ

Winskel's approach of tagging greatest �xpoint formulae [Win91], and generalise it to

the case with value passing. The di�cult question is what information to include in

these tags to allow loops in the proof to be detected, and what would be a suitable

semantics for tagged formulae.

Since in our case we unfold predicates rather than formulae, it is natural to assume

that it is the predicates that should be tagged. Hence, when unfolding a predicate

� in a sequent b ` E : �~e, the tag should "remember" all components of the

sequent except � itself. Consequently, tags should be sets L of triples of the form
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(b;E;~e). This is as far as the syntax of tagged formulae is concerned. Finding a

suitable semantics is far more complicated. Winskel suggested tags to be understood

as hypotheses. Following his idea, we interpret tags as predicates: triples (b;E;~e) are

interpreted as predicates, and tags, being sets of such triples, are interpreted as the

disjunction of these predicates. Intuitively, the meaning of a triple (b;E;~e) should be

the least predicate �

0

for which b j= E : �

0

~e. A formal justi�cation of this intuition is

given in the next chapter; here we only give the de�nitions. With a triple l = (b;E;~e)

we associate the indexed set E

l

~

D

of processes de�ned by:

E

l

~

D

�

= �

~

d:fP j 9V:(kbk

V

= tt ^ kEk

V

= P ^ k~ek

V

=

~

d)g

The semantics of tagged predicates, both for greatest and least �xpoints, is de-

�ned as follows:

k�ZfLg:�k

V

�

= �E

~

D

: tL t k�k

V[E

~

D

=Z]

where tL

�

=

F

l2L

E

l

~

D

. If L is empty, tL = �

~

d:fg, and hence �Z:� � �Zfg:�.

We are now ready to explain the rules for handling greatest �xpoint formulae.

Axiom rule �(�0) allows a sequent to be successfully discharged if (b;E;~e) 2 L,

which is abbreviated as C

0

. Rule �(�1) is for unfolding combined with tagging; its

side condition C

�

, however, is stronger than simply requiring (b;E;~e) 62 L. As justi�ed

by our analysis of completeness in the next chapter, we require that

^

l 62

^

L, where

^

l and

^

L are the value-free versions of (b;E;~e) and L. This does not decrease the

inferential power of the system, but prevents �xpoint formulae from being unfolded

unnecessarily.
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3.2.4 Least Fixpoints

The treatment of least �xpoint formulae is more complicated. Consider the following

process which is capable of putting out only �nite-length sequences of numbers:

P (x)

�

= if x > 0 then out(x):P (x� 1)

�

�

� �Z:8x: [out(x)]Z

and let us attempt to infer the following goal

` P (x) : �

Unfolding � yields

` P (x) : 8x: [out(x)] �

We can eliminate the universal quanti�er by introducing the fresh variable y, thus

obtaining

` P (x) : [out(y)]�

Unfolding P (x) according to its de�nition yields

` if x > 0 then out(x):P (x� 1) : [out(y)]�

The guarding condition x > 0 can be moved to the sequent assumptions

x > 0 ` out(x):P (x� 1) : [out(y)]�

and after applying the corresponding dynamic rule we arrive at

(x > 0) ^ (x = y) ` P (x� 1) : �

which can be further simpli�ed to

x > 0 ` P (x� 1) : �
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This is the crucial point in the example, where one would expect to be able to resolve

this goal, since further unfolding is obviously redundant. The following inductive

argument seems to suggest that we can discharge the goal successfully. Substitute

any value d of the value domain for x in the goal sequent. One could repeat the

above derivation sequence for d. This means, that d > 0 j= P (d � 1) : � implies

j= P (d) : �. Note that if d � 0 the former sequent can be discharged using axiom

rule G(�). So, j= P (d) : � holds for all non-positive values d, and it holds for all

other values d if it holds for d� 1. By induction, therefore, j= P (d) : � holds for all

values d, and hence j= P (x) : �. This inductive argument, however, is not really

present in the above derivation sequence: the semantics of sequents we have chosen

does not support such \pointwise" reasoning, i.e., inference for every particular value

of the domain. The desired e�ect can be achieved if one substitutes the symbol c for

x in the above derivation, c being interpreted as some arbitrary constant of the value

domain.

We employ an idea by H.Andersen [And93] to use tagging for inductive reasoning.

The rationale behind it is that, with the semantics of tagged predicates chosen, tags

can be interpreted as being assumptions (hypotheses) and can hence be used for

encoding of the induction hypothesis of an inductive argument. However, instead

of doing induction on sets of processes explicitly, as this was done in [And93], we

do this implicitly by using induction on the domain of values. In this way we avoid

the introduction of in�nitary proof rules in our proof system. One has, however, to

introduce into the language a new syntactic category, namely constants. These are to

be treated as constants from the domain of values. In this way we obtain an implicit

second level of universal quanti�cation which is necessary to conduct an inductive

pointwise argument over the domain of values.

We are ready to explain the side condition C

�

for applying rule �(�1). First, as

in �(�1), we require

^

l 62

^

L. And second, there have to exist variables ~x (which may

be termed induction variables) occurring free in b, E, or ~e, fresh arbitrary constants
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~c, and fresh variables ~x

0

, so that b

0

= b[~c=~x], E

0

= E[~c=~x], and ~e

0

= ~e[~c=~x], and

the new triple l inserted in the tag is (b

00

[~c=~x]; E[~x

0

=~x]; ~e[~x

0

=~x]), for some b

00

implying

b[~x

0

=~x] under all valuations and inducing a well-founded relation � on

~

D de�ned by

~

d

0

�

~

d

�

� b

00

[

~

d=~x;

~

d

0

=~x

0

]. Well-foundedness means that � has no in�nite decreasing

chains.

The formulation of the rule is rather complicated, but the idea behind it is not.

The variables ~x

0

, called the primed version of ~x, can be understood as capturing the

"new values" of ~x after unfolding a least �xpoint, and the arbitrary constants ~c are

intended to "store" the old values. In the tag we encode the induction hypothesis

that the sequent is valid for all values less than ~c w.r.t. �. Reducing the validity of a

sequent for any �xed values of its variables to the validity of the same sequent but for

smaller values w.r.t. some well-founded relation establishes, by Noetherian induction,

the general validity of this sequent. The main di�culty in applying the rule is �nding

a suitable triple l for which one expects to be able to reach the corresponding sequent

allowing the axiom rule �(�0) to be applied. The use of the rule is exempli�ed in the

next section.

Note that rule �(�1) can always be applied trivially by choosing ~x to be a null-ary

vector, and b

00

to be false; this is equivalent to simple unfolding without changing the

tag.

3.2.5 Extensions and Derived Rules

There are two main approaches to de�ning new operators in the process language:

by explicitly de�ning their transitional semantics by giving transitional rules, or by

de�ning them in terms of the already existing operators [Mil89]. While the �rst

approach is more exible and more powerful in general, in the second case one can

derive proof rules for the new operators from the already existing rules. The same

can be said about de�ning new constructs in the logic.

A useful and common extension of the value passing CCS is the construction
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if b thenE

1

elseE

2

. It can be de�ned in terms of if b thenE as follows [Mil89]:

if b thenE

1

elseE

2

�

= if b thenE

1

+ if :b thenE

2

Using rules E�(+l; hi), E�(+l; hi), and E(if), we derive the rules E�(iftel; hi) and

E�(ifter; hi), given in Figure 3.3. In the same way, using rules E�(+; []) and E�(if ; []),

rule E�(ifte; [ ]) is obtained.

E�(iftel; hi)

b ` if b

0

thenE

1

elseE

2

: h�i�

b ` E

1

: h�i�

b) b

0

E�(ifter; hi)

b ` if b

0

thenE

1

elseE

2

: h�i�

b ` E

2

: h�i�

b) :b

0

E�(ifte; [ ])

b ` if b

0

thenE

1

elseE

2

: [�]�

b ^ b

0

` E

1

: [�]� b ^ :b

0

` E

2

: [�]�

G())

b ` E : �

b

0

` E : �

b) b

0

G(US)

b[~e=~x] ` E[~e=~x] : �[~e=~x]

b ` E : �

Figure 3.3: Derived Rules.

We shall often use the widening rule G()), which can be derived from rule G(Cut)

by taking b

00

to be false, and rule G(�). The last rule, called universal substitution,

is also a widening rule since its conclusion is a specialisation of the premise due

to the adopted semantics of sequents where free variables are implicitly universally

quanti�ed. It can be derived using G(Sub) and G()).

3.3 Example Proofs

In this section we present some example proofs conducted in the proof system given

above. Let us outline the general proof scheme followed in these proofs. This scheme

is derived in a natural way from the analysis of completeness performed in the next

chapter, yielding what one might call canonical proofs.
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1. We apply logic rules until the formula becomes of the form [�]� or h�i�, or the

resulting sub-goal can be discharged with an axiom. The rules for disjunction

have usually to be preceded by a suitable application of the cut rule, while

the �xpoint rules might have to be preceded by applications of more than one

general rule.

2. Next, process and dynamic rules are applied until the process becomes of the

form �:E, or the resulting sub-goal can be discharged with an axiom. The rules

for binary choice have usually to be preceded by a suitable application of the

cut rule.

3. At this point, the process is of the form �:E, and the formula is of the form

[�] � or h�i�. The corresponding dynamic rule is applied, and the �rst step is

re-entered. Rule E�(a; hi) has usually to be preceded by a suitable application

of G(�) to unify the respective expressions.

Our �rst example is the memory-cell process described at the beginning of this

chapter [Dam93]:

Mem(x)

�

= out(x):Mem(x) + in(y):Mem(y)

It has the property that it cannot put out a value di�erent from the value x currently

stored in it:

�

x

�

� 8y: [out(y)] y = x
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We can prove that Mem(x) satis�es �

x

as follows, proofs being presented as goal-

directed tableaux:

` Mem(x) : 8y:

�

out(y)

�

y = x

�(8)

` Mem(x) :

�

out(y)

�

y = x

E(

�

=)

` out(x):Mem(x) + in(y):Mem(y) :

�

out(y)

�

y = x

E�(+; [ ])

` out(x):Mem(x) :

�

out(y)

�

y = x

E�(a; [ ])

x = y ` Mem(x) : y = x

�(b)

�

` in(y):Mem(y) :

�

out(y)

�

y = x

E�(�; [ ])

�

The proof follows \blindly" the above outlined steps. The only place where external

reasoning about values is required is the application of rule �(b). The application is

justi�ed on the account that x = y implies y = x.

