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ABSTRACT
In this workwe propose Dynamit, amonitoring framework to detect
reentrancy vulnerabilities in Ethereum smart contracts. The novelty
of our framework is that it relies only on transaction metadata and
balance data from the blockchain system; our approach requires
no domain knowledge, code instrumentation, or special execution
environment. Dynamit extracts features from transaction data and
uses a machine learning model to classify transactions as benign
or harmful. Therefore, not only can we find the contracts that are
vulnerable to reentrancy attacks, but we also get an execution trace
that reproduces the attack. Using a random forest classifier, our
model achieved more than 90 percent accuracy on 105 transactions,
showing the potential of our technique.

CCS CONCEPTS
• Security and privacy → Distributed systems security; Software
security engineering; • Computing methodologies → Machine
learning; Neural networks.
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1 INTRODUCTION
A blockchain is a distributed ledger that manages assets between
users. A smart contract encodes rules to handle the transfer of these
assets. The transfers happen within transactions that are stored
on the blockchain and are persistent. Therefore, smart contracts
can implement a wide range of use cases, including financial and
governance applications [17]. For instance, a contract could act
like an autonomous agreement between multiple parties to transfer
assets to desired accounts when particular conditions are met.
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One of the most popular blockchain platforms that supports
smart contracts is Ethereum. As of January 2021, the market capital-
ization of Ethereum is about 130 billion dollars [4]. Smart contracts
on Ethereum allow users and other contracts to interact with them
by making calls to functions in the contracts. Smart contracts in
Ethereum are commonly written in Solidity, a language influenced
by JavaScript. To perform the operations on a smart contract, an
execution fee is needed that is called gas. Gas fees are paid in
Ethereum’s native currency, Ether (ETH) [9].

The novel semantics and programming model of smart contracts
make it challenging to ensure their correct behavior. This makes
them susceptible to bugs or vulnerabilities that may be exploited
by other accounts in the Ethereum network. In fact, there has been
a number of attacks on the Ethereum main network that caused the
loss of millions of ETH. The most famous attack so far on Ethereum
has been the attack on Decentralized Autonomous Organisation
(DAO), which was conducted by exploiting the reentrancy vulnera-
bility. As a result of this attack, 3.5 million ETH was stolen (about
50M USD at the time) [7].

Reentrancy involves (unintended) repeated calls to the same
function (or a set of functions) before the first invocation is finished.
Such nested invocations can cause the smart contract to behave in
unexpected ways, which can be exploited by an attacker, usually to
transfer funds away from the victim contract. Reentrancy is known
as one of the most dangerous vulnerabilities in Ethereum smart
contracts [3]. Existing tools to detect reentrancy vulnerabilities use
complex code analysis and handcrafted rules to carefully analyze
the control flow and asset transfers in smart contracts. At a trans-
action level, such attacks are not explicitly observable, though. Our
work attempts a completely new direction:

(1) Wemonitor runtime transactions at the level of the Ethereum
blockchain. An example of a transaction trace from which
we gather data for our machine learning model is presented
in Figure 1. This monitoring does not require complex inspec-
tion of the smart contracts themselves and makes it possible
to deploy our technique directly at the Ethereum blockchain
client, without any modification of the smart contracts or
the client involved.

(2) We use machine learning on the monitored transaction meta-
data. This avoids the need to design (possibly flawed) rules
and also paves the way towards recognizing new types of
vulnerabilities in the future.

Dynamit is designed to analyse transactions in smart contracts
and reportmalicious ones. Our technique, when usedwith a random-
forest model, showed high accuracy (94 %) on 105 transactions. We
averaged our experimental results over ten iterations of a setting
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1 blockHash: "0xb44 ...343 c5",

2 blockNumber: 33614 ,

3 contractAddress: null ,

4 cumulativeGasUsed: 162534 ,

5 from: "0x66a ...1 f3c7",

6 gasUsed: 162534 ,

7 logs: [],

8 logsBloom: "0x0000 ...00000",

9 status: "0x1",

10 to: "0x89e ...7 ddc7",

11 transactionHash: "0x3e4 ...039 ad",

12 transactionIndex: 0

Figure 1: A sample trace (transaction receipt) retrieved from
the Ethereum blockchain

that used ten-fold cross-validation for the training and test phases
of all machine learning models.

