SEMI-SELF-SIMILAR EXTREMAL PROCESSES*

E. I. Pancheva (Sofia, Bulgaria)

UDC 519.2

Let g be the distribution function(d.f.) of an extremal process Y. If g is invariant with respect to a continuous one-parameter group of time-space changes $\left\{\eta_{\alpha}=\left(\tau_{\alpha}, L_{\alpha}\right): \alpha>0\right\}$, i.e., $g \circ \eta_{\alpha}=g \forall \alpha>0$, then g is self-similar. If g is invariant w.r.t. the cyclic group $\left\{\eta^{\circ(n)}, n \in \mathbb{Z}\right\}$ of a time-space change η, then g is semi-self-similar. The semi-self-similar extremal processes are limiting for sequences of extremal processes $Y_{n}(t)=L_{n}^{-1} \circ Y \circ \tau_{n}(t)$ if going along a geometrically increasing subsequence $k_{n} \sim \varphi^{n}, \varphi>1, n \rightarrow \infty$. The main properties of multivariate semi-self-similar extremal processes and some examples are discussed in the paper. The results presented are an analog of the theory of semi-self-similar processes with additive increments developed by Maejima and Sato in 1997.

1. Introduction and Background

Extremal processes are stochastic processes with increasing right-continuous sample paths and independent maxincrements. Without loss of generality, we consider extremal processes Y : $[0, \infty) \rightarrow(0, \infty)^{d}$ whose time space is the positive axis and whose state space is the positive orthant in \mathbf{R}^{d}. The independence of the max-increments means that for any finite sequence of time points $0=t_{0}<t_{1}<\cdots<t_{k}$ there exist independent random vectors U_{0}, \ldots, U_{k} in $[0, \infty)^{d}$ such that

$$
\left(Y\left(t_{0}\right), \ldots, Y\left(t_{k}\right)\right) \stackrel{d}{=}\left(U_{0}, U_{0} \vee U_{1}, \ldots, U_{0} \vee \cdots \vee U_{k}\right) .
$$

The extremal processes in this general setting are studied in [2, 3]. We use the following characteristics of an extremal process:

1. The distribution function (d.f.) $f(t, x)=\mathbf{P}(Y(t)<x)$. We observe that

- $f:(0, \infty)^{d+1} \rightarrow[0,1]$ is lower semi-continuous, so $f(t, x)=f(t+0, x-0)$;
- for any fixed t, the function $f_{t}(x):=f(t, x)$ is a d.f. on $[0, \infty)^{d}$;
- for $0<s<t, f_{s} \mid f_{t}$, i.e., there exists a d.f. $H_{(s, t)}$ such that $f_{t}=f_{s .} H_{(s, t)}$.

Conversely, any function f with the three properties above is a d.f. of an extremal process. The family of univariate marginals $\left\{f_{t}: t \geq 0\right\}$ of the extremal process determines all finite-dimensional distributions (f.d.d.), because for $t_{0}<\cdots<t_{k}, x_{0}<\cdots<x_{k}$

$$
F_{t_{0}, \ldots, t_{k}}\left(x_{0}, \ldots, x_{k}\right)=f_{t_{0}}\left(x_{0}\right) \frac{f_{t_{1}}\left(x_{1}\right)}{f_{t_{0}}\left(x_{1}\right)} \ldots \frac{f_{t_{k}}\left(x_{k}\right)}{f_{t_{k-1}}\left(x_{k}\right)}
$$

2. The lower curve $C:\{0, \infty) \rightarrow[0, \infty)^{d}$ of an extremal process Y is defined coordinatewise by $C^{(i)}(t)=\inf \left\{f_{t}^{(i)}>0\right\}$, $i=1, \ldots, d$. It is a uniquely determined increasing right-continuous curve below which the sample paths of Y cannot pass.
3. The max-increments of an extremal process are not uniquely determined by the process. This interesting phenomenon observed in the multivariate extreme value theory is called blotting, and it is discussed in [2]. However, we can always choose and fix a consistent family of max-increments $U(s, t], 0 \leq s<t$, such that a.s.

- $U(s, t] \geq C(t)$;
- $Y(t)=Y(s) \vee U(s, t]$;
- for any $0=t_{0}<t_{1}<\cdots<t_{k}$, the vectors $Y(0), U\left(t_{0}, t_{1}\right], \ldots, U\left(t_{k-1}, t_{k}\right]$ are independent.

This states the structure theorem proved in [2].

[^0]4. Every extremal process Y with lower curve C is generated by an associated point process $N=\left\{\left(T_{k}, X_{k}\right): k=\right.$ $0,1,2, \ldots\}$ on the open set $[0, C]^{c}=\left([0, \infty) \times[0, \infty]^{d}\right) \backslash[0, C]$ by
\[

$$
\begin{equation*}
Y(t)=C(t) \vee \sup \left\{X_{k}: T_{k} \leq t\right\} \tag{1.1}
\end{equation*}
$$

\]

Almost all realizations of N are Radon measures on $[0, C]^{c}$, i.e., a.s.

$$
N\left([0, t] \times[0, x)^{c}\right)<\infty, \quad \forall t \geq 0, \quad x>C(t),
$$

hence the supremum on the RHS in (1.1) is, in fact, the maximum of finite many space points. Further, N is simple in time and the restrictions $N\left(B_{1}\right), \ldots, N\left(B_{k}\right)$ to disjoint time slices B_{1}, \ldots, B_{k} are independent. Such point processes we call Bernoulli, and they are discussed in [3].

The structure theorem answers the question: how far does a given family $\left\{f_{t}: t \geq 0\right\}$ of d.f.'s on $\{0, \infty)^{d}$ determine an extremal process Y ? In the max-infinitely divisible (max-i.d.) case, the set int $\left\{f_{t}>0\right\}$ is an open block, $C(t)=$ $\inf \left\{f_{t}>0\right\}$, and the quotient f_{t} / f_{s} for $0 \leq s<t$ determines the d.f. of the max-increments $U(s, t]$ uniquely on the set $A_{t}=(C(t), \infty)$ above the lower curve.

