
A Hoare Logic Contract Theory:
An Exercise in Denotational Semantics

Dilian Gurov and Jonas Westman

Abstract We sketch a simple theory of Hoare logic contracts for programs with
procedures, presented in denotational semantics. In particular, we give a simple
semantic justification of the usual procedure-modular treatment of such programs.
The justification is given by means of a proof of soundness of a contract-relative
denotational semantics against the standard denotational semantics of procedures
in the context of procedure declarations. The suggested formal development can be
used as an inspiration for more ambitious contract theories.

1 Introduction

Hoare logic [2, 5] is a well-established logic for reasoning about programs. Its
judgments express what a program is intended to compute by relating the values
of its variables before and after executing the program. This is adequate when the
program is not interactingwith its environment (i.e., when it has no side-effects), and
when it is expected to terminate; mathematically speaking, from a user’s view what
such a program does is completely captured by a binary relation on states, initial and
final ones, respectively. In Hoare logic, such a binary relation is expressed by means
of a pair of logical assertions, called precondition and postcondition, respectively.
These assertions are essentially first-order logic formulas over program variables
and so-called logical variables; the latter are used to relate values before and after
execution. The program and the two assertions form a so-called Hoare triple. What
is referred to as Hoare logic is essentially a deductive proof system over Hoare
triples.

D. Gurov (�)
KTH Royal Institute of Technology, Stockholm, Sweden
e-mail: dilian@kth.se

J. Westman
KTH Royal Institute of Technology, Stockholm, Sweden

Systems Development Division, Scania AB, Södertälje, Sweden

© Springer Nature Switzerland AG 2018
P. Müller, I. Schaefer (eds.), Principled Software Development,
https://doi.org/10.1007/978-3-319-98047-8_8

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98047-8_8&domain=pdf
mailto:dilian@kth.se
https://doi.org/10.1007/978-3-319-98047-8_8

120 D. Gurov and J. Westman

Meyer advocated in [6] the use of Hoare-style preconditions and postconditions
as contracts for programs under development, and a design methodology called
design-by-contract. Contracts support modular development of software: if one
program relies on another one, the two can be decoupled by means of a contract
for the latter program; the contract is what the second program is obliged to fulfill
toward the first. The first program can then be developed relying on this contract,
without requiring access to, or knowledge of, the implementation of the second
program (which may or may not be available). Furthermore, the first program can
be verified to meet its own contract, under the assumption that the second program
meets its contract. Besides the methodological advantages of using contracts, this
has the effect that verification also becomes modular and therefore scales well with
the number of modules. Many well-known tools for deductive verification, such
as OpenJML [4] and VCC [3], are in fact procedure-modular: they expect every
procedure to be accompanied by a contract, and verify each procedure in isolation.

Procedures can be mutually recursive. For instance, consider the Java program
shown in Fig. 1. It consists of two procedures (or “methods”), even and odd,
which call each other in order to determine whether their argument is an even
number or an odd one, respectively. Both procedures are equipped with a (JML-
like) contract, consisting of a precondition, expressed in a requires annotation,
and a postcondition, expressed in an ensures annotation. In the latter, \result
refers to the value returned by the respective procedure, while n refers to the value
of the formal parameter at the time of invoking the procedure (but in classical Hoare
logic this would be expressed by means of logical variables).

We can verify each procedure against its own contract in isolation, by just
assuming that the procedures it calls meet their respective contracts. For instance,
we can infer from the precondition of procedure even and its statements, that at
the control point where it calls procedure odd, the value of variable n must be

Fig. 1 A Java program with mutually recursive procedures

A Hoare Logic Contract Theory: An Exercise in Denotational Semantics 121

positive (since it is assumed to be non-negative in the precondition, and must be
different from zero in the else-branch), and hence n-1 must be non-negative.
The precondition of odd is thus met, and we can therefore assume that upon return
from this procedure call, by virtue of its postcondition, the value returned by even
will be true for n if the value of n-1 is odd, and vice versa, thus entailing the
postcondition of even.

