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A FUNCTIONAL EXTREMAL CRITERION*

P. K. Jordanova (Shumen, Bulgaria) and E. I. Pancheva (Sofia, Bulgaria) UDC 519.2

1. Introduction

In this paper, we are concerned with the following model:

(A) Let N = {(tk, Xk): k ≥ 1} be a point process with time space [0,∞) and state space [0,∞)d, where {tk} are distinct
nonrandom time points. We assume them ordered and increasing to ∞, i.e., t1 < t2 < . . . . So, the point process N is
simple in time; {Xk} are independent and identically distributed (i.i.d.) random vectors (r.v.’s) on a given probability
space with values in [0,∞)d and with common distribution function (d.f.) F nondefective at +∞.

Assume that almost all realizations of N are Radon measures on S := [0,∞)× E, where E := [0,∞]d\{0}, i.e.,

N (A) <∞ a.s. ∀ compact sets A ∈ B(S). (1)

We consider two random processes associated with N , namely, the extremal process

X(t) = {∨Xk: tk ≤ t}

and the process Z with additive increments

Z(t) =

{∑
Xk: tk ≤ t

}
.

Because of (1), the sum and the maximum are a.s. finite for every fixed t > 0. Both processes are right continuous
with increasing sample paths. Here and further on we use the notion increasing in the sense of nondecreasing.

We denote by M the set of all increasing, right-continuous functions y: (0,∞) → [0,∞)d. Then the set P of all
probability measures onM is compact. Let {Pn} be a sequence of probability measures onM. We say {Pn} is weakly
convergent to P ∈ P, briefly Pn ⇒ P , if

∫
ϕdPn →

∫
ϕdP for bounded ϕ:M→ R which are continuous in the weak

topology of M. Now denote by Pe and Ps the subsets of P corresponding to an extremal process (with independent
max-increments) and to a sum process (with independent additive increments), respectively. In [1, Theorem 6.4] it is
shown that the space Pe with the topology of weak convergence is closed in P. The same is also true for Ps. So, the
weak convergence of extremal processes Yn ⇒ Y and of sum processes Sn ⇒ S is equivalent to the convergences in

distribution Yn(t)
d−→ Y (t) and Sn(t)

d−→ S(t) for each continuity point t of the limit process.

Further, for normalizing we use an unboundedly increasing in n sequence of mappings

ζn(t, x) = (τn(t), un(x)),

continuous and strictly increasing in each coordinate. We call them time-space changes. Suppose {ζn} is regular in
the sense that there exists a pointwise limit of ζ−1

n ◦ ζ[ns] for n→ ∞ and s > 0 which is again continuous and strictly
increasing (cf. [6]). We assume the weak convergence

Yn(t) = {∨u−1
n (Xk): tk ≤ τn(t)} =⇒ Y (t), n→∞, (2)

to a nondegenerate extremal process Y with initial value Y (0)
a.s.
= 0.
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We also form the associated processes with additive increments

Sn(t) :=

{∑
u−1
n (Xk): tk ≤ τn(t)

}
.

Note that the space changes {un} preserve the max-operation, i.e., u−1
n (∨Xk) = ∨u−1

n (Xk), but do not preserve (in
general) the summing operation. Hence, Yn(t) = u−1

n ◦X ◦ τn(t) but Sn(t) 6= u−1
n ◦Z ◦ τn(t) in general. If un preserves

both operations ∨ and
∑

, then un is just a scale change and the convergence Sn = u−1
n ◦Z ◦ τn ⇒ S implies that S is

a self-similar process (cf. [4]).
Our main result, proved in Sec. 2, concerns the convergence Sn ⇒ S, if given (2). We call it a functional extremal

criterion (for the convergence Sn ⇒ S), having in mind the extremal criterion in [5, §22.4.c].