In the present paper, we deal with max-i.d. extremal processes only. As is known, they are associated with Poisson point processes and there exists a simple connection between the d.f. of the extremal process and the mean measure μ of the associated point process, namely,

$$
f(t, x)=\exp \left\{-\mu\left([0, t] \times[0, x)^{c}\right)\right\}
$$

We are interested in characterizing a special type of extremal process, satisfying the characteristic equation

$$
\begin{equation*}
Y \circ \sigma(t) \stackrel{d}{=} L \circ Y(t), \quad \forall t \geq 0 \tag{1.2}
\end{equation*}
$$

We call this type a semi-self-similar extremal process and denote it by semi-ss. The time-space change $\eta(t, x)=$ $(\sigma(t), L(x)), t \in(0, \infty), x \in(0, \infty)^{d}$, we choose continuous and strictly increasing in each coordinate, hence it is a max-automorphism of $(0, \infty)^{d+1}$. In Sec. 2, we study some of the main properties of time-space changes that we need further, e.g., the fact that the cyclic group of a time-space change can be embedded in a continuous one-parameter group. Section 3 gathers the direct consequences of the characteristic equation (1.2). There the main result states that a semi-self-similar extremal process is a max-i.d. process, either stochastically continuous everywhere or having infinitely many fixed discontinuities.

In Sec. 4, we obtain a semi-self-similar extremal process as limiting in a triangular array with asymptotic negligibility condition when going along a geometrically increasing subsequence. Theorem 4.1 states that the univariate marginals of the limiting semi-ss process are semi-self-decomposable with respect to (w.r.t.) the max-operation, briefly semi-MSD. Theorem 4.2 is an analog of Theorem 5.3 in [7] and shows that a semi-MSD random vector X can be embedded in a stochastically continuous semi-self-similar extremal process Y so that a.s. $Y(0)=C(0), Y(1)=X, Y(\infty)=\infty$.

Section 5 is a brief account of semi-self-similar extremal processes with stationary max-increments. An extremal process $Y:[0, \infty) \rightarrow[0, \infty)$ with stationary max-increments is semi-ss if and only if its d.f. at $t=1$ has the explicit form

$$
\left\{e^{e^{-\gamma h(x)}}\right\}^{p_{\varphi}(h(x))}
$$

where $h:(0, \infty) \rightarrow(-\infty, \infty)$ is a continuous homomorphism and p_{φ} is a periodic function with period $T=\log \varphi$, positive and bounded, and $\gamma>0$. Then $f(t, x)=f_{1}^{t}(x)$. We end with several examples of semi-self-similar extremal processes.

2. Time-Space Changes

Let the time-state space S be the open block $(0, \infty)^{d+1}$. A time-space change of S is an increasing homeomorphism $\xi: S \leftrightarrow S$ with

$$
\xi(t, x)=\left(\xi_{0}(t), \xi_{1}\left(x_{1}\right), \ldots, \xi_{d}\left(x_{d}\right)\right)
$$

where the one-to-one mapping $\xi_{i}:(0, \infty) \leftrightarrow(0, \infty), i=0,1, \ldots, d$, is strictly increasing, hence continuous. Such mappings preserve the max-operation, i.e., $\xi\left(z_{1} \vee z_{2}\right)=\left(\xi\left(z_{1}\right) \vee \xi\left(z_{2}\right), z_{1}, z_{2} \in S\right.$, so they are max-automorphisms of the time-state space S. The max-automorphisms of S form a group w.r.t. the composition, $\xi \circ \eta(z)=\xi(\eta(z)), z \in S$, and we denote it by $\operatorname{MA}(S)$. We are interested in studying them, since they are proper norming mappings in the extreme value theory (cf. [9]).

Let $\Gamma=\left\{\xi_{\alpha}: \alpha>0\right\} \subset \operatorname{MA}(S)$ be a continuous one-parameter group (c.o.g.), i.e.,

- $\xi_{1}=$ id (here id stays for the identical mapping);
- $\xi_{\alpha} \circ \xi_{\beta}=\xi_{\alpha \beta}, \alpha, \beta>0 ;$
- $\xi_{\alpha} \rightarrow \xi_{\beta}$ if $\alpha \rightarrow \beta$.

We call Γ a norming group of time-space changes of S if the following boundary condition is met:

$$
\begin{equation*}
\xi_{\alpha}(z) \longrightarrow \overrightarrow{0}, \quad \alpha \downarrow 0, \quad \xi_{\alpha} \longrightarrow \vec{\infty}, \quad \alpha \uparrow \infty \tag{BC}
\end{equation*}
$$

for every $z \in S$. One can check that for a norming c.o.g. Γ :

- the correspondence $\alpha \rightarrow \xi_{\alpha}$ is strictly increasing and continuous;
- for $\alpha>1, \xi_{\alpha}$ is expanding, i.e., $\xi_{\alpha}(z)>z$, and for $\alpha<1, \xi_{\alpha}$ is contracting, i.e., $\xi_{\alpha}(z)<z$;
- $\overrightarrow{0}$ and $\vec{\infty}$ are the only fixed points of ξ_{α}.

Proposition 2.1. Any norming c.o.g. $\Gamma \subset \mathrm{MA}(S)$ has the form

$$
\begin{equation*}
\xi_{\alpha}(z)=h^{-1}\{h(z)+e c \log \alpha\}, \quad \alpha>0 \tag{2.1}
\end{equation*}
$$

where $h: S \leftrightarrow \mathrm{R}^{d+1}$ is an increasing homeomorphism, e is the unit vector, and c is a positive constant.
The proof of this statement (e.g., [10]) consists of giving a solution of the functional equation

$$
\xi[\alpha, \xi[\beta, z]]=\xi[\alpha \beta, z]
$$

and it is carried out in a way analogous to Theorem 20 in [1].
Representation (2.1) can be written briefly as $\xi_{\alpha}=h^{-1} \circ D_{c \log \alpha} \circ h$, where $D_{r}(z)=z+e r, r \in \mathbf{R}$. This means that there is a change h of the coordinates, $z^{\prime}=h(z)$, so that $y_{\alpha}^{\prime}=h\left(\xi_{\alpha}\right)$ in the new coordinates is just a translation $y_{\alpha}^{\prime}=z^{\prime}+e c \log \alpha$ along the diagonal.

