
A Compositional Proof System for the Modal �-calculus and CCS.

1

Sergey Berezin Dilian Gurov

Dept. of Computer Science, Dept. of Computer Science,

Carnegie Mellon University, University of Victoria,

5000 Forbes Ave. P.O.Box 3055

Pittsburgh, PA 15213 Victoria, BC

U.S.A. CANADA V8W 3P6

Email: berez+@cs.cmu.edu Email: dgurov@csr.uvic.ca

We present a CompositionalProof System for themodal�-calculus and a generalizedversionof the parallel composition

in CCS [11, 12]. The proof system is designed for inferring global properties of a system from the local properties

of its components. This allows for e�cient veri�cation of parallel processes by decomposing the task into smaller

problems of verifying the parallel components separately. In particular, the system can be used to combine model

checking [6] with theorem proving. Since parallel composition causes the largest blow-up in the number of states, this

technique proposes an e�ective solution to the state space explosion problem. The Proof System is implemented in

PVS theorem prover [13], and the proof of its soundness was thoroughly checked using PVS logic as a metalanguage.

The proof strategy mechanism of PVS can be used to achieve some degree of automation in a proof search.

1 Introduction.

In this paper we present a Compositional Proof System for the modal �-calculus and CCS [11, 12]. We use

a (slightly modi�ed version of) CCS as a model of concurrency. Many systems of parallel processes can be

expressed as CCS processes, and then checked against speci�cations in the modal �-calculus. Following Stirling

[14], our proof system consists of two subsystems. The �rst one deals with model checking CCS processes

without the parallel composition operator, i.e. it contains proof rules for sequents of the form p ` � (\process

p satis�es a formula �"), and is described in detail in [8] for the more general process algebra of Value Passing

CCS and a �rst order �-calculus. The other subsystem, which is presented in this paper, is devoted to a parallel

composition operator and is designed to prove sequents given by �k	 ` � (\for any processes p and q satisfying

� and 	 respectively, the composite system pkq satis�es �"). These two proof systems with an additional

inference rule from [14]:

p ` � �k	 ` � q ` 	

pkq ` �

(k)

result in a compositional proof system for CCS (now with parallel composition operator) and the modal �-

calculus. Both subprocesses in each parallel composition operator have associated formulas specifying their

properties. Whenever we are to prove a property of a parallel composition, we �rst prove that the correspond-

ing properties hold for each component, and then infer in the proof system that the global property of the

composition also holds. This compositional step substantially simpli�es the veri�cation problem, since it avoids

building the whole state space for the parallel composition in �nite-state case. This state space grows exponen-

tially in the number of processes involved, thus causing the state explosion problem. Thus, as a particular case,

we propose a promising method of combining model checking with theorem proving, when the veri�cation of

the components is accomplished by model checking.

Our veri�cation framework also supports a compositional design in the sense that one can work out spec-

i�cations for all the parts of a complex system and prove by our method that if every component satis�es its

speci�cation, then the whole design is correct. After the implementation it is enough to verify each component

separately. Moreover, one can change the actual implementation of some components without having to repeat

the veri�cation of the entire system as soon as the new implementation meets its local requirements.

Our compositional approach di�ers frommany others [2, 3, 5, 7] in that it can handle the parallel composition

operator in a purely compositional way, remains general for the full CCS and the full modal �-calculus, and at

the same time is feasible for automation. In [2, 3, 5] the parallel composition operator was eliminated basically

by encoding one of the subprocesses into the formula. In the worst case this results in an exponential blow-up

in the size of the formula, and the total complexity remains the same as for non-compositional model checking

[6].

1

This research was sponsored by the National Science Foundation under grant no. CCR-9217549.

1

The proof systems of Stirling [14] and Dam [7] are closer in spirit to our system. However, our approach

o�ers two main advantages over these proof systems: all rules are truly compositional, and �xpoint formulas

are handled using tags. The latter eliminates the need for having complicated global rules and termination

conditions [7], and thus makes the whole system easier to machine-assist. Also, the proof system of Stirling is

restricted to Hennessy-Milner logic, which is too weak for many practical purposes.

In [7, 14] the least compositional rules are the ones for dealing with � -actions. The reason for this is that in the

original CCS the action � is an abstraction for an atomic internal communication. This action can be generated

in di�erent ways, each of which is compositional in itself. But the compositionality is lost as soon as we abstract

away the actual communication taking place. Such an abstraction is essential in modelling large communicating

systems, since the details of internal communications do not contribute to understanding the external behavior

of a system, and only increase the complexity of its description. The situation is quite di�erent when we are

concerned with veri�cation of concurrent systems. Certain information about the internal communications that

can produce the � -action helps us to recover the compositionality by treating each individual case separately.

It is also of great value to know what actions a particular process can not perform a-priori, either because such

actions do not appear in the alphabet of the process, or because they have been explicitly restricted. These

considerations have lead us to the modi�cation of CCS � action into the set of all neutral actions. Each neutral

action a either results from the synchronization of input and output actions a? and a! resp., or is an internal

action of some subprocess. In other words, we distinguish � actions that arise from di�erent synchronizations.

