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Abstract

In component based software design, formal reasoning about programs has to be compositional, allowing
global, program-wide properties to be inferred from the properties of its components. The present paper
addresses the problem of compositional verification of behavioural control flow properties of sequential
programs with procedures, expressed in a modal logic. We use as a starting point a maximal model based
method previously developed by the authors, which assumes the local properties to be structural (rather
than behavioural). To handle local behavioural properties, we propose the combination of the above method
with a translation from behavioural properties to sets of structural ones. The present paper presents a direct
solution for the logic, and prepares the ground for a translation for the considerably more expressive logic
obtained by adding greatest fixed-point recursion.
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1 Introduction

Background

Component based software design is a design paradigm where several software

components, each with their own well-described functionality, are combined into a

single application. This technique is becoming increasingly widespread as a means

of constructing advanced, complex software systems. However, to ensure the well-

functioning and security of the application as a whole, one needs compositional
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verification techniques that allow to conclude this from the functionality and se-

curity properties of the components. Such guarantees are in particular necessary

when the different components in the system can communicate and collaborate with

each other. In the context of mobile code, development of a compositional verifica-

tion techniques becomes even more pertinent, because here new applications can be

downloaded post-issuance on a running system.

In general, the problem of compositional verification that we study is the follow-

ing: if we wish to ensure that a composed application has global property ψ, can

we find local properties φ for the different components, that are sufficient to ensure

that the composed application has property ψ. This idea can be described by the

following proof principle (where X is a component variable):

� A : φ X : φ � X ⊗ B : ψ

� A ⊗ B : ψ

This principle reduces the problem of showing that the composition of A and B

satisfies ψ to the following tasks:

• decompose the global property ψ by finding a local property φ of A,

• prove correctness of the decomposition, i.e., verify that, for any X satisfying φ,

X composed with B satisfies ψ (second premise), and

• when a concrete implementation of A has been chosen, verify that it satisfies the

local property φ (first premise).

In our work, we focus on applets, that are components described in a sequential pro-

cedural language. Applets come equipped with an applet interface I that describes

the methods that are defined and required by its implementation.

Compositional verification with maximal models

In earlier work we proposed an approach to compositional verification based on

maximal models [9], provided tool support, and evaluated its practical applicability

by means of an industrial, electronic purse case study provided by smart card pro-

ducer Gemplus [3]. To show that a local property φ is sufficient to ensure a global

property ψ, we compute a so-called maximal model w.r.t. φ. This model is max-

imal in the sense that it simulates all applets having property φ. We have shown

how maximal models can be computed for our simulation logic, a fragment of the

modal μ-calculus with box modalities and greatest fixed-points only. We distinguish

two kind of properties: structural and behavioural. Structural properties restrict

the set of possible applet implementations, while behavioural properties restrict the

possible behaviours. For structural property φ and applet interface I, we can define

a maximal applet θI(φ) that simulates exactly all applets with interface I, having

property φ. Therefore we can prove that the following proof principle is sound and

complete (Theorem 3.11 in [9]):

(structure)
A |=s φ θI(φ) � B |=b ψ

A � B |=b ψ
A : I
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This principle should be understood as follows. Suppose we have a local structural

assumption φ, describing applets with interface I 5 . If we wish to show that any

applet having this property can safely interact with some already known applet B,

and in particular that this respects some global behavioural safety property ψ, we

do this by constructing the maximal applet θI(φ) for φ and I, compose it with B,

and model check (using a suitable algorithm, see for a survey [1]) that the resulting

applet satisfies ψ. To safely compose applets A and B, one has then also to model

check that applet A indeed satisfies the local structural assumption φ.

However, for local behavioural properties the situation is more problematic. In

general, given behavioural property φ and interface I, there does not exist a unique

maximal applet that simulates all applets (with interface I) with property φ. Sup-

pose we have the following behavioural formula [a call b] r, meaning that immediately

after a call from method a to method b (that is, at the entry point of b), the atomic

proposition r should hold. Even for this simple formula there are two maximal ap-

plets (providing and requiring the methods a and b): the first is ’maximal’ but has

no call edges labelled b with source an entry node of a (unless this entry node is

also a return node, meaning that the call will never be reached), while the second is

’maximal’ but has no entry point of b which is valuated r. Every applet satisfying

the formula is simulated by one of these two applets; however, the two applets do

not simulate each other.

