
ar
X

iv
:2

30
9.

05
38

9v
1

 [
cs

.L
O

]
 1

1
Se

p
20

23

Soundness and Completeness of a

Model-Checking Proof System for CTL

Georg Friedrich Schuppe Dilian Gurov

KTH Royal Institute of Technology, Stockholm

{schuppe,dilian}@kth.se

September 12, 2023

Abstract

We propose a local model-checking proof system for a fragment of

CTL. The rules of the proof system are motivated by the well-known

fixed-point characterisation of CTL based on unfolding of the temporal

operators. To guarantee termination of proofs, we tag the sequents of our

proof system with the set of states that have already been explored for the

respective temporal formula. We define the semantics of tagged sequents,

and then state and prove soundness and completeness of the proof system,

as well as termination of proof search for finite-state models.

1 Introduction

Computation Tree Logic (CTL) is a well-known branching-time temporal logic [3,
5]. Many useful temporal specification patterns can be expressed naturally in
CTL. The logic is supported by numerous off-the-shelf model checking tools
such as nuSMV [2].

The standard, global approach to model checking of a CTL formula φ w.r.t.
a given state s of a given Kripke structure M is to first compute the set JφKM

of all states that satisfy the formula, i.e., the denotation of φ, and then to check
whether s ∈ JφKM. This approach allows the use of symbolic representations
of the denotations of the formula and its subformulas, typically as BDDs (as in
nuSMV).

An alternative, local approach is to start with the state s and incrementally
explore its neighbourhood as required by the formula φ, by unfolding the latter
step-by-step. One obvious advantage of this approach is that it only explores
the part of the model that is required to establish or reject the checked formula.
Another advantage is that local model checking can be phrased as proof search
in a deductive proof system. It can then be implemented in a straightforward
manner in a logic programming environment such as Prolog. This can be very
useful for education purposes, since it gives the opportunity for students to
create, without much effort, an own tool that can analyse non-trivial models

1

http://arxiv.org/abs/2309.05389v1

of system behaviour (typically with up to a few thousand states). In fact, the
model-checking proof system presented here has been developed for and used
in the course Logic for Computer Scientists, given at KTH Royal Institute of
Technology, Stockholm.

It is well-known that CTL can be embedded into the (alternation-free frag-
ment of the) modal µ-calculus [6]. Since local model checking proof systems
have already been proposed for the latter logic, as for instance in [1], design-
ing one for CTL based on the embedding should be straightforward. However,
there are good reasons for designing a self-standing proof system, like the one we
propose here. The foremost reason for us has been to utilise the circumstance
that it is the alternation-free fragment of the modal µ-calculus that we need to
take into account. This suggests that the approach to guaranteeing termination
of proof search employed in [6] of tagging formulas with the set of states that
have already been explored w.r.t. the formula (in this case essentially requiring
only the outermost fixed-point needs to be tagged) can be lifted from the level
of formulas to the level of sequents. Thus, tagged sequents need to be given
a formal semantics, to allow to state formally soundness and completeness of
the proof system, and to argue for termination of proof search for finite-state
models.

Since our proof system has originally been designed for education purposes,
to keep the presentation simple, we have chosen not to include the Until operator
of CTL in our treatment, and leave its addition as an exercise to the interested
reader. This does not present any technical difficulties, and simply follows the
pattern of the other temporal operators and their fixed-point characterisation.

2 Syntax and Semantics of the Logic

We start by presenting the syntax and semantics of the logic, which we call CTL−,
since it is a fragment of CTL.

Definition 2.1 (Logic Syntax). The language is defined over a set of atomic
propositions Atoms, ranged over by p, as follows:

φ ::= p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 |Aψ | Eψ
ψ ::= Xφ |Gφ | Fφ

The formulas φ are called state formulas and ψ path formulas. The strict al-
ternation of path and state quantifiers gives rise to six combinations. Notice
that negation is only allowed over atomic propositions. The reason for this is
that it is cumbersome to come up with a rule for negated formulas in Section 3.
However, this restriction does not affect the expressiveness of the logic, since
negated formulas can be “deMorganised” so as to push the negation to the
atomic propositions.

Definition 2.2 (Kripke Structure). A Kripke structure is a tuple M = (S,−→
, L), where S is a set of states, −→ a binary transition relation on S, and L :

2

S → 2Atoms a labelling function that assigns to every state the set of atomic
propositions that are deemed true in that state.