Also, we generalize the parallel composition operator to have restriction sets for each of the two processes:

p

�

k

�

q. This extension is further explained in Section 2.

The only case which still remains not satisfactorily compositional is when a process can perform both an

input (output) action a? (a!) and the corresponding neutral action a. This case, however, would not arise at all

if one follows the modelling discipline advocated by R. Milner in [11]. The parallel composition and restriction

are introduced separately only in order to retain some useful theoretical properties, but are conceptually meant

to go together. Therefore, the proof system presented here does not provide rules for this case at all, considering

it as being the result of bad modelling.

The idea of tagging �xpoint formulas has been �rst suggested in [16]. The tagging approach allows us to keep

track of what sequents have already occurred in the proof tree and conclude that they are hence true. So, there

is no need in introducing global rules with complicated termination conditions as in [7]. The main di�culty in

adopting this approach in our setting is how to justify semantically the proof rules for �xpoint formulas, i.e.

how to choose an appropriate semantics for tagged formulas. The solution to this problem presented here might

seem rather complicated, but is natural and sound. The resulting proof rules are syntactically easy to apply,

which is certainly more important than the complexity of justifying them. In [7] this trade-o� was compromised

in favor of ease of theoretical investigations and logical traditions, but at the expense of ease of use and machine

assistance.

Our proof system is implemented in PVS theorem prover [13]. The PVS speci�cation language is used as

a metalanguage to specify and prove the soundness of all the inference rules and axioms. The proof system is

encoded as a set of theorems, which can be used as rewrite rules while a proof is in progress. Since PVS has a

built-in model checker, both steps of the veri�cation of �nite-state systems, i.e. model checking the components

and deriving the global property, can be done in a single framework. Also, PVS provides a powerful mechanism

of writing proof strategies for automated proof search in our system.

The paper is organized as follows. Section 2 describes our version of CCS. Section 3 introduces the modal

�-calculus [9] (syntax and semantics), and provides some examples of useful properties. Section 4 describes the

Compositional Proof System and shows an example of a proof in the proof system. In Section 5 we argue for

the soundness of the proof system, in particular for the soundness of the �xed point rules. In Section 6 we

discuss the issue of implementation in PVS and two examples that we veri�ed. We conclude in Section 7.

2 The Process Algebra.

We use the standard CCS of R. Milner [11, 12], except that we change the parallel composition operator and

the means of synchronization. The importance of this change will become clear in section 4, where we need it to

simplify the compositional inference rules. Instead of actions fa; : : :g, co-actions f�a; : : :g and the special action

� , we de�ne input fa?; : : :g, output fa!; : : :g and neutral fa; : : :g actions respectively. We will denote actions of

arbitrary type by Greek letters ; �; : : :. Now two processes in a parallel composition may synchronize by input

2

and output actions of the same name, yielding the corresponding neutral action (one might write this fact as

a? � a! = a! � a? = a). In other words, we distinguish between � -actions which are formed by di�erent pairs of

actions.

Our parallel composition operator also has a more general form in comparison with CCS: p

�

k

�

q can be

considered roughly as (p �)j(q �) in the original CCS, where � and � are sets of action symbols. This

operator is taken from [2]. Thus, the abstract grammar of our CCS is the following:

p ::= 0 j P j :p j p

0

+ p

1

j p

0 �

k

�

p

1

j p � j pf�g:

Here 0 is the nil process (called inaction in [11]), that can not perform any action, P is a process identi�er,

:p is a pre�x operator, p+ q is a non-deterministic choice, � and f�g are restriction and relabelling. Process

identi�ers are declared using an identi�er declaration of the form

P � p:

We will denote the set of all CCS processes by P. The operational semantics of our CCS is shown on �gure 1.

p

! q

P

! q

�

P � p

is declared

�

:p

! p

p

! p

0

p+ q

! p

0

q

! q

0

p+ q

! q

0

p

! q

p �

! q �

(2 �)

p

! q

pf�g

�

! qf�g

(�() = �)

p

a?

! p

0

q

a!

! q

0

p

�

k

�

q

a

! p

0

�

k

�

q

0

�

a? 2 �;

a! 2 �

�

p

! p

0

p

�

k

�

q

! p

0

�

k

�

q

(2 �)

q

�

! q

0

p

�

k

�

q

�

! p

�

k

�

q

0

(� 2 �)

p

a!

! p

0

q

a?

! q

0

p

�

k

�

q

a

! p

0

�

k

�

q

0

�

a! 2 �;

a? 2 �

�

Figure 1: Operational semantics of the CCS.

As an example, consider these simple processes:

P � a:b!:P

Q � b?:c:Q

R � (P

�

k

�

Q) �;

where � = fa; b!g, � = fb?; cg and � = fa; b; cg.