Characterising behavioural properties with applet structure

There are several ways of addressing this problem. A first possibility is to over–

approximate the behaviour with a model which is not necessarily a behaviour. The

maximal model of the behavioural formula gives one such approximation. A better

approximation can be obtained through a standard product construction between

the applet PDA induced by the maximal applet for the given interface and this max-

imal model. However, this inherently results in an incomplete verification principle.

Therefore, we take another approach and we aim at computing the whole set of

maximal applet structures, by characterising a behavioural formula by a set of struc-

tural formulae. This paper describes how behavioural modal logic formulae using

box modalities only can be characterised by a set of structural formulae. We call this

fragment of simulation logic modal simulation logic. It is ongoing work to extend

this work to greatest fixed-points; this requires the use of a tableau construction and

a global discharge condition.

We show that in case the formula does not contain disjunctions, this character-

isation is exact. Below, we present a translation Π from behavioural modal simu-

lation logic formulae into (equivalent) sets of structural properties. This is a first

step towards the possibility to apply our compositional verification techniques also

when local assumptions are behavioural properties. If a behavioural property can

be characterised by a set of structural properties, we can apply our maximal applet

construction defined for structural properties (see [9]) to obtain a set of maximal

5 Interfaces will be defined formally below. They specify the set of methods that is known by the applet.
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models for the behavioural property. The compositional verification principle then

becomes the following:

A |=b φ {θI(σ) � B |=b χ}σ∈ΠI(φ)

A � B |=b χ
A : IA

Notice that instead of showing A |=b φ it suffices to show A |=s σ for some σ ∈ ΠI(φ).

Apart from filling up a gap in our compositional verification method, this charac-

terisation also has a more general interest in itself, as it reveals the relation between

structure and behaviour. In particular, in our translation we exploit that a beha-

vioural property is trivially satisfied by an applet if the applet structure does not

allow this behaviour.

Related work

Compositional verification of concurrent programs has been studied extensively,

especially in the form of assumption/commitment based reasoning about processes

with synchronous message passing, and in the form of rely/guarantee based reas-

oning for shared-variable concurrency; see e.g. De Roever et al. [7] for a system-

atic overview of these and related proof methods. However, these techniques do

not address programs with recursive procedures. The use of maximal models for

algorithmic compositional verification is due to Grumberg and Long [2] for the uni-

versal fragment of CTL, later extended to CTL* by Kupferman and Vardi [5]. These

works study synchronous parallel compositions of sequential processes under fairness

assumptions. We adopt this approach to simulation logic in the present context of

compositional verification of control-flow properties of sequential programs with pro-

cedures in [9]. To the best of our knowledge, the present work is the first to address

the characterisation of behavioural control-flow properties in terms of structural

ones.

Structure of the paper

Section 2 gives a short overview of our earlier results, in particular the program

structure and behaviour, the logic and the definition of maximal model. It also in-

troduces useful notations. Section 3 defines the translation from behavioural modal

simulation logic formulae to structural formulae, and proves its correctness. Sec-

tion 4 proves soundness and completeness of a compositional verification principle

for behavioural properties without disjunctions, provided the local assumptions are

described by behavioural modal simulation logic. Finally, Section 5 gives conclusions

and discusses future work.

2 Preliminaries: model and logic

We briefly recall some definitions and results that form the basis for our composi-

tional verification method. For a full overview, the reader is referred to [8,9].
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2.1 Modal simulation logic

We use a subset of modal logic as our specification language. In our work on compos-

itional verification, we exploited that formulae in this logic, extended with greatest

fixed-points can be characterised by simulation, and vice versa; therefore we call

that logic simulation logic. The subset of simulation logic that we consider in this

paper is modal simulation logic. Throughout, we fix a set of labels L and a set of

atomic propositions A.