But is such such a circular, assume-guarantee style reasoning sound? It is well-
known from the literature that for partial correctness, where termination is not
required, this indeed is the case (see e.g. [8]). The usual way of showing this
is based on a natural (or “big-step”) operational semantics of the programming
language, consisting of a set of derivation rules, and a proof system in the form of
a sequent calculus over Hoare triples, also presented as a set of derivation rules.
Proving soundness thus typically requires proofs by induction on the height of
derivation trees, which can be rather cumbersome. We believe that an elegant,
and more economic, alternative way of showing soundness could be based on
denotational semantics and fixed-point theory. In this paper, we sketch our idea on a
toy programming language with procedures, and argue that more ambitious contract
theories can be developed following the suggested scheme.

Structure of the Paper We start by recalling in Sect. 2 the denotational semantics
of a toy programming language without procedures. We then define, also in
denotational semantics, the semantics of Hoare logic contracts. Next, in Sect. 3, we
extend the programming language and its semantics with procedures. In addition to
the usual denotational treatment of procedures, we propose an alternative, contract-
relative semantics, and show it to be sound with respect to the former one. We
conclude in Sect. 4.

2 Programs Without Procedures

We start with a toy programming language, which is imperative, has no procedures,
and is sequential and deterministic.

2.1 Syntax and Denotational Semantics

The typical toy imperative programming language considered in the literature is
generated by the following BNF grammar, where x ranges over (integer) program
variables, a over arithmetic expressions, b over Boolean expressions, and S over
statements:

S ::= skip | x := a | S1; S2 | if b then S1 else S2 | while b do S

the meaning of which is well-understood.

122 D. Gurov and J. Westman

A program state s is defined as a mapping from the variables of the program to
their respective domains of values (in this case the integers). The set of all states
shall be denoted by State.

The “direct style” denotation [[S]] of a statement S is traditionally defined as a
single mathematical object, namely as a partial function on State, with [[S]] (s) = s′
meaning that the execution of statement S from state s terminates in the state s′, and
[[S]] (s) being undefinedmeaning that the execution of statement S from state s does
not terminate. A more general approach, which also encompasses non-determinism,
is to define [[S]] as a binary relation on State, with (s, s′) ∈ [[S]] meaning that there
is an execution of statement S from state s that terminates in the state s′. To be able
to unify the denotation of statements with that of Hoare logic contracts, we shall
adopt the latter approach here.

The meaning of the program constructs is given by induction on the structure
of statements, via defining equations. For instance, the meaning of sequential
composition is given by the equation:

[[S1; S2]]
def= [[S1]] ◦ [[S2]]

i.e., as relation composition. The most involved case is the defining equation for the
while loop: it is defined as the least solution to a semantic equation derived from
the (intended) equality of the denotation of a loop and its unfolding. For details, the
interested reader is referred to standard textbooks such as [7, 12].

2.2 Hoare Logic and Contracts

Hoare logic is based on so-called Hoare triples of the shape {P }S{Q}, where S is
a statement, and where P and Q are logical formulas called assertions, which are
interpreted over states. We denote by s |� P the fact that the assertion P is true in
state s.

For Hoare logic without logical variables, a Hoare triple {P }S{Q} is defined to be
valid w.r.t. partial correctness, denoted |�par {P }S{Q}, if for every state s such that
s |� P , if execution of S from s terminates in a state s′, then s′ |� Q. The addition
of logical variables requires the semantics to be relativised on interpretationsI that
map logical variables to values; the Hoare triple is then valid if for every state s and
interpretationI such that s |�I P , if execution of S from s terminates in a state s′,
then s′ |�I Q. For the details of the formalization, we refer again to [12].