As an example for handling greatest �xpoints, consider process P de�ned as fol-

lows:

P

�

= Q(0)

Q(x)

�

= R(x; x+ 1)

R(x; y)

�

= out(x+ 2; y + 3):R(x+ 1; y + 2)

This process is capable of engaging in the in�nite sequence of interactions

s

0

out(2;4)

�! s

1

out(3;6)

�! s

2

out(4;8)

�! � � �

i.e., of putting out all consecutive pairs (x; 2x) starting with x = 2. This property

can be described as �(2) where:

�

�

� �Z:�x: hout(x; 2x)iZ(x+ 1)
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The proof could be conducted as follows:

` P : �(2)

E(

�

=)

` Q(0) : �(2)

E(

�

=)

` R(0; 0 + 1) : �(2)

G(�)

` R(0; 2� 0 + 1) : �(0 + 2)

G(US)

` R(x; 2x+ 1) : �(x+ 2)

�(�1)

` R(x; 2x+ 1) : (�x:




out(x; 2x)

�

�

l

(x+ 1))(x+ 2)

�(�)

` R(x; 2x+ 1) :




out(x+ 2; 2(x+ 2))

�

�

l

((x + 2) + 1)

E(

�

=)

` out(x+ 2; (2x+ 1) + 3):R(x+ 1; (2x+ 1) + 2) :




out(x+ 2; 2(x+ 2))

�

�

l

((x+ 2) + 1)

G(�)

` out(x+ 2; 2x+ 4):R(x+ 1; 2x+ 3) :




out(x+ 2; 2x+ 4)

�

�

l

(x+ 3)

E�(a; hi)

` R(x+ 1; 2x+ 3) : �

l

(x+ 3)

G(�)

` R(x+ 1; 2(x+ 1) + 1) : �

l

((x + 1) + 2)

G(US)

` R(x; 2x+ 1) : �

l

(x+ 2)

�(�0)

�

where �

l

�

� �Zflg:�x: hout(x; 2x)iZ(x + 1) with l

�

= (�;R(x; 2x + 1); x + 2). It is

worth noticing the way in which rule G(US) is used in combination with rule G(�):

in the �rst case as a widening, allowing the proof to be completed with just one

unfolding of the �-formula, and in the second, to allow for rule �(�0) to be applied.

Here is an example for using the least �xpoint rules. Consider process P de�ned

by:

P

�

= in(x):Q(x)

Q(x)

�

= if x > 0 then out(x):Q(x� 1)

and its property (for any integer x) of not being able to engage in an in�nite sequence

of the form

s

0

in(x)

�! s

1

out(x)

�! s

2

out(x�1)

�! s

3

out(x�2)

�! s

4

out(x�3)

�! � � �

formalisable as:

�

�

� 8x: [in(x)]�(x)

�

�

� �Z:�x: [out(x)]Z(x� 1)
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The proof goes as follows:

` P : 8x: [in(x)]�(x)

�(8)

` P : [in(y)]�(y)

E(

�

=)

` in(x):Q(x) : [in(y)]�(y)

E�(a; [ ])

` Q(y) : �(y)

�(�1)

` Q(c) : (�x: [out(x)]�

c

(x� 1))(c)

�(�)

` Q(c) : [out(c)]�

c

(c� 1)

E(

�

=)

` if c > 0 then out(c):Q(c� 1) : [out(c)]�

c

(c� 1)

E�(if ; [ ])

c > 0 ` out(c):Q(c� 1) : [out(c)]�

c

(c� 1)

E�(a; [ ])

(c > 0) ^ (c = c) ` Q(c� 1) : �

c

(c� 1)

G())

c > 0 ` Q(c� 1) : �

c

(c� 1)

G(Sub)

(c > 0) ^ (y

0

= c� 1) ` Q(y

0

) : �

c

(y

0

)

�(�0)

�

where �

c

�

� �Zfl

c

g:�x: [out(x)]Z(x� 1) with l

c

�

= ((c > 0) ^ (y

0

= c � 1); Q(y

0

); y

0

).

Rule �(�1) has been applied with y, c, and (y > 0) ^ (y

0

� y � 1) for ~x, ~c, and b

00

in

the description of condition C

�

, respectively. The binary relation � on D de�ned by

y

0

� y

�

� b

00

is well-founded.

Our last example is a simple communication protocol composed of a sender and

a receiver. As a system, the protocol behaves as a one-element bu�er, i.e., it can

repeatedly input a natural number and afterwards output the same number. The

sender accepts a number n, engages afterwards in n consecutive tick communications

with the receiver, informs the receiver through a last action about the last tick, waits

for an acknowledgement ack from the receiver that n has been read out, and �nally

enters the initial state:

Sender

�

= in(x):Sender

0

(x)

Sender

0

(x)

�

= if x > 0 then tick:Sender

0

(x� 1)

else last:ack:Sender

The receiver repeatedly accepts tick actions, incrementing a counter, until a last ac-

tion is accepted, then the value of the counter is put out, and an acknowledgement

is given to the sender:
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Receiver

�

= Receiver

0

(0)

Receiver

0

(x)

�

= tick:Receiver

0

(x+ 1)

+ last:out(x):ack:Receiver

The protocol hides the internal communication between sender and receiver:

Protocol

�

= (SenderjReceiver)nftick; last; ackg

Many character-oriented communication protocols exchange data packets character-

by-character at the physical layer, and this behaviour is only slightly more complex

then the behaviour of Protocol.

We �rst show that Protocol can repeatedly input a natural number n and engage

afterwards in exactly n tick actions, followed by ack (here �

	

should be understood

as a formula scheme):

�

�

� �Z:8x: hin(x)i�

Z

(x)

�

	

�

� �Y:�y:((y > 0 ^

D

tick

E

Y (y � 1)) _ (y = 0 ^

D

last

E

hacki	))

Here is a proof tableau:

` Sender : �Z:8x: hin(x)i�

Z

(x)

�(�1)

` Sender : 8x: hin(x)i�

�

0

(x)

�(8)

` Sender : hin(x)i�

�

0

(x)

E(

�

=)

` in(x):Sender

0

(x) : hin(x)i�

�

0

(x)

E�(a; hi)

` Sender

0

(x) : �

�

0
(x)

�(�1)

` Sender

0

(c) : (�y:((y > 0 ^

D

tick

E

�

c

�

0

(y � 1)) _ (y = 0 ^

D

last

E

hacki�

0

)))(c)

�(�)

` Sender

0

(c) : (c > 0 ^

D

tick

E

�

c

�

0

(c� 1)) _ (c = 0 ^

D

last

E

hacki�

0

)

G(Cut)

(1) (2)
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where sub-tableau (1) is:

c > 0 ` Sender

0

(c) : (c > 0 ^




tick

�

�

c

�

0

(c � 1)) _ (c = 0 ^




last

�

hacki�

0

)

�(_l)

c > 0 ` Sender

0

(c) : c > 0 ^




tick

�

�

c

�

0

(c� 1)

�(^)

c > 0 ` Sender

0

(c) : c > 0

�

c > 0 ` Sender

0

(c) :




tick

�

�

c

�

0

(c � 1)

c > 0 `

if c > 0 then tick:Sender

0

(c� 1)

else last:ack:Sender

:




tick

�

�

c

�

0

(c� 1)

c > 0 ` tick:Sender

0

(c� 1) :




tick

�

�

c

�

0

(c� 1)

E�(a; hi)

c > 0 ` Sender

0

(c� 1) : �

c

�

0

(c� 1)

G(Sub)

(c > 0) ^ (x

0

= c � 1) ` Sender

0

(x

0

) : �

c

�

0

(x

0

)

�(�0)

�

and sub-tableau (2) is:

c = 0 ` Sender

0

(c) : (c > 0 ^




tick

�

�

c

�

0

(c� 1)) _ (c = 0 ^




last

�

hacki�

0

)

�(_r)

c = 0 ` Sender

0

(c) : c = 0 ^




last

�

hacki�

0

�(^)

c = 0 ` Sender

0

(c) : c = 0

�

c = 0 ` Sender

0

(c) :




last

�

hacki�

0

c = 0 `

if c > 0 then tick:Sender

0

(c � 1)

else last:ack:Sender

:




last

�

hacki�

0

c = 0 ` last:ack:Sender :




last

�

hacki�

0

E�(a; hi)

c = 0 ` ack:Sender : hacki�

0

E�(a; hi)

c = 0 ` Sender : �

0

G())

` Sender : �

0

�(�0)

�

where �

0

and �

c

	

are as � and �

	

, but the �rst being additionally tagged with

(�; Sender; �), and the second with ((c > 0) ^ (x

0

= c� 1); Sender

0

(x

0

); x

0

). Note how

rule G(Cut) has been applied in combination with rules �(_l) and �(_r) to allow the

proof to be completed.