The process R is combined from the two processes P and Q, that perform asynchronous actions a and c and are

forced to synchronize by b? and b!, since b?; b! 62 �.

3 The Modal �-Calculus.

3.1 Syntax.

De�nition 1. The language of the modal �-calculus [9] consists of the following alphabet:

� P;Q; : : : 2 Prop, are propositional constant symbols; in particular, we assume the existence of two con-

stants true and false;

� X;Y; : : : 2 Var, are propositional variables;

� ; �; : : : 2 Act are action symbols.

We assume that the set of action symbols Act consists of input fa?; : : :g, output fa!; : : :g and neutral fa; : : :g

action symbols, in order to ensure compatibility with action symbols of CCS from the previous section.

Formulas are de�ned as follows:

1. P , where P is a propositional constant;

3

2. X, where X is a propositional variable;

3. �

1

^ �

2

, �

1

_ �

2

, where �

1

and �

2

are formulas;

4. hi�, [] �, where 2 Act and � is a formula;

5. �X:�, �X:�, where � is a formula.

Note that the absence of negation does not decrease the expressive power of the logic, since we can always

rewrite formulas in a so-called negation normal form, where all negations are applied to atomic formulas only (i.e.

to propositional constants and free variables), and then de�ne new propositional constants with the complement

interpretation: L(P) = S �L(P) (see the next subsection for semantics).

For example, some properties of processes P, Q and R from the previous section can be expressed as:

� � �X: hai hb!iX

	 � �X: hb?i hciX

� � �X: hai�Y:(hciX _ hbiY)

The formulas � and 	 say that the corresponding pairs of actions can repeat in�nitely often. The formula

� says that after a and some �nite number of b's the action c can be executed, and this pattern can repeat

in�nitely often.

Now we describe the formal semantics of the logic.

3.2 Semantics.

A model (Kripke structure) is a tuple

M = (S;!; Act; e;L);

where S is a set of CCS processes, !� S �Act� S is the transition relation de�ned on �gure 1 and projected

on S, e : Var ! 2

S

is an interpretation of variables (environment), and L : Prop ! 2

S

is an interpretation of

propositional constant symbols. In order to be consistent with the intuitive semantics of CCS and [8], we will

also assume that the set S is closed under the rules of �gure 1 (i.e. transition closed). Otherwise we may have

a situation where, say, the process a:0 can not perform the action a in the model, if 0 62 S. Thus, it does not

satisfy hai true, which is counterintuitive. This restriction, however, is not necessary and all the results in this

paper remain valid without it.

The semantic function [[:]]

L

e assigns semantic sets to �-calculus formulas, and is de�ned inductively as

follows:

[[P]]

L

e = L(P); [[X]]

L

e = e(X);

in particular, [[true]]

L

e = S; [[false]]

L

e = ;

[[�

1

^ �

2

]]

L

e = [[�

1

]]

L

e \ [[�

2

]]

L

e;

[[�

1

_ �

2

]]

L

e = [[�

1

]]

L

e [[[�

2

]]

L

e;

[[hi�]]

L

e = fs 2 S j 9s

0

2 [[�]]

L

e : s

! s

0

g;

[[[] �]]

L

e = fs 2 S j 8s

0

2 S : (s

! s

0

) =) s

0

2 [[�]]

L

eg;

[[�X:�]]

L

e =

S

fS

0

� S j S

0

� [[�]]

L

e [X := S

0

]g

[[�X:�]]

L

e =

T

fS

0

� S j S

0

� [[�]]

L

e [X := S

0

]g

Here the updated environment e [X := S

0

] coincides with e on all variables, except maybe X, and

e [X := S

0

] (X) = S

0

:

The semantics of the �xed points is well-de�ned by Tarski's Fixed-point Theorem [15], since all formulas are

negation free. Thus, the semantic function is monotone on the interpretation of all free variables.

We will write p j=

M

� for p 2 [[�]]

L

e, and will often omit the subscript M when this is unambiguous. We

will also write j=

M

� to mean that p j=

M

� holds for every process p 2 S

M

, and j= � to mean that j=

M

�

holds for all models, or is valid or generally true.

4

3.3 Extensions.

To make formulas shorter, we will use compound actions (denoted by �; �; : : :) in the modal operators. Com-

pound actions are formed from the ordinary actions from Act using the (�nitary or in�nitary) union operator:

� [�, with the semantics of a non-deterministic choice. More precisely, the compound actions may be viewed

as sets of actions, where

�

!=

df

[

2�

!

Thus, the meaning of the modalities for such compound actions is the following:

[�]� �

^

2�

[] �; h�i� �

_

2�

hi�:

The classical CCS � -action can be expressed now as the set of all neutral actions occurring in a process. Thus,

we are able to employ both the convenience of hiding irrelevant details at the level of process description, and

the high degree of compositionality in veri�cation.

