
Electronic Notes in Theoretical Computer Science 6 (1997)

URL: http://www.elsevier.nl/locate/entcs/volume6.html ?? pages

A Modal �-Calculus and a Proof System

for Value Passing Processes

D.B.Gurov

a

S.Berezin

b

B.M.Kapron

a

a

Department of Computer Science, University of Victoria, Canada

b

School of Computer Science, Carnegie Mellon University, USA

Abstract

A �rst-order modal �-calculus is introduced as a convenient logic for reasoning

about processes with value passing. For this logic we present a proof system for

model checking sequential processes de�ned in the value passing CCS. Soundness

of the proof system is established. The use of the system is demonstrated on two

small but instructive examples.

1 Introduction

The propositional modal �-calculus is a particularly expressive logic for reason-

ing about branching-time properties of communicating systems. Many other

logics, like dynamic logic and CTL, have uniform encodings in this logic [11].

Over the last decade, many proof systems for checking validity of formulae of

this logic w.r.t. particular states (or sets of states) of particular models have

been proposed. Since the semantics of the logic is given w.r.t. labelled tran-

sition systems (LTS), some of these proof systems [1,4,6,7,15] refer directly to

LTS, while other, compositional approaches [2,8] refer to descriptions in some

process language like CCS [12], whose operational semantics is again de�ned

via LTS. The latter approaches, although being more specialized, are of a

high practical importance when full automation is not feasible; compositional

proof systems are more intuitive, require less semantic reasoning when apply-

ing their proof rules, and are hence easier to be machine assisted.

Some relevant properties of communicating systems with value passing

cannot be expressed in the propositional modal �-calculus. These are proper-

ties which depend on the values being communicated. For example, consider

process P de�ned in the value passing CCS:

P

�

= in(x):Q(x)

Q(x)

�

= if x > 0 then out(x):Q(x� 1)

c
1997 Elsevier Science B. V.

Gurov, Berezin and Kapron

This process has the property (for any integer x) of not being able to engage

in an in�nite sequence of the form

s

0

in(x)

�! s

1

out(x)

�! s

2

out(x�1)

�! s

3

out(x�2)

�! s

4

out(x�3)

�! � � �

If the process and the property are abstracted from the communicated val-

ues the property does not hold anymore. Motivated by such considerations,

we present a (�rst-order) extension of the propositional modal �-calculus in

which such properties are expressible. In this logic one can formalize the above

property of process P as � de�ned by:

�

�

� 8x: [in(x)]�(x)

�

�

� �Z:�x: [out(x)]Z(x� 1)

Here � is a (recursively de�ned) one-argument predicate over the domain of

values. The logic we propose is partially based on earlier treatments of message

passing [10] (a more recent development of which is [13]) and name passing

[7]. The syntax we have chosen aims to improve the readability of formulae by

distinguishing syntactically between formulae and predicates over the domain

of values, which reects the semantic importance of the latter. The expressive

power of such logics depends on the language of Boolean and value expressions

chosen. As in standard value passing CCS [12], we do not con�ne ourselves

to a particular such language.

An important problem for such a logic is how to check whether a particular

process possesses a certain property. In this paper we present a proof system

for model checking processes, de�ned in the value passing CCS without paral-

lel composition. Following an approach of C.Stirling [14], parallel composition

may be handled with the help of an additional proof system. A step in this

direction is the system presented in [3].

In designing our proof system the highest challenge and interest is pre-

sented by the treatment of �x-point formulae. Di�erent approaches to this

problem have been proposed for the propositional case. Some of these employ

tagging of �x-point formulae to keep inference rules local, which simpli�es both

their use and theoretical treatment. For greatest �x-points this technique has

been proposed by G.Winskel in [17], while H.Andersen [1] extends it to least

�x-points by encoding into tags the inductive reasoning required for dealing

with such formulae. We generalize these approaches to handle �x-point pred-

icates. One di�culty here is to �nd what constitute tags and to choose an

appropriate semantics for tagged predicates. Another challenge is to general-

ize the approach of [1] without having to introduce in�nitary rules. This is

possible due to the semantics of sequents we have chosen. It is accomplished

by performing induction on the domain of values rather than explicitly on sets

of processes. One has, however, to introduce into the language a new syntactic

category, namely arbitrary constants.

2

Gurov, Berezin and Kapron

All other rules have been designed to guarantee that no proof power has

been sacri�ced. To facilitate machine-assisted proofs, the rules are kept as

syntactic as possible by minimizing the semantic reasoning required for their

application. This compensates to a great extent for the (for compositional

proof systems) inevitably high number of proof rules since it minimizes the

need for human intervention when using a proof assistant and delegates more

responsibility to the machine. The many examples on which we have tried our

proof system so far seem to justify our e�ort; the proofs are relatively short

and follow intuition nicely.