Definition 2.1 (Modal Simulation Logic) The formulae of modal simulation

logic are inductively defined by:

φ ::= p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | [a] φ

where p ∈ A and a ∈ L.

The semantics of the logic is standard for modal logics and is given in terms of

models (Kripke structures). In particular, formula [a]φ holds of a state (“possible

world”) if φ holds in all states accessible from the former state via an edge labelled a.

Notice that the constant formulae true and false are definable; they shall be denoted

tt and ff, respectively. For convenience, we shall use φ1 ⇒ φ2 to abbreviate ¬φ1∨φ2.

Next, we define a general notion of model and specifications.

Definition 2.2 (Model) A model is a structure M = (S,L,→, A, λ), where S is

a set of states, →⊆ S × L × S a labelled transition relation, and λ : S → P(A)

a valuation, assigning to each state s the atomic propositions that hold in s. A

specification S is a pair (M, E), where M is a model and E ⊆ S is a set of states.

Intuitively, one can think of E as the set of entry states of the model. We define

the usual notions of satisfaction (M, s) |= φ and simulation (M1, s1) ≤ (M2, s2)

(where related states satisfy the same atomic propositions). A specification satisfies

a formula if all its entry states satisfy the formula. A specification is simulated by

another specification if for all its entry states there exists an entry state in the other

specification, that simulates this first entry state. This simulation relation preserves

(backwards) logical properties.

Theorem 2.3 S1 ≤ S2 and S2 |= φ implies S1 |= φ

Proof Corollary 2.16 in [9] �

2.2 Applet structure and behaviour

Our program model, inspired by [4], is control–flow based and thus over–approxi-

mates actual program behaviour. It defines two different views on applets: a struc-

tural and a behavioural view. Both views are instantiations of the general notions

of model and specification. Notice in particular that these instantiations yield a

structural and a behavioural version of simulation and simulation logic. Again, we

refer to [8,9] for more detail.
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2.2.1 Applet Structure

Since we abstract away from all data, applet structure is defined as a collection of

call graphs for the methods that the applet implements. Let Meth be a countably

infinite set of method names. A method specification is an instance of the general

notion of specification.

Definition 2.4 (Method specification) A method graph for m ∈ Meth over a

finite set M ⊆ Meth of method names is a finite model

Mm = (Vm, Lm,→m, Am, λm)

where Vm is the set of control nodes of m, Lm = M ∪ {ε}, Am = {m, r}, and

λm : Vm → P(Am) is so that m ∈ λm(v) for all v ∈ Vm ( i.e. each node is tagged

with its method name). The nodes v ∈ Vm with r ∈ λm(v) are called return points.

A method specification for m ∈ Meth over M is a pair (Mm, Em), where Mm is

a method graph for m over M and Em ⊆ Vm is a non–empty set of entry points of

m.

Next we define the notion of applet interface.

Definition 2.5 (Applet interface) An applet interface is a pair I = (I+, I−),

where I+, I− ⊆ Meth are finite sets of names of provided and required methods,

respectively. The composition of two interfaces I1 = (I+
1 , I−1 ) and I2 = (I+

2 , I−2 ) is

defined by I1 ∪ I2 = (I+
1 ∪ I+

2 , I−1 ∪ I−2 ).

To formally define the notion applet with interface, we use the notion of disjoint

union of specifications S1 � S2, where each state is tagged with 1 or 2, respectively,

and (s, i)
a
−→S1�S2 (t, i), for i ∈ {1, 2}, if and only if s

a
−→Si

t.

Definition 2.6 (Applet) An applet A with implementation interface I, written

A : I, is defined inductively by

• (Mm, Em) : ({m},M) if (Mm, Em) is a method specification for m ∈ Meth over

M , and

• A1 �A2 : I1 ∪ I2 if A1 : I1 and A2 : I2.

An applet is closed if I− ⊆ I+, i.e. it does not require any external methods.

Simulation and satisfaction, instantiated to this particular type of models are

called structural simulation ≤s, and structural satisfaction |=s, respectively.