Given a Kripke structure, the semantics of a CTL formula φ is defined as
the set JφKM ⊆ S of states that satisfy the formula, sometimes referred to as its
denotation. Inspired by [1], however, we shall define this notion relative to a set
U ⊆ S of states, called a tag. We will use such tags in Section 3 to guarantee
finiteness of proof trees. Only formulas starting with a temporal operator will
need (non-empty) tags.

Definition 2.3 (Logic Semantics). Let M = (S,−→, L) be a Kripke structure.
The semantics of formulas is inductively defined by the following equations:

JpKM
∅

def
= {s ∈ S | p ∈ L(s)} (1)

J¬pKM
∅

def
= S \ JpKM

∅
(2)

Jφ ∧ ψKM
∅

def
= JφKM

∅
∩ JψKM

∅
(3)

Jφ ∨ ψKM
∅

def
= JφKM

∅
∪ JψKM

∅
(4)

JEXφKM
∅

def
= pre∃(JφKM

∅
) (5)

JAXφKM
∅

def
= pre∀(JφKM

∅
) (6)

JEFφKMU
def
= µY.(JφKM

∅
∪ pre∃(Y) \ U) (7)

JAFφKMU
def
= µY.(JφKM

∅
∪ pre∀(Y) \ U) (8)

JEGφKMU
def
= νY.(JφKM

∅
∩ pre∃(Y) ∪ U) (9)

JAGφKMU
def
= νY.(JφKM

∅
∩ pre∀(Y) ∪ U) (10)

where the state transformers pre∃ : S −→ S and pre∀ : S −→ S, and the least and
greatest fixed-point µY.f(Y) and νY.f(Y) of a monotone function f : S −→ S are
defined as follows:

pre∃(Y)
def
= {s ∈ S | ∃s′ ∈ Y. s −→ s′} (11)

pre∀(Y)
def
= {s ∈ S | ∀s′ ∈ S. (s −→ s′ ⇒ s′ ∈ Y)} (12)

µY.f(Y)
def
=

⋂
{X ⊆ S | f(X) ⊆ X} (13)

νY.f(Y)
def
=

⋃
{X ⊆ S | f(X) ⊇ X} (14)

If the tag U is empty, the semantics coincides with the standard semantics
of CTL. The semantic rules for JEFφKM

∅
, JAFφKM

∅
, JEGφKM

∅
and JAGφKM

∅
fall

back on known embeddings of CTL into the modal µ-calculus [4].
We shall later need the following result.

3

Lemma 2.1 (Reduction Lemma [1]). For any monotone function ψ on a pow-
erset Pow (D), and any p ∈ D, we have:

p ∈ µY.ψ(Y) ⇔ p ∈ ψ(µY.(ψ(Y) \ {p})) (15)

p ∈ νY.ψ(Y) ⇔ p ∈ ψ(νY.(ψ(Y) ∪ {p})) (16)

The right-hand sides of these logical equivalences involve a slightly modified
unfolding of the fixed points: For the least fixed point of a single element, p is
removed in the unfolding; for the greatest it is added.

3 A Local Model-Checking Proof System

p
−

M, s ⊢∅ p
p ∈ L(s) ¬p

−

M, s ⊢∅ ¬p
p 6∈ L(s)

∧
M, s ⊢∅ φ M, s ⊢∅ ψ

M, s ⊢∅ φ ∧ ψ

∨1
M, s ⊢∅ φ

M, s ⊢∅ φ ∨ ψ
∨2

M, s ⊢∅ ψ

M, s ⊢∅ φ ∨ ψ

AX
M, s1 ⊢∅ φ · · · M, sn ⊢∅ φ

M, s ⊢∅ AX φ

AG1
−

M, s ⊢U AG φ
s ∈ U AF1

M, s ⊢∅ φ

M, s ⊢U AF φ
s 6∈ U

AG2
M, s ⊢∅ φ M, s1 ⊢U,s AG φ · · · M, sn ⊢U,s AG φ

M, s ⊢U AG φ
s 6∈ U

AF2
M, s1 ⊢U,s AF φ · · · M, sn ⊢U,s AF φ

M, s ⊢U AF φ
s 6∈ U

EX
M, s′ ⊢∅ φ

M, s ⊢∅ EX φ
EG1

−

M, s ⊢U EG φ
s ∈ U

EG2
M, s ⊢∅ φ M, s′ ⊢U,s EG φ

M, s ⊢U EG φ
s 6∈ U

EF1
M, s ⊢∅ φ

M, s ⊢U EF φ
s 6∈ U EF2

M, s′ ⊢U,s EF φ

M, s ⊢U EF φ
s 6∈ U

Figure 1: A Local Model-Checking Proof System for CTL−.