Below, we denote the n-time composition $\xi \circ \cdots \circ \xi$ by $\xi^{\circ(n)}, \xi^{-1}, \circ \cdots \circ, \xi^{-1}$ by $\xi^{\circ(-n)}$, and $\xi^{0}=$ id.
Proposition 2.2. Let η be a time-space change of S. Suppose that the cyclic group $\Gamma(\eta)=\left\{\eta^{\circ}(n), n \in \mathbf{Z}\right\}$ satisfies the boundary condition (BC), i.e.,

$$
\begin{array}{ll}
\eta^{\circ(-n)}(z) \longrightarrow \overrightarrow{0}, & n \rightarrow \infty \\
n^{\circ(n)}(z) \longrightarrow \vec{\infty}, & n \rightarrow \infty
\end{array}
$$

Then $\Gamma(\eta)$ can he embedded in a c.o.g. $\left\{\xi_{t}: t>0\right\}$ such that $\eta=\xi_{\varphi}$ for some $\varphi>1$ and $\eta^{\circ(n)}=\xi_{\varphi^{n}}$.
Proof. Let $\varphi>1$ be fixed. Latter we shall determine the value of φ uniquely. Define the subset in \mathbf{R}

$$
\mathcal{S}=\left\{\log \varphi^{n}: n \in \mathbf{Z}\right\}
$$

and set $\eta_{s}(\cdot):=n^{\circ(n)}$ for $s=\log \varphi^{n} \in S$. We have

$$
\eta_{s} \circ \eta_{v}(z)=\eta_{s+v}(z), \quad s, v \in \mathcal{S}
$$

Further, the assumption that $\Gamma(\eta)$ satisfies the boundary condition (BC) for $n \rightarrow \pm \infty$ implies that the correspondence $s \rightarrow \eta_{s}$ is strictly increasing. Indeed, assume there are $s, v \in \mathcal{S}$ with $s=\log \varphi^{m}<v=\log \varphi^{n}, m<n$, and such that $\eta_{v} \leq \eta_{\text {s }}$. Then

$$
z \geq \eta_{s}^{-1} \circ \eta_{v}(z)=\eta^{\circ(-m)} \circ \eta^{\circ(n)}(z)=\eta^{\circ(n-m)}(z)
$$

and this is a contradiction to $\eta^{o(k)}(z) \rightarrow \infty$ for $k \rightarrow \infty$. Moreover, $\left\{\eta_{s}: s \in S\right\}$ satisfies the boundary condition

$$
\begin{aligned}
& \eta_{s}(z) \rightarrow \vec{\infty}, \quad s \rightarrow \infty, \\
& \eta_{s}(z) \rightarrow \overrightarrow{0}, \quad s \rightarrow-\infty .
\end{aligned}
$$

For $z \in S$, we call the set

$$
\mathcal{T}_{z}=\left\{\eta^{\circ(n)}(z): n \in \mathbf{Z}\right\}=\left\{\eta_{s}: s \in \mathcal{S}\right\}
$$

the track of η through the point z. Every $z \in S$ has a track that starts at $\overrightarrow{0}$ and goes up to $\vec{\infty}$.
We can embed the track \mathcal{T}_{z} in a curve $\eta(t)$ continuous in t so that for $t=n, \eta(n, z)=\eta^{\circ(n)}(z), n \in \mathbf{Z}$. Indeed, define $\eta^{\alpha}:=\alpha \eta+(1-\alpha)$ id for $\alpha \in(0,1), \eta^{1}=\eta, \eta^{0}=$ id. For $n \leq t<n+$ l, i.e., for $t=n+\alpha$, where $n=[t]$ and $\alpha=\{t\}$, we define $\eta(t, z):=\eta^{\alpha} \circ \eta^{\circ(n)}(z)$. Here $[t]$ and $\{t\}$ are the integer and the fractional part of t, respectively. Obviously,
the correspondence $t \rightarrow \eta(t)$ is continuous and strictly increasing, hence, one-to-one, and $\eta(n, z)=\eta^{\circ(n)}(z)=\eta_{s}(z)$ if $s=\log \varphi^{n}$.

Now the orbit \mathcal{O}_{z} through the point z defined by $\mathcal{O}_{z}=\{\eta(t, z): t \in \mathbf{R}\}$ overlaps the track \mathcal{T}_{z}. If $z_{1} \neq z_{2}$, then either $\mathcal{O}_{z_{1}}$ does not intersect $\mathcal{O}_{z_{2}}$ or both orbits coincide. In the latter case, there is $s \in \mathbf{R}$ such that $z_{1}=\eta\left(s, z_{2}\right)$.

Next we consider $y_{s}=\eta_{s}(z)$ as a function on \mathcal{S}. The correspondence $\eta_{s} \leftrightarrow$ es is one-to-one; let h^{*} be this single strictly increasing homeomorphism that "bends" the diagonal $\{e s: s>0\}$ into the orbit $\mathcal{O}_{z}=\left\{y_{s}=h^{*}(e s): s \in \mathbf{R}\right\}$ overlapping \mathcal{T}_{z}. Now the group property $\eta_{s} \circ \eta_{v}(z)=\eta_{s+v}(z), s, v \in \mathcal{S}$, can be written as

$$
\eta_{s}\left(y_{v}\right)=y_{v+s}=h^{*}(e(v+s))=h^{*}(e v+e s)=h^{*}\left(h\left(y_{v}\right)+e s\right)
$$

where h^{*} is the mapping inverse to h and $h: S \leftrightarrow \mathbf{R}^{d}$. Since $\eta_{v}(z)=z$, for $v=0$ from the abovesaid we have $\eta_{s}(z)=h^{-1}(h(z)+e s)$ and consequently

$$
\begin{equation*}
\eta(z)=\eta_{\log \varphi}(z)=h^{-1}(h(z)+e \log \varphi) \tag{2.2}
\end{equation*}
$$

Thus, $\Gamma(\eta)$ is embedded in the c.o.g. $\left\{\xi_{\mathrm{t}}(\cdot)=h^{-1}(h(\cdot)+e \log t): t>0\right\}$ with $\eta^{\circ(n)}=\xi_{\varphi^{n}}, n \in \mathbf{Z}$.
Let $z=\left(t, x_{1}, \ldots, x_{d}\right)$ and $\eta(z)=(\tau(t), L(x))$. The mapping $h(z)=\left(h_{0}(t), h_{1}\left(x_{1}\right), \ldots, h_{d}\left(x_{d}\right)\right)$ acts coordinatewise and $\log \varphi=h_{0}(\tau(1))-h_{0}(1)=: \Delta$, hence $\varphi=e^{\Delta}$.