Example 2.7 As an illustration of properties in structural modal simulation logic,

consider first formula a ⇒ [b]ff (which, as explained above, abbreviates ¬a ∨ [b]ff).

It holds of a control node v if either v |= ¬a (that is, a ∈ λ(v), meaning v does not

belong to method a) or else all nodes v′ such that v
b
−→a v′ satisfy ff, meaning no

such nodes v′ exist (since no node satisfies ff). The formula holds of an applet if it

holds for all its entry nodes; it hence specifies that from any entry node of method

a, there is no call edge to method b. Similarly, the formula b ⇒ r specifies that no

entry node of method b is a return node.
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Modal logic is not capable of expressing general invariant or reachability proper-

ties such as “no call edge to method b is reachable from an entry node of method

b”; however, such properties are easily expressed in full structural simulation logic

(see [9]).

2.2.2 Applet behaviour

Next we instantiate specifications on the behavioural level.

(transfer)
m ∈ I+ v →m v′ v |= ¬r

(v, σ)
τ
−→ (v′, σ)

(call)

m1,m2 ∈ I+ v1
m2−−→m1 v′1 v1 |= ¬r

v2 |= m2 v2 ∈ E

(v1, σ)
m1call m2−−−−−−→ (v2, v

′
1 · σ)

(return)
m1,m2 ∈ I+ v2 |= m2 ∧ r v1 |= m1

(v2, v1 · σ)
m2 ret m1−−−−−−→ (v1, σ)

Figure 1. Applet Transition Rules

Definition 2.8 (Behaviour) Let A = (M, E) : I be a closed applet where M =

(V,L,→, A, λ). The behaviour of A is described by the specification b(A) = (Mb, Eb),

where Mb = (Sb, Lb,→b, Ab, λb) is such that Sb = V × V ∗, i.e. states (also called

configurations) are pairs of control points and stacks, Lb = {m1 k m2 | k ∈

{call, ret}, m1,m2 ∈ I+} ∪ {τ}, →b is defined by the rules of Figure 1, Ab = A,

and λb((v, σ)) = λ(v).

The set of initial states Eb is defined by Eb = E×{ε}, where ε denotes the empty

sequence over V .

Note that applet behaviour defines a pushdown automaton. We exploit this by using

a model checker for PDAs to verify behavioural properties (see, e.g., [1] for a survey

of verification techniques for infinite process structures).

Also on the behavioural level, we instantiate the definitions of simulation ≤b and

satisfaction |=b: A1 ≤b A2 ⇔ b(A1) ≤ b(A2) and A |=b φ ⇔ b(A) |= φ. Any two

applets that are related by structural simulation, are also related by behavioural

simulation (Theorem 3.9 in [9]), but the converse is not true (since behavioural

simulation only requires reachable states to be related).

Example 2.9 As an example of a property in behavioural modal simulation logic,

consider formula [a call b] r. A configuration (v, σ) satisfies the formula if all config-

urations that are reached from (v, σ) by performing a call from method a to method

b satisfy r (that is, have a return node as control point). The formula holds of an

applet if it holds of all its initial configurations; it hence specifies that if the first ac-

tion of the applet is a call from method a to method b, then immediately afterwards
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we should be at a return node.

Again, invariant behavioural properties such as “method a never calls method b”

are beyond the expressive power of modal logic, but are easily expressed in full

behavioural simulation logic.

2.2.3 Clean applet structures

Notice that method specifications allow return points to have outgoing edges. How-

ever, the characterisation of behavioural properties by a set of structural formulae

defined later is only correct if the applet has no outgoing edges in return nodes; such

applets are referred to as clean. We define a unary operation of cleaning returning

a clean applet having the same behaviour.

Definition 2.10 [Cleaning] Given a method specification Mm = (Vm, Lm,→m

, Am, λm), the unary operation of cleaning is defined by:

M• = (Vm, Lm, {s
l
−→m t | s

l
−→m t ∧ r ∈ λm(s)}, Am, λm)

It is easy to see that cleaned applets are clean. We list several useful properties of

cleaning.