The paper is organized as follows. In Section 2 we present our extension of

the modal �-calculus for value passing systems. We next give a compositional

proof system for value passing CCS without parallel composition, establish

soundness of the system, and present two small but instructive example proofs.

The last section contains some conclusions and directions for further research.

2 A Modal �-Calculus for Value Passing Systems

In this section we present an extension of the modal �-calculus for value pass-

ing systems. We �rst present labelled transition systems, then the syntax, and

�nally the semantics of the logic.

2.1 Labelled Transition Systems

We assume a set A of names, ranged over by a, each name having a non-

negative arity. Let L denote the set A[A of labels, ranged over by l, and let

a

�

= a. We also assume a set D of values, and variables x; y; z; : : : (possibly

indexed), ranging over D.

Note 1 We use

~

D;

~

D

0

; : : : to denote D

n

for some non-negative integer n, being

either arbitrary or understood from the context. In the same way, we use ~x to

stand for a vector (x

1

; x

2

; : : : ; x

n

) of variables over D.

De�nition 2.1 A labelled transition system over a set A of names and a set

D of values is de�ned as a triple

T = (S;Act;�!)

where:

(i) S is a set of states;

(ii) Act

�

= fl(

~

d) j l 2 L;

~

d 2

~

Dg [f�g is a set of actions, ranged over by �;

(iii) �!� S �Act� S is a transition relation.

De�nition 2.2 For any labelled transition system T = (S;Act;�!) and any

action � 2 Act we de�ne the state transformers

3

Gurov, Berezin and Kapron

[[h�i]]

T

�

= �S

0

� S: fs 2 S j 9s

0

2 S

0

: s

�

�! s

0

g

[[[�]]]

T

�

= �S

0

� S: fs 2 S j 8s

0

2 S: s

�

�! s

0

implies s

0

2 S

0

g

2.2 Syntax of the Logic

The logic we introduce uses the following syntactic categories: vectors ~e of

value expressions over D, formulae �, and predicates �. Formulae � of the

logic are generated by the grammar:

� ::= b j � ^ � j � _ � j [�] � j h�i� j 8x:� j 9x:� j � ~e

� ::= Z j �~x:� j �Z:� j �Z:�

where Z ranges over a set Pred of predicate variables, x over a set V ar of

object variables, ~e has the arity of �, and � are actions generated by:

� ::= a(~e) j a(~e) j �

where a; a 2 L, and the arities of a and a respect the arity of ~e. Zero-ary pred-

icates are identi�ed with formulae. The exact syntax of Boolean and value

expressions is left free in order to allow for a general treatment of the logic;

we only assume Boolean expressions of the form ~e

1

= ~e

2

.

Free and bound variables are de�ned as usual. Unlike [10,7], we assume an

early semantics for input actions and these have no binding power in our logic.

We also assume the usual notion �[~e=~x] of (capture avoiding) substitution.

2.3 Semantics of the Logic

We start by de�ning the notion of model, or Kripke structure, for the logic.

De�nition 2.3 A model for the logic over A and D is a pair

M = (T ;V)

where:

(i) T

�

= (S;Act;�!) is a labelled transition system over A and D;

(ii) V

�

= (V

V ar

;V

Pred

) is a valuation, such that

V

V ar

: V ar! D

V

Pred

: Pred! [

~

D! }(S)]

We assume the usual notion of updating an environment: for example, the

valuation V[

~

d=~x] agrees with V on all variables other than the ones in ~x and

assigns d

i

to x

i

. Let b[V

V ar

] and e[V

V ar

] denote the substitution of all free

variables in b and e according to V

V ar

.

4

Gurov, Berezin and Kapron

Given a modelM, the semantics of a formula � is de�ned inductively by

the denotation k�k

M

of � w.r.t. M, i.e. by the set of states in S satisfying

�. We write k�k

T

V

for k�k

M

and often omit the superscript when understood

from the context.

The denotation of the di�erent syntactic categories is of the following type:

k~ek

V

2

~

D, k�k

V

2 Act, k�k

V

� S, and k�k

V

:

~

D ! }(S). We assume that

closed Boolean expressions b have a �xed truth value [[b]] 2 ftt;�g, and closed

value expressions e have a �xed value [[e]] 2 D.