We present our model-checking procedure in the form of a deductive system,
consisting of rules over sequents M, s ⊢U φ. To guarantee finiteness of proof

4

trees, and with this completeness of the proof systems as well as termination
of proof search, we equip our sequents with tags U ⊆ S as already introduced
in Section 2. The rules of our proof system are presented in Figure 1. In the
premises of the A-rules, s1, . . . , sn denote all successors of state s in the Kripke
structure M, while in the premises of the E-rules, s′ denotes some successor
of s. To prove that a state s in a Kripke structure M satisfies a formula φ of
the logic, one needs to derive the sequent M, s ⊢∅ φ, where the tag is initially
empty.

Example. Consider the following Kripke structure:

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔
p, q

q, r r✲
❂✇✴

✼

s0

s1 s2

We would like to show that the formula EF (EG r) holds in state s0 of the Kripke
structure. This can be established by the following proof tree:

−
M, s2 ⊢∅ r

p −
M, s2 ⊢[s2] EG r

EG1

M, s2 ⊢∅ EG r
EG2

M, s2 ⊢[s0] EF (EG r)
EF1

M, s0 ⊢∅ EF (EG r)
EF2

To define and prove the properties of the proof system we need the following
semantic notion.

Definition 3.1 (Sequent Validity). A sequent M, s ⊢U φ is termed valid, de-
noted M, s |=U φ, iff s ∈ JφKMU .

4 Soundness of the Proof System

A deductive system is termed sound if all sequents derivable with its rules are
semantically valid (that is, only valid sequents can be proved). We will show
that all rules of our proof system preserve the validity of sequents whenever the
respective side condition holds. For readability, we omit the superscript M,
when it is clear which M is meant. We abbreviate U ∪ {s} by writing U, s.

Theorem 4.1 (Soundness). The proof system from Figure 1 is sound.

Proof. The result is a direct consequence of the soundness of each rule, which
we show here. Recall that a rule is termed sound if its conclusion is a valid

5

sequent whenever all its premises are valid and the side-conditions hold.

Rule p. If p ∈ L(s), the conclusion M, s |=∅ p follows directly from Defini-
tion 3.1 and (1). The argument for rule ¬p is dual.

Rule ∧. We show that M, s |=∅ φ and M, s |=∅ ψ imply M, s |=∅ φ∧ψ. If
s ∈ JφK∅ and s ∈ JψK∅, then obviously

s ∈ JφK∅ ∩ JψK∅
(3)
= Jφ ∧ ψK∅.

Rules ∨1,∨2. We show that M, s |=∅ φ implies M, s |=∅ φ∨ψ. If s ∈ JφK∅,
then

s ∈ JφK∅ ∪ JψK∅
(4)
= Jφ ∨ ψK∅.

The argument for ∨2 is similar.

Rule EX . We show that M, s′ |=∅ φ implies M, s |=∅ EXφ, where s −→ s′

with s, s′ ∈ S. If s′ ∈ JφK∅, then with (11), it holds that

s ∈ pre∃(JφK∅)
(5)
= JEXφK∅.

The reasoning for AX and pre∀ is similar.

Rule EG1. If s ∈ U , then s ∈ JEGφKU holds by (9).

Rule EG2. We show that M, s |=∅ φ and M, s′ |=U,s EGφ imply M, s |=U

EGφ when s 6∈ U , where s −→ s′ with s, s′ ∈ S. Applying the appropriate
semantic rule, and unfolding the fixed point once using Lemma 2.1, we get the
equivalences

s ∈ JEGφKU
(9)
⇔ s ∈ νY.(JφK∅ ∩ pre∃(Y) ∪ U)

(16)
⇔ s ∈ JφK∅ ∩ pre∃(νY.(JφK∅ ∩ pre∃(Y) ∪ U ∪ {s})) ∪ U

(9)
⇔ s ∈ JφK∅ ∩ pre∃(JEGφKU,s) ∪ U

Since we assume M, s′ |=U,s EGφ, we have s′ ∈ JEGφKU,s and thus s ∈
pre∃(JEGφKU,s). Together with the assumption that s ∈ JφK∅, we can con-
clude that s ∈ JEGφKU , and hence M, s |=U EGφ.

