
Full Sensitivity and Test Generation for Multiple-Valued

Logic Circuits

E. V. Dubrova, D. B. Gurov, J. C. Muzio

Department of Computer Science

University of Victoria

Victoria, B.C., Canada, V8W 3P6

Abstract

The notion of full sensitivity in a multiple-valued

logic (MVL) circuit is introduced. A formalization of

this notion using a specially de�ned operator, called

mutual exclusion, is given. An expression of full sen-

sitivity in the functional base of Rosser and Turquette

is presented. The usefulness of this functional trans-

formation with respect to test generation for MVL cir-

cuits is investigated.

1 Introduction

MVL circuits are hoped to solve several technolog-

ical problems such as pin limitation and interconnec-

tion di�culties in VLSI circuit design. Several meth-

ods of ensuring reliability, and procedures for testing

these circuits have been already presented. As in bi-

nary circuits, the single stuck-at fault model is the

one most often investigated. The boolean di�eren-

tial calculus, which is used for the test generation of

two-valued circuits, was appropriately generalized to

MVL, although in di�erent ways [2] [3] [5]. It was

also observed, that the structure of value changes in

the circuits under test has not been fully exploited, so

many unnecessary calculations are made during test

generation.

Usually, the task is to derive a minimal (or nearly

minimal) complete test set. One starts with �nding

the complete test set for each fault of interest and

applies a covering algorithm to these sets. Therefore,

a test which is a member of the complete cover most

probably detects many faults. And vice versa | any

input vector detecting many faults has a good chance

to become member of the complete cover. Intuitively,

if there was some method for deriving input vectors

which are tests for many faults, we could use the result

of its application as a good starting point for some of

the existing algorithms.

This paper is concerned with a special case in MVL

circuits, which is particularly appropriate for deriving

tests to detect many faults. This is the case, when

the output of the circuit is made, by the application

of some input vector, fully sensitive to some line l,

i.e. each transition of this line from one logic value

to another causes a change in the output logic value.

For example, in a MVL circuit, consisting of one 2-

input MAX gate only, the output of the gate is fully

sensitive to one of its inputs when 0 is applied to the

other input. Such an input vector will be a test for

all single stuck-at-p faults on line l, where p is a logic

value other than the fault-free one on line l under this

input vector.

In Section 2 the notion of full sensitivity is formal-

ized using a specially de�ned operator, called the mu-

tual exclusion operator. The expression of full sensi-

tivity in the functional base of Rosser and Turquette

[1] and a procedure for its calculation are given in

Section 3. The application of full sensitivity to test

generation for MVL circuits is discussed in Section 4.

2 Mutual exclusion and full sensitivity

The work in this paper is based on a multiple-valued

algebra, de�ned as follows.

De�nition 2.1 A multiple-valued algebra is called an

algebra A = hM ; J;+; � ; 0; (m� 1)i, where

(i) M := f0; 1; :::; (m� 1)g is the totally ordered car-

rier of A;

(ii) J := fJ

0

; J

1

; : : : ; J

m�1

g is a set of literal opera-

tors such that

J

i

x :=

�

m � 1 if x = i

0 otherwise

where x is a multiple-valued variable and i 2 M

is a constant. For convenience, we write J

i

x as

i

x
;

(iii) " + " and " � " are the binary operations MAX

and MIN, respectively;

(iv) 0 and m � 1 are constants of the algebra.

A complement of a multiple-valued variable x is de-

�ned as x

0

:= (m � 1)� x, where "� " is the regular

arithmetic subtraction.

For the de�nition of full sensitivity we need a

new operator, which is decisive, i.e. takes values in

f0; (m� 1)g only, and has the ability of detecting

whether its m arguments are pairwise distinct or not.

We call this operator mutual exclusion. So:

De�nition 2.2 Mutual exclusion is the m-ary oper-

ator de�ned by

mx(x

0

; x

1

; : : : ; x

m�1

) :=

�

m � 1 if x

i

6= x

j

; i 6= j

0 otherwise.

where i; j 2M and x

0

; x

1

; : : : ; x

m�1

2M .

If m = 2, mx(x

0

; x

1

) = x

0

� x

1

, where � denotes

sum modulo 2.