(A•)• = A•

A |=b φ ⇔ A• |=b φ

(A•, s) |=s r ⇒ ∀l, σ. (A•, s) |=s [l]σ

Thus, cleaning is idempotent and preserves behavioural properties. And any

state that is a return point, trivially satisfies any box formula at the structural level.

Below, in the correctness proof of the characterisation, we will define a notion of

reachability (the set of nodes that can be reached by a behaviour), and we will use

that on clean applets this coincides with the satisfaction of box formulae.

2.3 Compositional verification using maximal applets

Our compositional verification method, presented in [9], is based on the computation

of maximal models for a property φ. A model is said to be maximal for property

φ, if it simulates all other models having property φ. However, when we have a

property φ over applet structure (or applet behaviour), we can not be sure that the

maximal model of φ is also a legal applet structure (or applet behaviour). For applet

structures, this problem can be solved, because we can precisely characterise legal

applet structures w.r.t. an interface I as a formula in simulation logic (instantiated

at the structural level). If φI is the characteristic formula for an applet with interface

I, and φ is an arbitrary structural formula, then the maximal model of the formula

φ ∧ φI precisely characterises all applets with interface I satisfying φ. Thus, if we

define the maximal applet w.r.t. φ and I, denoted θI(φ), to be the maximal model of

the property φ∧φI , then we can prove that the following compositional verification

principle is sound and complete for full simulation logic (Theorem 3.11 in [9]):
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(structure)
A |=s φ θI(φ) � B |=b ψ

A � B |=b ψ
A : I

For our subset modal simulation logic, we can only prove soundness of this rule.

To establish completeness for full simulation logic, we use that every model can be

characterised with a characteristic formula. But, since specifications can contain

loops, the availability of greatest fixed-points is essential here.

As explained above, there is no such way to precisely characterise applet beha-

viour, thus we cannot establish soundness and completeness of the same composi-

tional verification principle for local formulae over applet behaviour. Below we will

define a translation of behavioural formulae into sets of structural formulae, which

will allow us to exploit the compositional verification principle for applet structure

to perform compositional verification of applet behaviour properties.

2.4 Notational conventions

We use label ε for transfer edges in applet structures, and label τ for silent behavi-

oural transitions.

For sequences σ, we use σ� to denote the top element (head), and σ� to denote

the sequence with the top element removed (tail), i.e. (v · σ)� = v and (v · σ)� = σ.

The empty sequence is denoted as ε, where ε� and ε� are undefined.

In our translation of modal simulation logic formulae we allow sequences α of

labels to appear in box modalities, with the obvious translation ·̂ to standard for-

mulae:

[̂ε]ψ = ψ

̂[l · α] ψ = [l] [̂α] ψ

3 Characterising behavioural properties

We shall assume throughout this section that applets are clean; if they are not, they

can be cleaned as explained above without changing the behaviour. We define a

mapping Π from behavioural properties to sets of structural properties, for which

we can prove that

A |=b φ ⇐ ∃σ ∈ Π(φ).A |=s σ

The reason for this not being an equivalence is that (unlike the remaining con-

nectives of the logic) disjunction cannot be treated compositionally: the validity of

A |=b φ ∨ ψ cannot be inferred just from the validity (or invalidity) of A |=b φ and

A |=b ψ, since A |=b φ∨ψ may hold because some initial configurations of A satisfy

φ while the rest satisfy ψ. However, if behavioural property φ does not contain

disjunction, the mapping is exact, and we obtain an equivalence (i.e. we find the

precise set of structural formulae characterising a behavioural property).