Rule EF1. We show that M, s |=∅ φ implies M, s |=U EFφ when s 6∈ U .

6

We have the equivalences

s ∈ JEFφKU
(7)
⇔ s ∈ µY.(JφK∅ ∪ pre∃(Y) \ U)

(15)
⇔ s ∈ JφK∅ ∪ pre∃(µY.(JφK∅ ∪ pre∃(Y) \ U \ {s})) \ U

(7)
⇔ s ∈ JφK∅ ∪ pre∃(JEFφKU,s) \ U

Now, we can observe that

s ∈ JφK∅ ∪ pre∃(JEFφKU,s) \ U

holds when s ∈ JφK∅ and s 6∈ U , and hence M, s |=U EFφ.

Rule EF2. We show that M, s′ |=U,s EFφ and s 6∈ U imply M, s |=U EFφ.
Since we assume s′ ∈ JEFφKU,s and s 6∈ U , by the same equivalences as in the
previous case we can conclude that s ∈ JEFφKU , and hence M, s |=U EFφ.

Rule AG1. If s ∈ U , then s ∈ JAGφKU holds by (10).

Rule AG2. The argument is similar to the proof of EG2.

Rule AF1. The argument is similar to the proof of EF1.

Rule AF2. The argument is similar to the proof of EF2.

This concludes the proof of soundness. �

5 Completeness of the Proof System

A deductive system is termed complete if for every semantically valid sequent
there exists a derivation of that sequent (that is, all valid sequents can be
proved). We show completeness by using the idea of a canonical proof. The
idea of the proof is that for every valid sequent there is a way to apply rules
backwards that is guaranteed to terminate with axiom rules as leaves, and thus,
produce a proof of the sequent.

5.1 Reversibility

First, we show that all rules are reversible: For each rule, if the conclusion is
valid, then there exists a rule that can be applied backward, so that the premises
are valid.

Theorem 5.1 (Reversibility). The rules of the proof system from Figure 1 are
reversible.

7

Proof. We consider each rule in turn.

Rule ∧. If M, s |=∅ φ ∧ ψ is valid, we can apply Rule ∧ backwards. If
s ∈ Jφ ∧ ψK∅, then necessarily s ∈ JφK∅ and s ∈ JφK∅, and thus all premises of
Rule ∧ are valid, enabling backward application of the rule.

Rules ∨1,∨2. If M, s |=∅ φ∨ψ is valid, then s ∈ Jφ∨ψK∅, and hence neces-
sarily either s ∈ JφK∅ or s ∈ JφK∅ has to hold. Thus, either the premises of Rule
∨1 or those of ∨2 are valid and the corresponding rule can be applied backwards.

Rules EX,AX . Assuming M, s |=∅ EXφ is valid, then s ∈ pre∃(JφK∅) by
(5). Using the definition of pre∃ (11), we can conclude that existence of a s′ ∈ S

with s −→ s′ and s′ ∈ JφK∅ is necessary and thus M, s′ |=∅ φ is valid. The
reasoning for rule AX and pre∀ is similar.

Rule EG1. Assuming M, s |=U EGφ and s ∈ U , there is no premise to be
proven valid and the rule is always applicable backwards.

Rule EG2. If we assume M, s |=U EGφ, but s 6∈ U , we have to show that
M, s |=∅ φ and M, s′ |=U,s EGφ. Unfolding the fixed point using Lemma 2.1,
we get

s ∈ JEGφKU ⇔ s ∈ JφK∅ ∩ pre∃(JEGφKU,s) ∪ U.

Since s 6∈ U , then necessarily s ∈ JφK∅ and s ∈ pre∃(JEGφKU,s). From
s ∈ pre∃(JEGφKU,s), we can conclude that there exists a s′ with s −→ s′ and
M, s′ |=U,s EGφ. M, s |=∅ φ follows directly.