The rest of this paper is organized as follows: Section 2 explains
smart contracts and reentrancy, and covers related work. Section 3
describes our approach. Our experiments and their results are de-
scribed in Sections 4 and 5, respectively. Section 6 covers threats to
validity; Section 7 concludes and outlines future work.

2 BACKGROUND
2.1 Ethereum
Smart contracts embody a novel programmingmodel that includes a
global shared state (managed in a decentralizedway on a blockchain).
The global state that stores everyone’s assets is manipulated auto-
matically by the smart contracts, which are small programs that
are expressed in a specific format, such as Ethereum bytecode [9].
This bytecode is usually compiled from a high-level language, e. g.,
Solidity [6]. The code is executed by a virtual machine, instruction
by instruction. Each instruction also incurs a cost, measured in gas,
which the invoker (user) of a smart contract has to pay. The VM
manages the effects of the instructions and their cost on everyone’s
assets on the blockchain. Potential vulnerabilities can arise at dif-
ferent levels in this architecture; reentrancy is generally regarded
as one of the most severe ones [2, 3].

2.2 Reentrancy Vulnerability
Contracts in Ethereum can send Ether to each other. Whenever
a contract receives a message without data that contains Ether
and does not specify a function, a default unnamed function, the
fallback function, is invoked. When there is a transfer of funds from
contractA to contract B, control is handed over to contract B [9]. In
the time that B has control, it can call back into any public function
of contract A, even the same function that issued the call to B. This
situation is called reentrancy.

A simple example of reentrancy is illustrated in Figures 2 and 3.
Contract Vulnerable donates to a target contract (as specified by
to parameter in donate). We use this over-simplified example to
illustrate the way reentrancy is exploited, and the real-world ex-
ploits may be much more complex. The intention is that a donation
occur only once, but this is not checked in donate. An exploit is
implemented by contract Attacker. Its startAttack function is-
sues a call to donate in Vulnerable. After this call, Vulnerable

transfers plain Ether to Attacker. At this point, control is passed
to the fallback function of Attacker, which tries to call the donate
function again. The donations continue until Vulnerable runs out
of gas or Ether, and because only the last invocation is reverted
upon failure, the attacker effectively drains the victim of all its
funds [3].

In order to prevent reentrancy, one could use function modifiers
in Solidity [9] to perform checks before giving the control to the fall-
back function of another contract. In case of our Vulnerable con-
tract, a simple check before sending the Ether prevents the attacker
from exploiting reentrancy. The safe version, NotVulnerable, checks
and updates its state before sending Ether to the interacting contract
(see Figure 4).

1 contract Vulnerable {

2 function donate(address to_) public payable

3 {

4 require(to_.call.value(1 ether)());

5 }

6 }

Figure 2: A sample contract vulnerable to attacks on reen-
trancy

2.3 Related Work
Program analysis techniques to detect potential vulnerabilities can
be divided into static analysis, which analyzes the structure of
code without running it, and dynamic analysis, which analyzes
the runtime behavior of an executing program. The advantage of
static analysis is that it does not require a test case to reveal a
flaw; conversely, it has the disadvantage that the analysis may be
overly strict and reveal spurious problems that are not actually
exploitable flaws during program execution. Dynamic analysis, on
the other hand, always produces actual executions (and thus a
witness of a real problem), but may be unsuccessful at finding the
right inputs to make this happen. Combinations of these techniques
also exist, typically in the form of static analysis to identify parts
of the program that might need closer inspection at runtime.

Static analysis tools for smart contracts include tools such as
Securify [23], SmartCheck [22], and Slither [10]. These tools check
code against problematic patterns that may constitute violations

1 contract Attacker {

2 Vulnerable public vul_contract;

3 function startAttack(address _addr) public

4 {

5 vulContract = Vulnerable(_addr);

6 vulContract.donate(address(this));

7 }

8 function () public payable

9 {

10 vulContract.donate(address(this));

11 }

12 }

Figure 3: A sample contract that exploits the vulnerable con-
tract
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1 contract NotVulnerable {

2 mapping (address => bool) public donated;

3 function donate(address to_) public payable

4 {

5 if (donated[to_] != true) {

6 donated[to_] = true;

7 require(to_.call.value(1 ether)());

8 }

9 }

10 }

Figure 4: A sample contract with the vulnerability fixed

of coding guidelines or even potential vulnerabilities. Symbolic
execution is a static analysis technique that uses path conditions
(conditions about the feasibility of certain execution paths) to rea-
son about inputs that may reach a potentially unsafe state in a
program. Oyente [18] was the first tool to apply symbolic execution
to smart contracts. Other tools, such as TeEther [14], MAIAN [19],
and Zeus [13], followed and took different approaches at finding
harmful inputs or detecting problems in the contracts.