Let E

~

D

, E

0

~

D

, etc. range over predicates, i.e. over the set [

~

D ! }(S)] of

mappings from

~

D to subsets of S, and let E

~

d

stand for E

~

D

(

~

d). Let E

~

D

v E

0

~

D

denote that E

~

d

� E

0

~

d

for all

~

d 2

~

D. Let E � [

~

D! }(S)]. We de�ne

tE

�

=
�

~

d
:

S

E

~

D

2E

E

~

d

uE

�

=
�

~

d
:

T

E

~

D

2E

E

~

d

k~ek

V

�

= [[~e[V

V ar

]]] kZk

V

�

= V

Pred

(Z)

ka(~e)k

V

�

= a(k~ek

V

) ka(~e)k

V

�

= a(k~ek

V

) k�k

V

�

= �

kbk

V

�

=

8

>

<

>

:

S if [[b[V

V ar

]]] = tt

fg otherwise

k�

1

^ �

2

k

V

�

= k�

1

k

V

\ k�

2

k

V

k�

1

_ �

2

k

V

�

= k�

1

k

V

[k�

2

k

V

k[�]�k

V

�

= [[[k�k

V

]]] k�k

V

kh�i�k

V

�

= [[hk�k

V

i]] k�k

V

k8x:�k

V

�

=

T

d2D

k�k

V[d=x]

k9x:�k

V

�

=

S

d2D

k�k

V[d=x]

k� ~ek

V

�

= k�k

V

k~ek

V

k�~x:�k

V

�

= �

~

d: k�k

V[

~

d=~x]

k�Z:�k

V

�

= tfE

~

D

j E

~

D

v k�k

V[E

~

D

=Z]

g

k�Z:�k

V

�

= ufE

~

D

j E

~

D

w k�k

V[E

~

D

=Z]

g

Fig. 1. Denotation of formulae.

De�nition 2.4 The denotation of formulae � of the logic is de�ned (induc-

tively) as shown in Figure 1.

Using the well-known Tarski-Knaster �x-point theorem [16] one can show

that the semantics of the �x-point predicates is as expected:

k�Z:�k

V

= �E

~

D

: k�k

V[E

~

D

=Z]

5

Gurov, Berezin and Kapron

for any predicate � and any valuation V, where � stands for either � or �. As

a consequence, we have for any predicate � and any valuation V,

k�Z:�k

V

= k�[�Z:�=Z]k

V

which justi�es the denotation chosen for the �x-point predicates and provides

a notion of unfolding.

The denotation of closed formulae does not depend on valuations; we can

hence write k�k instead of k�k

V

when � is closed.

3 A Proof System for the Value Passing CCS

In this section we present a compositional proof system for proving properties

of sequential processes described in the value passing CCS [12]. First, we

de�ne agent expressions, then we present the proof rules of our system, state

soundness of the system, and �nally, give two example proofs.

3.1 Agent Expressions

Agent expressions E over A and D of the value passing calculus are generated

by the grammar

E ::= 0 j �:E j E +E j �~xE j EjE j EnU j Ef�g j if b thenE j A(~e)

� ::= a(~x) j a(~e) j �

Here A are agent constants, each having a de�ning equation

A(~x)

�

= E

where the right-hand side E may contain no free variables except the ones in

~x. U � L are restriction sets, and � : L ! L are relabelling functions (i.e.

functions satisfying �(l) = �(l) and �(�) = �). The notion of free variables

in agent expressions is as usual (input actions and in�nite summation having

binding power), and so is the notion of closed agent expressions, which are

termed processes and are ranged over by P;Q; : : : For processes, an operational

semantics is given as usual by a set of transition rules as shown on Figure 2.

Let V = (V

V ar

;V

Pred

) be a valuation. We de�ne the denotation kEk

V

of

an agent expression w.r.t. V as the process which is obtained from E by

substituting all free variables according to V

V ar

, i.e.

kEk

V

�

= E[V

V ar

]

Let P range over transition closed sets (t.c.s.) of processes (i.e. sets closed

under the rules of Figure 2). Given process P , let P(P) denote the smallest

t.c.s. containing P , and let T (P)

�

= (P(P); Act;�!) be the corresponding

6

Gurov, Berezin and Kapron

R(�)

�

�:P

�

�! P

R(in)

�

a(~x):E

a(

~

d)

�! E[

~

d=~x]

R(out)

�

a(~e):P

a([[~e]])

�! P

R(+l)

P

1

�

�! P

0

1

P

1

+ P

2

�

�! P

0

1

R(+r)

P

2

�

�! P

0

2

P

1

+ P

2

�

�! P

0

2

R(�)

E[

~

d=~x]

�

�! P

�~x E

�

�! P

R(j)

P

1

l(

~

d)

�! P

0

1

P

2

l(

~

d)

�! P

0

2

P

1

jP

2

�

�! P

0

1

jP

0

2

R(jl)

P

1

�

�! P

0

1

P

1

jP

2

�

�! P

0

1

jP

2

R(jr)

P

2

�

�! P

0

2

P

1

jP

2

�

�! P

1

jP

0

2

R(n)

P

l(

~

d)

�! P

0

PnU

l(

~

d)

�! P

0

nU

l; l 62 U R(�)

P

l(

~

d)

�! P

0

Pf�g

l

0

(

~

d)

�! P

0

f�g

�(l) = l

0

R(if)

P

�

�! P

0

if b then P

�

�! P

0

[[b]] = tt R(

�

=)

E[

~

d=~x]

�

�! P

A(

~

d)

�

�! P

A(~x)

�

= E

Fig. 2. Transition rules for processes.

