
Deductive Verification Based Abstraction
for Software Model Checking

Jesper Amilon, Christian Lidström, and Dilian Gurov(B)

KTH Royal Institute of Technology, Stockholm, Sweden
{jamilon,clid,dilian}@kth.se

Abstract. The research community working on formal software veri-
fication has historically evolved into two main camps, grouped around
two verification methods that are typically referred to as Deductive Ver-
ification and Model Checking. In this paper, we present an approach
that applies deductive verification to formally justify abstract models for
model checking in the TLA framework. We present a proof-of-concept
tool chain for C programs, based on Frama-C for deductive verification
and TLA+ for model checking. As a theoretical foundation, we sum-
marise a previously developed abstract contract theory as a framework
for combining these two methods. Since the contract theory adheres to
the principles of contract based design, this justifies the use of the app-
roach in a real-world system design setting. We evaluate our approach on
two case studies: a simple C program simulating opening and closing of
files, as well as a C program based on real software from the automotive
industry.

Keywords: Contracts · Deductive verification · Model checking

1 Introduction

The literature on formal software verification can roughly be grouped into two
branches, typically referred to as Deductive Verification and Model Checking.
Deductive verification historically stems from Floyd-Hoare style logics. Hoare
logic contracts in term of pre- and post-conditions (see, e.g., [10]) are meaningful
in the context of programs that are understood as state transformers, i.e., pro-
grams the purpose of which is to transform certain initial values to certain final
values, where the intermediate values are just implementation details irrelevant
to the computed function. Deductive verification thus focuses on the transfor-
mational behaviour of programs. Technically, it is typically based on symbolic
approaches, such as computing Weakest Preconditions or Symbolic Execution,
to convert programs annotated with specifications to formulas in First-Order
Logic, and then on (back-end) algorithmic SAT/SMT solving.

This work has been funded by the FFI Programme of the Swedish Governmental
Agency for Innovation Systems (VINNOVA) as the AVerT2 project 2021-02519.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 7–28, 2022.
https://doi.org/10.1007/978-3-031-19849-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_2&domain=pdf
https://doi.org/10.1007/978-3-031-19849-6_2

8 J. Amilon et al.

On the other hand, model checking historically stems from algorithmic
approaches to evaluating whether a formula of (some) Temporal Logic holds
in a given state of a Kripke structure (see, e.g., [6]). It focuses on the non-
terminating, temporal behaviour of programs. Technically, it is typically based on
property-preserving abstractions of programs (or system descriptions) to finite-
state representations, and then on algorithmic state-space exploration.

While this dichotomy of transformational versus temporal behaviour of pro-
grams is useful, the two aspects are not mutually exclusive and can be relevant
for one and the same software system. For instance, the software embedded
in modern vehicles is typically structured in two layers. The lower, infrastruc-
ture layer contains a scheduler, which essentially executes an infinite loop that
periodically calls, in a predefined order, a fixed set of modules (called applica-
tions) in the upper, application layer. The individual applications are of a purely
transformational nature: they read certain input values coming from the sensors
and set by the infrastructure, and compute, in a finite number of steps, certain
output values which are then propagated by the infrastructure software to the
actuators. If we have to formally verify the safety of such embedded software,
both transformational and temporal properties need to be taken into account.
In this particular domain, one can even observe a hierarchy between the two, as
a consequence of the hierarchy between the two software layers: one can view
the temporal behaviour on top of the transformational one.

In this paper, we propose an approach that can be described as Deductive
Verification Based Abstraction for Software Model Checking. The essence of our
approach is to relativise the verification of the temporal properties of a pro-
gram on the transformational properties of certain selected program components.
The transformational properties are phrased as Hoare logic style contracts, and
deductive verification is performed to verify that the components indeed fulfil
their contracts. Then, for the purpose of model checking of the temporal prop-
erties of the program, the selected components are replaced by their contracts.
Since this results in modular verification, it has good chances of scaling better
than model checking on its own, which is a monolithic technique.

Our approach allows the results of deductive verification to be lifted to (and
utilised in) the temporal domain. In the context of our embedded software
example mentioned above, one would apply deductive verification to verify the
transformational properties of the modules in the application layer, and then
combine their contracts with the infrastructure software into a model that is
model checked against the temporal properties. To combine such heterogeneous
approaches to formal verification in a sound and consistent manner, a unify-
ing semantic foundation is needed. In this paper, we summarise a previously
developed abstract contract theory [14] as a theoretical framework for combin-
ing deductive verification with model checking, and show how our approach can
be formalised in this abstract contract theory.

To test our idea, we are currently experimenting with a tool chain for C pro-
grams, based on Frama-C for deductive verification and TLA+ for model check-
ing. As preliminary evaluation, we have applied our approach on two example

Deductive Verification Based Abstraction 9

C-programs, with one being based on a real software module taken from the
automotive industry.

Related Work. The idea of combining code with contracts when performing
model checking is explored in several previous works.

Sun et al. [20] show how contracts can be used when creating models to be
verified with the PAT model checker, by means of a case study where PAT is
used to model check itself. The target language is C#, and the approach is to
include code and contracts into the models by allowing PAT models to dynam-
ically load C# code (possibly annotated with contracts). This differs from our
approach where code and contracts are translated statically into the modelling
language. The main focus of their work is, however, the verification of PAT, and
they do not evaluate how the use of contracts affects scalability. Their approach
also differs from ours in that they perform runtime verification of the contracts.

Beckert et al. [4] use contracts to introduce modularity into the bounded
model checker JBMC for Java programs. Their approach differs from ours in
that they integrate the program and the contracts by performing transformations
on the original Java program, whereas we translate the program and the con-
tracts separately into the modelling language before we integrate them. Similarly,
Champion et al. [7] use contracts to achieve modularization for the SMT-based
model checker Kind2. They show on an example that their approach improves
the scalability of the tool. Contracts are part of the modelling language and
specify the behaviour of nodes in the model, as there is no underlying program-
ming language, and thus no translation of programs into models, unlike in our
approach.

Closest to our philosophy of using deductive verification for the purposes
of formally justifying abstract models of program behaviour, to be then used
for model checking, is perhaps the work by Ortwijn et al. [18]. It can be seen
as a generalisation of our approach to concurrent programs, where Separation
Logic with Fractional Permissions is used for deductive verification, and where
the abstraction is into process algebraic muCRL terms. Finally, it should be
pointed out that the model of programs proposed here, where certain parts
have been abstracted into TLA actions, is very close in spirit to the notion
of flow graph studied in [19]. The authors consider there the problem of how
to compositionally model check flow graphs against temporal properties, but do
not address the problem of extracting flow graphs from source code in a provably
correct manner, as we do here.

Structure. The paper is organised as follows. In Sect. 2 we present an overview of
our approach and the envisaged tool chain. Deductive verification and Frama-C
are described in Sect. 3, while model checking and TLA in Sect. 4. Then, Sect. 5
gives a summary of our abstract contract theory from [14], and explains how it
serves as a theoretical foundation for our approach. We present a preliminary
practical evaluation of our approach in Sect. 6, and conclude with Sect. 7.