Process Receiver has the property, that it can repeatedly accept tick actions,

thereby incrementing its counter (which is initialized to zero), until a last action is

accepted, after which the value of the counter is output, and an acknowledging ack

action is performed:

�

�

� �Z:�

Z

(0)

�

	

�

� �Y:�x:(htickiY (x+ 1) ^ hlasti hout(x)i

D

ack

E

	)
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We can show that Receiver satis�es � as follows:

` Receiver : �Z:�

Z

(0)

�(�1)

` Receiver : �

�

0

(0)

E(

�

=)

` Receiver

0

(0) : �

�

0

(0)

G(US)

` Receiver

0

(x) : �

�

0

(x)

�(�1)

` Receiver

0

(x) : (�x:(hticki�

0

�

0

(x+ 1) ^ hlasti hout(x)i

D

ack

E

�

0

))(x)

�(�)

` Receiver

0

(x) : hticki�

0

�

0

(x+ 1) ^ hlasti hout(x)i

D

ack

E

�

0

�(^)

(1) (2)

where sub-tableau (1) is:

` Receiver

0

(x) : hticki�

0

�

0

(x+ 1)

E(

�

=)

`

tick:Sender

0

(x+ 1)

+ last:out(x):ack:Receiver

: hticki�

0

�

0

(x+ 1)

E�(+l; hi)

` tick:Receiver

0

(x+ 1) : hticki�

0

�

0

(x+ 1)

E�(a; hi)

` Receiver

0

(x+ 1) : �

0

�

0

(x+ 1)

G(US)

` Receiver

0

(x) : �

0

�

0

(x)

�(�0)

�

and sub-tableau (2) is:

` Receiver

0

(x) : hlasti hout(x)i

D

ack

E

�

0

E(

�

=)

`

tick:Sender

0

(x+ 1)

+ last:out(x):ack:Receiver

: hlasti hout(x)i

D

ack

E

�

0

E�(+r; hi)

` last:out(x):ack:Receiver : hlasti hout(x)i

D

ack

E

�

0

E�(a; hi)

` out(x):ack:Receiver : hout(x)i

D

ack

E

�

0

E�(a; hi)

` ack:Receiver :

D

ack

E

�

0

E�(a; hi)

` Receiver : �

0

�(�0)

�

where �

0

and �

0

	

are like � and �

	

, but the �rst being additionally tagged by

(�;Receiver; �), and the second by (�;Receiver

0

(x); x).

Showing that Protocol behaves as expected, i.e., proving

` Protocol : �Z:8x: hin(x)i hout(x)iZ
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can be reduced, using compositional reasoning, to the local properties of Sender and

Receiver we just veri�ed. We address this problem in Chapter 5.

The examples considered in this section give an insight into how the proof system

is to be used, and to what extent proofs can be guided and assisted by a machine.
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Chapter 4

Correctness of the Proof System

In this chapter we investigate the correctness of the proof system presented in the

previous chapter, namely whether it is sound and complete. As explained earlier,

soundness means that every sequent derivable in the proof system is valid. A proof

system which is not sound is hardly of any use for veri�cation. Since all proof rules

in our system are local, proving soundness can be reduced to proving the individual

soundness of each rule, i.e., showing that axioms are valid and that all other rules

preserve validity. Completeness means the reverse, namely that all valid sequents

are derivable. Together, the two properties imply that the valid sequents are exactly

the ones derivable in the proof system. Proving completeness is usually far more

complicated a task than proving soundness. The approach taken here is standard:

we show completeness by showing that every valid sequent can be reduced to valid

sequents which are in some sense simpler.

4.1 Soundness

In our proof of soundness we refer to the following results.

Property 4.1 For any B, E, ~e and indexed set E

~

D

the following holds:

E

(B;E;~e)

~

D

v E

~

D

� 8V:(kBk

V

= tt ! kEk

V

2 E

k~ek

V

)
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Lemma 4.2 (Reduction lemma) For any monotone f : [

~

D ! }(S)] ! [

~

D !

}(S)] and any U

~

D

:

~

D ! }(S) :

U

~

D

v �f � U

~

D

v f(�E

~

D

:(U

~

D

t f(E

~

D

)))

Proof. Our proof is based on the following two relationships:

(1) U

~

D

t f(�E

~

D

:(U

~

D

t f(E

~

D

))) = �E

~

D

:(U

~

D

t f(E

~

D

)) f�x-point propertyg

(2) �f v �E

~

D

:(U

~

D

t f(E

~

D

)) feasy to showg

(!) Follows immediately from (2) and monotonicity of f .

( ) Let U

~

D

v f(�E

~

D

:(U

~

D

tf(E

~

D

))) . Then f(�E

~

D

:(U

~

D

tf(E

~

D

))) = �E

~

D

:(U

~

D

tf(E

~

D

))

because of (1), and hence �E

~

D

:(U

~

D

t f(E

~

D

)) is a �x-point of f and is thereby less

or equal to �f since the latter is the greatest �x-point of f . It follows by (2), that

�f = �E

~

D

:(U

~

D

t f(E

~

D

)) and consequently:

U

~

D

v f(�E

~

D

:(U

~

D

t f(E

~

D

))) = �E

~

D

:(U

~

D

t f(E

~

D

)) = �f

which completes the proof.

Corollary 4.3 The following equivalence holds for any predicate � and any valuation

V:

E

l

~

D

v k�ZfLg:�k

V

� E

l

~

D

v tL t k�[�Zfl; Lg:�=Z]k

V

Proof. The equivalence is established as follows:

E

l

~

D

v k�ZfLg:�k

V

� E

l

~

D

v �E

~

D

:(tL t k�k

V[E

~

D

=Z]

) fDef. tagged predicatesg

� E

l

~

D

v tL t k�k

V[�E

~

D

:((tLtE

l

~

D

)tk�k

V[E

~

D

=Z]

)=Z]

fReduction Lemmag

� E

l

~

D

v tL t k�k

V[k�Zfl;Lg:�k

V

=Z]

fDef. tagged predicatesg

� E

l

~

D

v tL t k�[�Zfl; Lg:�=Z]k

V

fProp. of substitutiong
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Our system is sound, as the following theorem states.

Theorem 4.4 (Soundness) If sequent B ` E : � is derivable in the proof system,

then B j= E : � holds.

Proof. It is su�cient to show by case analysis that all rules are individually sound.

The result then follows by induction on the height of the derivation tree. We give

only the more interesting cases here.

Case E(if). Let the side condition b) b

0

hold. Then:

b j= E : �

� 8V:(kbk

V

= tt ! kEk

V

2 k�k

V

) fDef. j=g

� 8V:(kbk

V

= tt ! kb

0

k

V

= tt ^ kEk

V

2 k�k

V

) f b) b

0

g

� 8V:(kbk

V

= tt ! kif b

0

then Ek

V

2 k�k

V

) fDef. transition rulesg

� b j= if b

0

thenE : � fDef. j=g

Case E(

�

=). Let the side condition A(~x)

�

= E hold. Then:

b j= E[~e=~x] : �

� 8V:(kbk

V

= tt ! kE[~e=~x]k

V

2 k�k

V

) fDef. j=g

� 8V:(kbk

V

= tt ! E[[[~e[V]]] =~x] 2 k�k

V

) fDef. denotationg

� 8V:(kbk

V

= tt ! A([[~e[V]]]) 2 k�k

V

) fDef. transition rulesg

� 8V:(kbk

V

= tt ! kA(~e)k

V

2 k�k

V

) fDef. denotationg

� b j= A(~e) : � fDef. j=g

Case �(8). Let y be fresh in b ` E : 8x:�. Then:

b j= E : �[y=x]

� 8V:(kbk

V

= tt ! kEk

V

2 k�[y=x]k

V

) fDef. j=g

� 8V:(kbk

V

= tt ! kEk

V

2 k�k

V[V(y)=x]

) fSubstitutiong

� 8V:8d 2 D:(kbk

V

= tt ! kEk

V

2 k�k

V[d=x]

) fy - freshg

� 8V:(kbk

V

= tt ! 8d 2 D: kEk

V

2 k�k

V[d=x]

) fCalculusg

� 8V:(kbk

V

= tt ! kEk

V

2

T

d2D

k�k

V[d=x]

) fCalculusg

� 8V:(kbk

V

= tt ! kEk

V

2 k8x:�k

V

) fDef. denotationg

� b j= E : 8x:� fDef. j=g

Case �(9).
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b j= E : �[e=x]

� 8V:(kbk

V

= tt ! kEk

V

2 k�[e=x]k

V

) fDef. j=g

� 8V:(kbk

V

= tt ! kEk

V

2 k�k

V[kek

V

=x]

) fSubstitutiong

! 8V:9d 2 D:(kbk

V

= tt ! kEk

V

2 k�k

V[d=x]

) fkek

V

2 Dg

� 8V:(kbk

V

= tt ! 9d 2 D: kEk

V

2 k�k

V[d=x]

) fCalculusg

� 8V:(kbk

V

= tt ! kEk

V

2

S

d2D

k�k

V[d=x]

) fCalculusg

� 8V:(kbk

V

= tt ! kEk

V

2 k9x:�k

V

) fDef. denotationg

� b j= E : 9x:� fDef. j=g

Case E�(�; hi).

b j= E : �

� 8V:(kbk

V

= tt ! kEk

V

2 k�k

V

) fDef. j=g

� 8V:(kbk

V

= tt ! k�:Ek

V

2 kh� ik

V

k�k

V

) fDef. transition rulesg

� 8V:(kbk

V

= tt ! k�:Ek

V

2 kh� i�k

V

) fDef. denotationg

� b j= �:E : h� i� fDef. j=g

Case E�(a; hi).

b j= E[~e=~x] : �

� 8V:(kbk

V

= tt ! kE[~e=~x]k

V

2 k�k

V

) fDef. j=g

� 8V:(kbk

V

= tt ! ka(~x):Ek

V

2 kha(~e)ik

V

k�k

V

) fDef. transition rulesg

� 8V:(kbk

V

= tt ! ka(~x):Ek

V

2 kha(~e)i�k

V

) fDef. denotationg

� b j= a(~x):E : ha(~e)i� fDef. j=g

Case E�(a; [ ]).

b ^ (~e = ~e

0

) j= E : �

� 8V:(kb ^ (~e = ~e

0

)k

V

= tt ! kEk

V

2 k�k

V

) fDef. j=g

� 8V:(kbk

V

= tt ^ k~e = ~e

0

k

V

= tt ! kEk

V

2 k�k

V

) fDef. denotationg

� 8V:(kbk

V

= tt ! (k~e = ~e

0

k

V

= tt ! kEk

V

2 k�k

V

)) fCalculusg

� 8V:(kbk

V

= tt ! (k~ek

V

= k~e

0

k

V

! kEk

V

2 k�k

V

)) fDef. denotationg

� 8V:(kbk

V

= tt ! ka(~e):Ek

V

2 k[a(~e

0

)]k

V

k�k

V

) fDef. transition rulesg

� 8V:(kbk

V

= tt ! ka(~e):Ek

V

2 k[a(~e

0

)] �k

V

) fDef. denotationg

� b j= a(~e):E : [a(~e

0

)] � fDef. j=g

Case E�(�; hi).
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b j= E[~e=~x] : h�i�

� 8V:(kbk

V

= tt ! kE[~e=~x]k

V

2 kh�i�k

V

) fDef. j=g

� 8V:(kbk

V

= tt ! kE[k~ek

V

=~x]k

V

2 kh�ik

V

k�k

V

)) fDef. denotationg

! 8V:(kbk

V

= tt ! k�~x Ek

V

2 kh�ik

V

k�k

V

)) fDef. transition rulesg

� 8V:(kbk

V

= tt ! k�~x Ek

V

2 kh�i�k

V

fDef. denotationg

� b j= �~x E : h�i� fDef. j=g

Case E�(�; [ ]).

b j= E[~y=~x] : [�]�

� 8V:(kbk

V

= tt ! kE[~y=~x]k

V

2 k[�] �k

V

) fDef. j=g

� 8V:(kbk

V

= tt ! kE[k~yk

V

=~x]k

V

2 k[�]k

V

k�k

V

)) fDef. denotationg

� 8V:8

~

d 2

~

D:(kbk

V

= tt !





E[

~

d=~x]







V

2 k[�]k

V

k�k

V

)) f~y - freshg

� 8V:(kbk

V

= tt ! 8

~

d 2

~

D:





E[

~

d=~x]







V

2 k[�]k

V

k�k

V

)) fCalculusg

� 8V:(kbk

V

= tt ! k�~x Ek

V

2 k[�]k

V

k�k

V

)) fDef. transition rulesg

� 8V:(kbk

V

= tt ! k�~x Ek

V

2 k[�] �k

V

fDef. denotationg

� b j= �~x E : [�]� fDef. j=g

Case G(Sub).

b ^ (~x = ~e) j= E : � fDef. j=g

� 8V:(kb ^ (~x = ~e)k

V

= tt ! kEk

V

2 k�k

V

) fDef. denotationg

� 8V:(kbk

V

= tt ^ k~x = ~ek

V

= tt ! kEk

V

2 k�k

V

) fDef. denotationg

� 8V:(k~x = ~ek

V

= tt ! (kbk

V

= tt ! kEk

V

2 k�k

V

)) fCalculusg

� 8V:(kbk

V[k~ek

V

=~x]

= tt ! kEk

V[k~ek

V

=~x]

2 k�k

V[k~ek

V

=~x]

) f~x - freshg

� 8V:(kb[~e=~x]k

V

= tt ! kE[~e=~x]k

V

2 k�[~e=~x]k

V

) fSubstitutiong

� b[~e=~x] j= E[~e=~x] : �[~e=~x] fDef. j=g

The soundness of �(�0) and �(�1) can be established as follows (assuming �ZfLg:�

is closed):

b j= E : (�ZfLg:�)~e

� 8V:(kbk

V

= tt ! kEk

V

2 k(�ZfLg:�)~ek

V

) fDef. j=g

� 8V:(kbk

V

= tt ! kEk

V

2 k�ZfLg:�k k~ek

V

) fDef. denotationg

� E

(b;E;~e)

~

D

v k�ZfLg:�k fProperty 4.1g

� E

(b;E;~e)

~

D

v tL t k�[�Zfl; Lg:�=Z]k fCorollary 4.3g

From this it follows that:



CHAPTER 4. CORRECTNESS OF THE PROOF SYSTEM 65

(b;E;~e) 2 L

! E

(b;E;~e)

~

D

v tL fDef. tLg

! E

(b;E;~e)

~

D

v tL t k�[�Zfl; Lg:�=Z]k fMonotonicityg

� b j= E : (�ZfLg:�)~e fAbove equivalenceg

i.e., that �(�0) is sound. If C

�

holds, i.e.,

^

E 62

^

L, then E

(b;E;~e)

~

D

u tL = �

~

d:fg follows

directly from the de�nitions, and hence:

b j= E : (�[�Zfl; Lg:�=Z])~e

� 8V:(kbk

V

= tt ! kEk

V

2 k(�[�Zfl; Lg:�=Z])~ek

V

) fDef. j=g

� 8V:(kbk

V

= tt ! kEk

V

2 k�[�Zfl; Lg:�=Z]k k~ek

V

) fDef. denotationg

� E

(b;E;~e)

~

D

v k�[�Zfl; Lg:�=Z]k fProperty 4.1g

� E

(b;E;~e)

~

D

v tL t k�[�Zfl; Lg:�=Z]k f

^

E 62

^

Lg

� b j= E : (�ZfLg:�)~e fAbove equivalenceg

i.e., �(�1) is sound.

Case �(�0) is similar to �(�0).

Case �(�1) is the most involved one. The idea behind it, however, is rather

simple, and is based on the well-known principle of Noetherian induction. Assume

condition C

�

holds for some ~x, ~c, ~x

0

, and b

00

, and assume the notation chosen in the

explanation of the condition. One could consider the sequent b j= E : (�ZfLg:�)~e

as a predicate ' on ~x, or more exactly, as 8~x:'(~x). Given a well-founded relation

� on

~

D, one could use Noetherian induction to establish 8~x:'(~x) if one could show

that for arbitrary constants ~c, 8~x

0

� ~c:'(~x

0

) implies '(~c). This is exactly what

b

0

j= E

0

: (�[�Zfl; Lg:�=Z])~e

0

amounts to, since the assumption 8~x

0

� ~c:'(~x

0

) is

encoded as a triple l in the tag, and '(~c) corresponds to b

0

j= E

0

: (�[�ZfLg:�=Z])~e

0

.

We now give a formal version of the proof. Let l

0

denote (b;E;~e).
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b

0

j= E

0

: (�[�Zfl; Lg:�=Z])~e

0

� 8V:(kb

0

k

V

= tt ! kE

0

k

V

2 k(�[�Zfl; Lg:�=Z])~e

0

k

V

) fDef. j=g

� 8V:(kb

0

k

V

= tt ! kE

0

k

V

2 k�[�Zfl; Lg:�=Z]k k~e

0

k

V

) fDef. denot.g

� E

l

0

[~c=~x]

~

D

v k�[�Zfl; Lg:�=Z]k fProp. 4.1g

� 8

~

d 2

~

D:

�

E

l

0

[

~

d=~x]

~

D

v





�[�Zfl[

~

d=~c]; Lg:�=Z]







�

fCalculusg

! 8

~

d 2

~

D:

�

E

l

0

[

~

d=~x]

~

D

v





�Zfl[

~

d=~c]; Lg:�







�

fMonoton.g

! 8

~

d 2

~

D:

�

E

l[

~

d=~c]

~

D

v k�ZfLg:�k ! E

l

0

[

~

d=~x]

~

D

v k�ZfLg:�k

�

f5.1 [And93]g

! 8

~

d 2

~

D:(8

~

d

0

�

~

d:

�

E

l

0

[

~

d

0

=~x]

~

D

v k�ZfLg:�k

�

!

E

l

0

[

~

d=~x]

~

D

v k�ZfLg:�k) fCond. C

�

g

! 8

~

d 2

~

D:

�

E

l

0

[

~

d=~x]

~

D

v k�ZfLg:�k

�

fNoeth. ind.g

� E

l

0

~

D

v k�ZfLg:�k fCalculusg

� 8V:(kbk

V

= tt ! kEk

V

2 k(�ZfLg:�)~ek

V

) fProp. 4.1g

� b j= E : (�ZfLg:�)~e fDef. j=g

This concludes the proof of soundness.

4.2 Completeness

In this section we investigate completeness of the proof system we propose. More

precisely, we establish the conditions under which completeness holds. Indeed, only

a relativised completeness result is obtainable, since in the general case of an in�nite

domain of values and arbitrary languages for Boolean and value expressions there

cannot be a sound, and at the same time complete, proof system. We therefore

assume that all reasoning about the value domain is performed externally to our proof

system. But this is not the only restriction we shall impose. Instead of listing these

restrictions here at once, we shall explicate them one-by-one during our discussion,

and summarize them at the end of the section. Here it su�ces to say that, since

we are not giving proof rules for parallel composition, restriction and relabelling, we

consider only CCS terms without these combinators.

Proving completeness of a proof system can in many cases be established using the
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following argument. First, one shows that for each valid sequent there is a rule, or a

set of rules, and a way of applying these \backwards", so that the resulting sequents

are guaranteed to be valid as well. If one can prove that following the prescribed way

of applying the rules is guaranteed to terminate, then one has essentially established

completeness, since there is no way of terminating (under the above conditions) other

than by eliminating all sub-goals by applying axiom rules, i.e., by constructing a

proof. Note that it is only required that there be a way of applying the rules, and it

is not required that we know how to �nd it e�ectively.

1

For some simple logics there are proof systems all proof rules of which have

premises which are in some sense simpler than the corresponding conclusions. For

example this is the case when the premises of each rule are strict sub-formulae of the

rule's conclusion, or are formulae of a strictly smaller size. In this case all proof trees

are �nite, and termination is guaranteed. In our proof system, however, this simple

argument is not applicable, since we have rules for unfolding process constants and

�xpoint formulae. This unfolding increases the size of the process, respectively the

formula. Nevertheless, a more complicated completeness argument along the same

lines can still be made even in this case.

In the following subsection we investigate the conditions under which for every

valid sequent there is an applicable proof rule or set of rules yielding valid sub-goals.

From this investigation we extract a schema for applying the proof rules, i.e., for

constructing what one might call canonical proofs. In the second subsection we inves-

tigate the conditions (i.e., restrictions) under which the construction is guaranteed to

terminate. The last subsection summarizes all these restrictions, yielding a relative

completeness result.