LTS. Given also a valuation V, the pair (T (P);V) is a model for our logic.

We consider satisfaction with respect to such models.

3.2 Proof Rules

Our proof system is designed for proving satisfaction of a formula w.r.t. some

particular agent expression relative to an additional condition on the values

of the free object variables occurring in the formula and agent expression.

The judgements (or sequents) of the proof system (following in part [10,7]),

have the form B ` E : �, where B is a �nite (possibly empty) sequence

b

1

; b

2

; : : : ; b

n

of Boolean expressions over D. The intended semantics of such

judgements is given by

B j= E : �

�

� for any V; kBk

V

= tt implies kEk

V

2 k�k

T (kEk

V

)

V

where kBk

V

is de�ned inductively by (i) k�k

V

= tt holds (� denotes the empty

sequence), and (ii) kb;Bk

V

= tt

�

� [[b[V

V ar

]]] = tt ^ kBk

V

= tt. By abuse

of notation we extend all Boolean connectives (like ^, _ and)) over such

sequences, with the meaning that the corresponding relation holds for any

valuation. Note that a free variable occurring in more that one part of the

sequent denotes the same value; symbolic proofs are thus greatly facilitated,

at the (inevitable) expense of having more complicated rules.

The proof rules can be grouped according to the parts of a judgement on

whose structure they depend. There are also some rules which do not look

into the structure of any of these parts; they are referred to as general rules.

All rules are given in Figure 3; they are presented in a "goal-oriented" fashion.

Axioms are presented as rules with an empty conclusion (denoted by a dot).

7

Gurov, Berezin and Kapron

E(if)

B ` if b then E : �

B ` E : �

B) b E(

�

=)

B ` A(~e) : �

B ` E[~e=~x] : �

A(~x)

�

= E

�(^)

B ` E : �

1

^ �

2

B ` E : �

1

B ` E : �

2

�(_l)

B ` E : �

1

_ �

2

B ` E : �

1

�(_r)

B ` E : �

1

_ �

2

B ` E : �

2

�(8)

B ` E : 8x:�

B ` E : �[y=x]

y � fresh �(9)

B ` E : 9x:�

B ` E : �[e=x]

�(b)

B ` E : b

�

B) b �(�)

B ` E : (�~x:�)~e

B ` E : �[~e=~x]

�(�0)

B ` E : (�ZfLg:�)~e

�

C

�0

�(�1)

B ` E : (�ZfLg:�)~e

B ` E : (�[�Zfl; Lg:�=Z])~e

C

�1

�(�0)

B ` E : (�ZfLg:�)~e

�

C

�0

�(�1)

B ` E : (�ZfLg:�)~e

B

0

` E

0

: (�[�Zfl; Lg:�=Z])~e

0

C

�1

E�(0; [])

B ` 0 : [�]�

�

E�(�; [])

B ` �:E : [�

0

]�

�

� 6� �

0

E�(�; hi)

B ` �:E : h� i�

B ` E : �

E�(�; [])

B ` �:E : [�]�

B ` E : �

E�(a; hi)

B ` a(~x):E : ha(~e)i�

B ` E[~e=~x] : �

E�(a; [])

B ` a(~x):E : [a(~e)]�

B ` E[~e=~x] : �

E�(a; hi)

B ` a(~e):E : ha(~e)i�

B ` E : �

E�(a; [])

B ` a(~e):E : [a(~e

0

)] �

~e = ~e

0

; B ` E : �

E�(+l; hi)

B ` E

1

+ E

2

: h�i�

B ` E

1

: h�i�

E�(+r; hi)

B ` E

1

+ E

2

: h�i�

B ` E

2

: h�i�

E�(+; [])

B ` E

1

+ E

2

: [�]�

B ` E

1

: [�] � B ` E

2

: [�]�

E�(�; hi)

B ` �~x E : h�i�

B ` E[~e=~x] : h�i�

E�(�; [])

B ` �~x E : [�]�

B ` E[~y=~x] : [�]�

~y � fresh

E�(if ; [])

B ` if b thenE : [�] �

b;B ` E : [�]�

G(�)

B ` E : �

�

B � � G(US)

B[~e=~x] ` E[~e=~x] : �[~e=~x]

B ` E : �

G(Cut)

B ` E : �

B

1

` E : � B

2

` E : �

B) B

1

_B

2

G(�)

B ` E : �

B ` E

0

: �

0

E �

B

E

0

; � �

B

�

0

Fig. 3. Proof Rules.