4 The Compositional Proof System.

In the sequel we �x a model M = (P;!; Act; e;L), where P is the set of all CCS processes. We choose the

most general model, since the results described in this section remain valid for all practical submodels used in

veri�cation.

De�nition 2. A sequent is an expression of the form �

�

k

�

	 j=

�

�, where �, 	 and � are formulas, and

�, � and � � Act are sets of action symbols.

The meaning of sequents for �-calculus formulas can be expressed as follows:

�

�

k

�

	 j=

�

� ()

8p; q:(p � j= � and q � j= 	 =) (p

�

k

�

q) � j= �):

We apply the following scheme for proving the correctness of composite systems of the form (p

�

k

�

q) �:

assume that we have already proven that p � j= � and q � j= 	 for some formulas � and 	. To prove that

(p

�

k

�

q) � j= � for a formula � it is su�cient to show that �

�

k

�

	 j=

�

� is valid. In other words, we can

introduce an inference rule:

p � ` � �

�

k

�

	 `

�

� q � ` 	

(p

�

k

�

q) � ` �

(k)

This inference rule was inspired by a similar rule of C. Stirling in [14].

In this paper we elaborate on the proof system for sequents of type �

�

k

�

	 `

�

�. For details on the proof

system for p ` �, where p is a sequential CCS term, the reader is referred to [8].

In our proof system we handle �xed points by assigning tags [16, 1] to the �xed point operators. Intuitively

(although simpli�ed), tags store the information that some particular sequents have already occurred below in

the proof tree, assuming that the tree grows up from the goal to axioms. The current sequent is included in the

tag of a �xed point formula when this formula gets unfolded. If the same sequent appears later in the proof, it

is considered proved. This way of reasoning works for greatest �xed points on the right hand side and for least

�xed points on the left hand side of the ``' sign. In practice, when unfolding a �xed point formula, it is not

necessary to include the whole sequent into the tag. It is su�cient to store only the two other formulas of the

sequent. Thus, formally, tags are sets of pairs of formulas, associated with �xed point operators.

We extend the syntax of formulas by tags L in the �xed point operators as follows:

� �XfLg�, �XfLg�, where L is a �nite set of pairs of formulas. I.e., L = f(

1

;	

2

); : : :g.

We will write �xed points with empty tags in the standard �-calculus syntax, e.g. �X:� instead of �Xf;g�,

and will not distinguish between them.

5

For technical reasons, to simplify the proof of soundness, we have developed a special semantics for sequents

with tagged formulas, so that every rule in the proof system is locally sound, including the �xed point rules.

A standard way to prove the local soundness of the �xed point rules is to use the reduction Lemma 4 [16, 1]

(see the next section). In order to apply this lemma here, the semantics of the sequent �

�

k

�

	 j=

�

�XfLg�

must be of the form U � V , where V is the (extended) semantic set of �XfLg�, and U is some semantic

set corresponding to the pair (�;). To apply the reduction lemma to the least �xed points on the left hand

side (e.g. for �XfLg�

�

k

�

	 `

�

�), we need to rewrite the semantics of the sequent into an equivalent form:

U

0

� V

0

, where U

0

is now the semantics of the least �xed point formula �XfLg�, and V

0

is a semantic set for

the pair (;�), possibly de�ned di�erently from the one for (�;) above.

Before introducing the new semantics of sequents, de�ne the extended semantics of tagged formulas. Assume

given two functions f

�

and f

�

that map pairs of formulas into subsets of P (e.g. f

�

(�;) � P). Then the

de�nition of the extended semantic function [[:]]

(f

�

;f

�

)

L

e coincides with the one of [[:]]

L

e from Section 3 on all the

operators except the �xed points:

[[�XfLg�]]

(f

�

;f

�

)

L

e =

S

fS

0

� P j S

0

� [[_ L]]

(f

�

;f

�

)

L

e [[[�]]

(f

�

;f

�

)

L

e [X := S

0

]g

[[�XfLg�]]

(f

�

;f

�

)

L

e =

T

fS

0

� P j S

0

� [[^ L]]

(f

�

;f

�

)

L

e \ [[�]]

(f

�

;f

�

)

L

e [X := S

0

]g

where

[[_ L]]

(f

�

;f

�

)

L

e =

S

(�;)2L

f

�

(�;) and [[^ L]]

(f

�

;f

�

)

L

e =

T

(�;)2L

f

�

(�;):

In particular,

[[_ ;]]

(f

�

;f

�

)

L

e = ; [[^ ;]]

(f

�

;f

�

)

L

e = P:

Notice, that if all tags in a formula are empty, then its extended semantics coincides with the semantics

de�ned in Section 3.

We need to provide suitable functions that assign semantic sets to pairs of formulas, as we discussed above.

We call such functions composition and left/right division operations. They are introduced in De�nition 4, using

an additional operation of �-closure and similar operations for sets of CCS processes from De�nition 3. The

�-closure adds to the set of CCS processes all the processes that are not of the form (p �) for this particular

�. Lemma 1 allows to rewrite the semantics of a sequent in di�erent representations (like U � V and U

0

� V

0

above).