1

If the latter is the case (as it is in fact in many proof systems, but not in ours), then one has also

established semi-decidability, namely the existence of a procedure for proving valid sequents. For

the system to be decidable, the decision procedure has also to terminate (with a negative response)

when the initial sequent is not valid.
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4.2.1 Canonical Proofs

To show that for every valid sequent there is an applicable proof rule or set of rules

yielding valid sub-goals, we look one level into the structure of the process and the

formula in the sequent, and make sure that every possible case has been covered.

Naturally, the inference rules which are backward sound substantially simplify the

process of �nding how canonical proofs should look. Most of our rules are indeed

backward sound, as can be seen from our proof of soundness where many of the

individual soundness proofs were established through sequences of equivalences. Here,

we present the remaining cases only.

Case (E, �

1

_�

2

). Let b ` E : �

1

_�

2

be valid, i.e., b j= E : �

1

_�

2

. Let b

0

and

b

00

be the weakest Boolean expressions expressible in the given language such that

b

0

j= E : �

1

and b

00

j= E : �

2

. It is natural to require, that the language for Boolean

expressions be complete, i.e., that every function of type

~

D ! f�; ttg is expressible

in this language. In this case b) b

0

_ b

00

holds, and hence b ` E : �

1

_ �

2

can be

reduced by applying G(Cut), �(_l) and �(_r) to the valid sequents b

0

` E : �

1

and

b

00

` E : �

2

.

Case (E

1

+ E

2

, h�i�) is similar.

Case (E, 9x:�). Let b ` E : 9x:� be valid. It is also natural to require

that the language for value expressions be complete, i.e., that every function of type

~

D ! D be expressible in this language. Then, there is an expression e yielding for

every valuation an \appropriate" value for the free occurrences of x in �, so that the

sequent b ` E : �[e=x] resulting from applying rule �(9) is also valid.

Case (�~x E, h�i�) is similar.

Case (if b thenE, h�i�). We have:

b j= if b

0

thenE : h�i�

� 8V:(kbk

V

= tt ! kif b

0

then Ek

V

2 kh�ik

V

k�k

V

)

� 8V:(kbk

V

= tt ! kb

0

k

V

= tt ^ kEk

V

2 kh�ik

V

k�k

V

)

� 8V:(kbk

V

= tt ! kb

0

k

V

= tt) ^ 8V:(kbk

V

= tt ! kEk

V

2 kh�ik

V

k�k

V

)

� b) b

0

^ b j= E : h�i�
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which implies that a valid sequent b ` if b

0

thenE : h�i� is reducible, by applying

E(if), to the valid sequent b ` E : h�i�.

Case (a(~e):E, ha(~e

0

)i�). The reason why we have to consider this case is that

rule E�(a; hi) covers only the case when ~e = ~e

0

. In the general case we have:

b j= a(~e):E : ha(~e

0

)i�

� 8V:(kbk

V

= tt ! ka(~e):Ek

V

2 kha(~e

0

)i�k

V

)

� 8V:(kbk

V

= tt ! k~ek

V

= k~e

0

k

V

^ kEk

V

2 k�k

V

)

� 8V:(kbk

V

= tt ! k~ek

V

= k~e

0

k

V

) ^ 8V:(kbk

V

= tt ! kEk

V

2 k�k

V

)

� ~e �

b

~e

0

^ b j= E : �

which implies that a valid sequent b ` a(~e):E : ha(~e

0

)i� can be reduced, by applying

G(�) followed by E�(a; hi), to the valid sequent b ` E : �.

Case (E, (�ZfLg:�)~e). This case has to be partitioned into two sub-cases

2

, namely

^

E 62

^

L and

^

E 2

^

L. The �rst case is handled by rule �(�1), the backward soundness

of which is obvious from the proof of its soundness. The second case, however, is

not completely covered by rule �(�0), since its side condition C

0

has the stronger re-

quirement that (b;E;~e) 2 L. A certain discipline of applying rules �(�1) and �(�0)

is required to guarantee that the case

^

E 2

^

L is reducible, by applying general rules

only, to the case (b;E;~e) 2 L. Before proposing one such discipline, an important

note is due. So far, when saying that a sequent b ` E : � is valid, we meant that

b j= E : � holds. What is actually important, however, is that b j= E : �

tf

holds, where �

tf

is the tag-free version of �, since tags are not part of the speci�-

cation language and are only introduced to facilitate the proofs. We call this latter

type of validity tf-validity. From the semantics of tags follows that tf-validity implies

validity. Since in our proofs we always start with tag-free formulae, and the way

we apply the proof rules outlined so far preserves not just validity, but tf-validity

as well, we have only to make sure that the rule G(Cut) and the derived rule G())

2

Recall that the \hat" operator ^ abstracts from the values and the expressions forming and

using them, so the triples in tags are reduced to value-free processes.
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are used in a way that does not widen the assumption of a sequent \too much" to

lose tf-validity. After this note we can describe our discipline of using the greatest

�xpoint rules. Assume

^

E 62

^

L. Let ~e

1

consist of all expressions occurring in E, and let

b ` E(~e

1

) : (�ZfLg:�)~e

2

be tf-valid. We apply rule G(Sub) to put the process and the formula in a form easier

to be handled later:

b ^ (~x

1

= ~e

1

) ^ (~x

2

= ~e

2

) ` E(~x

1

) : (�ZfLg:�)~x

2

We now use G()) to perform the maximal possible widening still yielding a tf-valid

sequent; let the resulting assumption be denoted b

1

:

b

1

` E(~x

1

) : (�ZfLg:�)~x

2

and unfold the �xpoint predicate using rule �(�1) with l

�

= (b

1

; E(~x

1

); ~x

2

):

b

1

` E(~x

1

) : (�[�Zfl; Lg:�=Z])~x

2

Suppose that later in the construction of the proof we reach a tf-valid sub-goal of the

form:

b

2

` E(~e

3

) : (�ZfL

0

g:�

0

)~e

4

where �

0

is as � but possibly di�ering in the tag sets. Then it is guaranteed that

l 2 L

0

and consequently also

^

E 2

^

L

0

holds. We apply rule G(Sub) to obtain, possibly

after some renaming of variables, the tf-valid sequent:
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b

2

^ (~x

1

= ~e

3

) ^ (~x

2

= ~e

4

) ` E(~x

1

) : (�ZfL

0

g:�

0

)~x

2

We had a similar goal (up to Boolean expressions) above, and due to the maximal

widening performed there it is the case that b

2

^ (~x

1

= ~e

3

)^ (~x

2

= ~e

4

)) b

1

. We can

hence apply rule G()) to obtain:

b

1

` E(~x

1

) : (�ZfL

0

g:�

0

)~x

2

The triple (b

1

; E(~x

1

); ~x

2

) is already in L

0

, and therefore the axiom rule �(�0) is

applicable here, thus eliminating the sub-goal. The so presented discipline of using

the greatest �xpoint rules justi�es their choice. As the example proofs in the previous

chapter suggest, in the above scheme, rules G(�) and G(US) can be used instead of

G(Sub) and G()), respectively, giving the proofs a more syntactic avour

3

.

Case (E, (�ZfLg:�)~e). This case is treated similarly to the previous one, but

with some additional complications. Assume again

^

E 62

^

L, and let

b ` E(~e

1

) : (�ZfLg:�)~e

2

be tf-valid. We apply rule G(Sub) to obtain:

b ^ (~x

1

= ~e

1

) ^ (~x

2

= ~e

2

) ` E(~x

1

) : (�ZfLg:�)~x

2

and perform the maximal possible widening using G()) still resulting in a tf-valid

sequent:

b

1

` E(~x

1

) : (�ZfLg:�)~x

2

3

It is an interesting problem under what conditions this is always the case.
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We unfold the �xpoint predicate using �(�1) as follows. We choose the variables in

~x

1

and ~x

2

as induction variables, and let ~x

0

1

and ~x

0

2

be their primed versions. To de�ne

a suitable b

00

(according to the notation adopted in the description of the rules) we

�rst de�ne the mapping cl :

~

D

1

�

~

D

2

! Ord so that cl(

~

d

1

;

~

d

2

) is the least ordinal �

such that:

b

1

[

~

d

1

=~x

1

;

~

d

2

=~x

2

] j= E(

~

d

1

) : (�

�

ZfLg:�

tf

)

~

d

2

i.e., cl gives the closure ordinal for the last sequent under a given valuation. This

mapping is well de�ned because of tf-validity of the sequent. Now, we construct b

00

as a Boolean expression containing the variables in ~x

1

, ~x

2

, ~x

0

1

, and ~x

0

2

, so that:

b

00

� b

1

[~x

0

1

=~x

1

; ~x

0

2

=~x

2

] ^ cl(~x

0

1

; ~x

0

2

) � cl(~x

1

; ~x

2

)

where � is the usual (well-founded!) ordering on ordinals. The conditions that b

00

has to satisfy according to the description of rule �(�1) follow immediately from the

construction. So, applying rule �(�1) results in the tf-valid sequent:

b

1

[~c

1

=~x

1

;~c

2

=~x

2

] ` E(~c

1

) : (�[�Zfl; Lg:�=Z])~c

2

where the triple l inserted in the tag is (b

00

[~c

1

=~x

1

;~c

2

=~x

2

]; E(~x

0

1

); ~x

0

2

). Suppose now that

later in the construction of the proof we reach a tf-valid sub-goal of the form:

b

2

` E(~e

3

) : (�ZfL

0

g:�

0

)~e

4

where �

0

is as � but possibly di�ering in the tag sets. Then it is guaranteed that

l 2 L

0

and consequently also

^

E 2

^

L

0

holds. We apply rule G(Sub) to obtain, possibly
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after some renaming of variables, the tf-valid:

b

2

^ (~x

0

1

= ~e

3

) ^ (~x

0

2

= ~e

4

) ` E(~x

0

1

) : (�ZfL

0

g:�

0

)~x

0

2

Due to the maximal widening performed before, it is the case that:

b

2

^ (~x

0

1

= ~e

3

) ^ (~x

0

2

= ~e

4

)) b

1

[~x

0

1

=~x

1

; ~x

0

2

=~x

2

]

holds here. Assume that after applying rule �(�1) no strict widening was applied,

i.e., if some widening rule was applied, this was done in the most conservative (equiv-

alence preserving) way. Then, by going from the sequent at which �(�1) was applied

to the last sequent, we descend the �xpoint approximation hierarchy, and therefore,

cl(~x

0

1

; ~x

0

2

) � cl(~c

1

;~c

2

), implying:

b

2

^ (~x

0

1

= ~e

3

) ^ (~x

0

2

= ~e

4

)) b

00

[~c

1

=~x

1

;~c

2

=~x

2

]

holds here, and we can hence apply rule G()) to the last sequent to obtain:

b

00

[~c

1

=~x

1

;~c

2

=~x

2

] ` E(~x

0

1

) : (�ZfL

0

g:�

0

)~x

0

2

But the triple (b

00

[~c

1

=~x

1

;~c

2

=~x

2

]; E(~x

0

1

); ~x

0

2

) is already in L

0

, and therefore the axiom

rule �(�0) is applicable here, thus eliminating the sub-goal.