The mutual exclusion operator is extended over

functions as usual. Obviously, this operator is inde-

pendent of the order of its arguments. The literal

operators can be expressed in terms of it as follows:

i

x
= mx(0; : : : ; (i� 1); x; (i+ 1); : : : ; (m� 1)):

Using this operator we can de�ne full sensitivity as

a generalization of the Boolean di�erence.

Let f(x

1

; : : : ; x

n

) denote a multiple-valued logic

function of n variables of type f :M

n

!M . Further

we use the following abbreviations: x := (x

1

; : : : ; x

n

)

and x

k

i

is the vector x with x

i

= k, i.e.

x

k

i

:= (x

1

; : : : ; x

i�1

; k; x

i+1

; : : : ; x

n

);

where k 2 M; i 2 f1; 2; : : : ; ng.

De�nition 2.3 The full sensitivity of f(x) with re-

spect to x

i

is de�ned as

FSf(x)

FSx

i

= mx[f(x

0

i

); f(x

1

i

); : : : ; f(x

m�1

i

)]

where i 2 f1; 2; : : : ; ng.

From the de�nition, it follows that

FSf(x)

FSx

i

does not

depend on x

i

. Further, it is decisive.

If m = 2 then

FSf(x)

FSx

i

= mx[f(x

0

i

); f(x

1

i

)] = f(x

0

i

)� f(x

1

i

);

i.e. full sensitivity reduces to a boolean di�erence.

Example 1

Consider the following 3{valued function of two

variables, given in a map form (Fig.1a). The full sensi-

tivities

FSf(x)

FSx

i

, i 2 f1; 2g, may be found graphically in

accordance with De�nition 2.3 (Fig.1b,c). As shown

on Fig.1b,

FSf(x)

FSx

1

takes value 2 if the appropriate

column of the map contains three di�erent values, i.e.

for x

2

= 0 and x

2

= 1. Similarly on Fig.1c

FSf(x)

FSx

2

takes value 2 if the appropriate row of the map is a

permutation of 0, 1 and 2, i.e. for x

1

= 2.

x
 0 1 2

 2 2 0

2 0 1 2

 0 0 2

x
1

b) = x + x c) = x
FS f(x)

FS x1
22

FS f(x)

FS x2
1

20 1

 0 1 2

0 0 2 0

1 1 0 1

2 2 1 0

x
2x1

a) f(x)

Figure 1: Maps for the function of the Example 1 and

its full sensitivities.

3 Calculation of full sensitivities.

De�nition 2.3 provides an easy way of �nding the

full sensitivity of small logic functions of 2 or 3 vari-

ables. But for larger functions we need some proce-

dure, allowing us to calculate

FSf(x)

FSx

i

algebraically. To

describe such a procedure, we need to express mutual

exclusion and full sensitivity in terms of the operators

in A. Let C be the set of all permutations over M, i.e.

C := f(c

0

; c

1

; : : : ; c

m�1

) j c

i

2M ^ i 2M^

^ mx(c

0

; c

1

; : : : ; c

m�1

) = (m � 1)g:

For example, for m = 3 C := f(0; 1; 2); (0; 2; 1);

(1; 0; 2); (1; 2;0); (2;0;1); (2; 1;0)g.

The number of all permutations over M is m!, i.e.

jCj = m!.

Property 3.1 Let x

0

; x

1

; : : : ; x

m�1

be variables, such

that for i 2M , x

i

assumes any value from M.

mx(x

0

; x

1

; : : : ; x

m�1

) =

X

(c

0

;:::;c

m�1

)2C

c

0

x

0

� : : : �

c

m�1

x

m�1

=

X

(c

0

;:::;c

m�1

)2C

Y

i2M

c

i

x

i

Property 3.1 can easily be proved using De�nition 2.2

and the de�nition of literals. 2

For m = 3

mx(x

0

; x

1

; x

2

) =

0

x

0

1

x

1

2

x

2

+

0

x

0

2

x

1

1

x

2

+

1

x

0

0

x

1

2

x

2

+

1

x

0

2

x

1

0

x

2

+

2

x

0

0

x

1

1

x

2

+

2

x

0

1

x

1

0

x

2

:

Every MVL function of n-variables can be "parti-

tioned" into m functions of (n�1) variables using the

Table 1: Truth table for the function from Example 1.

x

1

x

2

f(x

1

; x

2

)

0

x

1

f(x

0

1

)

1

x

1

f(x

1

1

)

2

x

1

f(x

2

1

)

0

f (x

1

; x

2

)