8

Gurov, Berezin and Kapron

The rules for restriction and renaming, following the approach advocated

in [5], are as in the propositional case and can therefore be omitted here for

brevity. In �(8), y-fresh means that y does not occur free in B, E or 8x:�. In

rule E�(�; []), � 6� �

0

means that � and �

0

are not compatible: either exactly

one of them is � , or otherwise if � = l(~e) and �

0

= l

0

(~e

0

), then l 6= l

0

. Rule

G(US) is a rule of universal substitution, corresponding to the widening rule(s)

in other systems. In rule G(�), the side condition requires E to be identical

to E

0

up to equivalence of terms under B, e.g. E(x

2

) �

x=1

E(x), and the

same for � and �

0

.

To allow for a simpler treatment of �x-point formulae, we impose the re-

striction on the syntax of formulae that all �x-point sub-predicates of the root

formula are closed. Note that all rules preserve this property. This restriction

does not a�ect the expressive power of the logic, since every formula contain-

ing �x-point sub-predicates with free object variables can easily be converted

into an equivalent formula in which all �x-point sub-predicates are closed. For

example, �Z: ha(x)iZ is equivalent to (�Z:�x: ha(x)iZ(x))(x).

For dealing with �x-point formulae we use tags, generalizing the approaches

of [1,2,17]. The idea of using tags for �x-point formulae is to allow for the

detection of loops of a certain kind when traversing the (symbolic) LTS of the

process. Detecting such a loop would guarantee the validity of the correspond-

ing sequent. In our case, a tag is a �nite (possibly empty) list L = l

1

; l

2

; : : : ; l

n

,

where each l

i

is a triple (B

i

; E

i

; ~e

i

). With a triple l = (B;E;~e) we associate

the indexed set of processes

E

l

~

D

�

= �

~

d:fP j 9V:(kBk

V

= tt ^ kEk

V

= P ^ k~ek

V

=

~

d)g

The semantics of tagged predicates is de�ned as follows:

k�ZfLg:�k

V

�

= tfE

~

D

j E

~

D

v tL t k�k

V[E

~

D

=Z]

g

k�ZfLg:�k

V

�

= ufE

~

D

j E

~

D

w tL t k�k

V[E

~

D

=Z]

g

where tL

�

=

F

l2L

E

l

~

D

. If L is empty, tL = �

~

d:fg, and hence �Z:� � �Zfg:�.

In rule �(�0), C

�0

demands (B;E;~e) 2 L, while in �(�1), l = (B;E;~e) and

C

�1

demands (B;E;~e) 62 L. The side conditions are purely syntactical and re-

quire no semantic reasoning. Note that l 2 L implies E

l

~

D

v tL. Condition C

�0

might seem rather strong but, as our �rst example proof below shows, when

used in combination with the general rules rule �(�0) becomes su�ciently

powerful.

The treatment of least �xpoint formulae is far more complicated. We

employ an idea by H.Andersen [1] to use the tagging technique for inductive

reasoning. However, instead of doing induction on sets of processes explicitly

9

Gurov, Berezin and Kapron

we do this implicitly by using induction on the domain of values. In this way

we avoid the introduction of in�nitary proof rules in our proof system. One

has, however, to introduce into the language a new syntactic category, namely

arbitrary constants. These are to be treated syntactically as constants from the

domain of values, but do not denote any particular values. Valuations do not

assign values to arbitrary constants, so we obtain an implicit second level of

universal quanti�cation which is necessary to conduct an inductive argument

over the domain of values. The side conditions for rules �(�0) and �(�1) are

as follows. C

�0

is exactly as C

�0

. C

�1

requires that there exists a vector ~x of

variables and a vector of the same length ~c of fresh arbitrary constants so that

B

0

, E

0

and ~e

0

are obtained by substituting ~c for ~x in B, E and ~e, respectively.

Furthermore, there exist B

00

and ~e

00

having as free variables exactly the ones

in ~x, so that B

00

impliesB[~e

00

=~x] under any valuation, the relation �� �

~

D�

~

D

de�ned by:

~

d

1

��

~

d

2

�

�

hh

B

00

[

~

d

2

=~x]

ii

= tt ^

~

d

1

=

hh

~e

00

[

~

d

2

=~x]

ii

is a well-founded relation (i.e. has no in�nite decreasing chains), and l =

l

00

[~c=~x] for l

00

= (B

00

; E[~e

00

=~x]; ~e [~e

00

=~x]). Note that rule �(�1) can always be

applied trivially by choosing ~x, ~c and ~e

00

to be null-ary vectors and B

00

to be

false; this is equivalent to simple unfolding without changing the tag.

A proof for a sequent is a proof tree in which this sequent is the root and

all leaves are axioms. If such a proof exists we term the sequent derivable. In

our proof of soundness we refer to the following two results.