A |=b φ ⇔ ∃σ ∈ Π(φ).A |=s σ (φdisjunction-free) (1)
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π(i,F )·H(p) = {i ⇒ [F ] p} ∪ {i′ ⇒ [F ′] ff | (i′, F ′) ∈ H}

π(i,F )·H(¬p) = {i ⇒ [F ]¬p} ∪ {i′ ⇒ [F ′]ff | (i′, F ′) ∈ H}

π(i,F )·H(φ1 ∧ φ2) = {σ1 ∧ σ2 | σ1 ∈ π(i,F )·H(φ1), σ2 ∈ π(i,F )·H(φ2)}

π(i,F )·H(φ1 ∨ φ2) = π(i,F )·H(φ1) ∪ π(i,F )·H(φ2)

π(i,F )·H([τ ]φ) = π(i,F ·ε)·H(φ)

π(i,F )·H([a call b]φ) =

⎧⎨
⎩

{tt} if i = a

π(b,ε)·(i,F ·b)·H(φ) if i = a

π(i,F )·H([a ret b]φ) =

⎧⎨
⎩

{tt} i = a ∨ H� = ε ∨ π1(H
�) = b

{i ⇒ [F ]¬r} ∪ πH(φ) if i = a ∧ π1(H
�) = b

Figure 2. The mapping πH

3.1 Mapping behavioural properties into structural properties

Our translation is based on a symbolic execution of the behavioural property. First,

we define the (auxiliary) mapping πH : Behform → P(Structform), parametrised

by a non-empty history stack H. Each element in the history stack is a tuple

containing the current method name and a sequence (called frame) of edge labels,

i.e.: H : (I+ × (I− ∪ {ε})∗)+.

The mapping π is initially applied with an initial history stack containing a single

element with an empty frame. We use ∅H,m to denote this single element sequence

(m, ε).

The history stack is updated as follows:

• when the behavioural property prescribes a call from a to b, and the top element

of H is in method a, we add b at the end of this frame, and we push a new element

(b, ε) onto H;

• when the behavioural property prescribes a return from a to b, the top element

of H is in method a and the previous element is in method b, we pop the top

element from H; and

• when the behavioural property prescribes an internal transfer, we append ε to the

end of the frame of the top element of H.

The mapping π is defined in Figure 2 by induction on the structure of the formula.

The mapping symbolically executes the formula, and for every box modality that

it encounters labelled with a return, it generates one structural formula capturing

the possibility that this behaviour cannot happen. The recursive call will then

generate other structural formulae, that will have to hold in case the described

behaviour actually took place. Symbolic execution of the box modality labelled

with a call or an internal transfer does not produce any explicit structural formula
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(capturing the possibility that this transition is not possible), because such a formula

would always be subsumed by the structural formulae generated by the remaining

formula. When the translation encounter (the negation of) an atomic proposition,

it generates a formula characterising the case that the atomic proposition holds in

the current frame. In addition, it generates formulae characterising the possibility

that the applet does not satisfy one or more of the structural constraints collected

in the history stack (in which case the current atomic proposition would never be

evaluated). Notice that πH(tt) = {tt}. Notice further that non-emptiness of the

history stack is an invariant of the construction.

Finally, we can define the mapping of φ w.r.t. a given interface I:

ΠI(φ) = {
∧

m∈I+ σm | σm ∈ π∅H,m
(φ) }

This last expression gives rise to an explosion in the number of formulae, but note

that for the compositional verification we only need the weakest structural formulae

of this set. In particular, as soon as a set contains tt, all other elements can be

removed from the set, because any applet will satisfy the local assumption tt.

3.2 Examples

The working of this mapping is best explained with some examples. Throughout we

assume I = ({a, b, c}, {a, b, c}).

Example 3.1 Consider the following translations.

π∅H,a
([a call a] r) = π(a,ε)·(a,a)(r) = {a ⇒ r, a ⇒ [a]ff}

π∅H,a
([a call b] [b call a] [a call b] r) = {b ⇒ r, a ⇒ [b] ff, b ⇒ [a] ff}

π∅H,a
([a call b] [b ret a] [a call c] r) = {c ⇒ r, a ⇒ [b · c] ff, b ⇒ ¬r}

π∅H,a
([a call b] [b ret d] ff) = {tt}

The first property concerns a selfcall, the second a callback and the third a return.

The last property shows how nonsense returns (causing formulae to be vacuously

true) are detected.

The next example shows a computation for the whole interface with a call behaviour.

Example 3.2 We examine the property from Example 2.9.