The above-mentioned static analysis tools use rules designed by
experts to detect problems. Recent works have adapted the use of
machine learning to static analysis, using learned patterns instead of
rules to detect problems [21], and extended this idea to the domain
of smart contracts [2].

Dynamic analysis for smart contracts focuses on finding inputs
that reach a program state exhibiting a problematic execution pat-
tern (such as reentrancy), implemented in tools like Echidna [11],
ContractFuzzer [12], and ReGuard [16]. The accuracy of these tools
depends on the quality of the hand-coded pattern recognizer. Recent
work uses an oracle that tracks the balance of each smart contract
instance to detect fundamental misuse, thus eliminating the need
for specific program patterns to detect a vulnerability [25].

Our work leverages machine learning to detect problematic ex-
ecution patterns, focusing on reentrancy in smart contracts. It is,
to our knowledge, the first work to analyze dynamic execution
patterns in smart contracts through machine learning. In the area
of malware detection, a metadata-focused approach has also been
used successfully [1] by looking at the frequency and size of pack-
ets sent over encrypted connections to classify the behavior of an
application.

3 METHOD
The Dynamit framework detects reentrancy vulnerabilities in de-
ployed smart contracts without needing their source code. Dynamit
considers only the dynamic behavior of the smart contract; that
behavior is extracted from metadata describing the transactions
between the contracts. This monitoring is based on the existing ap-
plication programming interface (API) of the unmodified Ethereum
blockchain client.

Dynamit consists of two parts (see Figure 5):

(1) The Monitor, which observes transactions in the blockchain.
(2) The Detector, which classifies behavior as benign or mali-

cious.

 
Ethereum Blockchain Client (Geth) 

Monitor 
(NodeJS App) 

Web3 Library 

Detector (ML 
Model) 

Figure 5: Dynamit framework system diagram

Table 1: Features gathered by monitor and used by our ML
model in detector

Feature Monitoring Mechanism

Gas usage of transaction Event subscription
Contract 1 balance difference Probing
Contract 2 balance difference Probing
Average call stack depth Probing

The detector can be configured against various classifiers, which
are first trained on a training set before our tool is put to use to
detect malicious transactions in production.

3.1 Monitor
The monitor connects to the Ethereum blockchain client to gather
information about desired transactions. It uses the latest version
of Web3js [26], which is the official Ethereum Javascript API to
connect to and probe the Ethereum network.

The monitoring obtains the data as follows:
• Subscription to the events emitted by the Ethereum
client. These events are emitted when a transaction related
to an account is issued [26]. In our work, we use pending-
Transactions to get any new transactions related to our ac-
counts under observation.

• Probing the blockchain at specific intervals until the
desired information is retrieved. This is suitable for get-
ting information about an already mined transaction or get-
ting the state of a contract after an event.

3.2 Detector
The detector is the part of the system that distinguishes the harmful
transactions from the benign ones. It consists of a part that processes
and cleans the data received by the monitor, and a machine learning
model that is trained as the monitor feeds in the data.

3.2.1 Extracted Features. The extracted features and the mecha-
nism used to monitor them are presented in Table 1.

The contract balance difference feature is the difference of the
balance of a contract before and after the transaction has taken
place. In fact, the feature contract balance difference may easily be
replaced by any other asset that is being transferred by the contracts
to match the specific use case.
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The average call stack depth is the only feature being directly
retrieved from the transaction trace. Calling a regular function in
a contract does not change the value of this feature significantly.
However, recursive external calls will change this value drastically.
This is often the case for the reentrancy vulnerability, where a par-
ticular function in the victim is recursively called until the attacker
contract stops. Intuitively, this feature should have a positive corre-
lation with a transaction being harmful. However, an attacker can
easily avoid being detected by limiting the number of recursions.
Therefore, we decided to put effort to randomly decrease the av-
erage call stack depth for harmful transactions, in order to make
it harder for the detector to distinguish them, and to decrease the
bias of the model (less complex training data would lead to high
bias which increases the prediction error).