De�nition 3. Let A, B and C be subsets of P. De�ne

� (A)

�

=

df

fq j (9p : q = (p �)) =) q 2 Ag

� (A

�

k

�

B) � =

df

f(p

�

k

�

q) � j (p �) 2 A and (q �) 2 Bg

� C=

left

�;�;�

B =

df

(f(p �) j for all (q �) 2 B : (p

�

k

�

q) � 2 Cg)

�

� C=

right

�;�;�

A =

df

(f(q �) j for all (p �) 2 A : (p

�

k

�

q) � 2 Cg)

�

Lemma 1. For A;B;C � P the following holds:

(A

�

k

�

B) � � C () A � C=

left

�;�;�

B () B � C=

right

�;�;�

A

De�nition 4. Let �, � and � be subsets of Act. Then de�ne

"(�;) =

df

;

quotl(�;) =

df

[[�]]

(";par)

L

e=

left

�;�;�

[[]]

(quotr;")

L

e

quotr(�;) =

df

[[�]]

(";par)

L

e=

right

�;�;�

[[]]

(quotl;")

L

e

par(�;) =

df

([[�]]

(quotl;")

L

e

�

k

�

[[]]

(quotr;")

L

e) �;

6

It can be shown that this mutual recursion is well-de�ned. Note, that the functions quotl, quotr and par also

depend on �, � and �, although we do not include these parameters for the sake of readability. The semantics

of the sequent �

�

k

�

	 j=

�

� for tagged formulas �, 	 and � is de�ned as follows (with the same �, � and �

in par):

�

�

k

�

	 j=

�

� () par(�;) � [[�]]

(";par)

L

e:

Lemma 2. Assume that all �-subformulas in � and 	 and all �-subformulas of � have empty tags. Then

�

�

k

�

	 j=

�

� () (8p; q : (p �) 2 [[�]]

(quotl;")

L

e and (q �) 2 [[]]

(quotr;")

L

e

=) (p

�

k

�

q) � 2 [[�]]

(";par)

L

e)

We will de�ne a sound approximation �

�

k

�

	 `

�

�, for which we can build a proof system. In this proof

system all the proof rules preserve the conditions of Lemma 2. Therefore, if we start with formulas with empty

tags, then all the sequents produced during the proof will satisfy these conditions.

The Compositional Proof System consists of axioms (�g. 2) and inference rules (�g. 3, 4 and 5). We say

that a sequent �

�

k

�

	 `

�

� is valid if there is a derivation of this sequent in the proof system.

We will not show all the rules in this paper; we provide only the rules dealing with the leftmost and the

rightmost formulas (labelled, e.g. by (l [:] 1) and (r [:])). The corresponding rules for the middle formula are

symmetrical with those for the left formula (referred to as, e.g. (l [:] 2)).

Note, that we could not have most of the axioms and modal inference rules in such a simple form as they

are if we had used � -actions instead of neutral actions. For � -actions, for example, the rule [�1] (�gure 5)

would have to have as many premises as there are synchronizable pairs of actions in � and �, or the formulas

� and 	 would have certain restrictions on all the other actions. This is inconvenient and unnecessary, since

in our system we can represent the action � by the set of all neutral actions a that arise from the synchronous

execution of a? and a!. In addition, we can also easily prove properties for only those synchronizations we are

interested in.

An Example Proof. We will show here a short example proof for the processes P, Q, R and their speci�-

cations �, 	 and � described in Sections 2 and 3.

(axiom)

�

�

k

�

	 `

�

�

1

(l h:i 2)

�

�

k

�

hci	 `

�

hci�

1

(r�; r_)

�

�

k

�

hci	 `

�

�Y:(hci�

1

_ hbiY)

(h�2i)

hb!i�

�

k

�

hb?i hci	 `

�

hbi �Y:(hci�

1

_ hbi Y)

(r_)

hb!i�

�

k

�

hb?i hci	 `

�

hci�

1

_ hbi�Y:(hci�

1

_ hbiY)

(r�)

hb!i�

�

k

�

hb?i hci	 `

�

�Y:(hci�

1

_ hbi Y)

(l h:i 1)

hai hb!i�

�

k

�

hb?i hci	 `

�

hai �Y:(hci�

1

_ hbi Y)

(r�; l�1; l�2)

�

�

k

�

	 `

�

�

Where

�

1

� �Xf(�;)g hai�Y:(hciX _ hbiY):

5 Soundness.

Soundness of the proof system described above can be stated as the following theorem:

Theorem 3. (Soundness) Assume that all �-subformulas in � and 	 and all �-subformulas of � have

empty tags. Then

�

�

k

�

	 `

�

� =) �

�

k

�

	 j=

�

�:

7

false

�

k

�

	 `

�

� �

�

k

�

false `

�

� �

�

k

�

	 `

�

true

�XfLg�

�

k

�

	 `

�

� �

�

k

�

�XfLg	 `

�

� �

�

k

�

	 `

�

�XfLg�

if (

0

;�

0

) 2 L if (�

0

;�

0

) 2 L if (�

0

;	

0

) 2 L

where �

0

� �, 	

0

� 	 and �

0

� � in the last 3 axioms.