1

f (x

1

; x

2

)

2

f (x

1

; x

2

)

0 0 0 0 0 0 2 0 0

0 1 2 2 0 0 0 0 2

0 2 0 0 0 0 2 0 0

1 0 1 0 1 0 0 2 0

1 1 0 0 0 0 2 0 0

1 2 1 0 1 0 0 2 0

2 0 2 0 0 2 0 0 2

2 1 1 0 0 1 0 2 0

2 2 0 0 0 0 2 0 0

generalized Shannon decomposition theorem (see [4])

as follows:

f(x) =

0

x

i

f(x

0

i

)+

1

x

i

f(x

1

i

) + : : :+

m�1

x

i

f(x

m�1

i

) (1)

On the other hand we can write a MVL function

in a Sum-of-Product form as consisting of m decisive

functions

k

f (x), k 2M (see [4]):

f(x) =

X

k2M

k�

k

f (x) (2)

where

k

f (x) is a shorthand for

k

(f(x)), i.e. a func-

tion which takes value (m � 1) for such x for which

f(x) = k, and 0 otherwise. Table 1 shows these two

possible representations for the logic function fromEx-

ample 1.

When we use De�nition 2.3 to �nd full sensitivities

we use the decomposition (1). But expression (2) pro-

vides us with more a convenient way for calculating

FSf(x)

FSx

i

. The following property shows that full sensi-

tivities can be calculated as products of m functions.

Let

k

f (x

p

i

) be a shorthand for

k

(f(x

p

i

)) , i.e. a literal

of the function f(x

p

i

); (k; p 2M). Further we use the

following abbreviation:

k

f (x

�

i

) :=

X

j2M

k

f (x

j

i

):

Property 3.2

FSf(x)

FSx

i

=

0

f (x

�

i

)�

1

f (x

�

i

)�: : : �

m�1

f (x

�

i

) =

Y

k2M

k

f (x

�

i

):

Proof

FSf(x)

FSx

i

= mx(f(x

0

i

); f(x

1

i

); : : : ; f(x

m�1

i

)

fDf.2.3g

=

P

(c

0

;:::;c

m�1

)2C

Q

k2M

c

k

f (x

k

i

)

fPr.3.1g

=

P

(c

0

;:::;c

m�1

)2C

Q

k2M

k

f (x

c

k

i

)

fCommutativity of MINg

=

P

(c

0

;:::;c

m�1

)2M

m

Q

k2M

k

f (x

c

k

i

)

fa 6= b !

a

f (x

j

i

)�

b

f (x

j

i

) = 0g

=

Q

k2M

P

j2M

k

f (x

j

i

)

fDistrib. of MAX over MINg

=

Q

k2M

k

f (x

�

i

)

fDef. of

k

f (x

�

i

)g

2

There is a simple connection between the functions

k

f (x

�

i

) and

k

f (x). Expanding

k

f (x) using expression

(1) we have:

k

f (x) =

0

x

i

k

f (x

0

i

)+

1

x

i

k

f (x

1

i

) + : : :+

m�1

x

i

k

f (x

m�1

i

):

Comparing this expression with the de�nition of

k

f (x

�

i

) we can see that the functions

k

f (x

�

i

) can be

obtained from

k

f (x) by replacing symbolically all oc-

currences of the literals

j

x

i

in the expression of

k

f (x)

by (m � 1), (i 2 f1; 2; : : :; ng; j; k 2M). This is the

essence of the notation x

�

i

| it means that all liter-

als of the variable x

i

"don't matter" and have to be

removed.

So, the procedure of �nding

FSf(x)

FSx

i

for i 2

f1; 2; : : : ; ng becomes the following:

1. Express the function f(x) in its Sum-of-Product

form (2), i.e.

f(x) =

X

k2M

k�

k

f (x);

Note that this expression must be in canonical

Sum-of-Product form with no simpli�cation using

i + j = j; (i < j)

2. In each

k

f (x) replace symbolically all occurrences

of the literal

j

x

i

by (m � 1); (j; k 2 M);

3. Take the product of the functions obtained in step

2. The result of the multiplication is the full sen-

sitivity

FSf(x)

FSx

i

.

Example 2

We compute

FSf(x)

FSx

1

for the logic function from Ex-

ample 1 using the procedure above.