Note that the pair $[\varphi, h]$ uniquely determines the time-space change η. Conversely, η determines h uniquely up to a translation, namely, if $h_{2}=h_{1}+e \log a$, then $\eta(\cdot)=h_{1}^{-1}\left(h_{1}(\cdot)+e \log \varphi\right)=h_{2}^{-1}\left(h_{2}(\cdot)+e \log \varphi\right)$, and h_{0} determines φ uniquely. We shall denote this relation by $\eta=[\varphi, h]$.

We supply the set $\mathrm{MA}(S)$ with the topology τ of the pointwise convergence. Let g_{n} and η_{n} be sequences of d.f.'s of extremal processes and of time-space changes, respectively. If $g_{n} \xrightarrow{\omega} g$ and $\eta_{n} \xrightarrow{\tau} \eta$, then the continuity of the composition entails that

$$
g_{n} \circ \eta_{n} \xrightarrow{\omega} g \circ \eta, \quad n \rightarrow \infty .
$$

The convergence $\eta_{n} \xrightarrow{\tau} \eta$ does not imply that η is a time-space change (i.e., strictiy increasing and continuous).
Let us denote $\mathcal{P}_{\psi}=\{\{\eta\} \subset \mathrm{MA}(S):(*)$ e $\varepsilon \leq \eta(z+e \varepsilon)-\eta(z) \leq \psi(e \varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0\}$, where $\psi: S \rightarrow S$. Put $\mathcal{P}=\bigcup_{\psi} \mathcal{P}_{\psi}$.

The sequences $\eta_{n} \in \mathcal{P}$ are equicontinuous. If there exists a limit mapping η, then the RHS of condition (*) implies its continuity and the LHS guarantees its strict monotonicity.

Let f and g be nondegenerate d.f.'s of extremal processes and let the sequence $\eta_{n} \in \mathcal{P}$ of time-space changes be τ-compact. If

$$
f_{n} \xrightarrow{\omega} f, \quad g_{n}=f_{n} \circ \eta_{n} \xrightarrow{\omega} g
$$

then there is a time-space change η such that $g=f \circ \eta$. This is stated by the convergence of type theorem (CTT) for max-automorphisms of S (cf. [10]). In the limit theorems of Sec. 4 and 5 , we use the continuity of the composition rather than the CTT. We assume directly that the norming sequence η converges to a time-space change η instead of the following assumptions: $\left\{\eta_{n}\right\} \in \mathcal{P}$ and $\left\{\eta_{n}\right\}$ is τ-compact.

3. Semi-Self-Similarity

Definition. An extremal process $Y:[0, \infty) \rightarrow[0, \infty)^{d}$ with d.f. g is referred to as semi-self-similar if there exists some time-space change $\eta=(\tau, L)$ of $(0, \infty)^{d}$ for which the cyclic group $\Gamma(\eta)$ satisfies (BC) and such that

$$
\begin{equation*}
Y \circ \tau(t) \stackrel{d}{=} L \circ Y(t), \quad \forall t>0 \tag{3.1}
\end{equation*}
$$

or, equivalently,

$$
g(\tau(t), x)=g\left(t, L^{-1}(x)\right)
$$

Below, we give several direct consequences of the definition. The n-time iteration of (3.1) shows that

$$
Y \circ T^{\circ(n)}(t) \stackrel{d}{=} L^{\circ(n)} \circ Y(t), \quad \forall n \in \mathbb{Z}
$$

Proposition 3.1. The d.f. g of a semi-self-similar extremal process is invariant w.r.t. the cyclic group $\Gamma(\eta)$ of a time-space change η, i.e., $g \circ \eta^{\circ(n)}=g, \forall n \in \mathbf{Z}$.

Recall that the univariate marginals $g_{t}(x)=g(t, x)$ are left-continuous in x.

Proposition 3.2. If Y is a semi-self-similar extremal process stochastically continuous at $t=0$ and if g_{1} is continuous at the upper boundary of the support, then $Y(0)=C(0)$ a.s.

Proof. The assumptions made permit the chain of equalities

$$
g(0+, x)=\lim _{n \rightarrow \infty} g\left(\tau^{\circ(-n)}(1), x\right)=\lim _{n \rightarrow \infty} g\left(1, L^{\circ(n)} x\right)=1,
$$

i.e., $\mathbf{P}(Y(0)<x)=1, \forall x>C(0)$. Hence $Y(0)=C(0)$ a.s.

Proposition 3.3. Let Y be a semi-self-similar extremal process with lower curve C and associated Bernoulli point process $N=\left\{\left(T_{k}, X_{k}\right): k=0,1, \ldots\right\}$ on $[0, C]^{c}$. If the d.f.'s of X_{k} are continuous at the upper boundary, then Y is max-i.d.

Proof. By the decomposition theorem (cf. [2]), any extremal process Y is the maximum of two independent extremal processes Y^{\prime} and $Y^{\prime \prime}$ with common lower curve C. The process Y^{\prime} is generated by a Poisson point process N^{\prime}, hence it is max-i.d. The process $Y^{\prime \prime}$ is generated by a point process $N^{\prime \prime}=\left\{\left(t_{k}, U_{k}\right): k=1,2, \ldots\right\}$, where $t_{1}<t_{2}<\ldots$ are fixed discontinuities of Y and U_{k} is the max-increment of Y at t_{k}. So the point process $N=N^{\prime} \oplus N^{\prime \prime}$ is the Bernoulli point process associated with Y. We have still to show that $Y^{\prime \prime}$ is max-i.d. too.