THEOREM 1. Let N = {(tk, Xk), k ≥ 1} be the point process described in (A) and let ζn(t, x) = (τn(t), un(x))
be a regular norming sequence of time-space changes of (0,∞)d+1 such that the sequence of the associated extremal
processes Yn(t) = {∨u−1

n (Xk): tk ≤ τn(t)} is weakly convergent to a nondegenerate extremal process Y (t). Assume
that the d.f. G of Y (1) satisfies the condition.

IG =

∫
Aq,v

‖x‖ d(logG(x)) <∞.

Then there exists a time-space change ζ(t, x) = (τ (t), hα(x)) such that the sequence of the associated sum processes
Sn(t) := {

∑
u−1
n (Xk): tk ≤ τn(t)} is weakly convergent to an infinitely divisible process S(t) whose characteristic

function is given by

Eei〈θ,S(t)〉 = exp

{
τ (t)

∫
E

{ei〈θ,h−1
α (x)〉 − 1} dΠ(x)

}
,

where Π(dx) is the Lévy measure of Proposition 2, (iii).

2. Stepwise Proof of the Functional Extremal Criterion

We put tnk = τ−1
n (tk), Xnk = u−1

n (Xk), and consider the point process Nn := {(tnk, Xnk: k ≥ 1)} associated with
Sn and Yn.

Step 1. Denote by kn(t) the nonrandom counting function of Nn, i.e.,

kn(t) = max{k: tk ≤ τn(t)} =
∑
k

I[0,t](tnk).

Here IA(•) is the indicator of the set A. By (2), we have the weak convergence

P(Yn(t) < x) = F kn(t)(un(x))
w−→ g(t, x), n→∞, (3)

where g is the d.f. of the limit process Y . Thus, for fixed t > 0 F belongs to the partial max-DA of gt(x) := g(t, x).
Hence Y (respectively, g) is max-ID.

Moreover, by Propositions 2.1 and 2.3 in [6], Y (respectively, g) is self-similar (briefly Y ∈ SS) and stochastically

continuous. The condition Y (0)
a.s.
= 0 guarantees that G(x) := g1(x) does not have a defect at +∞. In our case, where

{Xk} are i.i.d., one can determine more precisely the subclass of SS which g belongs to.

LEMMA 1. The regularity of the time-space changes ζn implies the regularity of the sequence kn := kn(1).
Proof. For t = 1, (3) reads as

F kn(un(x))
w−→ G(x), n→∞. (4)

Now we take s > 0 and observe the convergence in distribution for n→∞

u−1
n ◦X ◦ τ[ns] = u−1

n ◦ u[ns] ◦ u−1
[ns] ◦X ◦ τ[ns]

d−→ Us ◦ Y,

where Us(x) := limn→∞ u
−1
n ◦ u[ns](x), ∀x ∈ {G > 0}. Hence,

P(u−1
n ◦X ◦ τ[ns](1) < x) = F k[ns](un(x))

w−→
n→∞

P(Y (1) < U−1
s (x)) = G(U−1

s (x)).
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On the other hand, F k[ns](un(x)) = [F kn(un(x))]k[ns]/kn . So there exists limn→∞(k[ns]/kn) = k(s) ∈ (0,∞). As is

known, the last convergence is uniformly in s and k(s) is a power function of s. Say sβ .
The next examples show the consequences of the regularity of kn for the time process {tk}.
Example 1. Let tk = ek, k ∈ {1, 2, . . .}, and take a time change τn(t) = (tn)2; then tnk = τ−1

n (tk) = (1/n)ek/2

and kn =
∑
k I[0,1](tnk) = 2 logn is not a regular sequence (but is slowly varying).

Example 2. Let tn = (n(n + 1))/2 and τn(t) be the same as in Example 1. Now the sequence {tn} is regular,
tnk = (1/n)

√
k(k + 1)/2, and kn ∼ 2n is regular, too.

Let us come back to (4) and observe that the limit d.f. G(x) satisfies Gk(s)(x) = G(U−1
s (x)) for all s > 0, where

k(s) = sβ .
Denote Lt(·) := U β√t(·). Now from Gt(x) = G(L−1

t (x)) ∀t > 0 one can conclude that G is max-stable with respect
to the continuous one-parameter group L = {Lt: t > 0}. Note that L bears the regularity of both sequences {kn} and
{un}.