�

�

k

�

	 `

�

[�]�

where for all 2 � : (62 �) or (62 � [� and if = a is neutral, then f(a?; a!); (a!; a?)g \ ��� = ;)

[�] false

�

k

�

	 `

�

[�]� (� \� = ;) (where 8a 2 �: f(a?; a!); (a!; a?)g \ ��� = ;)

h�i�

�

k

�

	 `

�

� (� \ � = ;) �

�

k

�

h�i� `

�

� (� \� = ;)

[a?]false

�

k

�

	 `

�

[a]� �

�

k

�

[a!]false `

�

[a] �

where (a! 62 � or a? 62 �) and a 62 � [� in the last 2 axioms.

Figure 2: Compositional Proof System: Axioms. The (syntactical) relation on formulas � � 	 means that the

formulas have exactly the same structure except tags (that is, their untagged versions are the same), and all

tags of � are subsets of the corresponding tags of 	.

(lw1)

�

�

k

�

	 `

�

�

�

k

�

	 `

�

�

(where � and
 have empty tags and j=
 �! �)

(rw)

�

�

k

�

	`

�

�

�

�

k

�

	`

�

(where � and
 have empty tags and j= � �!
)

(l ^ 1)

�

�

k

�

	 `

�

�

�^

�

k

�

	`

�

�

(l _ 1)

�

�

k

�

	 `

�

�

�

k

�

	 `

�

�

�_

�

k

�

	 `

�

�

(r_)

�

�

k

�

	 `

�

�

�

�

k

�

	 `

�

�_

(r^)

�

�

k

�

	 `

�

� �

�

k

�

	 `

�

�

�

k

�

	`

�

�^

Figure 3: Compositional Proof System: Propositional Inference Rules.

(l�1)

�[X=�XfL[f(;�)gg�]

�

k

�

	`

�

�

�XfLg�

�

k

�

	 `

�

�

(r�)

�

�

k

�

	`

�

�[X=�XfL[f(�;)gg�]

�

�

k

�

	 `

�

�XfLg�

(l�1)

�[X=�XfLg�]

�

k

�

	`

�

�

�XfLg�

�

k

�

	`

�

�

(r�)

�

�

k

�

	`

�

�[X=�XfLg�]

�

�

k

�

	`

�

�XfLg�

Figure 4: Compositional Proof System: Fixed Point Inference Rules. The notation � [X=] denotes the substi-

tution of 	 for X in �.

8

([�1])

�

�

k

�

	 `

�

�

[a?]�

�

k

�

[a!]	`

�

[a]�

(a 62 � [� and

(a!; a?) 62 ���)

(h�1i)

�

�

k

�

	 `

�

�

ha?i�

�

k

�

ha!i	 `

�

hai�

(a 2 �)

(l h:i 1)

�

�

k

�

	`

�

�

h�i�

�

k

�

	`

�

h�i�

(� � �) (l [:] 1)

�

�

k

�

	 `

�

�

[�]�

�

k

�

	 `

�

[�]�

(� \� = ;)

(lw [:] 1)

[�]false^�

�

k

�

	 `

�

[�]�

[�]false^�

�

k

�

	`

�

[�[�]�

(� \� = ;)

(r [:])

�

�

k

�

	

0

^[�]	`

�

� �

0

^[�]�

�

k

�

	`

�

�

�

0

^[�]�

�

k

�

	

0

^[�]	`

�

[�\�]�

where 8a 2 � [�: f(a?; a!); (a!; a?)g \ ��� = ; in the last 3 rules.

Figure 5: Compositional Proof System: Modal Inference Rules.

Before sketching the proof we state the following lemma.

Lemma 4. (The reduction lemma [16, 1]). Let D be a set and f : 2

D

! 2

D

be monotone with respect to �.

Denote operators of the least and the greatest �xed points of f as �x:f(x) and �x:f(x) respectively. Then

(i) U � �x:f(x) () U � f(�x:(U [f(x)))

(ii) U � �x:f(x) () U � f(�x:(U \ f(x)))

Proof. (Of Theorem 3. Sketch).