From the above considerations we can extract the following proof discipline, yield-

ing proofs that we can term canonical.

4

Starting from the goal sequent:

1. We apply logic rules until the formula becomes of the form [�]� or h�i�, or the

resulting sub-goal can be discharged with an axiom. The rules for disjunction

4

It should be noted that canonical proofs are not necessarily the most economic ones.
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have possibly to be preceded by a suitable application of the cut rule, while

the �xpoint rules have possibly to be preceded by applications of general rules

according to the description given above.

2. Next, process and dynamic rules are applied until the process becomes of the

form �:E, or the resulting sub-goal can be discharged with an axiom. The rules

for binary choice have possibly to be preceded by a suitable application of the

cut rule.

3. At this point, the process is of the form �:E, and the formula is of the form

[�

0

]� or h�

0

i�. The corresponding dynamic rule is applied, and the �rst step is

re-entered. Rule E�(a; hi) has possibly to be preceded by a suitable application

of G(�) to unify the respective expressions.

Unfortunately we made in case (E , (�ZfLg:�)~e) an assumption about widening,

which interferes with the �xpoint reasoning we suggest in the above proof discipline.

Hence we can only justify completeness for processes and formulae which do not

require widening to be applied before unfolding of �xpoint formulae between an ap-

plication of �(�1) and the consequent application of �(�0). These cases are not easy

to characterise. We give here just one such case. Assume the process is �nite-state

(this would usually be the case when the domain of values is �nite). Then it is suf-

�cient to use �(�1) for simple unfolding, i.e., without tagging [ASW94]. Induction

can still be applied, but it could be viewed merely as a means of making some proofs

shorter.

The completeness proof given in [And93] however suggests that with a more so-

phisticated, but far less intuitive, argument one could still prove completeness for the

general case. We leave this as a topic for future investigation.
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4.2.2 Termination

The proof discipline outlined in the preceding section has the property that it yields,

provided the goal sequent is valid, and provided that it terminates, a proof for the goal

sequent, i.e., a proof tree with the goal sequent as its root. The important question,

in view of achieving completeness, becomes: under what conditions is this discipline

guaranteed to terminate?

An important observation is that all rules other than rule E(if), the �xpoint rules

and the general rules, reduce a sequent to new sequents with a strictly smaller size of

the process and/or the formula, while none of the two is increased. This is true for

any reasonable choice of the notion of size, assuming only that it ignores all Boolean

or value expressions and the tags (e.g. the number of logic combinator occurrences

in a formula gives such a measure). Termination of the proof discipline depends then

only on whether process constants and �xpoint formulae can be unfolded in�nitely

many times.

To make sure that, when attempting to construct a canonical proof, we do not

stay forever in the second step of the proof discipline, two natural restrictions can be

made. First, we allow only �nite sets of agent constants to be used when specifying

a system. And second, we demand that, in the right-hand side of de�ning equations,

agent constants appear only within the scope of some pre�x operator. Expressions of

this sort are termed guarded [Mil89]. Under these restrictions it is obvious that any

sequence of applications of process and dynamic rules eventually leads to a sequent

with a process term which is a pre�x, i.e., of the form �:E.

The above two restrictions have the additional e�ect that the space of value-free

abstractions

^

E of agent expressions or sub-expressions E occurring in the speci�cation

of a system is guaranteed to be �nite. Such processes are usually referred to as

�nite-control, or bound. An important consequence of this is that the tags are also

guaranteed to be of �nite length, since we always start with empty tags and add a

triple to a tag only if its value-free abstraction is not already there, and there are only
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�nitely many of these. Consequently, �xpoint formulae can only be unfolded �nitely

many times!

As a result, under these restrictions the above described proof discipline is guar-

anteed to terminate whenever the goal sequent is valid, thus yielding a canonical

proof.

4.2.3 Completeness Conditions

The two preceding sub-sections give su�cient conditions under which there is a canon-

ical proof for every valid sequent. In other words, our proof system is guaranteed to

be complete if:

First, the languages for constructing value expressions e and Boolean expressions

b are complete, and the value domain is �nite.

Second, the agent expressions in a system speci�cation satisfy the following re-

strictions:

� agents are sequential, i.e., without concurrent composition;

� the set of agent constants used is �nite;

� the de�ning agent expressions in agent constant de�nitions are guarded.

And third, the formula in the goal sequent are:

� tag-free;

� closed w.r.t. predicate variables;

� all its �xpoint sub-formulae are closed.

This concludes our analysis of correctness of the proof system proposed in the

preceding chapter.
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Chapter 5

Extensions

Motivated by the advantages the technique of tagging seems to o�er in keeping �x-

point reasoning \local" (i.e., avoiding global rules), we investigate in this chapter

applications of this technique to other settings. The �rst section proposes a way

of tagging �xpoint formulae for a di�erent kind of sequents and o�ers a semantics

for such formulae. Inference rules for handling �xpoint formulae are proposed and

shown sound. The second section considers the problem of \negative" tagging of least

�xpoint formulae, which is a technique for preventing proof trees from growing un-

boundedly, i.e., for ensuring termination of proof search. This idea has been explored

in [ASW94] for sequents of type P ` �, where P is a single process. We investigate

under what conditions this approach can be extended to sets of processes, which is

important when value passing or parallel composition is considered.

5.1 Compositionality

The proof system presented and analysed in the previous two chapters considers

sequential processes only. The reason for this is that parallel composition cannot be

treated \compositionally" in the same framework. Rather, one needs sequents of a

di�erent type. One possibility for this is to use sequents of a more general type as

suggested by Dam [Dam95]. Another approach, advocated by Stirling [Sti87], is to

use another kind of sequents only for parallel composition. We explain and follow the
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latter approach below.

Stirling's suggestion is to use a separate proof system for inferring sequents of the

shape

�;	 ` �

meaning that any two processes satisfying � and 	 respectively, when composed in

parallel, yield a process satisfying �. Then, proving P jQ ` � can be reduced to

proving P ` � and Q ` 	 for some suitable formulae � and 	 for which we can

infer �;	 ` �. In other words, we introduce the rule

E(j)

P jQ ` �

P ` � �;	 ` � Q ` 	

to connect the proof systems for the two kinds of sequents. This treatment of parallel

composition is not a \truly" compositional one, in the sense that the new formulae

� and 	 are not necessarily subformulae of �, and have usually to be guessed. On

the other hand, due to the complex nature of parallel composition, there seems to

be no such treatment, and the proposed way of dealing with parallel composition is

justi�able.

In [Sti87], proof rules are given for sequents of the new type, but only for formulae

in Hennessy-Milner Logic. It is a challenging problem to �nd rules for dealing with

�xpoint formulae. A proof system of this kind was proposed by Berezin in [Ber95],

but the treatment of �xpoint formulae proposed there was found not satisfactory. In

a later paper co-authored by the present author [BG97] we proposed the use of tags

much the same way as shown in the preceding chapter. We describe here only our

own contribution, namely the treatment of the �xpoint formulae.

Intuitively, formulae can be identi�ed with their denotation, i.e., with sets of

processes, and for this setting the tagging approach has been used successfully. One

would expect the rules shown in Figure 5.1 to be justi�able, where L is a list of formula

pairs. The rules (�l0) and (�l1) have symmetric counterparts, not shown here for

brevity. We also omit the rules for unfolding least �xpoints on the right-hand side
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and for unfolding greatest �xpoints on the left-hand side of the turnstyle symbol;

these are simple unfoldings without tagging. It is an important question whether this

is su�cient to achieve completeness. Kozen's proof system [Koz83] seems to indicate

that it is, but a rigorous proof is to be given elsewhere. Note also that to simplify

the account we consider just the propositional version of the Modal �-Calculus, but

the ideas presented here generalise easily to the logic presented in Chapter 3.

(�r1)

�;	 ` �ZfLg:�

�;	 ` �[�Zf(�;	); Lg:�=Z]

(�;	) 62 L

(�l1)

�; �ZfLg:	 ` �

�;	[�Zf(�;�); Lg:	=Z] ` �

(�;�) 62 L

(�r0)

�;	 ` �ZfLg:�

�

(�;	) 2 L (�l0)

�; �ZfLg:	 ` �

�

(�;�) 2 L

Figure 5.1: Fixpoint Rules.

The task we are faced with is �nding a suitable semantics for tagged formulae

which would justify the rules just presented.

De�nition 5.1 Let P;P

1

;P

2

; : : : denote sets of CCS terms. We de�ne the following

two operations on such sets:

P

1

jP

2

�

= fP jQ j (P;Q) 2 (P

1

�P

2

) [ (P

2

�P

1

)g

P

1

=P

2

�

= fP j 8Q 2 P

2

: P jQ 2 P

1

^QjP 2 P

1

g

In other words, these are a symmetric product and division operator on sets of pro-

cesses. These two operators are dual, as the following proposition shows.