Proposition 3.1 For any B, E, ~e and indexed set E

~

D

the following holds:

E

(B;E;~e)

~

D

v E

~

D

� 8V:(kBk

V

= tt ! kEk

V

2 E

k~ek

V

)

Lemma 3.2 (Reduction lemma) For any monotone f : [

~

D ! }(S)] !

[

~

D ! }(S)] and any U

~

D

:

~

D ! }(S) :

U

~

D

v �f � U

~

D

v f(�E

~

D

:(U

~

D

t f(E

~

D

)))

Proof. Our proof is based on the following two relationships:

(1) U

~

D

t f(�E

~

D

:(U

~

D

t f(E

~

D

))) = �E

~

D

:(U

~

D

t f(E

~

D

)) f�x-point propertyg

(2) �f v �E

~

D

:(U

~

D

t f(E

~

D

)) feasy to showg

(!) Follows immediately from (2) and monotonicity of f .

() Let U

~

D

v f(�E

~

D

:(U

~

D

tf(E

~

D

))) . Then f(�E

~

D

:(U

~

D

tf(E

~

D

))) = �E

~

D

:(U

~

D

t

f(E

~

D

)) because of (1), and hence �E

~

D

:(U

~

D

t f(E

~

D

)) is a �x-point of f and is

thereby less or equal to �f since the latter is the greatest �x-point of f . It

10

Gurov, Berezin and Kapron

follows by (2), that �f = �E

~

D

:(U

~

D

t f(E

~

D

)) and consequently:

U

~

D

v f(�E

~

D

:(U

~

D

t f(E

~

D

))) = �E

~

D

:(U

~

D

t f(E

~

D

)) = �f

which completes the proof. 2

Our system is sound, as the following theorem states.

Theorem 3.3 (Soundness) If sequent B ` E : � is derivable in the proof

system, then B j= E : � holds.

Proof. It is su�cient to show (by case analysis), that all rules are individually

sound; the result then follows by induction on the height of the derivation tree.

For most of the rules this is straightforward; the only interesting cases are the

�xpoint rules. The soundness of �(�0) and �(�1) can be established as follows

(assuming �ZfLg:� is closed):

B j= E : (�ZfLg:�)~e

� 8V:(kBk

V

= tt ! kEk

V

2 k(�ZfLg:�)~ek

V

) fDef. j=g

� 8V:(kBk

V

= tt ! kEk

V

2 k�ZfLg:�k k~ek

V

) fDef. 2.4g

� E

(B;E;~e)

~

D

v k�ZfLg:�k fProp. 3.1g

� E

(B;E;~e)

~

D

v �E

~

D

:(tL t k�k

V[E

~

D

=Z]

) fTarski-Knaster, any Vg

� E

(B;E;~e)

~

D

v tL t k�k

V[�E

~

D

:((tLtE

(B;E;~e)

~

D

)tk�k

V[E

~

D

=Z]

)=Z]

fLemma 3.2g

� E

(B;E;~e)

~

D

v tL t k�k

V[k�Zfl;Lg:�k

V

=Z]

fl

�

= (B;E;~e)g

� E

(B;E;~e)

~

D

v tL t k�[�Zfl; Lg:�=Z]k fProp. of substitutiong

From this it follows that:

(B;E;~e) 2 L ! E

(B;E;~e)

~

D

v tL fDef. tLg

! B j= E : (�ZfLg:�)~e fabove equivalenceg

i.e. that �(�0) is sound, and

B j= E : (�[�Zfl; Lg:�=Z])~e

� 8V:(kBk

V

= tt ! kEk

V

2 k(�[�Zfl; Lg:�=Z])~ek

V

) fDef. j=g

� 8V:(kBk

V

= tt ! kEk

V

2 k�[�Zfl; Lg:�=Z]k k~ek

V

) fDef. 2.4g

� E

(B;E;~e)

~

D

v k�[�Zfl; Lg:�=Z]k fProp. 3.1g

! B j= E : (�ZfLg:�)~e fabove equivalenceg

i.e. that �(�1) is sound. The case �(�0) is similar to �(�0). The case with rule

�(�1) is the most involved one and because of its size can only be sketched

here. Assume condition C

�1

holds for some ~x, ~c, B

00

and ~e

00

, and assume

11

Gurov, Berezin and Kapron

the notation chosen in the explanation of the condition. Let furthermore l

0

denote (B;E;~e). Assume B

0

j= E

0

: (�[�Zfl; Lg:�=Z])~e

0

holds. Using

Proposition 3.1 above, Lemma 5.1. from [1], and the semantics of arbitrary

constants, one can show that for any

~

d 2

~

D, E

l

00

[

~

d=~x]

~

D

v k�ZfLg:�k implies

E

l

0

[

~

d=~x]

~

D

v k�ZfLg:�k. As a consequent, due to the assumed properties of B

00

and ��, E

l

0

[

~

d=~x]

~

D

v k�ZfLg:�k holds for all minimal elements

~

d of ��, and

whenever

~

d

1

��

~

d

2

then E

l

0

[

~

d

1

=~x]

~

D

v k�ZfLg:�k implies E

l

0

[

~

d

2

=~x]

~

D

v k�ZfLg:�k.