10 J. Amilon et al.

Program

Temporal
property

Identify
atomic blocks

b1, . . . bn

Specify
b1 . . . bn

with ACSL
contracts
c1 . . . cn

Verify for
each block
bi that bi
satisfies ci

Translate the
program code
into TLA+

Translate
the contracts

c1 . . . cn
into TLA+

Interleave the translations
into an abstract TLA+

model of the program

Model check the TLA+ model
for the temporal property

WP

C2TLA+

TLC

Frama-C

TLA Toolbox

Fig. 1. Flowchart illustrating our verification approach and tool chain

2 Overview of the Verification Approach

The starting point of our approach is a C program and some temporal property,
which we want the program to satisfy. Our proposed verification approach and
tool chain are illustrated in Fig. 1. As shown, we rely on Frama-C for (abstraction
using) deductive verification, and on TLA+ for modelling and model checking.

Illustrating Example. Consider the simple program shown in Fig. 2. The main
function of the program repeatedly reads a temperature value, converts it from
Kelvin to Celsius, and finally outputs the converted value (the value of the vari-
able in kelvin is expected to be updated between each iteration in the loop).
Assume that we want to use the TLC model checker to verify the program
against some chosen temporal property (TLA and TLC is described in more
detail in Sect. 4.1). Then, the first step of our approach would be to identify
sequential blocks in the code that can be recognised as atomic with respect to
the chosen temporal property, and then to provide these blocks with contracts.
For specifying block contracts, we use the (Hoare logic style) ACSL specification
language, which is the annotation language supported by Frama-C (described in
Sect. 3). For our example program, we have chosen to consider the convert temp

Deductive Verification Based Abstraction 11

1 volatile int in_kelvin;

2 int out_celsius;

3

4 /*@

5 requires k >= 0;

6 assigns \nothing;

7 ensures \result == \old(k) - 273;

8 */

9 void convert_temp(int k) {

10 int res = k;

11 res = res - 273;

12 return res;

13 }

14

15 int main() {

16 int c, k;

17 while (1) {

18 k = in_kelvin; // read temp (in Kelvin)

19 c = convert_temp(k); // convert temp

20 out_celsius = c; // write temp (in Celsius)

21 }

22 }

Fig. 2. A simplified temperature converter program

function as an atomic block, which we have annotated with an ACSL function
contract (see the text in green preceding the function). Next, we use WP, the
Frama-C plugin for deductive verification, to verify that convert temp satis-
fies its contract. Then comes the key point of our approach: when creating the
TLA+ model of the program, we rely on the (deductively verified) ACSL con-
tract of convert temp, instead of on its code, to abstract the block into a TLA
action. The remaining parts of the main function (i.e., the while loop and the
reading/writing) are modelled directly from their code. By using the contract of
convert temp instead of its code, the created model abstracts from the irrele-
vant implementation details of convert temp, such as the use of the intermediate
variable res, thus decreasing the complexity of the model.

Tool Chain. Figure 1 also shows the envisaged tool chain supporting our app-
roach. On the contract side, we are working with Frama-C, by specifying con-
tracts in ACSL and verifying them using the WP plugin. On the modelling side,
we work with the TLA framework by using the TLA toolbox, which allows both
for specifying models in TLA+ and performing model checking with TLC over
the models. To translate contracts code into TLA+, we use the Frama-C plugin
C2TLA+ [15] (see Sect. 4.2).

The steps in Fig. 1 where no specific tool or plugin is specified have, in this
work, been carried out manually. There is potential to automate more of the
steps. In particular, automating the translation of contracts into TLA+, and
interleaving contract and code translations in TLA+, should be straightfor-

12 J. Amilon et al.

ward. However, automating some of the steps may be challenging. For instance,
automating the (first) step of identifying which code blocks to identify as atomic
is problematic. The difficulty stems from the conflicting goals of producing an
abstract model of the program that, on one hand, has as a reduced state space
as possible, and on the other hand, is faithful with respect to the temporal prop-
erties we want to verify. The approach we take in our case study (Sect. 6) is to
use functions as atomic blocks. However, this may not always be adequate; in
particular, larger functions with side-effects may not be atomic with respect to
certain temporal properties.

A further challenge is to automate the (second) step of providing the selected
code blocks with contracts. Automated inference of specifications (contracts) is
an area of active research showing promising results; see, e.g., [1]. However,
automatically generated contracts tend to document the code rather than the
intention behind it, and tend thus to be more verbose than contracts provided by
humans. Future work is needed to address these challenges. Another possibility
is that the code has already been verified against contracts using deductive
verification in some other verification context, in which case one can get the
contracts for free by reusing the already existing ones.

Abstract Contract Theory. The approach outlined above is compatible with the
contract based design methodology. This typically entails designing a system in
a top-down manner, through refinement and decomposition of contracts, so that
low-level components can be independently implemented against their contracts,
while ensuring that top-level properties still hold. In Sect. 5 we show that the
proposed method of procedure-modular verification can be cast in a previously
developed contract theory [14]. This provides a strong theoretical foundation for
our verification approach, and, since the contract theory supports a contract
based design workflow, this translates to the approach presented here.

3 Deductive Verification and Frama-C

Frama-C is a software verification and analysis platform [8] for the C language
(specifically, the C99 ISO standard [11]). It follows a modular design, and numer-
ous plugins provide various types of analyses. One of these plugins is WP [3],
with which deductive verification (based on Weakest Preconditions) can be per-
formed. Frama-C has its own specification language, called ANSI/ISO C Spec-
ification Language (ACSL) [2]. ACSL specifications are written as annotations
directly in the source code, as C comments starting with an @ character. A com-
monly used construct is the function contract, which specifies the behaviour of a
function and is annotated in the source code. In Fig. 2, an example of an ACSL
function contract for convert temp is shown. The requires clause specifies the
pre-condition, which is an assertion that must be fulfilled by callers before call-
ing the function. In this case, the original temperature must be at least 0, which
is the lowest possible temperature in Kelvin. The ensures clause specifies the
post-condition, an assertion that should hold after executing the function. Here
it specifies that the return value will be the converted temperature. The assigns

Deductive Verification Based Abstraction 13

clause specifies the frame condition, i.e., what memory locations may have their
values changed during execution. In this case only local variables are updated, so
the special keyword \nothing is used to let callers know that no global memory is
changed. ACSL also support so-called ghost variables and code. Ghost variables
are similar to regular variables, except they are only visible in specifications,
much like logical variables in standard Hoare logic [10]. Ghost statements, such
as ghost variable declarations, are preceded by the ghost keyword.

If we take the view of an ACSL contract as separated from the function it
specifies, and denote it by C = (P,Q,L), where P is the pre-condition, Q the
post-condition, and L all the mutable memory locations per the frame condition,
one can give it a denotational semantics as follows:

[[C]] def= {(s, s′) | ∀I. (s |=I P ⇒ s′ |=I Q) ∧ ∀l �∈ L. s′(l) = s(l)} (1)

where I ranges over the possible interpretations of logical variables. This is in
line with the standard definition of a function satisfying an ACSL contract [2].