Analogously one can see that there exists limn→∞ kn(t)/kn =: τ (t) and, finally, we get

g(t, x) = Gτ(t)(x).

The mapping t→ τ (t) is continuous and increasing (since Y ∈ SS), hence it is a time change and we can write

g(τ−1(t), x) = Gt(x) = G(L−1
t (x)) = g(1, L−1

t (x)).

This means that Y ◦ τ−1(t)
d
= Lt ◦ Y (1), ∀t > 0. Thus the process Y ◦ τ−1 has homogeneous max-increments. Note

that L1 = id, τ (1) = 1, τ (t)→ 0, t→ 0, τ (t)→∞, t→∞.
Step 2. Choose α = (α1, . . . , αd) with 0 < αi < 1 (later below we discuss this choice). Let Φ∗α(x1, . . . , xd) be the

d.f. on [0,∞)d with Frechet univariate marginals

Φ∗αi(xi) = e−x
−αi
i , i = 1, . . . , d,

whose dependence (copula) function is the same as that of the limit d.f. G(x). We determine the mapping

hα(x) = (hα1(x1), . . . , hαd(xd))

for all x in the support of G (briefly SuppG) by G(h−1
α (x)) = Φ∗α(x) and use it to define the r.v. Y ∗(1) := hα ◦ Y (1).

It is distributed by Φ∗α. Note that the mapping hα: SuppG → (0,∞)d is continuous and strictly increasing in each
component.

Now the limit relation (4) implies that the d.f. F ′(x) := F ◦ h−1
α (x) belongs to the max-DA(Φ∗α), i.e.,

[F ′(Tn(x))]kn
w−→ Φ∗α(x), n→∞, (5)

with norming sequence Tn(·) = hα ◦ un ◦ h−1
α (·), which is regular at ∞.

Step 3. Combine Step 1 and Step 2. So, we started with the limit extremal process Y (t) distributed by g(t, x)
and came to the time-space changed extremal process Y ∗(t) := hα ◦ Y ◦ τ−1(t), t > 0, with d.f. (Φ∗α)t. It is self-similar
with respect to the continuous one-parameter group

Uα = {Ut(x) := (
α1
√
t x1, . . . ,

αd
√
t xd): t > 0}. (6)

More precisely, the extremal process Y ∗(t) = Ut ◦Y ∗(1) is stochastically continuous, has homogeneous max-increments,

and Y ∗(0)
a.s.
= 0. Thus it is a Lévy process in the max-framework.

In what follows, we denote the vector ( α1
√
s x1, . . . , αd

√
s xd) simply by α

√
s x. Then we can write

Y ∗(t) =
α
√
t Y ∗(1).

PROPOSITION 1. Let (5) hold, i.e., F ′ ∈ max-DA(Φ∗α) with respect to a regular norming sequence {Tn} of space
changes and a regular subsequence {kn} of {n}. Then there exists a space change T such that

[F ′ ◦ T ( α
√
kn x)]kn

w−→ Φ∗α(x), n→∞. (7a)
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Proof. For Tn(x) = (T1n(x1), . . . , Tdn(xd)) and α = (α1, . . . , αd)

1− F ′i (Tin(xi)) ∼
x−αii

kn
, n→∞,

or equivalently,

Tin(xi) ∼
(

1

1− F ′i

)←
(knx

αi
i )

(F← means the left inverse of F ). In fact, the assumption that {Tn} is regularly varying in n → ∞ is the same as
[1− F ′] is regularly varying in x→∞. Put

T̂i(xi) :=

(
1

1− F ′i

)←
(xαii ), i = 1, . . . , d.

These mappings are positive, increasing, and asymptotically continuous. The latter means

T̂i(x+ 0)− T̂i(x− 0)

T̂i(x)
−→ 0, x→∞, i = 1, . . . , d.