We refer to the pair C = (P,Q) as a Hoare logic contract. We say that a
particular implementation S meets the contract C w.r.t. partial correctness, denoted
S |�par C, if and only if the corresponding Hoare triple is valid, i.e., if |�par

{P }S{Q}.

A Hoare Logic Contract Theory: An Exercise in Denotational Semantics 123

2.3 The Denotational Semantics of Contracts

A natural way to define formally the semantics of a contract is to define it as the set
of denotations of the programs that satisfy it. This is for instance the approach taken
in [9]. In the present case, however, we can take a simpler approach and define the
denotation [[C]] of a contract C = (P,Q) in the same domain as the denotation of
programs, namely as a binary relation on State. This will allow us later to give a
simple definition of a contract-relative semantics for programs with procedures.

Definition 1 (Denotation of Contracts) Let C = (P,Q) be a Hoare logic
contract. The denotation of the contract is defined as follows:

[[C]]
def= {

(s, s′) | ∀I . (s |�I P ⇒ s′ |�I Q)
}

We then obtain the following simple set-theoretic characterization of a program
meeting a contract:

S |�par C iff [[S]] ⊆ [[C]]

which could also be considered as an alternative definition of this notion.
Many formal frameworks express satisfaction of a contract (or specification)

through set inclusion, and the theoretical implications of this are well understood.
For instance, we obtain a natural notion of precision in the lattice of denotations.

3 Programs with Procedures

We now extend the above treatment to programs with procedures. For brevity, we
shall assume that procedures do not take parameters or return values, and that they
do not declare local variables; all these features can be encoded using dedicated
(global) variables.

3.1 Syntax and Denotational Semantics

Consider that we extend our toy programming language with the statement call p,
where p ranges over a set P of names of procedures declared using the syntax
p = Sp . A program with procedures is a statement S in the context of a set of
procedure declarations.

To give a denotational semantics of such programs, the denotation of call p needs
to be defined. Considering non-recursive programs, a straightforward approach is
to define

[[
call p

]]
to be equal to the denotation

[[
Sp

]]
of Sp , i.e., of the body of

procedure p, and rely on the structural induction approach of Sect. 2.1 to give the

124 D. Gurov and J. Westman

program a meaning. However, this will not work for the general case with recursive
programs, since the structural induction will become circular.

To handle the general case, a more indirect approach is taken, as in [12], by
introducing: for each p ∈ P , a variable Xp ranging over State × State, and a
function ρ, called environment, which maps each variable Xp to a binary relation
on states, i.e., ρ(Xp) ⊆ State× State. The denotation of statements S is relativized

in terms of this environment as [[S]]ρ ; in particular,
[[
call p

]]
ρ

def= ρ(Xp), while the
defining equations for the other language constructs remain unchanged.

Notably, this approach gives rise to a system of equations:

{
Xp = [[

Sp

]]
ρ

}

p∈P

Every solution of this system can be seen as an environment itself. Viewing ρ as
a variable, we can see the whole system of equations as one equation, but over
environments. Thus, semantically, the system induces a function ξ : Env → Env

over environments, defined by ξ(ρ)(Xp)
def= [[

Sp

]]
ρ
.

Let ρ
 ρ′ denote point-wise set inclusion over environments, and let ρ⊥ be
the environment mapping every variable to the empty relation. (Env,
, ρ⊥) can be
shown to be a chain-complete partial order with bottom, in which the function ξ is
continuous (i.e., ξ is monotone and respects least upper bounds of ω-chains). By the
well-known Knaster-Tarski fixed-point theorem, ξ has a least and a greatest fixed
point. We take the least fixed point ρ0, which constitutes the least solution to the
equation system, and define the semantics of a program with procedures S relative
to this particular solution, i.e.:

[[S]]
def= [[S]]ρ0

3.2 A Contract-Relative Denotational Semantics

For a program with procedures, S, consider a contract C for the statement S and a
set of contracts

{
Cp

}
p∈P

, one for each declared procedure p.