4 Model Checking and TLA

This section describes the TLA framework, and how to abstract (deductively
verified) contracts into TLA actions, for model checking of programs against
temporal properties.

4.1 The TLA Framework

The Temporal Logic of Actions (TLA) is a temporal logic for specifying and rea-
soning about concurrent systems. TLA defines systems and system behaviours
using the temporal operators � (always) and ♦ (future) over actions as elemen-
tary formulas. Below, we summarise the concepts of TLA required for under-
standing this paper. The formalisation is based on Lamport [12], but adjusted
for better integration with our abstract contract theory presented in Sect. 5.1.

Actions. In TLA, an action is a predicate representing transitions between two
sets of states. Following the terminology of [12], we say that an action is a
predicate over primed and non-primed flexible variables and rigid variables. From
a programming perspective, rigid variables act as constants and flexible variables
as program variables. Furthermore, a non-primed flexible variable x represents
the value of x in the state we are transitioning from, while a primed variable x′

represents the value in the state we are transitioning to. Here, we consider states
to be mappings from flexible variables to values, and use State to denote the set
of all states. For example, the action x′ > x specifies a transition between any
two states s and t such that t(x) > s(x). Semantically, actions are defined, for a
given interpretation over rigid variables, as a binary relation on State. In Fig. 3,
we illustrate, using some example operators, how actions are defined formally,
where I now ranges over all interpretations of rigid variables.

14 J. Amilon et al.

Let A, A1 and A2 be actions, s and t states, v a flexible variable, N a rigid variable
(constant), e1 and e2 integer expressions over flexible and rigid variables. Then,
the semantics of a TLA action, denoted [[A]]I for a given interpretation I, can
be defined as a binary relation on State, using the auxiliary function eval for
evaluating expressions, as follows:

1. [[A1 ∧ A2]]I
def= [[A1]]I ∩ [[A2]]I

[[¬A]]I
def= (State × State)\ [[A]]I

[[e1 ≥ e2]]I
def= {(s, t) | eval(s, t, I, e1) ≥ eval(s, t, I, e2)}

2. eval(s, t, I, e1 + e2)
def= eval(s, t, I, e1) + eval(s, t, I, e2)

eval(s, t, I, v) def= s(v)
eval(s, t, I, v′) def= t(v)
eval(s, t, I, N) def= I(N)

Fig. 3. The semantics of actions in TLA

Temporal Formulas. TLA can be lifted to a temporal logic by including the LTL
operators � and ♦. Formally, we first lift the domain of actions from State ×
State to Stateω (the set of infinite traces), denoted [[A]]ωI , as follows:

[[A]]ωI
def= {〈σ1σ2 . . .〉 | (σ1, σ2) ∈ [[A]]I}

That is, an action is defined to hold over an infinite trace if it holds when
evaluated over the first two states of the trace. With this, we can now treat
actions as temporal formulas, and can define the semantics of the temporal
operators � and ♦ as usual. Let T be a temporal formula, then:

[[�T]]ωI
def= {σω = 〈σ1, σ2, . . .〉 | ∀n ∈ N. 〈σn, σn+1, . . .〉 ∈ [[T]]ωI}

[[♦T]]ωI
def= {σω = 〈σ1, σ2, . . .〉 | ∃n ∈ N. 〈σn, σn+1, . . .〉 ∈ [[T]]ωI}

Modelling Programs in TLA. A program is modelled from a triple (Init ,M, F),
where Init specifies the constraints on the initial state, M the next-state relation
describing possible state-transitions in the program, and F defines some fairness
constraints. From such a triple, a program is defined by a formula:

Φ
def= Init ∧ �[M]vars ∧ F,

where vars are the program variables in M and [M]vars is syntactic sugar for
M ∨ vars ′ = vars. This allows “stuttering” steps between (identical) states,
which can be useful (in particular) when specifying concurrent systems.

As a simple example, let M = (x < 100 → x′ = x + 1) ∧ (x ≥ 100 → x′ = 0)
and consider the following TLA formula specifying a program that increments
the variable x from 0 to 100, and then wraps around to start from 0 again:

Deductive Verification Based Abstraction 15

x = 0 ∧ �[M]〈x〉 ∧ �♦〈M〉〈x〉 (2)

The expression 〈M〉x is syntactic sugar for M ∧ x′ �= x; thus, the fairness
condition simply states that x must always eventually be incremented.

Verifying Temporal Properties (Model Checking). TLA also allows for specifying
temporal properties, against which programs can be verified. Since both pro-
grams and properties are defined in TLA, verification amounts to showing that
the denotation of the temporal property subsumes the denotation of the pro-
gram: given a temporal property T and an interpretation I, we say that a TLA
program Φ satisfies T over I iff [[Φ]]ωI ⊆ [[T]]ωI . For example, let Φ be the exam-
ple program in (2) and T be the formula �(x ≥ 0). Then, Φ satisfies T since
σω ∈ [[Φ]] ⇒ σω ∈ [[T]], thus [[Φ]]ωI ⊆ [[T]]ωI . In practice, one applies the model
checker TLC (see below) to verify that the subset relation between a program Φ
and a temporal property T holds.

TLA+ and TLC. TLA+ [13] is a concrete language that implements the TLA
framework and allows for specifying models of computer programs. The syntax
of TLA+ is intended to resemble mathematical notation: for example, “/\” and
“\/” denote ∧ and ∨, respectively. TLC [21] is an explicit-state model checker,
which can be used to model check TLA+ specifications for both safety and
liveness properties (which are also specified in TLA+). An example of a TLA+

is shown in Fig. 4. The specification is a translation of the temperature conversion
program in Fig. 2 (see Sect. 4.2 for a further description of the translation of the
program into the TLA+ specification).

4.2 Translating Code and Contracts into TLA

For contracts, the translation is performed by converting the contract into an
action equivalent to the denotation of the contract. Since both contracts and
actions are evaluated over State × State, we can convert the contract into a
TLA action by taking its denotation. That is, let Ac denote the action obtained
from translating a contract C = (P,Q,L). We then define:

AC def= ∀I. (P ⇒ Q) ∧ ∀l �∈ L. l′ = l

The so-defined translation is semantics-preserving, since the definition of the
action AC is equivalent to the definition of the denotation of C.

For the translation of C code into TLA, we do not define a concrete trans-
lation function here. Instead, we rely on the C2TLA+ [15] plugin for Frama-C,
which automatically translates a program into a TLA+ specification. C2TLA+
translates a given C program into TLA+ by defining, for each statement in the
code, an action corresponding to that statement. The control flow of the pro-
gram is translated by defining a variable in the TLA+ model representing the
call stack, program counter, frame pointers, and (global and local) memory. The

16 J. Amilon et al.

control flow is then simulated in the model using the program counter and call
stack to ensure that, in every reachable state, only one action (statement) is
feasible (can be executed).