We show soundness of the proof system by showing that all axioms and rules are individually sound (i.e.

axioms are valid and rules preserve validity). For most of the rules the proof is a straightforward but tedious

case analysis, using Lemma 2. The soundness of the �xed point rules (l�1), (l�2) and (r�) follows directly

from Lemmas 1 and 4. Fixed point axioms are valid because of the monotonicity of composition and division

operators (composition is monotone on both arguments, division is antimonotone on the �rst argument and

monotone on the second), and the following relations:

L � L

0

=) [[_ L]]

(f

�

;f

�

)

e � [[_ L

0

]]

(f

�

;f

�

)

e and [[^ L]]

(f

�

;f

�

)

e � [[^ L

0

]]

(f

�

;f

�

)

e

U � V =) �x:(U \ f(x)) � �x:(V \ f(x)) and �x:(U [f(x)) � �x:(V [f(x))

for a monotone f as in Lemma 4. 2

The proof of soundness was completely checked using the theorem prover PVS [13]. All the inference rules

are encoded as theorems and can be used as rewrite rules when a proof is in progress. Presently we are working

on the completeness of the system. We expect that the system is complete for \canonical" processes (processes

that have at most one of a?, a! or a in their action alphabets for all actions). However, the proof may be very

tedious, due to the automation-oriented form of the rules.

6 Implementation in PVS.

The Compositional Proof System is implemented in PVS theorem prover [13]. The main objectives of this

implementation were to check the soundness of the system and to try out some relatively small proofs in the

system. The PVS was chosen as an implementation framework because it has a built-in model checker. So,

both steps of the veri�cation of �nite-state systems, i.e. model checking the components and deriving the global

property, can be done in PVS. We veri�ed two examples using the system: (1) Alternating Bit Protocol (ABP)

[4, 6] and (2) Milner's Scheduler [12].

The ABP example consists of three parallel processes Send, Medium and Receive, combined together by two

parallel composition operators:

ABP � ((Send

�

S

k

�

M

Medium)

�

k

�

R

Receive) �

9

with appropriate restriction sets. Each individual process including the intermediate

(Send

�

S

k

�

M

Medium)

has its own speci�cation. The speci�cations for the `atomic' processes, i.e. Send, Medium and Receive, were

directly model checked using SMV [10]. The speci�cations of compound processes (i.e. obtained by parallel

composition) were derived from the components in the proof system.

The example of the Milner's scheduler is more involved and includes induction on the number of parallel

processes. There are only two very simple `atomic' processes: an arbiter p and a short wire sw. A scheduler

with n arbiters is de�ned as

S

n

� (B

n �

n

k

�

n

swf�

n

g) �

n

and the body B

n

is recursively de�ned by:

B

1

� (pf�

1

g) �

1

B

i+1

� (B

i �

i

k

i+1

pf�

i+1

g) �

i+1

The relabelling �

i

is used to rename input and output actions so that they would not cause any confusion

among di�erent copies of p.

The veri�cation was done by induction on the number of arbiters:

� Speci�cations for p and sw were model checked;

� Assuming proved B

n

j= �

n

and swf�

n

g j= 	

n

, the sequent �

n �

n

k

�

n

	

n

`

�

n

�

n

was derived with n as

a parameter;

� Also assuming pf�

n

g j= �

n

, the sequent �

n �

n

k

n+1

�

n+1

`

�

n+1

�

n+1

was proved.

After model checking of B

1

j= �

1

the veri�cation was complete. Thus, we showed that for arbitrary n, S

n

j= �

n

by induction on the number of parallel components.

The hardest part here was to �nd the right invariant �

n

and to prove the sequent

�

n �

n

k

n+1

�

n+1

`

�

n+1

�

n+1

:

The chart below shows the proof size in steps for several sequents:

Max Formula nesting altern. # proof steps # proof steps

length depth depth (direct) (simpli�ed)

15 3 2 23 23

17 5 2 80 80

23 3 2 4:65 � 10

8

814

The column \# proof steps (simpli�ed)" refers to the number of steps without repetitions of identical

subproofs. As it can be easily seen, the naive proof tree (\direct" column) contains a lot of repetitions in the

last proof (the induction step for the Milner's Scheduler). The blowup was caused by multiple instances of

bound variables in �xed point operators, since the unfolding of �xed points produced several identical copies

of subformulas. Thus, it is much more practical to think about a proof DAG (Directed Acyclic Graph) rather

than a proof tree. Unfortunately, PVS does not allow to detect identical subgoals dynamically. Therefore, this

proof system needs to be implemented in a special purpose theorem prover designed speci�cally for this system.

7 Conclusion.

We have presented a compositional proof system for the modal �-calculus and a (more general version of a)

parallel composition operator of CCS. The proof system allows us to decompose a veri�cation task into simpler

tasks for each parallel component. For example, in the �nite state case, if we are to verify that a process term

of the form (P

�

k

�

Q) � has a property �, we can reduce this task to showing that P � satis�es � and Q �

satis�es 	 for some suitably chosen � and 	 for which we can derive �

�

k

�

	 `

�

� in our proof system. This

way of compositional reasoning signi�cantly reduces the state explosion problem arising in the direct model

10

checking method [6]. In general, it is much easier to model check two properties of two components and prove

a sequent �

�

k

�

	 `

�

�, than to model check the same property � for the result of the parallel composition

directly. The reason is that in the �nite-state case the parallel composition operator often causes an exponential

blow-up of the number of states, and one may easily obtain an intractable size in a very simple example. In

contrast, in our approach we would have to explore only several relatively small state spaces, and when formulas

are not too long (which is often the case), produce tolerable overhead by deriving the global property, which

results in computationally simpler and faster veri�cation. Similar reasons work in the in�nite-state case, except

that we have to compare a di�erent notion of complexity rather than the number of states.