Rules EF1, EF2. Assuming M, s |=U EFφ and s 6∈ U , we can obtain

s ∈ JEFφKU ⇔ s ∈ JφK∅ ∪ pre∃(JEFφKU,s) \ U

through unfolding of the fixed point once using Lemma 2.1. Since s 6∈ U , either
s ∈ JφK∅ or s ∈ pre∃(JEFφKU,s) is necessarily valid. From s ∈ JφK∅ follows
M, s |=∅ φ. From s ∈ pre∃(JEFφKU,s), we can conclude that there exists a s′

with s −→ s′ and M, s′ |=U,s EFφ. Thus, either EF1 or EF2 is always applicable
backwards when the conclusion is valid.

Rules AG1, AG2. The argument is similar to the reversibly of EG1 and EG2.

Rules AF1, AF2. The argument is similar to the reversibility of EF1 and
EF2.

This concludes the proof of reversibility. �

Hence, starting a proof from any semantically valid sequent, there is a way to
“grow” a derivation tree upwards, maintaining semantic validity as an invariant
property of the nodes of the derivation tree.

8

5.2 Termination

To obtain a (canonical) proof, however, we need to argue that every branch of
the tree is bound to terminate, and furthermore with an axiom.

Lemma 5.1 (Finiteness of Derivation Trees). Every derivation produced with
the rules of the proof system from Figure 1 is finite for finite-state Kripke struc-
tures.

Proof. Between conclusion and premises, we observe that application of each
reversible rule either (i) decreases the length of the sequent formulas or (ii) de-
creases the number of leftover untagged states S \U . Defining a lexicographical
ordering through these two criteria on a series of backward applications, it is
easy to see that such a series would be monotonically decreasing. �

5.3 Completeness

Finally, we are ready to show completeness of our proof system.

Theorem 5.2 (Completeness). The proof system from Figure 1 is complete for
finite-state Kripke structures.

Proof. For any valid sequent, by Theorem 5.1, there always exists a backwards
applicable rule, and, by Lemma 5.1, any series of backward rule applications is
terminating. Thus, eventually, every branch must terminate by reverse applica-
tion of an axiom rule, and hence, there exists a proof of the sequent. �

Observe that soundness, completeness, and finiteness of derivation trees
guarantee decidability of sequent validity.

6 Conclusion

In this paper, we have presented a local model-checking proof system for a
fragment of CTL, and have proved its soundness and completeness, and termi-
nation of proof search for finite-state models. Extending the proof system and
the proofs to the full CTL is a routine exercise.

The proof system has been developed for and used in the course Logic for
Computer Scientists, given at KTH Royal Institute of Technology, Stockholm.

References

[1] Henrik Reif Andersen, Colin Stirling, and Glynn Winskel. A compositional
proof system for the modal mu-calculus. In Proceedings Ninth Annual IEEE
Symposium on Logic in Computer Science, pages 144–153. IEEE, 1994.

[2] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV Version 2: An OpenSource Tool for

9

Symbolic Model Checking. In Proc. International Conference on Computer-
Aided Verification (CAV 2002), volume 2404 of LNCS, Copenhagen, Den-
mark, July 2002. Springer.

[3] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In Dexter Kozen,
editor, Logics of Programs, Workshop, Yorktown Heights, New York, USA,
May 1981, volume 131 of Lecture Notes in Computer Science, pages 52–71.
Springer, 1981.

[4] Stéphane Demri, Valentin Goranko, and Martin Lange. Branching-Time
Temporal Logics. Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, 2016.

[5] Michael Huth and Mark Dermot Ryan. Logic in computer science - modelling
and reasoning about systems (2. ed.). Cambridge University Press, 2004.

[6] Dexter Kozen. Results on the propositional µ-calculus. In Mogens Nielsen
and Erik Meineche Schmidt, editors, Automata, Languages and Program-
ming, 9th Colloquium, Aarhus, Denmark, July 12-16, 1982, Proceedings,
volume 140 of Lecture Notes in Computer Science, pages 348–359. Springer,
1982.

10

	Introduction
	Syntax and Semantics of the Logic
	A Local Model-Checking Proof System
	Soundness of the Proof System
	Completeness of the Proof System
	Reversibility
	Termination
	Completeness

	Conclusion