1 -----------------------MODULE Temperature ------------------------------------
2 EXTENDS Integers
3

4 VARIABLES in_kelvin , out_celsius , k, c, result , pc
5 vars == <<in_kelvin ,out_celsius , k, c, result , pc >>
6

7 Init == out_celsius = 0 /\ in_kelvin = 273 /\
8 /\ c = 0 /\ k = 273 /\ result = 0 /\ pc = 1
9

10 convert_temp(_k) == (_k >= 0) => (result ' = (_k - 273))
11 /\ UNCHANGED(<<in_kelvin , out_celsius , k, c>>)
12

13 M == /\ (pc = 1 /\ in_kelvin ' \in 263..283 /\ pc' = 2
14 /\ UNCHANGED(<<out_celsius , k, c, result >>))
15 \/ (pc = 2 /\ k' = in_kelvin /\ pc' = 3
16 /\ UNCHANGED(<<in_kelvin , out_celsius , c, result >>))
17 \/ (pc = 3 /\ convert_temp(k) /\ pc' = 4)
18 \/ (pc = 4 /\ out_celsius ' = c /\ pc' = 1
19 /\ UNCHANGED(<<in_kelvin , k, c, result >>))
20

21 Spec == Init /\ [][M]_vars /\ ([]<> <<M>>_vars)
22 ===

Fig. 4. Translation of the temperature conversion program into TLA+

Example. Consider again the temperature conversion program in Fig. 2. In Fig. 4,
we show a TLA+ specification created by translating the code in the main
function and the contract in the program into TLA+ (following the approach
described in Sect. 2). In the model, the control flow of the original C program
is simulated using the pc (program counter) variable. Note also that, for each
action, we are required to specify variables that are not updated using the built-
in UNCHANGED predicate. Here, both the program code and the contract have been
translated manually into TLA+. In Sect. 6, we provide more details regarding
how to apply the approach and how the C2TLA+ tool can be used to automate
the translation of program code into TLA+. Using the model checker TLC, it is
possible to verify temporal properties for the specification in Fig. 4. For exam-
ple, TLC verifies that the specification satisfies the following temporal property
stating that if the temperature is always above 273 K, then it will also always
be above 0◦ C:

�(in kelvin ≥ 273) ⇒ �(out celsius ≥ 0) (3)

5 Contracts as a Unifying Theory

In this section, we introduce our abstract contract theory and present our work in
the setting of this theory. In doing so, we provide a strong theoretical foundation
for our work and show that the methodology follows established principles in
contract-based design.

Deductive Verification Based Abstraction 17

5.1 An Abstract Contract Theory

In previous work, we proposed an abstract contract theory [14], which supports
the Design-by-Contract methodology developed and advocated by Meyer in [16].
Our theory instantiates the contract meta-theory of Benveniste et al. [5], and
thus satisfies several properties considered crucial in system design methodolo-
gies, such as independent implementation, and reuse, of components. The con-
tract theory is developed at the semantic level, and can be implemented by
means of concrete languages for writing program components and contracts.

As the basic unit of behaviour, we take the abstract notion of a run, rep-
resenting a single execution of a system (or part thereof), and let Run denote
the set of all runs. In a concrete setting, an example of a run could be an ele-
ment of State×State, i.e., a pair of states constituting a possible pre-state and
post-state of a procedure call. We focus on procedural, sequential programming
languages, and assume some finite universe of procedure names P. For a given
set of procedure names P ⊆ P, a procedure environment EnvP = P → 2Run is a
mapping from procedure names to their possible runs. Let Env def=

⋃
P⊆P EnvP .

We define a partial order on procedure environments as follows. For any two pro-
cedure environments ρ ∈ EnvP and ρ′ ∈ EnvP ′ , we have ρ � ρ′ iff P ⊆ P ′ and
∀p ∈ P.ρ(p) ⊆ ρ′(p). The partial order (Env,�) forms a complete lattice, since
both a greatest lower bound (glb), and a least upper bound (lub), exists for every
subset of Env. The glb operation on environments is denoted as usual by �, and
the lub operation by �.

To formally define components and contracts, we first equip both notions
with an interface I = (P−, P+), where P− and P+ are disjoint subsets of P.
P+ is the set of procedures (to be) implemented in a component, and P− are
the procedures called by it, but not implemented within it. Our contract theory
is summarised in Fig. 5. We use μx. f(x) to denote the least fixed-point of the
function f (when it exists), ρ�

P to denote the (top) environment mapping every
procedure in P to Run, and for any mapping h : A → B and set A′ ⊆ A, we
use h|A′ to denote the restriction of h on the sub-domain A′.

Instantiation of the Theory. In our contract theory, we have deliberately left the
domain of Run unspecified. This allows the domain to be instantiated as needed
by the concrete application domain, and even to combine multiple domains. Cer-
tain constraints do need to be fulfilled, though. For the theory to be well-defined
(e.g., that the involved fixed-points exist), all base components used to build
larger components must be monotonic mappings (monotonicity of composed
components is then ensured by the composition operator).

In our previous work [14], we argued for the importance of separating con-
tracts from their implementation, and gave contracts a denotational semantics,
defining the denotation of a contract C in a way that guarantees that the equa-
tion:

[[C]] =
⋃

S |= C

[[S]] (4)

18 J. Amilon et al.

1. A component m with interface Im = (P −
m , P+

m) is a monotonic mapping of type
m : Env

P−
m

Env
P+
m

.
2. Two components m1 and m2 are composable iff P+

m1 ∩ P+
m2 = ∅.

3. Given two composable components m1 : Env
P−
m1

Env
P+
m1

and
m2 : Env

P−
m2

Env
P+
m2

, their composition is defined as a mapping
m1 × m2 : Env

P−
m1×m2

Env
P+
m1×m2

such that:

P+
m1×m2

def= P+
m1 ∪ P+

m2 P −
m1×m2

def= (P −
m1 ∪ P −

m2) \ (P+
m1 ∪ P+

m2)

m1 × m2
def= λρ−

m1×m2 ∈ Env
P−
m1×m2

. μρ. χ+
m1×m2(ρ)

where χ+
m1×m2

: Env
P+
m1×m2

Env
P+
m1×m2

is defined, in the context of a

given ρ−
m1×m2

∈ Env
P−
m1×m2

, as follows. Let ρ+
m1×m2

∈ Env
P+
m1×m2

, and let

ρ−
m1 ∈ Env

P−
m1

be the environment defined by:

ρ−
m1(p) def=

{
ρ+
m1×m2

(p) if p ∈ P −
m1 ∩ P+

m2

ρ−
m1×m2

(p) if p ∈ P −
m1 \ P+

m2

and let ρ−
m2 ∈ Env

P−
m2

be defined symmetrically. We then define:

χ+
m1×m2(ρ

+
m1×m2)(p) def=

{
m1(ρ−

m1)(p) if p ∈ P+
m1

m2(ρ−
m2)(p) if p ∈ P+

m2

4. A denotational contract c with interface Ic = (P −
c , P+

c) is a pair (ρ−
c , ρ+

c),
where ρ−

c ∈ Env
P−
c

and ρ+
c ∈ Env

P+
c

.
5. A component m with interface Im = (P −

m , P+
m) is an implementation for, or

implements, a contract c = (ρ−
c , ρ+

c) with interface Ic = (P −
c , P+

c), denoted
m |= c, iff P −

c ⊆ P −
m , P+

m ⊆ P+
c , and m(ρ−

c � ρ�
P−
m\P−

c
) 	 ρ+

c .
6. A component m is an environment for contract c iff, for any implementation m′

of c, m and m′ are composable, and
∀ρ−

m×m′ ∈ Env
P−
m×m′

. (m × m′)(ρ−
m×m′)|P+

c
	 ρ+

c .