1. The function has the following SOP form:

f(x) = 0(

0

x

1

0

x

2

+

0

x

1

2

x

2

+

2

x

1

2

x

2

+

1

x

1

1

x

2

) + 1(

1

x

1

0

x

2

+

1

x

1

2

x

2

+

2

x

1

1

x

2

) + 2(

0

x

1

1

x

2

+

2

x

1

0

x

2

)

2. The functions

0

f (x),

1

f (x) and

2

f (x) are:

0

f (x) =

0

x

1

0

x

2

+

0

x

1

2

x

2

+

2

x

1

2

x

2

+

1

x

1

1

x

2

1

f (x) =

1

x

1

0

x

2

+

1

x

1

2

x

2

+

2

x

1

1

x

2

2

f (x) =

0

x

1

1

x

2

+

2

x

1

0

x

2

3. Replacing all occurrences of literals

0

x

1

,

1

x

1

and

2

x

1

by (m� 1) = 2 we have

0

f (x

�

1

) = 2

0

x

2

+2

2

x

2

+2

2

x

2

+2

1

x

2

= 2

1

f (x

�

1

) = 2

0

x

2

+2

2

x

2

+2

1

x

2

= 2

2

f (x

�

1

) = 2

1

x

2

+2

0

x

2

=

1

x

2

+

0

x

2

4. Applying Property 3.2 we get

FSf(x)

FSx

1

= 2 � 2 � (

0

x

2

+

1

x

2

) =

0

x

2

+

1

x

2

:

4 Full sensitivity in test generation.

Consider an internal line l of some multiple-valued

combinational logic circuit, implementing the function

f(x

1

; : : : ; x

n

). To derive a test for a stuck-at fault on

line l, line l is "cut" and is considered as a "pseudo-

input" x

l

(Fig.2).

l

f l z

x l

x 1.
.
.

x n

Figure 2: A multiple-valued combinational logic cir-

cuit.

The primary output z is expressed in terms of the

primary input variables x

1

; : : : ; x

n

and this pseudo-

input x

l

as z = f

l

(x

1

; : : : ; x

n

; x

l

), where x

l

=

l(x

1

; : : : ; x

n

). Let a

i

be the value of the primary in-

put variable x

i

, for i 2 f1; 2; : : : ; ng. To �nd a test

for the s-a-p fault on line l, p 2 M , we need some set

of values (a

1

; : : : ; a

n

) such that l(a

1

; : : : ; a

n

) 6= p and

for some k 6= p f

l

(a

1

; : : : ; a

n

; k) 6= f

l

(a

1

; : : : ; a

n

; p).

In our special case of full sensitivity we investigate

the case when each transition on line l from one logic

value to another logic value causes a change in the

logic value of the primary output. So, we seek for val-

ues (a

1

; : : : ; a

n

) and k; a

i

2 M;k 2 M � fpg that

satisfy the equation:

k

l

(x

1

; : : : ; x

n

) �

FSf

l

(x

1

; : : : ; x

n

; x

l

)

FSx

l

= (m � 1) (3)

Each solution (a

1

; : : : ; a

n

) of the equation (3) is a

test for a single s-a-p fault on line l, p 6= k. And since

in a multiple-valued algebra there are (m � 1) values

di�erent from a given value k 2 M , each (a

1

; : : : ; a

n

)

will be a test for (m � 1) single s-a-k faults on line

l, where k denotes a value di�erent from k, i.e. k 2

M � fkg. To �nd a complete test set for all m single

stuck-at faults on a line we need to solve the equation

(3) for two di�erent values of k, for example for k = k

1

and k = k

2

, k

1

; k

2

2 M; k

1

6= k

2

. The �rst solution

will give us the tests for (m � 1) single s-a-k

1

faults,

and the second | for a s-a-k

2

faults, thus for the s-a-k

1

fault as well.

In general, to �nd a test set for all single stuck-at

faults in the circuit there are as many full sensitivities

to be computed, as there are lines in the circuit, and

two equations of type (3) (for two di�erent values of

k) to be solved for each full sensitivity.

Example 3

Consider the 3-valued circuit given in Fig.3. We

generate tests for single stuck-at faults on primary in-

put 2 and on internal line 5, using full sensitivities.