Thus, there exists (cf. [2, Lemma 2]) a continuous and strictly increasing mapping T (space change) such that

T (x) ∼ (T̂1(x1), . . . , T̂d(xd)), x→∞.

Now we can see that Tn(x) ∼ T ( α
√
kn x).

Statement (7a) of Proposition 1 is equivalent to (cf. [8, Proposition 5.17]):
1− F ′ ◦ T is regularly varying at ∞, i.e., for Acx := [0,∞]d\[0, x) and e = (1, . . . , 1) ∈ Rd

1− F ′ ◦ T (sx)

1− F ′ ◦ T (se)
−→ να(Acx)

να(Ace)
:= λ(x), s→∞, (7b)

where να is the exponent measure of Φ∗α satisfying

s−1να(Acx) = να(Acα√s x). (8)

Let us summarize what we have achieved within the three steps: we have transformed continuously our initial model
(A) to a model (B), where the sequence of extremal processes needs scale normalization to converge. And scale
normalizations preserve both the ∨ and

∑
operations. In the next step, we pursue convergence of the associated

processes with additive increments.
Step 4. Model (B): Denote t∗k = τ (tk), σn(t) = τ ◦ τn ◦ τ−1(t), and

X∗k = T−1 ◦ hα(Xk), k = 1, 2, . . .,

with common d.f. F ∗ := F ′ ◦ T . In this model, we use the point process N ∗ = {(t∗k, X∗k ): k ∈ {1, 2, . . .}} and the
norming sequence ηn(t, x) = (σn(t), α

√
kn x) to generate the asymptotically homogeneous point process

N ∗n =

{
(t∗nk = σ−1

n (tk), X∗nk =
1

α
√
kn
X∗k : k ≥ 1

}
.

Consider now the process with additive increments

S∗n(t) =
{∑

X∗nk: t∗nk ≤ t
}

=
1

α
√
kn

k∗n(t)∑
k=1

X∗k

and the extremal process

Y ∗n (t) = {∨X∗nk: t∗nk ≤ t} =
1

α
√
kn

k∗n(t)∨
k=1

X∗k
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associated with the same point process N ∗n and with the same counting function

k∗n(t) =
∑
k

I[0,t](t
∗
nk) ∼ knt.

The last asymptotic relation is a consequence of k∗n(t) = kn(τ−1(t)) and kn(t) ∼ knτ (t) established in the first step.
Further, by (7a),

Y ∗n =⇒ Y ∗.

In model (B), a lot of results are well known. We gather them in the next proposition. Let B(E) denote the Borel
σ-algebra of subsets of E.

PROPOSITION 2. The following statements are equivalent:
(i) Y ∗n ⇒ Y ∗ and the limit process is max-stable with respect to the multiplicative group Uα defined in (6);
(ii) N ∗n ⇒ π and the limit point process π is a homogeneous Poisson point process whose structural measure µ does
not charge instant spaces and µ([0, t]× A) = tνα(A) for A ∈ B(E);
(iii) S∗n ⇒ S∗ and the limit process is α-stable. Its Lévy measure Π satisfies

Π(A) = να(A), A ∈ B(E), Π({0}) = 0.

Proof. The equivalence (i) ⇔ (ii) is a special case of Proposition 3.21 in [8]. Recall that every max-ID extremal
process (with d.f. g) is associated with a Poisson point process (with structural measure µ) and the connection between
them is given by

g(t, x) = e−µ([0,t]×Acx)

(cf. [1]). Let (Tk, Y
∗
k ), k = 1, 2, . . . , be the points of π. Then

• Y ∗(t) = {∨Y ∗k : Tk ≤ t} is max-ID⇔ π is Poisson;
• Y ∗(t) is stochastically continuous ⇔ µ does not charge instant spaces, i.e., µ({t} ×A) = 0, A ∈ B(E);
• Y ∗(t) has homogeneous max-increments ⇔

µ([s, t]× A) = (t − s)να(A), 0 ≤ s < t <∞.