The set of contracts
{
Cp

}
p∈P

gives rise to an alternative, contract-relative
notion [[S]]cr of the denotational semantics of programs with procedures. To this

end, we introduce the special contract environment ρc defined by ρc(Xp)
def= [[

Cp

]]
,

for each p ∈ P . Notice that this is only possible because of our careful choice of
denotational semantics of contracts, made in Sect. 2.3. We base the semantics of
programs with procedures on this environment, instead of on ρ0, and define:

[[S]]cr
def= [[S]]ρc

A Hoare Logic Contract Theory: An Exercise in Denotational Semantics 125

Notice that this semantics is not recursive and does not involve fixed points: the
contract-relative denotation

[[
Sp

]]cr of every procedure body can be computed
procedure-modularly, i.e., independently of each other. We thus obtain an alterna-
tive, contract-relative notion of a statement meeting a contract:

S |�cr
par C iff [[S]]cr ⊆ [[C]]

The contract-relative semantics embodies an assume-guarantee style treatment of
programs with procedures: the contract-relative denotation of a statement provides
a set-theoretic “upper bound” on its standard denotation, assuming upper bounds on
the denotations of the called procedures as specified by their contracts. Procedure-
modular verification as used in practice essentially follows this treatment.

3.3 Soundness of the Contract-Relative Semantics

In fixed-point theory, a common technique to prove that a point x is greater than the
least fixed point y of a continuous function f is to show that x is a pre-fixed point
of f , i.e., that f (x)
 x. Since the least fixed point of a continuous function is also
its least pre-fixed point, it follows that y
 x.

We have a similar situation here. Intuitively, the environment ρ0, which by
definition is the least fixed point of ξ , embodies the denotation (i.e., meaning) of
the procedure declarations. The contract environment ρc embodies the denotation of
the contracts of the declared procedures, while ξ(ρc) embodies the contract-relative
denotation of the procedure declarations. To show that the procedure declarations
meet their contracts, we just show that their contract-relative denotation meets the
contract (as we essentially do when we apply procedure-modular verification); in
this way we establish that the denotation of the contracts ρc is a pre-fixed point of ξ .

Thus, our contract-relative semantics is sound w.r.t. the standard one, whenever
all declared procedures meet their contracts.

Theorem 1 (Soundness) Let S be a program with procedures as described above,
and let for all p ∈ P , Sp |�cr

par Cp. We have:

S |�cr
par C implies S |�par C

Proof We show that [[S]] ⊆ [[S]]cr, from which soundness follows. Since by
assumption Sp |�cr

par Cp for all p ∈ P , we have
[[
Sp

]]cr ⊆ [[
Cp

]]
and hence

[[S]]ρc
⊆ [[

Cp

]]
for all p ∈ P . Therefore, by the definitions of ξ and ρc, we have

ξ(ρc)(Xp) ⊆ ρc(Xp) for all p ∈ P . Thus, ξ(ρc)
 ρc, i.e., ρc is a pre-fixed point
of ξ . Since ρ0 is the least fixed point of ξ , ρ0 is also its least pre-fixed point, and
therefore ρ0
 ρc. By monotonicity of ξ , we obtain [[S]]ρ0 ⊆ [[S]]ρc

, and therefore
[[S]] ⊆ [[S]]cr . �

126 D. Gurov and J. Westman

4 Conclusion

We presented a simple treatment of Hoare logic contracts in denotational semantics.
It gives rise to a procedure-modular, contract-relative semantics of statements in
the context of a set of procedure declarations. We showed this semantics to be
sound w.r.t. the standard denotational semantics of procedural languages, which is
not procedure-modular. The proof of soundness is simple, utilizing the fact that
the denotations of the Hoare logic contracts of the declared procedures constitute
a pre-fixed point of the semantic function used to define the standard denotational
semantics, as long as all procedures meet their contracts procedure-modularly.