7. A contract c refines contract c′, denoted c � c′, iff ρ−
c′ 	 ρ−

c and ρ+
c 	 ρ+

c′ .
8. The conjunction of two contracts c1 = (ρ−

c1 , ρ+
c1) and c2 = (ρ−

c2 , ρ+
c2) is the

contract c1 ∧ c2
def= (ρ−

c1 � ρ−
c2 , ρ+

c1 � ρ+
c2).

9. Two contracts c1 = (ρ−
c1 , ρ+

c1) and c2 = (ρ−
c2 , ρ+

c2) with interfaces Ic1 =
(P −

c1 , P+
c1) and Ic2 = (P −

c2 , P+
c2) are composable if: (i) P+

c1 ∩ P+
c2 = ∅,

(ii) ∀p ∈ P −
c1 ∩ P+

c2 . ρ+
c2(p) ⊆ ρ−

c1(p), and (iii) ∀p ∈ P −
c2 ∩ P+

c1 . ρ+
c1(p) ⊆ ρ−

c2(p).
10. The composition of two composable contracts c1 = (ρ−

c1 , ρ+
c1) and c2 =

(ρ−
c2 , ρ+

c2) with interfaces Ic1 = (P −
c1 , P+

c1) and Ic2 = (P −
c2 , P+

c2) is the contract

c1 ⊗ c2
def= (ρ−

c1⊗c2
, ρ+

c1 � ρ+
c2), where:

ρ−
c1⊗c2

def= (ρ−
c1 � ρ−

c2)
∣
(P−

c1∪P−
c2)\(P+

c1∪P+
c2)

Fig. 5. Our abstract contract theory

Deductive Verification Based Abstraction 19

is fulfilled, i.e., that the denotation of a contract is the union of the denotations
of all programs that satisfies it. The rationale for this is that we desire programs
to satisfy their contracts exactly when [[S]] ⊆ [[C]]. Procedure-modular verifica-
tion is then facilitated by considering a special contract environment ρc induced
by the above equality: let every procedure p be equipped with a contract Cp, we

then define ρc(p) def= [[Cp]]. Now, programs are given a contract-relative seman-
tics [[S]]cr , where the denotations of procedure calls is defined by the denotations
of their contracts instead of their bodies. This gives rise to a separate satisfaction
relation Sp |=cr Cp, based on the contract-relative semantics.

For each domain used to instantiate the contract theory, concrete syntax
for implementing and specifying programs is needed. Then, each instantiation
requires abstraction functions, which take the concrete syntax and produce com-
ponents and contracts in the abstract contract theory, as well as a contract-
relative satisfaction relation |=cr . The abstraction to components and contracts
must be such that the following properties hold:

1. For any two disjoint sets of functions P+
1 and P+

2 , abstracted individually
into components m1 and m2, respectively, and P+

1 ∪P+
2 abstracted into com-

ponent m, we have m1 × m2 = m.
2. For any procedure p with procedure contract Cp, abstracted into compo-

nent mp with contract cp, we have Sp |=cr Cp whenever mp |= cp.

Contracts in Our Approach. In our concrete setting, when working with compo-
nents in the domain State × State, contracts and the contract-relative seman-
tics of statements will also be over this domain (by design of the approach, not
because of theoretical restrictions). However, when in the domain Stateω, we
allow certain procedures (which we assume are marked in some way) to have
contracts in the domain State×State, by defining the contract-relative seman-
tics for contracts in both domains. This allows us to verify some components
in the setting of pre- and post-states, and then reuse their contracts to verify
temporal properties in the domain of infinite traces. Since we are adhering to the
contract theory, which follows the axioms of the meta-theory [5], we ensure that
the desired properties for proper design-chain management hold. As an example,
recall the temperature conversion program in Fig. 2. For this program, we con-
sider the main function to be defined in the domain Stateω, while the contract
for the conversion function is in State × State.

5.2 Deductive Verification in the Abstract Contract Theory

In the following paragraph, we provide some intuition for the instantiation of the
contract theory with a concrete semantics. We assume that every procedure p
is associated with a body Sp. The semantics of statements is defined relative an
interface (P−, P+) and environments ρ− ∈ EnvP − and ρ+ ∈ EnvP+ , denoted

[[S]]ρ
+

ρ− . Specifically, the semantics of a function call is then defined as ρ+(p) when
p ∈ P+, and as ρ−(p) when p ∈ P−. Given ρ− ∈ EnvP − , we define the function

20 J. Amilon et al.

ξ : EnvP+ → EnvP+ by ξ(ρ+)(p) def= [[Sp]]
ρ+

ρ− and consider its least fixed point ρ+
0 .

This is used as the basis of a standard denotation [[S]]ρ−
def= [[S]]ρ

+
0

ρ− . Using this,

we can define the contract-relative semantics of statements as [[S]]cr def= [[S]]ρc
.

Details of this formalisation for a simple procedural language can be found in [9].
In this setting, we can now define how to abstract programs and contracts into

components and denotational contracts, respectively. For any set of procedures
P+, calling procedures P ′, we define the component m : EnvP −

m
→ EnvP+

m
,

where P−
m

def= P ′ \ P+
m and P+

m
def= P+, so that ∀ρ−

m ∈ EnvP −
m

. ∀p ∈
P+

m . m(ρ−
m)(p) def= [[Sp]]ρ−

m
. For a procedure p with an ACSL contract Cp, call-

ing other procedures P−, we define the denotational contract cp = (ρ−
cp , ρ

+
cp)

with interface P+
cp

def= {p} and P−
cp

def= P−, so that ρ+
cp(p) def= ρc(p), and

∀p′ ∈ P−. ρ−
cp(p

′) = ρc(p′).
The full semantics of the concrete languages, C and ACSL, is implicitly

defined by Frama-C and will not be expanded upon here. Note that, per the
semantics of an ACSL function contract as given in (1), which is the only ACSL
construct of concern in the present paper, a function can be verified against its
contract, and relative to the contracts of other functions, only if its denotation is
subsumed by that of its contract. This is in accordance with condition (4). Thus,
the contract-relative satisfaction relation |=cr is such that the two properties of
abstraction discussed in Sect. 5.1 hold.