Note that να is a Radon measure on E, i.e., finite on compact subsets far away from zero.
On (i) ⇒ (iii). The process

S∗(t) =

{∑
Y ∗k : Tk ≤ t

}
is associated with the time-homogeneous Poisson point process π on S, whose structural measure does not charge
instants. Hence it is stochastically continuous. Further it has nonnegative independent increments. Thus for θ ∈ (0,∞)d

its characteristic function ϕt(θ) := Eei〈θ,S
∗(t)〉 has the form

ϕt(θ) = exp

{
t

∫
E

{ei〈θ,x〉 − 1}Π(dx)

}
, (9)

where the σ-finite Lévy measure Π has the properties∫
Ae

‖x‖Π(dx) <∞, Π({0}) = 0.

Further, Π is determined by the limit relation

kn[1− F ∗( α
√
kn x)] −→ Π(Acx), ∀x > 0, n→ ∞.

By (7a) and since B(E) is generated by sets of the form Acx, x > 0,

Π(A) = να(A), ∀A ∈ B(E).
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The last limit relation together with the regularity of the tail (1 − F ∗), expressed in (7b), is equivalent to the weak
convergence

S∗n(1) ∼ 1
α
√
kn

kn∑
1

X∗k
d−→ S∗(1), n→∞, (10)

where S∗(1) is a one-sided α-stable r.v. (see, e.g., [9]) with αi ∈ (0, 1), i = 1, . . . , d. From here and the asymptotic
k∗n(t) ∼ knt we get

S∗n(t)
d−→ S∗(t), ∀t > 0, n→∞. (11)

So S∗(t), t > 0, is one-sided α-stable process with αi ∈ (0, 1) and S∗(0) = 0 a.s. In fact,

S∗(t)
d
=

α
√
t S∗(1).

The inverse implication (iii) ⇒ (i) is obvious.
Remarks. 1. Now the choice of α with αi ∈ (0, 1) is plausible: in this case ∨X∗k and

∑
X∗k need the same scale

normalization α
√
kn.

2. It is no surprise that the spectral measure Π of S∗(1) and the exponent measure να of Y ∗(1) coincide on B(E).
By construction, Y ∗(1) is the largest jump of S∗ in [0, 1] and Π(Acx) is just the expected value of the number of jumps
in [0, 1] larger than x (cf. [5, XI]). More interesting is that the dependence structure of the process S∗(t) for all t > 0 is
determined by the dependence structure of the maximal jump of S∗ in [0, 1]. Indeed, in the integral expression of the
exponent measure

να(Acx) =

∫
S+
d

max
1≤i≤d

(
si
xi

)αi
Q(ds),

the dependence structure of the r.v. Y ∗(1) = (Y ∗1 , . . . , Y
∗
d ) is borne by Q. Here S+

d is the intersection of E and
the unit sphere in Rd, and Q is a finite Borel measure on S+

d (cf., e.g., [8]). In the case of full dependence, i.e., if
P(Y ∗1 = · · · = Y ∗d ) = 1, να is concentrated on the orbit { α

√
se: s > 0}, respectively, Q is concentrated at the point

e/‖e‖. Hence Π(Acx) = να(Acx) =
∨d
i=1 x

−αi
i . In the case of independent marginals,

P(Y ∗1 < x1, . . . , Y
∗
d < xd) = exp

{
−

d∑
i=1

x−αii

}
.

So Π(Acx) = να(Acx) =
∑d

i=1 x
−αi
i . Consequently, Q is discrete and concentrated on ei, i = 1, . . . , d, where ei =

(0, . . . , 0, 1, 0, . . . , 0) with 1 in the ith coordinate.
How Q reflects the dependence structure of the associated vector in Rd is in general a hard problem (cf. [3]).
Now we come back to our starting problem: to determine the limit behavior of the sum process in the initial

model (A)

Sn(t) =

kn(t)∑
k=1

u−1
n (Xk), n→∞.