One concrete application of the above framework that we are currently devel-
oping is a formal justification of a technique to automatically compute procedure
contracts. What the framework gives us is a notion of precision of contracts w.r.t. the
(standard) denotation of their respective procedure bodies. We will use this notion
to characterize the technique.

We presented here the treatment of Hoare logic contracts in the context of a toy
programming language. Building on previous work [10, 11], we plan to extend our
contract theory to the far more ambitious case of embedded C code. Because of the
interactive nature of such code, the denotation of statements cannot be adequately
defined as a binary relation on states; instead, we plan to develop the framework
around the theory of nested words presented in [1].

Acknowledgement We thank Wolfgang Ahrendt for valuable comments on an earlier draft of the
paper.

References

1. Rajeev Alur and Swarat Chaudhuri. “Temporal Reasoning for Procedural Programs”. In:
Verification, Model Checking and Abstract Interpretation (VMCAI 2010). Vol. 5944. Lecture
Notes in Computer Science. Springer, 2010, pp. 45–60.

2. Krzysztof R. Apt. “Ten Years of Hoare’s Logic: A Survey Part 1”. In: ACM Transactions
on Programming Languages and Systems 3.4 (1981), pp. 431–483. https://doi.org/10.1145/
357146.357150. URL: http://doi.acm.org/10.1145/357146.357150

3. E. Cohen et al. “VCC: A Practical System for Verifying Concurrent C”. In: Theorem Proving
in Higher Order Logics (TPHOLs 2009). Vol. 5674. Lecture Notes in Computer Science.
Springer, 2009, pp. 23–42.

4. David R. Cok. “OpenJML: JML for Java 7 by Extending OpenJDK”. In: NASA Formal Methods
(NFM 2011). Vol. 6617. Lecture Notes in Computer Science. Springer, 2011, pp. 472–479.

5. C. A. R. Hoare. “An Axiomatic Basis for Computer Programming”. In: Commun. ACM 12.10
(1969), pp. 576–580.

6. Bertrand Meyer. “Applying “Design by Contract””. In: IEEE Computer 25.10 (1992), pp. 40–
51.

7. Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: An Appetizer Berlin,
Heidelberg: SpringerVerlag, 2007. ISBN: 1846286913.

https://doi.org/10.1145/357146. 357150
https://doi.org/10.1145/357146. 357150
http://doi.acm.org/10.1145/357146.357150

A Hoare Logic Contract Theory: An Exercise in Denotational Semantics 127

8. David von Oheimb “Hoare Logic for Mutual Recursion and Local Variables”. In: Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 1999). Vol. 1738. Lecture
Notes in Computer Science. Springer, 1999, pp. 168–180.

9. Dimitrios Vytiniotis et al. “HALO: Haskell to logic through denotational semantics”. In:
Proceedings of POPL 2013. ACM, 2013, pp. 431–442.

10. Jonas Westman and Mattias Nyberg. “Conditions of contracts for separating responsibilities in
heterogeneous systems”. In: Formal Methods in System Design 52.2 (2018), pp. 147–192.

11. Jonas Westman et al. “Formal architecture modeling of sequential non-recursive C programs”.
In: Science of Computer Programming 146 (2017), pp. 2–27.

12. Glynn Winskel. The Formal Semantics of Programming Languages: An Introduction. Cam-
bridge, MA, USA: MIT Press, 1993. ISBN: 0-262-23169-7.

	A Hoare Logic Contract Theory: An Exercise in Denotational Semantics
	1 Introduction
	2 Programs Without Procedures
	2.1 Syntax and Denotational Semantics
	2.2 Hoare Logic and Contracts
	2.3 The Denotational Semantics of Contracts

	3 Programs with Procedures
	3.1 Syntax and Denotational Semantics
	3.2 A Contract-Relative Denotational Semantics
	3.3 Soundness of the Contract-Relative Semantics

	4 Conclusion
	References