5.3 Procedure-Modular Verification with TLA

Verification in the two domains can now be combined, by abstracting the con-
tracts of the already-verified contracts into actions. This can also be viewed as a
form of procedure-modular verification, where temporal properties are checked
for a larger program, relative the ACSL contracts of some of the called proce-
dures. To this end, we take the view that a procedure environment ρ ∈ EnvP

in the domain State × State as discussed in Sect. 3, maps procedure names to
actions. We let Run = (State× State) ∪ Stateω, and as previously explained,
assume that certain procedures have been selected to be considered actions. For
a TLA program S with interface (P−, P+), we can define the denotation [[S]]ρc

where, for some p ∈ P−, ρc(p) ∈ EnvP − are actions, or denotations of type
State × State of the called procedure. In this way we get a contract-relative
semantics where programs produce infinite state sequences, but depend partially
on procedures producing actions, or state pairs. We can then abstract the con-
crete languages in the same way as in Sect. 5.2.

Note that, while the concrete contract languages are different in the domains
(in one case it is ACSL, and in the other TLA+), the concrete language for
defining components is the same, namely C, meaning that the abstraction from
procedures to components is in reality performed in two steps, first from C code
and ACSL contracts to TLA+ specifications and actions, and from there to
components. We use TLC to verify programs. From a denotational viewpoint,

Deductive Verification Based Abstraction 21

successful verification in TLC means that there is a subset relation between
the denotation of the program and the specification. Hence, the two required
properties listed in Sect. 5.1 are fulfilled.

Considering again the example from Fig. 2, the component mmain resulting
from abstracting the main function would map denotations for the called function
convert temp in the domain State×State to denotations of main in the domain
Stateω. The exact behaviour is obtained from the body of main translated
to TLA, and parameterised on the behaviour of convert temp. Verification is
performed by substituting the contract of convert temp for its behaviour, on
the concrete level, which is shown in Fig. 4.

5.4 Contract Based System Design

As we have previously shown [14], our contract theory is an instance of the
meta-theory of Benveniste et al. [5], thus establishing a number of properties
desired of system design methodologies, such as independent implementation
and verification of components. In contract-based design, a system is typically
designed in a top-down manner, starting from the desired high-level properties
that the system must satisfy, which are then decomposed into contracts for the
(sub-)components. The components are then implemented independently, relying
only on the contracts of other components.

By casting the approach proposed in the present paper, we have established
that it is compatible with the principles of contract-based design. In particular,
ensuring correctness of a system as a whole reduces to showing, one the one hand,
that the composition of the contracts of the sub-components of the system refines
the top-level contracts, and, on the other hand, that the concrete procedures
satisfy their concrete specifications, according to the contract-relative semantics.

In the example from Fig. 2, we would typically have a top-level contract c
specifying the temporal behaviour of the system, without any required proce-
dures. This contract would then be decomposed into contracts cconv and cmain

for the two procedures, respectively. The former would be defined concretely
in ACSL, expressing the possible state pairs resulting from conversion, without
needing any assumptions on other procedures. The latter would be defined by
a concrete TLA formula, with assumptions on the actions produced by the con-
version function. By showing that cconv ⊗ cmain � c, and that the two concrete
implementations satisfy their contracts according to the methodology outlined
in the preceding sections, it is, by the properties of the contract theory, then
established that mconv ⊗ mmain |= c.

6 Preliminary Evaluation

To evaluate our approach, we conducted two experiments, one using a simple toy
program simulating some file operation, and the second one using a simplified
software module taken from the automotive industry. Both experiments were
carried out on a Dell Latitude 7420 using Ubuntu 20.04 running in VirtualBox
with 8 GB RAM and on Intel i5 CPU (2 cores).

22 J. Amilon et al.

1 #define OPEN 1
2 #define CLOSED 0
3 #define N 32
4

5 int file_status;
6 int input;
7

8 /*@ ensures -(N*2) <= input <= N*2; */
9 void havoc_input (){}

10

11 /*@ assigns \nothing; */
12 int read_file(int i){
13 return i; // Dummy statement
14 }
15

16 /*@ assigns \nothing; */
17 void write_file(int i) {
18 //pass
19 }
20

21 /*@
22 requires 0 <= n < N && file_status == OPEN;
23 ensures file_status == CLOSED;
24 assigns file_status;
25 */
26 void file_operation(int n) {
27 int i; i = 0;
28 int tmp; tmp = 0;
29 int sum; sum = 0;
30 if (file_status == OPEN) {
31 /*@ loop assigns i, tmp , sum; */
32 while (i < n) {
33 tmp = read_file(i);
34 sum += tmp;
35 i += 1;
36 }
37 write_file(sum);
38 file_status = CLOSED;
39 }
40 }
41

42 void main() {
43 while (1) {
44 havoc_input ();
45 if (0 < input && input < N) {
46 file_status = OPEN;
47 file_operation(input);
48 }
49 }
50 }

Fig. 6. Program imitating behaviours including reading and writing to a file

6.1 Simple File Open-Close Example

The first test case consists of a simple example that simulates a program per-
forming file operations. The program, which is shown in Fig. 6, repeatedly reads
from the file, performs some operation and writes to the file. For this program,
the temporal property we are interested in verifying (using model checking) is
that, whenever the file is open, it will eventually be closed. This property is
captured by the following TLA formula:

� (file status = OPEN ⇒ ♦ (file status = CLOSED)) (5)

Deductive Verification Based Abstraction 23

To evaluate our method, we created two TLA+ models: one modelled directly
from the program code, and a second abstract model that was created following
the approach outlined in Sect. 2. After creating the two models, we compared
the size of the state space of the models, and the time required for verifying
property (5).

Creating the Models. The first model was translated directly from the C pro-
gram code using the C2TLA+ tool. Due to limitations in C2TLA+, some man-
ual overhead was required to achieve a correct specification. We also added a
fairness constraint to the model (since this is not performed automatically by
C2TLA+), stating that the program should never get stuck (i.e., “stutter”) indef-
initely. Furthermore, we made some abstractions regarding the domain of the
variables: input is given the domain [−2 ∗ N,N] and file status the domain
[0,1]. Moreover, in the main function, a call is made to a havoc input function
in each iteration of the loop, which represents non-deterministic assignment of
the input variable. In a real setting, input is expected to be assigned by some
external component between each iteration of the loop. In the TLA+ model,
the havoc effect is achieved by manually inserting an action that simply assigns
input non-deterministically within its domain.

The second model is a more abstract version of the first model, achieved by
modelling the file operation function from a contract instead of the program
code. The contract used to model file operation was written in ACSL and
is shown as an annotation above the function in Fig. 6. Note that, since the
temporal property we are interested in verifying concerns only the open/close
property of the file, i.e., the value of the file status variable, the contract
only specifies the behaviour of this variable. Using the WP plugin of Frama-C,
we verified that file operation satisfies its contract. Thereafter, we translated
the contract into a TLA action, following the method in Sect. 4.2; that is, it was
translated into the action:

(0 <= n ∧ n < N ∧ file status = OPEN) ⇒ (file status = CLOSED)

Lastly, we completed the creation of the second abstract model by replacing the
parts of the TLA+ model corresponding to file operation with the translation
of the contract. To properly integrate the contract action into the model, we
also added a conjunct to handle appropriately the program counters and stack
registers of the model.