Let F_{k} be the d.f. of U_{k}. Then, by (3.1),

$$
Y_{n}(t):=L^{\circ(-n)} \circ Y^{\prime \prime} \circ \tau^{\circ(n)}(t)=C_{n}(t) \vee \sup \left\{L^{\circ(-n)} \circ U_{k}: \tau^{\circ(-n)}\left(t_{k}\right) \leq t\right\} \stackrel{d}{=} Y^{\prime \prime}(t)
$$

or what is the same

$$
g_{n}(t, x)=\prod\left\{F_{k}\left(L^{\circ(n)} x\right): t_{k} \leq \tau^{\circ(n)}(t)\right\}=g^{\prime \prime}(t, x)
$$

for all $t>0$ and $x>C(t)$.
The continuity of F_{k} at the upper boundary, i.e., $F_{k}(x) \rightarrow 1$ for $x \uparrow \partial\left\{F_{k}=1\right\}$, and the boundary condition $L^{\circ(n)}(x) \rightarrow \infty$ imply that the r.v.'s $X_{n k}:=L^{\circ(-n)} \circ U_{k}$ are asymptotically negligible, namely the condition

$$
\begin{equation*}
F_{k}\left(L^{\circ(n)} x\right)=\mathrm{P}\left(U_{k}<L^{\circ(n)} x\right) \longrightarrow 1, \quad n \rightarrow \infty, \tag{AN}
\end{equation*}
$$

is met for all $x>\overrightarrow{0}$. Note that if the sequence of time points t_{k} is finite, then $g^{\prime \prime}(t, x)$ will be degenerate.
Denote $t_{n k}:=\tau^{\circ(-n)}\left(t_{k}\right)$. Since $\left\{Y_{n}\right\}$ is a sequence of extremal processes generated by an array $\left\{\left(t_{n k}, X_{n k}\right): k \geq 1\right\}$, $n \geq 1$, with (AN)-condition, $Y^{\prime \prime}$ is max-i.d.

As a by-product of the above proof, we see that a semi-ss extremal process is either stochastically continuous at all $t \geq 0$ or there is an infinite sequence $\left\{t_{k}\right\}$ of fixed discontinuities.

Proposition 3.4. A semi-ss d.f. g is either continuous everywhere or there is at least one infinite sequence $z_{n} \uparrow \vec{\infty}$ of discontinuity points.

Proof. Let $z=(t, x)$ be a discontinuity point of g, i.e., $g(t-0, x+0)>g(t, x)$. Then for all $n \in \mathbf{Z}$

$$
g\left(\tau^{\circ(n)}(t)-0, L^{\circ(n)}(x)+0\right)>g\left(\tau^{\circ(n)}(t), L^{\circ(n)}(x)\right)
$$

Let f and g be d.f.'s of extremal processes. We say that f belongs to type (g) if there exists a time-space change $\xi=(\sigma, T)$ such that $f=g \circ \xi$.

Proposition 3.5. Semi-self-similarity is a type property.
Proof. Assume that Y is semi-ss w.r.t. $\eta=(\tau, L)$, and let $\xi=(\sigma, T)$ be a time-space change. Define the processes $X_{1}=Y \circ \sigma, X_{2}=T^{-1} \circ Y$, and $X_{3}=T^{-1} \circ Y \circ \sigma$. Then X_{1}, X_{2}, and X_{3} are semi-ss w.r.t. the time-space changes $\left(\tau^{*}, L\right),\left(\tau, L^{*}\right)$, and (τ^{*}, L^{*}), respectively, where $\tau^{*}:=\sigma^{-1} \circ \tau \circ \sigma$ and $L^{*}=T^{-1} \circ L \circ T$. Further, one can check that $\Gamma\left(\left(\tau^{*}, L^{*}\right)\right)$ satisfies the condition (BC).

Let us come back to representation (2.2) of the norming mapping $\eta=[\varphi, h]$. Denote $f=g \circ h^{-1}$. Then the semi-self-similarity equation $g=g \circ \eta$ implies $f(z)=f(z+e s), \forall z \in \mathbf{R}^{d+1}$ and $s \in\left\{\log \varphi^{n}: n \in \mathbf{Z}\right\}$. Recall that h acts coordinatewise. We denote the space change $h_{*}:=\left(h_{1}, \ldots, h_{d}\right)$, hence $h=\left(h_{0}, h_{*}\right)$. If g is a d.f. of a semi-self-similar extremal process Y w.r.t. η, then f is a d.f. of the extremal process $X(t)=h_{*} \circ Y \circ h_{0}^{-1}(t)$ and X is semi-ss w.r.t. the translation $D_{s}(z)=z+e s$. Thus

$$
\begin{equation*}
X(t+s) \stackrel{d}{=} X(t)+e s, \quad \forall s \in\left\{\log \varphi^{n}: n \in \mathbf{Z}\right\} . \tag{3.2}
\end{equation*}
$$

From here one can guess that there is a close connection between the semi-self-similar extremal processes and the periodically stationary processes.

Definition. An $\overline{\mathbf{R}}^{d}$-valued stochastic process $X:(-\infty, \infty) \rightarrow[-\infty, \infty)^{d}$ is said to be periodically stationary with period $s>0$ if

$$
\begin{equation*}
X(t+s) \stackrel{d}{=} X(t), \quad \forall t \in \mathbf{R} \tag{3.3}
\end{equation*}
$$

Proposition 3.6. Let $Y:[0, \infty) \rightarrow[0, \infty)^{d}$ be a semi-self-similar extremal process w.r.t. $\eta=\{\varphi, h]$. Then the stochastic process $X^{*}:(-\infty, \infty) \rightarrow \overline{\mathbf{R}}^{d}$ defined by $X^{*}(t):=h_{*} \circ Y \circ h_{0}^{-1}(t)-$ et is periodically stationary with period $s=\log \varphi$.