The circuit is modeled by the 3-valued logic func-

tion

f(x) := (x

1

+ x

2

x

3

)(x

4

+ x

2

x

3

)

0

:

For this function

FSf(x)

FSx

2

=

2

x

1

2

x

3

0

x

4

, and therefore

for each k 2 f0; 1; 2g the vector (2; k; 2; 0) is a test for

all s-a-k faults on line 2. To �nd the tests for all single

stuck-at faults on this line we only require to take two

di�erent values of k, for example 1 and 2, because the

test (2; 1; 2; 0) will be a test for s-a-0 and s-a-2 faults

on line 1, and the test (2; 2; 2; 0) will be a test for s-a-1

(and s-a-0) fault on line 2.

To �nd tests for single stuck-at faults on line 5 we

express the function f(x) in terms of the primary input

variables x

1

; : : : ; x

4

and the pseudo-input x

5

:

f

5

(x

1

; : : : ; x

4

; x

5

) := (x

1

+ x

5

)(x

4

+ x

5

)

0

:

x

x

1

2
1

2

x

3

x4

5

3

6

7

4

8

9

10
f(x)

Figure 3: Circuit for the Example 3

For this function

FSf

5

(x

1

;:::;x

4

;x

5

)

FSx

5

=

2

x

1

0

x

4

:

The actual value on line 5 depends on the values of

x

2

and x

3

. So, the equation (3) obtains the following

form:

k

(x

2

x

3

)

2

x

1

0

x

4

= 2:

Solving the equation for two di�erent values of k,

for example for k = 1 and k = 2 we obtain 4 tests,

each detecting two stuck-at faults on line 5 (table 2).

Table 2: Set of tests for stuck-at faults on line 5.

test stuck-at faults

k x

1

x

2

x

3

x

4

on line 5

1 2 1 1 0 s-a-0, s-a-2

2 1 2 0

2 2 1 0

2 2 2 2 0 s-a-0, s-a-1

A single s-a-p fault on line l is called FS-detectable,

if equation (3) has at least one solution for some

k 2 M�fpg. A fault may not be FS-detectable, but be

detectable in general, i.e. there exists a test detecting

the fault. For example, tests for s-a-0 fault on line 6

in the circuit given on Fig.3 can not be obtained using

full sensitivity, but we can �nd the tests for this fault

using the methods presented in [2], [3] or [5]. Tests for

FS-detectable faults, however, detect at least (m � 1)

single stuck-at faults, which makes them good candi-

dates for a minimal complete test set. Although the

complexity of the method presented is high, there is

a saving as against previous methods in that to �nd

the tests for all single stuck-at faults on a line we only

require two equations of type (3) to be solved, and

not a separate equation for every fault on the line, as

in [2], [3] or [5]. This observation suggests the follow-

ing procedure: �rst, �nd tests for all FS-detectable

faults as shown and, starting from this point, apply

some of the conventional algorithms to derive tests for

all FS-undetectable faults. Finally, apply a covering

algorithm to obtain a minimal complete test set.

5 Conclusion

In this paper we have introduced the notion of full

sensitivity of a MVL function and discussed its appli-

cation to test generation for MVL circuits.

In further works full sensitivity could be expressed

in terms of other complete functional bases like the

one presented in [3]. It seems also to be worth inves-

tigating which classes of functions are advantageously

manipulated by this approach.

Acknowledgments

The authors are indebted to Dr. Iwan G. Tabakow

at HIMEE - So�a, Bulgaria, for his suggestions con-

cerning the search for appropriate generalizations of

the Boolean di�erence.

References

[1] J.B.Rosser, A.R.Turquette, Many-Valued Logic.,

1952.

[2] M.Whitney, J.C.Muzio, Decisive Di�erences and

Partial Di�erences for Stuck-at Fault Detection

in MVL Circuits, 14th Int. Symp. MVL, 1984,

pp.321-328.

[3] H.Lu, S.C.Lee, Fault Detection in M-logic Cir-

cuits using the M-di�erence, 14th Int. Symp.MVL,

1984, pp.62-70.

[4] J.C.Muzio, T.C.Wesselkamper, Multiple-Valued

Switching Theory, Adam Hilger Ltd Bristol and

Boston, 1986.

[5] T.A.Guima, M.A.Tapia, Di�erential Calculus for

Fault Detection in Multivalued Logic Networks,

17th Int. Symp. MVL, 1987, pp.99-108.

[6] M.A.Tapia, T.A.Guima, A.Katbab, Calculus for

a Multivalued Logic Algebraic System, Applied

Mathematics & Computation, 1991, pp.225-285.