Property 5.2 For any sets P

1

, P

2

and P

3

of processes the following equivalence

holds:

P

1

� P

3

=P

2

� P

1

jP

2

� P

3

� P

2

� P

3

=P

1
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Proof. We show the �rst equivalence; the second one is just a symmetric version.

P

1

jP

2

� P

3

� fP jQ j (P;Q) 2 (P

1

�P

2

) [ (P

2

�P

1

)g � P

3

fDe�nition 5.1g

� 8P 2 P

1

: 8Q 2 P

2

: P jQ 2 P

3

^QjP 2 P

3

fSet theoryg

� P

1

� fP j 8Q 2 P

2

: P jQ 2 P

3

^QjP 2 P

3

g fSet theoryg

� P

1

� P

3

=P

2

fDe�nition 5.1g

Using this operators one can give a concise de�nition of validity of sequents of the

shape �;	 ` �.

De�nition 5.3 A sequent of the shape �;	 ` � is termed valid, denoted �;	 j= �,

i� for all valuations V:

k�k

V

j k	k

V

� k�k

V

We repeat here the Reduction Lemma, giving also its dual version for least �x-

points.

Lemma 5.4 (Reduction Lemma) Let f : S ! S be a monotone mapping on the

complete lattice (S;v). Then for any U 2 S:

(i) U v �X:f(X) � U v f(�X:(U t f(X)))

(ii) U w �X:f(X) � U w f(�X:(U u f(X)))

We are now ready to give a meaning to tagged �xpoint formulae.

De�nition 5.5 Let L be a (possibly empty) list of pairs of closed formulae. The

semantics of tagged predicates is de�ned as follows:

(i) k�ZfLg:�k

V

�

= �X: [L [ k�k

V[X=Z]

(ii) k�ZfLg:�k

V

�

= �X: \L \ k�k

V[X=Z]

where [L

�

=

S

(	;�)2L

k	k j k�k and \L

�

=

T

(	;�)2L

k�k = k	k.
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With this semantics we can show that the rules suggested in the beginning of the

section for handling �xpoint formulae in sequents of the shape �;	 ` � are sound.

The soundness proof uses the following corollary.

Corollary 5.6 For any formulae �, 	 and � holds:

(i) k�k j k	k � k�ZfLg:�k � k�k j k	k � [L [ k�[�Zf(�;	); Lg:�=Z]k

(ii) k�k = k�k � k�ZfLg:	k � k�k = k�k � \L \ k	[�Zf(�;�); Lg:	=Z]k

Proof. Again we show the �rst equivalence only. Let V be an arbitrary valuation.

k�k j k	k � k�ZfLg:�k

V

� k�k j k	k � �X: [L [ k�k

V[X=Z]

fDe�nition 5.5 (i)g

� k�k j k	k � [L [ k�k

V[�X:[L[(k�kjk	k)[k�k

V[X=Z]

=Z]

fLemma 5.4 (i)g

� k�k j k	k � [L [ k�k

V[k�Zf(�;	);Lg:�k

V

=Z]

fDe�nition 5.5 (i)g

� k�k j k	k � [L [ k�[�Zf(�;	); Lg:�=Z]k

V

fSubstit. Propertyg

Theorem 5.7 The rules (�r1), (�l1), (�r0) and (�l0) presented above are sound.

Proof. (i) Rule (�r1).

�;	 j= �[�Zf(�;	); Lg:�=Z]

� k�k j k	k � k�[�Zf(�;	); Lg:�=Z]k fDe�nition 5.3 (i)g

) k�k j k	k � [L [ k�[�Zf(�;	); Lg:�=Z]k fSet theoryg

� k�k j k	k � k�ZfLg:�k fCorollary 5.6 (i)g

� �;	 j= �ZfLg:� fDe�nition 5.3 (i)g

(ii) Rule (�l1). Similar to (i).

(iii) Rule (�r0).

(�;	) 2 L

) k�k j k	k � [L fDe�nition 5.5g

) k�k j k	k � [L [ k�[�Zf(�;	); Lg:�=Z]k fSet theoryg

� k�k j k	k � k�ZfLg:�k fCorollary 5.6 (i)g

� �;	 j= �ZfLg:� fDe�nition 5.3 (i)g

(iv) Rule (�l0). Similar to (iii).
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It should be noted here that the side conditions to the rules, as presented here,

are too strong as they require (�;	) to be syntactically identical to some pair in L,

including the tags of � and 	! These conditions can be relaxed as shown in [BG97].

For the above discussion, however, we chose the simpler setting.

5.2 Negative Tagging

When model checking �nite state systems it is not necessary to use reasoning based on

induction for least �xpoint formulae. To obtain completeness it is su�cient to perform

simple unfolding. Inductive reasoning can reduce the size of a proof signi�cantly, but

makes proof search more di�cult. It makes sense, however, to record the states at

which a least �xpoint formula has already been unfolded. It is generally desirable to

terminate a branch in the current proof tree whenever there is su�cient evidence that

the respective sequent is not valid and that elaborating it further cannot possibly lead

to success. For example, the proof system presented in [ASW94] has a rule of the

form:

(�)

s ` �ZfLg:�

s ` �[�Zfs; Lg:�=Z]

s 62 L

which prevents unfolding a least �xpoint formula twice at the same state. Such a

rule can be justi�ed semantically by de�ning tags L to denote sets of states, and by

de�ning the denotation of tagged least �xpoint formulae as follows:

k�ZfLg:�k

V

�

� �X:(k�k

V[X=Z]

� L)

Rule (�) is sound and backward sound due to the following equivalence:

s 2 �X:f(X) � s 2 f(�X:(f(X) � fsg))

which holds for any monotone mapping f : }(S) ! }(S). We refer to tagging used

in this way as negative tagging, since tags are in some sense negative assumptions:
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we assume that the states in the tag do not belong to the denotation of the tagged

least �xpoint formula.

Unfortunately, this equality holds only for single states, and not for sets of states in

general. It does not justify a rule like (�) in proof systems for value passing processes

or for sequents with formulae only (like the ones considered in the previous section),

since parametrised processes and formulae are understood as sets of states. This is

why it is an interesting problem to investigate for what semantics of tags and tagged

formulae and for what relationship Rel between a set of states U and a tag L could

a rule of shape

(��)

U ` �ZfLg:�

U ` �[�ZfU;Lg:�=Z]

U Rel L

be justi�ed (even in the more general case of in�nite state spaces), and to what other

settings could it be adapted.

Let us start by analysing why it is that the above equality fails for sets of states.

If we adopt the notation �XfUg:f(X) for �X:(f(X) � U), the previous equivalence

could be rewritten as:

s 2 �X:f(X) � s 2 f(�Xfsg:f(X))

Consider the following LTS:

s

3

�! s

2

�! s

1

�! s

0

and the formula �Z: [�]Z, the denotation of which is the least �xpoint �f of the

state transformer f

�

= �X: k[�]kX. We have �Xfs

2

g:f(X) = fs

0

; s

1

g and hence

f(�Xfs

2

g:f(X)) = f(fs

0

; s

1

g) = fs

0

; s

1

; s

2

g includes s

2

. In terms of �xpoint ap-

proximants, �Xfsg:f(X) contains �

�

f for the greatest ordinal � such that �

�

f does

not include s, since this is the �rst point in the iterative construction of the �xpoint

that s comes into play

1

(in this example � equals two). Since f is monotone, s 2 �f

1

Or dually, �+ 1 is the least ordinal such that �

�+1

f includes s.
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implies:

s 2 �

�+1

f = f(�

�

f) � f(�Xfsg:f(X))

and therefore s 2 f(�Xfsg:f(X)). This is exactly the point where we cannot extend

this reasoning to any set of states U : if � is the greatest ordinal

2

for which �

�

f does

not intersect U , then U � �

�+1

f is guaranteed only when U is a singleton set. For

example, for U = fs

1

; s

2

g we have �XfUg:f(X) = fs

0

g and hence f(�XfUg:f(X)) =

fs

0

; s

1

g which includes s

1

but does not include s

2

. On the other hand, the following

observation can be made: a relationship of the shape

U � �

�+1

f = f(�

�

f) � f(�XfUg:f(X))

would still hold if we rede�ne:

� � to be the greatest ordinal (if there is such) so that �

�

f does not contain

(rather than \does not intersect") U . Then U � �

�+1

.

� tags to be sets of states U denoting not themselves, but rather those elements

of U only which are not in �

�

f . Then �

�

f � �XfUg:f(X) and therefore

f(�

�

f) � f(�XfUg:f(X)).

We now proceed to formalise the above intuitive ideas. Let S be a set (of states),

and let f : }(S)! }(S) be monotone.

De�nition 5.8 Let U � S be a set of states. The closure ordinal co

f

U and closure

elements ce

f

U of U w.r.t. f are de�ned as follows:

co

f

U

�

= the least ordinal � such that U \ �f � �

�

f

ce

f

U

�

= U �

S

�<co

f

U

�

�

f

Note 5.9 In the latter de�ning equation the term

S

�<co

f

U

�

�

f equals �

�

f whenever

co

f

U is the successor ordinal of �.

2

It should also be noted here, that such a greatest ordinal is guaranteed to exist only when U is

�nite, a complication that does not arise for �nite state spaces.
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Property 5.10 Let U � S be a set of states. Then:

(i) (U \ �f) � �

co

f

U

f .

(ii) ce

f

U \ �f is non-empty if and only if co

f

U is a successor ordinal.

(iii) If U is �nite, then ce

f

U is not a limit ordinal.

(iv) If s 2 S, then ce

f

fsg = fsg.

Proof. These properties are established as follows.

(i) Follows directly from the de�nition of co

f

U .