Proof. We have, by (3.2),

$$
X^{*}(t+s)=h_{*} \circ Y \circ h_{0}^{-1}(t+s)-e(t+s)=h_{*} \circ Y \circ h_{0}^{-1}(t)-e t=X^{*}(t)
$$

Note that the process X^{*} is not an extremal process, since the relation $f_{t_{1}} \mid f_{t_{2}}$ for $t_{1}<t_{2}$ is violated. The mapping $\eta(t, x)=(t, x-e t)$ is not a time-space change.

4. Semi-Self-Similar Extremal Processes as Limiting

In [11], the following stochastic model is considered: assume we are given an extremal process $X:[0, \infty) \rightarrow[0, \infty)^{d}$ with lower curve C, d.f. f, and associated point process $\left\{\left(t_{k}, X_{k}\right): k=0,1, \ldots\right\}$ whose time points $0=t_{0}<t_{1}<$ $t_{2}<\ldots$ form an increasing to ∞ sequence and X_{k} are i.r.v.'s in $[0, \infty)^{d}$, i.e.,

$$
X(t)=C(t) \vee \sup \left\{X_{k}: t_{k} \leq t\right\}
$$

Assume further that there is a sequence $\xi_{n}(t, x)=\left(\tau_{n}(t), L_{n}(x)\right)$ of time-space changes such that:
(i) $\xi_{n} \rightarrow \infty$ and $\forall \alpha>0 \xi_{n}^{-1} \circ \xi_{[\alpha n]} \rightarrow \eta_{\alpha}$, where $\left\{\eta_{\alpha}: \alpha>0\right\}$ is a norming group. Such sequences are called regular;
(ii) there exists a nonconstant extremal process Y with d.f. g continuous at $t=0$ with

$$
\begin{equation*}
Y_{n}(t):=L_{n}^{-1} \circ X \circ \tau_{n}(t)=C_{n}(t) \vee \sup \left\{L_{n}^{-1} \circ X_{k}: \tau_{n}^{-1}\left(t_{k}\right) \leq t\right\} \Longrightarrow Y \tag{4.1}
\end{equation*}
$$

Then the limiting extremal process is max-i.d. and, moreover, it is self-similar w.r.t. the c.o.g. $\left\{\eta_{\alpha}=\left(\sigma_{\alpha}, \mathrm{L}_{\alpha}\right): \alpha>0\right\}$, i.e.,

$$
Y \circ \sigma_{\alpha}(t) \stackrel{d}{=} \mathrm{L}_{\alpha} \circ Y(t), \quad \forall \alpha>0
$$

or, equivalently,

$$
g \circ \eta_{\alpha}=g, \quad \forall \alpha>0
$$

and the univariate marginals g_{t} are max-self-decomposable (MSD), namely, $\forall \alpha \in(0,1)$ there is a max-i.d. d.f. Q_{α} such that

$$
g_{t}(x)=g_{t}\left(\mathbf{L}_{\alpha}^{-1} x\right) Q_{\alpha, t}(x)
$$

In this section, we consider a similar stochastic model as above with the only difference that $Y_{n}=L_{n}^{-1} \circ X \circ \tau_{n} \nRightarrow Y$ for $n \rightarrow \infty$, but there exists a geometrically increasing subsequence $m_{n} \sim \varphi^{n}, \varphi>1$, such that $Y_{m_{n}} \Rightarrow Y$. To characterize the limit class of extremal processes we need a weaker condition (4.2) than the regularity of $\left\{\xi_{n}\right\}$. Indeed, replace $\xi_{m_{n}}$ by ξ_{n} and $Y_{m_{n}}$ by Y_{n} in the new model. Then the condition $\xi_{m_{n}}^{-1} \circ \xi_{m_{n+1}} \rightarrow \eta_{\varphi}$ can be rewritten as

$$
\begin{equation*}
\xi_{n}^{-1} \circ \xi_{n+1} \longrightarrow \eta=(\sigma, L) \tag{4.2}
\end{equation*}
$$

and one gets the following characterizing theorem.
Theorem 4.1. Let $X:[0, \infty) \rightarrow[0, \infty)^{d}$ be an extremal process with nondegenerate d.f. f, and let $\xi_{n}=\left(\tau_{n}, L_{n}\right)$ be a sequence of time-space changes of $(0, \infty)^{d+1}$ such that
(a) $\xi_{n} \rightarrow \infty, \xi_{n}^{-\lambda} \circ \xi_{n+1} \rightarrow \eta=(\sigma, L)$, and $\Gamma(\eta)$ is a norming group;
(b) $Y_{n}=L_{n}^{-1} \circ X \circ \tau_{n} \Rightarrow Y$, where Y is a nondegenerate extremal process stochastically continuous at $t=0$ with d.f. g and lower curve C with $C(0)=0$.
Then
(1) the limiting process Y is semi-self-similar w.r.t. $\Gamma(\eta)$;
(2) the associated point process is Poisson;
(3) the univariate marginals g_{t} of Y are semi-MSD, i.e.,

$$
g_{t}(x)=g_{t}\left(L_{x}\right) Q_{t}(x)
$$

where Q_{t} is a max-i.d. d.f., $x>C(t)$, and $L(x)>x$.
Conversely, if Y is a nondegenerate semi-self-similar extremal process stochastically continuous at $t=0$, then Y is such a limit.

Proof. Statement (2) is a consequence of (a) and the continuity of g at $t=0$. For (1) let us express $L_{n}^{-1} \circ X \circ \tau_{n+1}(t)$ in two different ways:

$$
L_{n}^{-1} \circ X \circ \tau_{n+1}(t)=L_{n}^{-1} \circ L_{n+1}\left(L_{n+1}^{-1} \circ X \circ \tau_{n+1}\right)(t)=L_{n}^{-1} \circ X \circ \tau_{n}\left(\tau_{n}^{-1} \circ \tau_{n+1}\right)(t) .
$$

Then assumptions (a) and (b) imply for $n \rightarrow \infty$ the semi-self-similarity of Y, i.e.,

$$
L \circ Y(t) \stackrel{d}{=} Y \circ \sigma(t), \quad t \geq 0 .
$$

Here $\sigma(t)>t$. By the structure theorem, there is a random vector $U\left(\sigma^{-1}(t), t\right\rceil \geq C(t)$ a.s., independent of $Y\left(\sigma^{-1}(t)\right)$ so that

$$
Y(t)=Y\left(\sigma^{-1}(t)\right) \vee U\left(\sigma^{-1}(t), t\right] .
$$

Let Q_{t} be the d.f. of the max-increment $U_{\left(\sigma^{-1}(t), t\right]}$ of Y. It is max-i.d., since Y is max-i.d. Now, using the semi-selfsimilarity of Y on the RHS of the last equation, we get (3).