π∅H,a
([a call b] r) = {b ⇒ r, a ⇒ [b] ff}

π∅H,b
([a call b] r) = {tt}

π∅H,c
([a call b] r) = {tt}

ΠI([a call b] r) = {b ⇒ r ∧ tt ∧ tt, a ⇒ [b] ff ∧ tt ∧ tt}
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And finally, the last example shows a computation for the whole interface with only

internal behaviour.

Example 3.3

π∅H,a
([τ ] ff) = {a ⇒ [ε]ff}

π∅H,b
([τ ] ff) = {b ⇒ [ε]ff}

π∅H,c
([τ ] ff) = {c ⇒ [ε] ff}

ΠI([τ ] ff) = {a ⇒ [ε]ff ∧ b ⇒ [ε]ff ∧ c ⇒ [ε] ff}

3.3 Correctness of the Translation

To show the correctness of the translation, we generalise the notion of satisfaction

by relativising it on the history stack. As for the translation, in the proof we also

assume applet A to be clean.

Intuitively, the generalised notion of satisfaction, relativised w.r.t. H, can be

understood as follows: A |=H φ holds for applet A and formula φ if for any node v

in method i that can be reached by following the path described by the frame in the

top element of H and for any callstack σ that corresponds to the rest of the history

stack we have (v, σ) |=b φ.

To define this formally, we need several auxiliary definitions. First we define a

function reach, that computes given applet A, a set of nodes V and sequence of

labels L, which nodes are reachable in A from the nodes in V , following edges with

the labels in L.

reachA(V, ε) = V

reachA(V, l · L) = reachA({v′ | v ∈ V ∧ v
l
−→A v′}, L)

The correspondence between concrete callstack σ and history stack H is defined

as follows: if σ� = v and H� = (i, F ) then we require that v ∈ reachA(Ei, F ) and

that σ� and H� correspond. Formally this is defined as follows:

γA(ε, ε) = tt γA(v · σ, ε) = ff γA(ε, (i, F ) · H) = ff

γA(v · σ, (i, F ) · H) = v ∈ reachA(Ei, F ) ∧ γA(σ,H)

Notice that γA(v · σ, ∅H,i) holds whenever v ∈ Ei and σ = ε, since v ∈ Ei whenever

v ∈ reachA(Ei, ε).

We are now ready to define formally the generalised notion of satisfaction.

Definition 3.4 Given applet A and history stack H, we define generalised satisfac-

tion w.r.t. H by:

A |=H φ ⇔ ∀v, σ.(γA(v · σ,H) ⇒ (v, σ) |=b φ)
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A |=(i,F )·H [a call b] φ

⇔ ∀v, σ.(v ∈ reachA(Ei, F ) ∧ γA(σ, H) ⇒ (v, σ) |=b [a call b] φ) {Def. 3.4, γA}

⇔ ∀v, σ.(v ∈ reachA(Ei, F ) ∧ γA(σ, H) ⇒ {Def. |=b}

∀v1, v2.(v
b
−→i v1 ∧ v2 ∈ Eb ⇒ (v2, v1 · σ) |=b φ))

⇔ ∀v, v1, v2, σ.(v ∈ reachA(Ei, F ) ∧ γA(σ, H) ∧ v
b
−→i v1 ∧ v2 ∈ Eb ⇒ {Logic}

(v2, v1 · σ) |=b φ)

⇔ ∀v1, v2, σ.(v1 ∈ reachA(Ei, F · b) ∧ γA(σ, H) ∧ v2 ∈ Eb ⇒ {Def. reachA}

(v2, v1 · σ) |=b φ)

⇔ ∀v1, v2, σ.(v2 ∈ Eb ∧ γA(v1 · σ, (i, F · b) · H) ⇒ (v2, v1 · σ) |=b φ) {Def. γA}

⇔ ∀v1, v2, σ.(v2 ∈ reachA(Eb, ε) ∧ γA(v1 · σ, (i, F · b) · H) ⇒ (v2, v1 · σ) |=b φ) {Def. reachA}