Since �� is well-founded we have by induction on

~

D that E

l

0

[

~

d=~x]

~

D

v k�ZfLg:�k

for all

~

d 2

~

D, which is equivalent to B j= E : (�ZfLg:�)~e. 2

3.3 Example Proofs

In this subsection we present two example proofs conducted in the proof sys-

tem given above. First, consider process P de�ned as follows:

P

�

= Q(0)

Q(x)

�

= R(x; x+ 1)

R(x; y)

�

= out(x+ 2; y + 3):R(x+ 1; y + 2)

This process is capable of engaging in the (in�nite) sequence of interactions

s

0

out(2;4)

�! s

1

out(3;6)

�! s

2

out(4;8)

�! � � �

i.e. of putting out all consecutive combinations (x; 2x) starting with x = 2.

In our logic this capability (property) could be described as �(2) where:

�

�

� �Z:�x: hout(x; 2x)iZ(x+ 1)

The proof could be conducted (in a "goal-oriented" fashion) as follows:

` P : �(2)

E(

�

=)

` Q(0) : �(2)

E(

�

=)

` R(0; 0 + 1) : �(2)

G(�)

` R(0; 2� 0 + 1) : �(0 + 2)

G(US)

` R(x; 2x+ 1) : �(x + 2)

�(�1)

` R(x; 2x+ 1) : (�x:

out(x; 2x)

�

�

1

(x+ 1))(x+ 2)

�(�)

` R(x; 2x+ 1) :

out(x+ 2; 2(x+ 2))

�

�

1

((x+ 2) + 1)

E(

�

=)

` out(x+ 2; (2x+ 1) + 3):R(x+ 1; (2x+ 1) + 2) :

out(x+ 2; 2(x+ 2))

�

�

1

((x + 2) + 1)

G(�)

` out(x+ 2; 2x+ 4):R(x+ 1; 2x+ 3) :

out(x+ 2; 2x+ 4)

�

�

1

(x+ 3)

E�(a; hi)

` R(x+ 1; 2x+ 3) : �

1

(x+ 3)

G(�)

` R(x+ 1; 2(x+ 1) + 1) : �

1

((x+ 1) + 2)

G(US)

` R(x; 2x+ 1) : �

1

(x+ 2)

�(�0)

�

12

Gurov, Berezin and Kapron

where �

1

�

� �Zf(�;R(x; 2x+1); x+2)g:�x: hout(x; 2x)iZ(x+1). It is worth

noticing the way in which rule G(US) is used in combination with rule G(�);

in the �rst case as a widening, allowing the proof to be completed with just

one unfolding of the �-formula; and in the second to allow for rule �(�0) to

be applied.

Our second example illustrates the use of rules �(�0) and �(�1). Consider

process P

P

�

= in(x):Q(x)

Q(x)

�

= if x > 0 then out(x):Q(x� 1)

and its property �

�

�

� 8x: [in(x)]�(x)

�

�

� �Z:�x: [out(x)]Z(x� 1)

discussed in the Introduction. The proof goes as follows:

` P : 8x: [in(x)]�(x)

�(8)

` P : [in(y)]�(y)

E(

�

=)

` in(x):Q(x) : [in(y)]�(y)

E�(a; [])

` Q(y) : �(y)

�(�1)

` Q(c) : (�x: [out(x)]�

c

(x� 1))(c)

�(�)

` Q(c) : [out(c)]�

c

(c� 1)

E(

�

=)

` if c > 0 then out(c):Q(c� 1) : [out(c)]�

c

(c� 1)

E�(if ; [])

c > 0 ` out(c):Q(c� 1) : [out(c)]�

c

(c� 1)

E�(a; [])

c > 0; c = c ` Q(c� 1) : �

c

(c� 1)

G())

c > 0 ` Q(c� 1) : �

c

(c� 1)

�(�0)

�

where �

c

�

� �Zf(c > 0; Q(c�1); c�1)g:�x: [out(x)]Z(x�1), and where G())

is the obvious derived rule. Rule �(�1) has been applied with y, c, y > 0, and

y � 1 for ~x, ~c, B

00

, and ~e

00

in the description of condition C

�1

, respectively.

This example can be used to explain how the least �x-point rules support in-

ductive arguments: for any �xed value of y, by using simple unfolding instead

of tagging and by repeating the sequence of inferences between the fourth and

the last lines of the proof, we are guaranteed to reach in �nitely many steps

a sequent whose condition B is false and the (axiom) rule G(�) is therefore

applicable.