Table 1. Results of model checking two models for property (5)

Verified Total # of states # of unique states Verification time

Full model Yes 832 615 45 574 ∼51 s

Abstract model Yes 26 602 841 ∼5 s

Model Checking. Model checking was performed using TLC on both the full
model, created directly from the program code and on the second abstract model

24 J. Amilon et al.

including the contract action for file operation. The results of the model
checking are shown in Table 1 and, as expected, the state space of the second
abstract model was significantly smaller than the state space of the full model.
Moreover, verification time decreased from 51 s to 5 s, showing that the smaller
state space, for this example, factored into the time required for verification by
TLC. For a fair comparison of the verification time between the two models,
one should also add the time required by WP for verifying the contract to the
total verification time of the abstract model. However, for this example, the time
required by WP was negligible (0.15 s).

1 int state[NUM_SIGNALS]; // global vehicle state
2 static int primaryCircuitNoFlowTime = 0; // counter
3

4 void steering () {
5 VEHICLE_INFO veh_info;
6 SENSOR_STATE prim_sensor;
7

8 //read
9 get_system_state (& veh_info);

10

11 // evaluate
12 eval_prim_sensor_state (&veh_info , &prim_sensor);
13 secondary_steering (&veh_info , &prim_sensor);
14

15 //write
16 write(SECONDARY_CIRCUIT_HANDLES_STEERING , veh_info.secondCircHandlesStee);
17 write(ELECTRIC_MOTOR_ACTIVATED , veh_info.electricMotorAct);
18 }
19

20

21 // scheduler
22 void main() {
23 while (1) {
24 steering ();
25 havoc_inputs ();
26 }
27 }

Fig. 7. The steering function from the steering module together with the main function
which simulates a scheduler

6.2 Simplified Industrial Example

As a second example, we use a C program based on a real software module
taken from the automotive industry. The structure of, and C constructs used
in, the case study program follows that of the real module, but the code have
been rewritten and to some extent simplified, for proprietary reasons and due
to limitations in the current tool-chain. The evaluation method for this example
follows exactly that of the previous example. That is, we first created a full model,
directly from the program code and then created a second model by abstracting
one function using a contract for the function. Then, we model checked both
models for a given property and compared the state spaces and verification
times.

Deductive Verification Based Abstraction 25

Description the Software Module. The software module used in this example
performs a diagnosis of the status of the primary power steering of a vehicle
and, in case of malfunction, activates the secondary (backup) power steering.
A power steering is a device that reduces the manual effort required by the
driver to rotate the steering wheel of the vehicle. The entry-point function of the
module (the steering function) and the scheduler (the main function) of the
simplified version are shown in Fig. 7. The full case study module is roughly 120
lines of code. In a real setting, the scheduler would be some external software
that repeatedly calls several modules in a given order; here, we encoded the
scheduler with the infinite while loop in the main function.

Upon invocation, the steering function first reads the current state of the
vehicle, then calculates if secondary power steering should be activated and,
lastly, writes the result. In a real setting, the reading and writing consist of
communicating with a real-time database but, in our simplified version, this is
simulated by reading and writing to the global array state, which represents the
state of the vehicle. Note that, from the perspective of the steering module, the
state of the vehicle consists of both inputs and outputs. Similar to our previous
example, all (input) variables of the modules are assumed to be assigned by some
external component at any time during program execution, which is represented
with the call to havoc inputs. The module also contains a counter as the global
variable primaryCircuitNoFlowTime, the purpose of which is to remember if
some property holds over several sequential executions. Specifically, the counter
keeps track of the number of sequential iterations (if any) the electric motor of
the vehicle has suffered from hydraulic malfunction.

Creating the Models. As for our first example, the first model is created by using
the C2TLA+ tool, adding a fairness constraint, and abstracting the domains
of certain variables (e.g., variables that are treated as Boolean values in the
C programs are assigned the domain [0, 1]). The havoc statement in the main
function was also treated similarly as in the first example, i.e., by inserting a
TLA action in the model that assigns all input variables non-deterministically
within their respective domains.

The second model was created by first identifying the steering function as
a block of code that we consider as atomic and thus should be specified with an
ACSL contract. It might appear surprising that we consider almost the entire
example program as atomic, but recall that, in a real setting, the steering module
will be only one of several modules called by the scheduler. As a contract for the
steering function, we used an ACSL contract already written in a previous case
study [17]. It should be pointed out that since we re-used a contract originally
written for deductive verification of the module, no additional manual labour
was required for this step in this particular example (and as pointed out above,
we indeed advocate such a way of combing deductive verification with model
checking). Using WP, we verified that steering satisfies the contract. Lastly,
we translated the contract into TLA+ and integrated it into the first model to
create the second abstract model.

26 J. Amilon et al.

Table 2. Results of model checking two models for property (6)

Verified Total # of states # of unique states Verification time

Full model Yes 84 720 46 265 ∼12 s

Abstract model Yes 35 458 4 552 ∼10 s

Model Checking. We model checked the two models, using TLC, against the
following liveness property:

If the electric motor of the engine suffers from hydraulic malfunction,
then the secondary steering should eventually be activated.

In TLA, this property is captured with the formula:

� (hydraulic malfunction ⇒ ♦ secondary steering) (6)

where hydraulic malfunction represents the condition that the electric motor has
suffered from hydraulic malfunction, and secondary steering the condition that
the secondary steering is activated.

The results of model checking the two different models are shown in Table 2.
As seen, verification was successful for both models. Furthermore, we again see
that the state space (number of unique states) was significantly smaller for the
abstract model. However, for this example, we did not observe any significant
difference in the time required for verification (12 s vs 10 s). Moreover, as with the
previous example, one should also consider the time required by WP for verifying
the contract (2.150 s) to the total verification time of the abstract model.

7 Conclusion

In this paper, we proposed an approach of how to combine deductive verification
with model checking in a natural manner, subordinating the former to the latter.
First, deductive verification is used to abstract blocks of code, which can be
considered atomic, into Hoare logic style contracts, in a provably correct manner.
Then, the program model resulting (conceptually) from replacing the code blocks
with their contracts, is model-checked against the temporal properties of interest.
The Temporal Logic of Actions was proposed as a framework for representing the
resulting program models, since both programs and Hoare logic contracts can
be naturally expressed in TLA. We gave a semantic foundation of our modular
approach, in terms of an abstract contract theory we developed earlier. Finally,
we illustrated our approach on two example programs, using Frama-C for the
deductive verification of the selected code blocks, and the TLA+ Toolbox (with
TLC) for representing the abstract program models and for their model checking.