Asmentioned earlier, as contract code executes on the blockchain,
it consumes gas. Gas usage depends on the specific operations that
a contract carries out within a transaction. Since a successful attack
on a vulnerable contract may exhibit a specific execution pattern,
we use this gas usage as a summary representation of the execution.

3.2.2 Classifier. To find the best model, we trained and tested the
following models in our detector:

• Random Forest (RF): Random forest is a popular ensemble
learning method that use multiple models to increase per-
formance of the model. Although ensemble method results
in increased accuracy, it also increases the time to train the
model. We built a random forest classifier combined with
bagging with 100 decision trees.

• Naive Bayes (NB): This classification method works based
on the Bayes Theorem, and computes how probabilities of
certain events are related.

• Logistic Regression: This model works by finding the prob-
abilities of certain events occurring and computing their
correlation.

• K-Nearest Neighbours (KNN): This is a simple algorithm
that works by finding the closest k neighbors to a point, and
take their vote for the class label. In our case, a K-NN with 5
neighbors had the best prediction accuracy.

• Support Vector Machine (SVM): A SVMmaps training ex-
amples to points in space so as to maximise the gap between
the classes. Using SVM it is possible to effectively perform
classification on non-linearly separable data. This is done
using the kernels, which can be non-linear. To build our
SVM-based classifier, both linear and polynomial kernels
were tested. The model with linear kernel outperformed the
other one.

• Neural Network Classifier: We tried to build a neural net-
work for this binary classification task using two hidden
layers with 10 and 5 ReLU units for the first and second
hidden layers, respectively. We used the Sigmoid activation
function for the output layer. Furthermore, the binary cross-
entropy and Adam optimizers were used, respectively, as the
loss function and optimization method.

All of our models were built using the Scikit-learn library [20]. The
Random Forest model is composed of 100 trees of type Decision-
TreeClassifier in Scikit-learn.

Table 2: Set of contracts used in the experiments

Service contract User contract

13 robust contracts 11 benign contracts
12 vulnerable contracts 9 malicious contracts

3.3 Usage of Dynamit
Let us assume developers of an application deploy it as a smart
contract on top of Ethereum. Dynamit can be used by these devel-
opers to safeguard their smart contract. An administrator installs
Dynamit on their own machine, and configures it to connect to the
Ethereum network to monitor their deployed contract.

As the transactions are issued to the monitored smart contract,
Dynamit collects and processes their metadata. The previously
trained machine learning model then classifies transactions as be-
nign or harmful. Confirming the safety of deployed smart contracts
is useful as part of AIOps [5], where software is automatically
deployed and monitored as in DevOps [8] with the help of AI. Infor-
mation about potentially harmful contracts can be used as feedback
to the developer or as part of a security information and event man-
agement (SIEM) system that may report users to an administrator
or block a vulnerable contract from being used further.

4 EXPERIMENTS
We chose 25 open-source contracts for our experiments that imple-
ment a certain functionality that we denote as service contracts here.
These contracts were originally used in [15]. Their source code is
available on Etherscan 1. We wrote 20 user contracts that access
and utilize the functionality of these service contracts (see Table 2).
These 20 user contracts are based on a manually written template,
hence our approach is not yet fully automated. A service contract
may be robust (not exploitable) or contain a vulnerability; likewise,
a user contract may be benign or malicious. Only a combination of
a vulnerable service contract with a malicious user may actually
reveal the vulnerability in the service contract. The service con-
tracts were manually reviewed, and tested against the reentrancy
vulnerability, then labeled as either vulnerable or robust.

For the experiment, we monitored a total of 105 transactions
generated from these contracts, with 53 benign and 52 harmful
transactions. All of these transactions have been labelled manually
before starting the experiment, so they could be used for both train-
ing and testing a supervised model. We feed labelled transaction
data to our classifier (offline) for the training phase; in production,
online (unlabelled) data can be used.