Another signi�cant advantage of the approach is that it supports a compositional design in the following

sense. Suppose, we are to design a complex system consisting of dozens (if not hundreds or thousands) of

parallel components. What we have to do �rst is to specify every component in some higher level speci�cation

language, and then make sure that if every speci�cation is met, then the whole design will be correct. Our

compositional proof system can naturally assist in solving this problem even before the actual implementation

has started, and one may save signi�cant amount of e�ort in case the speci�cations contain a subtle but crucial

error. Moreover, after the implementation there is no need to verify the entire system. Instead, it is enough to

prove the correctness of each of the components separately, which is a much simpler task.

There are many open problems in the area. To mention only the most important ones, we do not know if the

proof system is complete in general or for any particular class of CCS processes. We are currently working on

the completeness of the system for some sort of \canonical" processes. Another open question is the decidability

of �

�

k

�

	 j=

�

�. A positive answer would make a compositional model checking problem fully automatic and

possibly tractable for virtually any size and complexity of �nite-state systems.

In future we plan to implement this system more e�ciently in a special purpose theorem prover and provide

a better input language for writing speci�cations of parallel systems and their properties. We are also going to

try this approach on industrial-size hardware/software designs.

Acknowledgments. We would like to thank Edmund Clarke, Bruce Kapron, J�urgen Dingel, Will Marrero

and Marius Minea for careful reading and many useful comments. We are also grateful to Henrik Andersen for

inviting the �rst author in January, 1995 to Danish Technical University, where this project was initiated.

References

[1] Henrik R. Andersen. On model checking in�nite-state systems. In Nerode and Matiyasevich, editors,

LFCS'94: Logic at St. Petersburg. Symposium on Logical Foundations of Computer Science, St. Petersburg,

Russia, July 11-14, volume 813 of Lecture Notes in Computer Science. Springer-Verlag, 1994.

[2] Henrik R. Andersen. Partial model checking (extended abstract). Technical Report ID-TR: 1994-148,

Department of Computer Science, Technical University of Denmark, October 1994. Accepted for LICS'95.

[3] Henrik R. Andersen, Colin Stirling, and Glynn Winskel. A compositional proof system for the modal

�-calculus. In Proceedings, Ninth Annual IEEE Symposium on Logic in Computer Science, pages 144{153,

Paris, France, 4{7 July 1994. IEEE Computer Society Press. Also as BRICS Report RS-94-34.

[4] K.A. Bartlet, R.A. Scantlebury, and P.T. Wilkinson. A note on reliable full-duplex transmission over

half-duplex links. Commun. ACM, 12(5):260{261, 1969.

[5] S.A. Berezine. Model checking in �-calculus for distributed systems. In Speci�cation, veri�cation, and net

models of concurrent systems. Institute of Informatics Systems, Novosibirsk, Russia, 1994.

[6] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic veri�cation of �nite-state concurrent systems

using temporal logic speci�cations. ACM Transactions on Programming Languages and Systems, 8(2):244{

263, April 1986.

[7] M. Dam. Compositional proof systems for model checking in�nite state processes. In Proceedings of

CONCUR'95, volume 962 of Lecture Notes in Computer Science, pages 12{26. Springer-Verlag, 1995.

[8] Dilian Gurov, Sergey Berezin, and Bruce M. Kapron. A modal mu-calculus and a proof system for value

passing processes. In INFINITY Workshop, Pisa, Italy, volume 6 of Electronic Notes in Theoretical Com-

puter Science, August 1996.

11

[9] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science, 27:333{354, December

1983.

[10] K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem. PhD thesis,

Carnegie Mellon University, 1992.

[11] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science, 25(3):267{310, 1983.

[12] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[13] S. Owre, N. Shankar, and J. M. Rushby. User Guide for the PVS Speci�cation and Veri�cation System.

Computer Science Laboratory, SRI International, Menlo Park, CA, February 1993. A new edition for PVS

Version 2 is expected in late 1996.

[14] C. Stirling. Modal logics for communicating systems. Theoretical Computer Science, 49:311{348, July 1987.

[15] A. Tarski. A lattice-theoretic �xpoint theorem and its applications. Paci�c Journal of Mathematics,

5:285{309, 1955.

[16] Glynn Winskel. A note on model checking the modal nu-calculus. In G. Ausiello, M. Dezani-Ciancaglini,

and S. Ronchi Della Rocca, editors, Proceedings of ICALP, volume 372 of Lecture Notes in Computer

Science, pages 761{772. Springer-Verlag, 1989.

12