By the multivariate Central Criterion of Convergence (CCC), this sum is convergent if and only if
(C1) kn(t)[1−P(u−1

n (Xk) < x)] converges weakly to a nonnegative, nonincreasing, and right-continuous function;
(C2) kn(t)E(u−1

n (Xk)I{u−1
n (Xk) < v}) converges to a finite vector, say a(t, v).

Below, we shall check these conditions in our case.
The limit relation (iii) of Proposition 2 implies

P(S∗n(t) < x) = P

{k∗n(t)∑
k=1

1
α
√
kn
T−1 ◦ hα(Xk) < x

}
∼ P

{kn(τ−1(t))∑
k=1

hα ◦ u−1
n (Xk) < x

}
w−→ P(S∗(t) < x), n→∞.

Here we have used the relation T ( α
√
kn x) ∼ Tn(x) = hα ◦ un ◦ h−1

α (x). Hence necessarily we have for t > 0 and
x > q := inf SuppG

kn(t)[1−P(u−1
n (Xk) < x)] −→ τ (t)Π(Achα(x)), n→∞. (12a)
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Furthermore, the sequence of the truncated by v > q mean of u−1
n (Xk) is formally convergent, i.e., for Av = {y ∈

E: y < v}

kn(t)E{u−1
n (Xk)I(u−1

n (Xk) < v)} = kn(t)

∫
Av

x dP(u−1
n (Xk) < x)

= −
∫
Av

x d{kn(t)(1−P(u−1
n (Xk) < x))} w−→ τ (t)

∫
Aq,v

x dΠ(hα(x)), Aq,v := Av ∩ {x > q}. (12b)

Consequently,

a(t, v) = τ (t)

∫
Aq,v

x dΠ(hα(x)). (13)

Here we have used that P(u−1
n (Xk) < x) → 0 for x < q and kn(t) ∼ τ (t)kn. Observe that a(1, v) =: a(v) is zero if

v = q.
Caution: With abuse of notation we denote the Lévy measure and its d.f. by the same letter Π. So, Π(Acx) =

Π(∞)− Π(x) = −Π(x).
At this stage we have to clarify both of the following questions:

(a) Is the measure Ψ(A) := Π(hα(A)) a spectral measure (here hα(A) =: {hα(x): x ∈ A})?
(b) Is a(v) well defined, i.e., a(v) <∞?

Note that Π(Achα(x)) = − logG(x). The d.f. Ψ(x) of the measure Ψ = Π ◦ hα is defined by Ψ(Acx) = Ψ(∞)−Ψ(x),

i.e., Ψ(x) = logG(x). Thus, it possesses the following properties:
(1) it is nondecreasing in each component;
(2) Ψ(∞) = 0;
if, additionally,

(3)

∫
Aq,v

‖x‖ dΨ(x) is finite,

then Ψ(A) is the Lévy measure of an infinitely divisible random vector whose characteristic function has the form (9).
Thus, questions (a) and (b) are positively answered if

IG =

∫
Aq,v

‖x‖ d(logG(x)) <∞. (14)

Obviously, no max-stable d.f. G(x) satisfies condition (14). (Recall in R1 each continuous and strictly increasing d.f.
is max-stable with respect to a certain one-parameter norming group (cf. [7]).)

Example 3. G(x) = e−x
−α

for x > 0 and α > 0 is a univariate max-stable d.f. with respect to the group
L = {Lt(x) = x α

√
t: t > 0}, since Gt(x) = G(L−1

t (x)), ∀t > 0.
(a) Let 0 < α < 1. In this case, IG = a(v) = (v1−α)/(1− α) <∞.
(b) Let α ≥ 1. Here IG is infinite, so the corresponding measure Ψ(A) is not a Lévy measure of a distribution of the
kind (9).