⇔ ∀v1, v2, σ.(γA(v2 · v1 · σ, (b, ε) · (i, F · b) · H) ⇒ (v2, v1 · σ) |=b φ) {Def. γA}

⇔ A |=(b,ε)·(i,F ·b)·H φ {Def. 3.4}

⇔ ∃σ ∈ π(b,ε)·(i,F ·b)·H(φ). A |=s σ {Ind. hyp.}

⇔ ∃σ ∈ π(i,F )·H([a call b] φ). A |=s σ {Def. π}

Figure 3. Correctness proof for case [a call b]φ

The standard notion of satisfaction can be related to this relativised notion of sat-

isfaction as follows.

Proposition 3.5 A |=b φ ⇔ ∀m ∈ I+.A |=∅H,m
φ

We can now state the main theorem that allows us to show the correctness of

the translation.

Theorem 3.6 Let A be an applet, H be a history stack, and φ be a disjunction-free

behavioural formula. Then:

A |=H φ ⇔ ∃σ ∈ πH(φ). A |=s σ

Proof This theorem has been formalised and proven correct with the PVS theorem

prover [6] by using induction on the structure of φ. The two main properties used

in the proofs are the following:

• (∀v.v ∈ reachA(Ei, L) ⇒ v |= σ) ⇔ A |= [L]σ

• (∃σ.γA(σ,H)) ⇔ (∀φ ∈ {i ⇒ [F ] ff | (i, F ) ∈ H}.A |= φ)

The rest of the proof is a careful rewriting of definitions, case analysis and use of

logic. Figure 3 shows the complete derivation for one of the most interesting cases,

namely case [a call b]φ when i = a. �

Equivalence (1) is a straightforward corollary of Theorem 3.6 and Proposition 3.5.

4 Compositional verification for behavioural properties

The results in the preceding section justify the following compositional verification

principle where φ is a behavioural formula of modal simulation logic.

A |=b φ {θIA(σ) � B |=b χ}σ∈Π(φ)IA

A � B |=b χ
A : IA
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Notice that instead of showing A |=b φ it suffices to show A• |=s σ for some

σ ∈ Π(φ)IA .

Soundness of this rule follows from equation (1) and the soundness of the com-

positional verification principle for structural formulae (structure). Since the com-

positional verification principle is not complete if we restrict ourselves to modal

simulation logic, we do not get completeness. However, since the characterisation

of behavioural formulae described in this paper is exact, provided the formula does

not contain disjunctions, once it has been extended with greatest fixed-points, we

can exploit the fact that satisfaction and simulation characterise each other, to also

get a complete compositional verification principle for behavioural formulae.

5 Conclusion

This paper describes a translation from behavioural to structural properties. The

translation is defined for so-called modal simulation logic, which corresponds to

modal logic with box modalities only. In earlier work, we defined a compositional

verification principle where local properties have to be structural properties. Based

on this principle, we developed a compositional verification method, provided ma-

chine support by means of a tool set, and evaluated the practical applicability of the

method on an industrial case study. By having a translation from behavioural to

structural properties, we extend the compositional verification principle to behavi-

oural properties. The translation proceeds by symbolic execution of the behavioural

formula: each modality in this formula gives rise to a constraint on the structures

that satisfy the behavioural formula. It has been implemented in Ocaml and in-

cluded in the tool set.

The logic fragment for which we have defined the translation is quite restricted,

but the work described in this paper forms part of a bigger project, where we are

extending the translation to greatest fixed-points. This extension requires that the

translation is recast into a tableau construction, unfolding the greatest fixed-point

operator until some global discharge condition holds, meaning that the fixed-point

has been sufficiently unfolded to capture all structural properties. However, we feel

that the translation of the modal logic fragment in itself merits a detailed description,

because this is the point in the translation where the interplay between behaviour

and structure is the most prominent.

In a different line of work, we are currently investigating whether we can ex-

tend the translation to also take diamond modalities into account. However, since

diamond modalities cannot be characterised by simulation of standard models, this

would not contribute further to our work on compositional verification.
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