Conversely, suppose Y is a semi-ss w.r.t. $\eta=(\tau, L)$ Poisson extremal process. Define $L_{n}:=L^{\circ(n)}, \tau_{n}:=\tau^{\circ(n)}$. Then the semi-self-similarity implies

$$
L_{n}^{-1} \circ Y \circ \tau_{n} \stackrel{d}{=} Y,
$$

i.e., Y is limiting in a model described by (a) and (b).

Recall that self-similar extremal processes are stochastically continuous and can also be expressed as

$$
Y(t)=L_{\alpha(t)} \circ Y(1), \quad \forall t>0,
$$

where $\alpha(t)$ is the unique solution of $\sigma_{\alpha}(1)=t$. This means that we know the process Y if we know the d.f. $G(\cdot)=$ $g_{\mathrm{l}}(\cdot) \in$ MSD and the space-change family $\left\{L_{\alpha(t)}: t>0\right\}$. The following theorem is a counterpart of this fact in the semi-ss model. Here, by max-support of G we mean the smallest rectangle containing the support of G. Note that $G \in$ semi-MSD w.r.t. a space-change L means

$$
\begin{equation*}
G(x)=G(L x) Q_{1}(x)=\cdots=G\left(L^{\circ(n)} x\right) Q_{n}(x) \tag{4.3}
\end{equation*}
$$

where

$$
Q_{n}(x)=\prod_{k=1}^{n-1} Q_{1}\left(L^{\circ(n)} x\right)
$$

i.e., G is semi-MSD w.r.t. the semi-group $\left\{L^{\circ(n)}: n \geq 1\right\}$. Further, if G does not have mass at $+\infty$, then

$$
\lim _{n \rightarrow \infty} G\left(L^{\circ(n)} x\right)=\lim _{n \rightarrow \infty} Q_{1}\left(L^{\circ(n)} x\right)=1
$$

Hence

$$
G(x)=\lim _{n \rightarrow \infty} \prod_{k=1}^{n} Q_{1}\left(L^{\circ(k)} x\right)
$$

i.e., G is a \max-i.d. d.f.

Theorem 4.2. Suppose that G is a nondegenerate d.f. with max-support $[0, \infty)^{d}$ and continuous at the upper boundary, and suppose that L is a space-change for which cyclic group satisfies the boundary condition (BC). Then G is semi-MSD w.r.t. L if and only if there exists a Poisson extremal process $Y:(0, \infty) \rightarrow[0, \infty)^{d}$ with d.f. g and a time-change $\tau:(0, \infty) \rightarrow(0, \infty)$, such that Y is semi-ss w.r.t. (τ, L) and $g_{1}=G$.

Proof. We still have to show the "only if" part. So, assume G is a d.f. of a max-i.d. r.v. X in $[0, \infty)^{d}$ and $G \in$ semi-MSD w.r.t. the space-change L. We shall construct an extremal process Y (more precisely, a family $\left\{g_{t}: t>0\right\}$ of univariate d.f.'s determining Y) such that
(i) Y is stochastically continuous (hence Poisson);
(ii) $Y(1) \stackrel{d}{=} X$;
(iii) there exists a time-change $\tau:(0, \infty) \rightarrow(0, \infty)$ so that Y is semi-ss w.r.t. (τ, L).

Denote by $\Gamma(L)$ the cyclic group of L. By the embedding Proposition 2.2, there exists a homeomorphism h : $(0, \infty)^{d} \leftrightarrow(-\infty, \infty)^{d}$ and a constant $\varphi>1$ such that $L(x)=h^{-1}(h(x)+e \log \varphi)>x$. So, we start by defining g_{t} at

$$
\begin{gathered}
t=1, \quad g_{1}(x):=G(x), \\
t=\varphi, \quad g_{\varphi}(x):=G\left(L^{-1} x\right) .
\end{gathered}
$$

Next we determine g_{t} uniquely in the interval

$$
t \in(1, \varphi), \quad g_{t}(x):=[G(x)]^{(\varphi-t) /(\varphi-1)}\left[G\left(L^{-1} x\right)\right]^{(t-1) /(\varphi-1)} .
$$

It is a d.f. on $[0, \infty)^{d}$ and has the following properties:

- g_{t} is continuous in $t \in[1, \varphi]$;
- $g_{t} \in \operatorname{semi}-M S D$ w.r.t. L, i.e.,

$$
g_{t}(x)=g_{t}(L x) q_{t}(x)
$$

where $q_{t}(x)=\left[Q_{1}(x)\right]^{(\varphi-t) /(\varphi-1)}\left[Q_{1}\left(L^{-1} x\right)\right]^{(t-1) /(\varphi-1)}$ is max-i.d.;

- for any $s, t, 1 \leq s<t \leq \varphi, g_{s} \mid g_{t}$, i.e., the quotient g_{t} / g_{s} is a d.f.