Now let us come back to conditions (12) with Lévy measure Ψ := Π ◦ hα and finite a(v). They are equivalent

to the convergence Sn(t)
d−→ S(t), t > 0, n → ∞. The limit process {S(t): t > 0} has nonnegative and independent

increments and is nonhomogeneous in the general case. The characteristic function of S(t) is expressed by

Eei〈θ,S(t)〉 = exp

{
τ (t)

∫
[q,∞]\{q}

(ei〈θ,x〉 − 1) dΠ(hα(x))

}
= exp

{
τ (t)

∫
E

(ei〈θ,h
−1
α (x)〉 − 1) dΠ(x)

}
. (15)

Note the shift parameter here is zero, because the limit of the truncated means in C2 is just τ (t)
∫
Aq,v

x dΠ(hα(x)).

Recall, in the general case, that the shift parameter γ(t) is a(t, v) −
∫
Aq,v

x dΨt(x) and does not depend on v.

From (15) one can see that the Lévy measure Ψt of S(t) admits the factorization dΨt(h
−1
α (x)) = τ (t) dΠ(x).

In this way, we complete the proof of our main theorem, formulated in Sec. 1.
Example 4. Consider the point process N = {(tk, Xk): k ∈ {1, 2, . . .}}, where tk = k(k + 1)/2 and Xk are i.i.d.

r.v’s with d.f.
F (x) = e−(log x)−α , x ∈ [1,∞), 0 < α < 1.
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The distribution function F is max-stable with respect to the norming group {Lt(x) = x1/ α
√
t: t > 0}. Indeed,

F t(x) = exp{−t(log x)−α} = exp{−(log x1/ α
√
t)−α} = F (x1/ α

√
t).

The sequence of the following time-space changes

ζn(t, x) = (τn(t), un(x)) = (n2t, (x+ 1)
α
√
n)

satisfies the conditions of the Theorem 1, namely,
(i) it is regular:

u−1
[ns] ◦ un(x) −→ (x+ 1)1/ α

√
s − 1 =: Ls(x), ∀s > 0, n→∞

τ−1
[sn] ◦ τn(t) −→ ts−2 = τs(t), ∀s > 0, n→∞;

(ii) the random variables Xnk = u−1
n (Xk) = X

1/ α
√
n

k − 1 are asymptotically negligible, i.e.,

P(X
1/ α
√
n

k − 1 > x) = 1− n
√
F (x+ 1) −→ 0, ∀x > 0, n→∞;

(iii) the sequence of extremal processes Yn(t) =
∨kn(t)
n=1 u−1

n (Xk) is weakly convergent for n→∞.
Indeed, since

kn(t) =
∑
k

I

{
k(k + 1)

2n2
∈ [0, t]

}
∼ n
√
t for n→∞,

we have
P(Yn(t) < x) ∼ F n

√
t(un(x)) = F

√
t(x+ 1) := g(t, x),

F n(un(x)) = F (x) since F ∈ MS with respect to {un}. Put G(x) := g(1, x). Then P(Yn(t) < x) → G
√
t(x), n → ∞,

and the limit d.f. F is MS with respect to the one-parameter group {Lt: t > 0} defined in (i), i.e., Gt(x) = G(L−1
t (x)),

∀t > 0, ∀x > 0.
Furthermore, G(x) satisfies (14), since Ψ(x) = logG(x) = −(log(x+ 1))−α and

v∫
0

x d(logG(x)) =

v∫
0

x d(log(x+ 1))−α <∞.

One can observe that the process Y ∗(t) has d.f. Φtα, where

Y ∗(t) := hα ◦ Y ◦ τ−1(t) = log(Y (t2) + 1)

with τ (t) =
√
t and hα(x) = log(x+ 1), ∀x > 0. Indeed,

P(Y ∗(t) < x) = P(Y (t2) < h−1
α (x)) = F t(ex) = e−x

−α
.

Now, by Theorem 1,
kn(t)∑
k=1

((Xk)1/ α
√
n)

d−→ S(t), n→∞.

The characteristic function of S(t) is

exp

{ ∞∫
0

(eiθx − 1) dΨt(x)

}
,

where

dΨt(x) =
√
t dΠ(hα(x)) =

√
t(−α) dx

(x + 1)(log(x+ 1))
1+α , x > 0,

as Π(Aclog(x+1)) = [log(x+ 1)]−α.
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