From the 105 transactions, 25 transactions were taken from the
25 open-source service contracts, which we complemented with
20 variants of user contracts. The remaining 80 transactions are
generated using two pairs of contract templates (four contracts)
that generate both harmful and benign transactions randomly. Con-
tract Vulnerable2 is one such variant of a service contract, which
donates a random amount to the user (see Figure 6). To generate
these random transactions, both the service and the user contracts
(see Table 2) fuzz their behavior to represent different behaviors of
real-world scenarios. Another reason for having random behavior
1https://etherscan.io/
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(fuzzing) in both service and user contracts is that there may be a
complex internal computation that has a certain call stack depth
or gas usage. This potentially can make an attack harder to detect.
It is desirable to have such behavior included in our data, in order
to have a less biased classifier in detector. Therefore, these trans-
actions are generated in a way to prevent overfitting in the model.
For example, we fuzz the gas usage by injecting a random loop with
50 % probability in the vulnerable contract template (see lines 12–18
in Figure 6). Each use of the counter expends extra gas. Likewise,
we randomize the amount donated to the user and the number of
times an attacker actually exploits reentrancy, to make it harder to
recognize the attacks.

Since each interaction between a service and its user is either
benign or harmful, the following outcomes can occur:

• The user contract successfully exploits the reentrancy vul-
nerability: harmful transaction.

• The user contract tries to exploit a reentrancy vulnerability
(which may or may not exist in the service contract) but is
unsuccessful. This leads to one of the following situations:
– The transaction and accordingly its effects on the target
contract state are reverted by the Ethereum runtime envi-
ronment. Such failed (reverted) transactions are not made
visible through the monitoring API in Ethereum and are
therefore not taken into account by our analysis.

– The transaction is not reverted, and takes the intended
original effect: benign transaction.

• The peer contract does not try to exploit reentrancy at all:
benign transaction.

As mentioned earlier, after data is collected by the monitor, it
is fed in to the detector for classification. We trained and tested
the models in detector using above-mentioned data. For all of our
models, we used stratified 10-fold cross-validated training and test
sets to get consistent and reliable results. For each number in the
plots, the whole experiment (including the cross validation) has
been performed 10 times, and the average performance was taken.
The numbers of neighbors in K-NN model and number of trees
in our RF model are chosen based on empirical observations to
maximize the performance of the model.

5 RESULTS
We train and test six different types of classifiers and compare them
based on the average false positive rate (FPR) and false negative rate
(FNR) as well as accuracy, F1-score, and recall (see Figures 7 and 8).
Here is a short description about the mentioned metrics which are
used to reason about the performance of machine learning models:

• FPR: The number of transactions that are labeled benign, and
are predicted to be harmful by our machine learning model
(a wrong prediction).

• FNR: The number of transactions that are labeled harmful,
and are predicted to be benign by our machine learning
model (a wrong prediction).

• Accuracy: The number of correct predictions divided by the
total number of predictions made.

• Recall: The number of harmful transactions predicted to be
harmful divided by the total number of harmful transactions.
It is meant to capture the ability of the model to correctly

1 contract Vulnerable2 {

2 uint public gasFuzzingCounter = 0;

3 uint public c = 0;

4 uint public d_binary = 0;

5 uint public amnt;

6 function random(uint num) private view returns

(uint8) {

7 return uint8(uint256(keccak256(block.

timestamp , block.difficulty))%num);

8 }

9 constructor () public payable {

10 }

11 function donate(address to_) public payable {

12 d_binary = random_binary ();

13 c = random (10);

14 if (d_binary == 1) {

15 for (uint i = 0; i < c; i++) {

16 gasFuzzingCounter ++;

17 }

18 }

19 amnt = random (1000) * 500000000000000;

20 require(to_.call.value(amount)());

21 }

22 }

Figure 6: Source code for the smart contract used to generate
random harmful transactions for the experiment

catch harmful transactions (even if it means that the false
positive rate is going to increase).

• F1-score: This is harmonic mean of the recall and precision
(the percentage of transactions predicted as harmful and
were really harmful) of the model.

The FPR varies between 1.59 % (logistic regression) and 32.0 %
(k-nearest neighbors), while the FNR is the lowest for the random
forest (RF) model at 14.42 %.