(ii) We have:

ce

f

U \ �f 6= ;

� ce

f

U \ �f 6�

S

�<co

f

U

�

�

f fDef. ce

f

U , �

�

f � �fg

� U \ �f 6= ; ^

S

�<co

f

U

�

�

f 6= �

co

f

U

f fFrom (i)g

� co

f

U 6= 0 ^ co

f

U is not a limit ordinal fDef. �xp. approximantg

� 9� 2 Ord: co

f

U = �+ 1 fDef. ordinalg

(iii) From the de�nition of �xpoint approximants follows immediately that the

closure ordinal for singleton sets is not a limit ordinal. If U is �nite, the closure

ordinals of the singletons formed by the elements of U have a greatest element �

which is not a limit ordinal. This ordinal is also the closure ordinal of U .

(iv) This is a direct consequence of (iii).

De�nition 5.11 Let U � S. We de�ne tagged mappings as follows:

f

fUg

�

= �X:(f(X) � ce

f

U)

and use the notation f

fU;V

1

;:::;V

n

g

for (f

fV

1

;:::;V

n

g

)

fUg

.

Note 5.12 In the chosen notation �f

fUg

equals �Xfce

f

Ug:f(X). Because of Prop-

erty 5.10 (iv) the new semantics of tags coincides with the old one in the case of

singleton sets.
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Property 5.13 Let U � S be a set of states. Then:

(i) �f

fUg

� �f

(ii) if co

f

U = �+ 1 for some ordinal �, then �

�

f = �

�

f

fUg

.

Proof. These properties are established as follows.

(i) Follows directly from the equation:

�f =

\

fX j f(X) � Xg

(ii) Let co

f

U = � + 1. Then ce

f

U \ �

�

f = ; by De�nition 5.8 and Note 5.9.

Consequently ce

f

U \ �

�

f = ; holds for all ordinals � � �. Then the result holds by

a simple inductive argument.

The following property will be used to justify the side condition of the new proof

rule (��).

Property 5.14 For any �nite non-empty set U holds the inequality:

U 6� �f

fV

1

;:::;U;:::;V

n

g

Proof. By induction on n. The base case (i.e., empty tag) holds vacuously. The

induction hypothesis assumes the property for an arbitrary k. Assume U is a �nite

non-empty set. If U = V

i

for some i such that 2 � i � k+1 then the property holds,

since �f

fV

2

;:::;V

k+1

g

� �f

fV

1

;V

2

;:::;V

k+1

g

by Property 5.13 (i) and U 6� �f

fV

2

;:::;U;:::;V

k+1

g

by the induction hypothesis. The case that remains to be considered is U = V

1

.

Let g denote �f

fV

2

;:::;V

k+1

g

. We have to show that U 6� �g

fUg

. According to Prop-

erty 5.10 (iii), since U is �nite, co

f

U is not a limit ordinal. Since U is not empty,

either there are elements in U which are not in �f , or ce

f

U is not empty, and in

either case U 6� �g

fUg

.
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The following lemma plays the same rôle as Kozen's Reduction Lemma.

Lemma 5.15 (Reduction Lemma) For any set U � S the following equality holds:

U � �f � U � f(�f

fUg

)

Proof. The two directions are established as follows:

(() This direction holds simply because f(�f

fUg

) � f(�f) = �f .

()) If ce

f

U \ �f is empty, then the implication holds trivially since in this case

�f = �f

fUg

= f(�f) = f(�f

fUg

). If ce

f

U\�f is not empty, then by Property 5.10 (ii)

co

f

U is the successor of some ordinal �. Then:

U � �f � U � �

co

f

U

f fProperty 5.10 (i)g

� U � �

�+1

f fco

f

U = �+ 1g

� U � f(�

�

f) fDef. �xpoint approximantsg

� U � f(�

�

f

fUg

) fProperty 5.13 (ii)g

) U � f(�f

fUg

) f�

�

f

fUg

� �f

fUg

g

We are now ready to give a suitable semantics to formulae tagged with lists of

sets of states.

De�nition 5.16 The denotation of negatively tagged formulae is de�ned as follows:

k�ZfV

1

; : : : ; V

n

g:�k

V

�

= �f

fV

1

;:::;V

n

g

, where f = �X: k�k

V[X=Z]

Due to Note 5.12 this semantics is equivalent to the one already given for the case

when the tag sets are singletons, and is hence a proper generalisation of the latter. It

gives rise to the following (goal directed) inference rule:

(��)

U ` �ZfV

1

; : : : ; V

n

g:�

U ` �[�ZfU; V

1

; : : : ; V

n

g:�=Z]

U � finite ) 8i: V

i

6� U

the soundness of which is established in the following theorem.
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Theorem 5.17 Rule (��) is sound and backward sound.

Proof. If we ignore the side condition, soundness and backward soundness of the

rule are a straightforward consequence of De�nition 5.16 and the Reduction Lemma.

Assume the side condition does not hold, i.e., U is �nite and that some set V

i

in the tag

is a subset of U . But then V

i

is also �nite, and according to Property 5.14 the sequent

V

i

` �ZfV

1

; : : : ; V

n

g:� cannot be valid, and hence neither can U ` �ZfV

1

; : : : ; V

n

g:�

be valid.

Rule (��) is easily seen to be a proper generalisation of rule (�). The most

interesting question that immediately o�ers itself is whether �niteness of U is really

important for terminating a branch in a proof tree as unsuccessful. This turns out

to be the case, as the following example shows. Consider the in�nite state LTS with

states S:

� � � �! s

3

�! s

2

�! s

1

�! s

0

and the formula �Z: [�]Z. The sequent S ` �Z: [�]Z is valid, but if we start

reducing it we very soon arrive at the sequent S ` �ZfSg: [�]Z. It would still make

sense to stop at this point from purely practical reasons, but it would certainly not

be sound to conclude that the sequent is not valid.

What remains a topic for future research is investigating in what settings the new

rule is useful. An obvious candidate would be a proof system along the lines of the

one presented by Andersen [And93], but for the case of �nite state systems.
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Chapter 6

Conclusion

6.1 Summary

This thesis addressed the problem of speci�cation and veri�cation of communicating

systems with value passing. We assumed that such systems are described in the well-

known Calculus of Communicating Systems, or rather, in its value passing extension.

As a speci�cation language we proposed an extension of the Modal �-Calculus, a poly-

modal �rst-order logic with least and greatest �xpoints. For this logic we developed a

proof system for verifying judgements of the form b ` E : � where E is a sequential

CCS term and b is a Boolean assumption about the value variables occurring free in

E and �. Proofs conducted in this proof system follow the structure of the process

term and the formula. This syntactic approach makes proofs easier to comprehend

and machine assist. To avoid the introduction of global proof rules we adopted the

technique of tagging �xpoint formulae with all relevant information needed for the

discharge of reoccurring sequents. We provided such tagged formulae with a suitable

semantics. The resulting proof system was shown to be sound in general and complete,

relative to external reasoning about values, for a large class of sequential processes.

The problem of verifying processes involving parallel composition was only addressed

partially here. We proposed a way of tagging, and a semantics for tagged formulae,

in the context of sequents of the shape �;	 ` �. To facilitate termination in proof

search we also investigated negative tagging in a more general setting than this has
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previosly been done.

6.2 Evaluation

The work presented here extends existing techniques for speci�cation and veri�ca-

tion of communicating systems. These can be viewed as explorations of the idea of

using tags to three di�erent settings: value passing, extended sequents, and negative

tagging.

The bene�ts from using tags are manifold: it eliminates the need for global proof

rules for dealing with �xpoint formulae, thus simplifying both the use and the theoret-

ical investigation of the proof system; it helps proof search by giving syntactic proof

termination criteria; it allows inductive reasoning to be performed by encoding the

induction hypothesis into the tag. Although formulae seem to become less readable

in the presence of tags, in an actual implementation of a proof assistant tags do not

have to be shown explicitly, but can rather be kept internally.

There are also some shortcomings to using tags in the way it is done here. One

of these is that loops in proofs are detected only when the formula in a sequent is a

�xpoint formula, i.e., of the shape �Z:�, and hence not necessarily at the earliest pos-

sible point. Another de�ciency is the relative complexity of handling least �xpoints.

A much more attractive approach is the one that was recently proposed in [DF98] and

developed further in [DFG98]. There, inductive datatypes (such as integers, lists etc.)

are treated coinductively (i.e., in the way greatest �xpoints are treated here) instead

of inductively, which drastically simpli�es veri�cation. One might wonder where all

the complexity of dealing with least �xpoints goes in this case. The crucial point here

is that the properties of inductive datatypes (usually expressible as least �xpoint for-

mulae) needed for proving a property of a process are usually well-known properties

which can be assumed and hence be moved to the assumptions of the sequent. Deal-

ing with least �xpoints on the left-hand side of the turnstyle symbol is similar to the

way greatest �xpoints are handled on the other side, namely coinductively.
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6.3 Directions for Improvement

One important question which we left open is whether the restriction of having a

�nite domain of values is really necessary for obtaining completeness. A more sophis-

ticated analysis along the lines of [And93] might give a completeness proof without

this restriction. Future e�orts are also needed to address the shortcomings described

above. For example, one has to solve the problem of verifying systems with dynamic

processes structure. This requires the proof systems for the two di�erent types of se-

quents considered here to be glued together in a way that respects the tags. Achieving

this in a way which does not loose inferential power and is still semantically justi�-

able (recall the di�erent semantics for tags employed so far in the two proof systems)

presents an enormous challenge.

Another direction for improvement comes from the observation that some inference

rules require early choices to be made that can only be resolved by looking deeper into

the structure of the formula or the process term. In other words, these are choices that

one would rather like (for proof search purposes) to postpone. Such rules are the rules

for disjunction, for existential quanti�er, the rules for binary choice and \diamond",

and most notably the rule for unfolding least �xpoints (i.e., induction). Introducing

some \lazyness" into the proof system by means of Gentzen-style sequents, existential

variables, etc. would greatly facilitate machine-assisted proof search.

Of course, these techniques remain to be supported by appropriate tools. As a

next step, they also remain to be evaluated industrially, this being the only true way

of determining their value.

Concluding this thesis, we would like to express our hope that Formal Methods

will be developed in the near future to meet the great challenges posed by the recent

developments in software and hardware technology. We would like the work presented

here to be seen as a (however small) contribution to such an e�ort.
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