More example proofs can be found in [9].

13

Gurov, Berezin and Kapron

4 Conclusion

In this paper we suggested an extension of the modal �-calculus for expressing

properties of processes with value passing. To allow for convenient veri�cation

of processes described in the value passing CCS without parallel composition,

we constructed a compositional proof system. We showed that the proof sys-

tem is sound. This proof system can be considered as a step towards �nding

an appropriate framework for the veri�cation of value-passing processes. Al-

though fully automatic veri�cation is not achievable due to the expressive

power of the presented logic, the veri�cation process can be machine-assisted

to a considerable extent since most rules do not need human intervention to be

applied and the need for external semantic reasoning has been kept minimal.

An important question is whether the presented proof system is complete,

i.e. whether B j= E : � implies that B ` E : � is derivable in the

proof system. When asking this question one has to factor out any reasoning

concerning the value domain D like equivalence of value expressions, entail-

ment of Boolean expressions etc. Our proof system has been tailored towards

such a relative completeness, but concrete completeness results have still to

be obtained.

The proof system presented here can be considered, following an approach

of C.Stirling [14], as the �rst part of a more general proof system which can

also deal with processes involving parallel composition. The other part of the

latter system is for sequents of the form B ` �

1

;�

2

: �. The semantics of

such sequents is given by

B j= �

1

;�

2

: �

�

� 8V: 8P

1

; P

2

:

(kBk

V

= tt ^ P

1

2 k�

1

k

T (P

1

)

V

^ P

2

2 k�

1

k

T (P

2

)

V

�! P

1

jP

2

2 k�

1

k

T (P

1

jP

2

)

V

)

The two systems are connected through the following rule:

E(j)

B ` E

1

jE

2

: �

B ` E

1

: �

1

B ` �

1

;�

2

: � B ` E

2

: �

2

We treat the problem of constructing proof systems of the above type sepa-

rately [3].

Acknowledgement

The authors wish to thank Scott Hazelhurst for many helpful comments on

earlier versions of the paper.

14

Gurov, Berezin and Kapron

References

[1] H.R.Andersen, Veri�cation of Temporal Properties of Concurrent Systems, PhD

thesis, Department of Computer Science, Aarhus University, Denmark, June

1993.

[2] H.R.Andersen, C.Stirling and G.Winskel, A Compositional Proof System for

the Modal �-Calculus, in: Proceedings of LICS'94, 1994.

[3] S.Berezin and D.Gurov, A Compositional Proof System for the First Order

Modal �-calculus and Value Passing CCS, unpublished manuscript, March 1996.

[4] J.Brad�eld and C.Stirling, Local Model Checking for In�nite State Spaces,

Theoretical Computer Science, 96:157-174, 1992.

[5] G.Bruns, A Practical Technique for Process Abstraction, in: Proceedings of

CONCUR'93, Lecture Notes in Computer Science, 715:37-49, 1993.

[6] R.Cleaveland, Tableau-based Model Checking in the Propositional mu-Calculus,

Acta Informatica, 27:725-747, 1990.

[7] M.Dam, Model Checking Mobile Processes, in: Proceedings of CONCUR'93,

Lecture Notes in Computer Science, 715:22-36, 1993.

[8] M.Dam, Compositional Proof Systems for Model Checking In�nite State

Processes, in: Proceedings of CONCUR'95, Lecture Notes in Computer Science,

962:12-26, 1995.

[9] D.Gurov, S.Berezin and B.Kapron, A Compositional Proof System for a Subset

of the Value Passing CCS, Report DCS-240-IR, Department of Computer

Science, University of Victoria, February 1996.

[10] M.Hennessy and X.Liu, A Modal Logic for Message Passing Processes, Report

3/93, Department of Computer Science, University of Sussex, January 1993.

[11] D.Kozen, Results on the Propositional �-Calculus, Theoretical Computer

Science, 27:333-354, 1983.

[12] R.Milner, Communication and Concurrency, Prentice Hall International, 1989.

[13] J.Rathke and M.Hennessy, Local Model Checking for a Value-Based Modal �-

Calculus, Report 5/96, Department of Computer Science, University of Sussex,

June 1996.

[14] C.Stirling, Modal Logics for Communicating Systems, Theoretical Computer

Science, 49:311-347, 1987.

[15] C.Stirling and D.Walker, Local Model Checking in the Modal mu-Calculus,

Theoretical Computer Science, 89(1):161-177, 1991.

[16] A.Tarski, A Lattice-Theoretical Fixedpoint Theorem and its Applications,

Paci�c Journal of Mathematics, 5:285-309, 1955.

[17] G.Winskel, A Note on Model Checking the Modal �-Calculus, Theoretical

Computer Science, 83:157-167, 1991.

15