The RF classifier (detector) achieves the highest accuracy (90 %).
Most of the inaccuracy of the models can be attributed to the FNR.
In other words, the detector is labelling a considerable number of
harmful transactions as benign (even using random forest). Con-
versely, the low FPR makes Dynamit useful as a monitoring tool in
scenarios where the cost of false positives are rather high, such as
in testing or when suspending problematic contracts in production
for manual review.

As mentioned earlier, the contract sets we used for random
transaction generation try to disguise their behavior. We took this
measure to build a realistic model and decrease bias. As a result of
this, the correlation of the average call stack depth and the label of
the transaction is very low (see Figure 9). Hence, we decided to also
build the same models without the average call stack depth feature.
The results of this version of the models are shown in Figures 10
and 11. The overall behavior of all models is consistent with the
results in Figures 7 and 8. However, there are a few interesting
changes. While RF is still the most accurate model and even more
accurate than before, the relative reduction in the FPR of RF is
higher than the one in the FNR, and as it is obvious the RF model
is well-balanced in terms of false positives and false negatives. The
highest average accuracy in this experiment belongs to RF (94 %).
Furthermore, the accuracy, F1-score, and recall are much closer
in the new experiment (11), and as presented by the confidence
interval of the bars, the variation in the results is also less than
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Figure 7: Average false positive rate and false negative rate
for detecting vulnerable transactions with different classifi-
cation models. The caps on bars show the 95% confidence
interval.
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Figure 8: Average Accuracy, F1 Score, and Recall for de-
tecting vulnerable transactions with different classification
models.

in the previous set of experiments with call stack depth feature
included. In both sets of experiments, the neural network classifier
is ranked second after random forest model (with the highest mean
accuracy of 88 %).

6 THREATS TO VALIDITY
We use a total number of 49 smart contracts (25 service, 20 user,
and 4 random transaction generation contracts) in our experiments.
In an effort to collect more realistic data, the harmful transactions
issued by our own contracts are randomized to disguise their ma-
licious nature. As mentioned in results section, this has rendered
our otherwise important average call stack depth feature useless
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Figure 9: Feature correlation heatmap for the detectors with
label 1 for harmful transactions and 0 for benign ones.
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Figure 10: Average false positive rate and false negative rate
for detecting vulnerable transactions with different classifi-
cation models without the average call stack depth feature.

by making the average call stack depth of a harmful contract seem
like a benign one, and vice versa. From a different point of view,
this also shows the possibility of tricking a dynamic detector if
it only uses checks on certain variables (such as the balance) to
detect a vulnerability. Our results suggest that a combination of
our machine learning-based detector and an oracle-supported dy-
namic vulnerability detection [25] may decrease the number of
false negatives.

Another consideration is the amount of randomness that our
randomly generated transactions have. In case there is not enough
randomness, our machine learning model in detector will exhibit
bias, making it less likely to catch more complex attacks. Our ran-
dom transaction generator uses the block’s timestamp and diffi-
culty to generate random numbers. Since we have used a private
deployment of Ethereum blockchain, the mentioned variables were
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Figure 11: Average Accuracy, F1 Score, and Recall for de-
tecting vulnerable transactions with different classification
models without the average call stack depth feature.

controllable by increasing the mining frequency and issuing trans-
action generation commands each 30 seconds. Using this method,
we verified that the random transaction generation system has
enough randomness.

7 CONCLUSION AND FUTUREWORK
In this work, we present Dynamit, a dynamic vulnerability detec-
tion framework for Ethereum smart contracts. Dynamit detects
vulnerable smart contracts by classifying harmful transactions in
a blockchain using machine learning on transactional metadata.
We achieve 94 % accuracy on a data set of 105 transactions. Using
machine learning to detect vulnerability one can avoid writing rules
by hand, and rely on the learning ability of the machine learning
algorithms.
To further develop Dynamit, we will investigate automatic test-case
generation tools such as Vultron [24]. Such tools can generate la-
beled transactions and create benign and malicious user contracts
to reproduce them. Another direction for future work is to find
more features to make the detection more accurate. An example
would be to observe bookkeeping variables inside the contracts, and
the way they change, as additional indicators of a smart contract
being exploited. Finally, we will consider analyzing sequences of
multiple transactions and applying other types of machine learn-
ing to the data, to increase the capabilities of our detector and to
analyze other types of vulnerabilities as well.
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