Our preliminary experiments are far too few as yet to allow any definitive
conclusions to be drawn. Both examples in Sect. 6 showed that our approach

Deductive Verification Based Abstraction 27

led to a significant reduction in the size of the state space of the TLA+ model.
Furthermore, the first example indicates that the reduction of the state space
may significantly reduce verification time. However, in the second example, no
speedup in verification time was observed. A key difference in the two examples
is that the contract used in the first example was an incomplete specification (in
the sense that it does not describe fully the indented behaviour of the program),
while the contract used in the second example was a complete one (it models fully
the intended behaviour of the function). We are as of yet not sure as to why, for
the second example, the difference in verification time was not proportionate to
the difference in the size of the state space, and it remains to be shown that our
approach can improve scalability also when relying on complete specifications
for the abstraction.

Another aspect is that the performance of our approach may have been influ-
enced by the particular choice of tools. In particular, the choice of the C2TLA+
plugin and the TLC model checker may not have been optimal as tool support
for our approach. One hypothesis is that a symbolic model checker may be a
better choice.

Future work includes performing a proper evaluation of our proposed app-
roach, both for complete and incomplete specifications, and to complete and
improve the tool chain. Another question that needs investigation is how to
adequately choose the granularity of the code blocks to be considered as atomic
actions. Lastly, better support for showing decomposition and refinement of con-
tracts is desired, for instance by further developing the contract theory in that
direction.

References

1. Alshnakat, A., Gurov, D., Lidström, C., Rümmer, P.: Constraint-based contract
inference for deductive verification. In: Ahrendt, W., Beckert, B., Bubel, R.,
Hähnle, R., Ulbrich, M. (eds.) Deductive Software Verification: Future Perspec-
tives. LNCS, vol. 12345, pp. 149–176. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64354-6 6

2. Baudin, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI/ISO C Specification Language. https://frama-c.com/acsl.html

3. Baudin, P., Bobot, F., Correnson, L., Dargaye, Z., Blanchard, A.: WP Plug-in
Manual - Frama-C 23.1 (Vanadium). CEA LIST. http://frama-c.com/download/
frama-c-wp-manual.pdf

4. Beckert, B., Kirsten, M., Klamroth, J., Ulbrich, M.: Modular verification of JML
contracts using bounded model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA
2020. LNCS, vol. 12476, pp. 60–80. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-61362-4 4

5. Benveniste, A., et al.: Contracts for System Design, vol. 12. Now Publishers, Nor-
well (2018). https://doi.org/10.1561/1000000053

6. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 10̂20 states and beyond. In: Proceedings of Logic in Computer Science
(LICS 1990), pp. 428–439. IEEE Computer Society (1990). https://doi.org/10.
1109/LICS.1990.113767

https://doi.org/10.1007/978-3-030-64354-6_6
https://doi.org/10.1007/978-3-030-64354-6_6
https://frama-c.com/acsl.html
http://frama-c.com/download/frama-c-wp-manual.pdf
http://frama-c.com/download/frama-c-wp-manual.pdf
https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.1561/1000000053
https://doi.org/10.1109/LICS.1990.113767
https://doi.org/10.1109/LICS.1990.113767

28 J. Amilon et al.

7. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The Kind 2 model checker.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 510–517.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 29

8. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33826-7 16

9. Gurov, D., Westman, J.: A hoare logic contract theory: an exercise in denotational
semantics. In: Müller, P., Schaefer, I. (eds.) Principled Software Development, pp.
119–127. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98047-8 8

10. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259

11. ISO: ISO C standard 1999. Technical report, ISO/IEC 9899:1999 draft (1999).
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf

12. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.
16(3), 872–923 (1994). https://doi.org/10.1145/177492.177726

13. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hard-
ware and Software Engineers. Addison-Wesley, Boston (2002). https://research.
microsoft.com/users/lamport/tla/book.html

14. Lidström, C., Gurov, D.: An abstract contract theory for programs with proce-
dures. In: Guerra, E., Stoelinga, M. (eds.) FASE 2021. LNCS, vol. 12649, pp.
152–171. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71500-7 8

15. Methni, A., Lemerre, M., Ben Hedia, B., Haddad, S., Barkaoui, K.: Specifying and
verifying concurrent C programs with TLA+. In: Artho, C., Ölveczky, P.C. (eds.)
FTSCS 2014. CCIS, vol. 476, pp. 206–222. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-17581-2 14

16. Meyer, B.: Applying “design by contract”. Computer 25(10), 40–51 (1992).
https://doi.org/10.1109/2.161279

17. Nyberg, M., Gurov, D., Lidström, C., Rasmusson, A., Westman, J.: Formal veri-
fication in automotive industry: enablers and obstacles. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 139–158. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03427-6 14

18. Oortwijn, W., Gurov, D., Huisman, M.: Practical abstractions for automated ver-
ification of shared-memory concurrency. In: Beyer, D., Zufferey, D. (eds.) VMCAI
2020. LNCS, vol. 11990, pp. 401–425. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-39322-9 19

19. Soleimanifard, S., Gurov, D.: Algorithmic verification of procedural programs in
the presence of code variability. Sci. Comput. Program. 127, 76–102 (2016)

20. Sun, J., Liu, Y., Cheng, B.: Model checking a model checker: a code contract com-
bined approach. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp.
518–533. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16901-
4 34

21. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer, Hei-
delberg (1999). https://doi.org/10.1007/3-540-48153-2 6

https://doi.org/10.1007/978-3-319-41540-6_29
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-319-98047-8_8
https://doi.org/10.1145/363235.363259
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
https://doi.org/10.1145/177492.177726
https://research.microsoft.com/users/lamport/tla/book.html
https://research.microsoft.com/users/lamport/tla/book.html
https://doi.org/10.1007/978-3-030-71500-7_8
https://doi.org/10.1007/978-3-319-17581-2_14
https://doi.org/10.1007/978-3-319-17581-2_14
https://doi.org/10.1109/2.161279
https://doi.org/10.1007/978-3-030-03427-6_14
https://doi.org/10.1007/978-3-030-39322-9_19
https://doi.org/10.1007/978-3-030-39322-9_19
https://doi.org/10.1007/978-3-642-16901-4_34
https://doi.org/10.1007/978-3-642-16901-4_34
https://doi.org/10.1007/3-540-48153-2_6

	Deductive Verification Based Abstraction for Software Model Checking
	1 Introduction
	2 Overview of the Verification Approach
	3 Deductive Verification and Frama-C
	4 Model Checking and TLA
	4.1 The TLA Framework
	4.2 Translating Code and Contracts into TLA

	5 Contracts as a Unifying Theory
	5.1 An Abstract Contract Theory
	5.2 Deductive Verification in the Abstract Contract Theory
	5.3 Procedure-Modular Verification with TLA
	5.4 Contract Based System Design

	6 Preliminary Evaluation
	6.1 Simple File Open-Close Example
	6.2 Simplified Industrial Example

	7 Conclusion
	References