Indeed,

$$
\frac{g_{t}(x)}{g_{s}(x)}=\frac{[G(x)]^{(\varphi-t) /(\varphi-1)}\left[G\left(L^{-1} x\right)\right]^{(s-1) /(\varphi-1)}\left[G\left(L^{-1} x\right)\right]^{(t-s) /(\varphi-1)}}{[G(x)]^{(\varphi-t) /(\varphi-1)}\left[G\left(L^{-1} x\right)\right]^{(\varphi-1) /(\varphi-1)}[G(x)]^{(t-s) /(\varphi-1)}}=\left[Q_{1}\left(L^{-1} x\right)\right]^{(t-s) /(\varphi-1)} .
$$

Now for any $t>0, t \notin[1, \varphi]$, there is $n \in \mathrm{Z}$ such that $\varphi^{n} \leq t<\varphi^{n+1}$, so $1 \leq \varphi^{-n} t<\varphi$, and we define

$$
\begin{equation*}
g_{t}(x):=g_{\varphi-n_{t}}\left(L^{\circ(-n)} x\right) . \tag{4.4}
\end{equation*}
$$

At $t=0$, we define g_{t} by the right-continuity $g(0, x)=\lim _{n \rightarrow \infty} g\left(t_{n}, x\right)$ with $t_{n} \downarrow 0$. So g_{t} is defined for all $t \geq 0$. The family $\left\{g_{t}: t \geq 0\right\}$ has the following properties:

- $g_{1}=G$;
- g_{t} is continuous in t;
- $g_{\mathrm{t}} \in$ semi-ss w.r.t. (τ, L) with $\tau(t)=t \varphi$.

Indeed, for arbitrary $t>0$ choose $n \in \mathbf{Z}$ satisfying $\varphi^{n} \leq t<\varphi^{n+1}$. We have

$$
g_{t \varphi}(x)=g_{t \varphi-n}\left(L^{\circ(-n-1)} x\right)=g_{t}\left(L^{-1} x\right)
$$

We still have to check that $g_{s^{\prime}} \mid g_{t^{\prime}}$ for arbitrary $0<s^{\prime}<t^{\prime}$. There are several possible cases:
(a) $1 \leq s^{\prime}<t^{\prime}<\varphi$. This case has already been discussed, and we get $g_{t^{\prime}}(x)=g_{s^{\prime}}(x)\left[Q_{1}\left(L^{-1} x\right)\right]^{\left(t^{\prime}-s^{\prime}\right) /(\varphi-1)}$.
(b) $\varphi \leq s^{\prime}<t^{\prime}$. Let $\varphi^{m} \leq s^{\prime}<\varphi^{m+1}$ and $\varphi^{n} \leq t^{\prime}<\varphi^{n+1}$. Then $m \leq n$ and we have two possibilities: $\varphi^{-m} s^{\prime}=: s<t:=\varphi^{-n} t^{\prime}$ or $t<s$. We take the first case; the other one can be handled similarly. Below we use the equalities

$$
\begin{gather*}
G\left(L^{\circ(-n)} x\right)=G\left(L^{\circ(-n+1)} x\right) Q_{1}\left(L^{\circ(-n)} x\right)=\cdots=G\left(L^{\circ(-m)} x\right) Q_{1}\left(L^{\circ(-m-1)} x\right) \cdots Q_{1}\left(L^{\circ(-n)} x\right) \\
=\cdots=G(x) Q_{1}\left(L^{-1} x\right) \cdots Q_{1}\left(L^{\circ(-n)} x\right) . \tag{4.5}
\end{gather*}
$$

Thus

$$
\begin{gathered}
g_{t \varphi^{n}}(x)=g_{t}\left(L^{\circ(-n)} x\right)=\left[G\left(L^{\circ(-n)} x\right)\right]^{(\varphi-t) /(\varphi-1)}\left[G\left(L^{\circ(-n-1)} x\right)\right]^{(t-1) /(\varphi-1)} \\
=\left[G\left(L^{\circ(-n)} x\right)\right]^{(\varphi-t) /(\varphi-1)}\left[G\left(L^{\circ(-n)} x\right) Q_{1}\left(L^{\circ(-n-1)} x\right)\right]^{(t-1) /(\varphi-1)}=G\left(L^{\circ(-n)} x\right)\left[Q_{1}\left(L^{\circ(-n-1)} x\right)\right]^{(t-1) /(\varphi-1)} \\
=G\left(L^{\circ(-m)} x\right) Q_{1}\left(L^{\circ(-m-1)} x\right) \cdots Q_{1}\left(L^{\circ(-n)} x\right)\left[Q_{1}\left(L^{\circ(-n-1)} x\right)\right]^{(t-1) /(\varphi-1)}=G\left(L^{\circ(-m)} x\right)\left[Q_{1}\left(L^{\circ(-m-1)} x\right)\right]^{(s-1) /(\varphi-1)} \\
\times\left[Q_{1}\left(L^{\circ(-m-1)} x\right)\right]^{(\varphi-s) /(\varphi-1)} \prod_{k=m+2}^{n} Q_{1}\left(L^{\circ(-k)} x\right)\left[Q_{1}\left(L^{\circ(-n-1)} x\right)\right]^{(t-1) /(\varphi-1)} .
\end{gathered}
$$

In the last equality, the product of the first two components is just $g_{s}\left(L^{\circ(-m)} x\right)=g_{s p m}(x)$. The product of the other components is a max-i.d. d.f. that will be denoted $H_{\left(s \varphi^{m}, t \varphi^{n}\right)}$. Hence,

$$
g_{t \varphi^{n}}=g_{s \varphi^{m}} H_{\left(s \varphi^{m}, t \varphi^{n}\right)}
$$

(c) $0<s^{\prime}<t^{\prime} \leq 1$. Let $\varphi^{-m}<s^{\prime} \leq \varphi^{-m+1}$ and $\varphi^{-n}<t^{\prime} \leq \varphi^{-n+1}$. Then $m \geq n$ and there are again two possibilities: $\varphi^{m} s^{\prime}=: s<t:=\varphi^{n} t^{\prime}$ or $t<s$. One handles them in the same way as above.
(d) $0<s^{\prime}<1 \leq t^{\prime}$. Let $\varphi^{-m} \leq s^{\prime}<\varphi^{-m+1}$ and $\varphi^{n} \leq t^{\prime}<\varphi^{n+1}$. Here we decompose

$$
\frac{g_{t^{\prime}}}{g_{s^{\prime}}}=\frac{g_{t^{\prime}}}{g_{1}} \frac{g_{1}}{g_{s^{\prime}}}
$$

Using $g_{t^{\prime}}(x)=g_{t^{\prime} \varphi}\left(L^{\circ(-n)} x\right), g_{s^{\prime}}=g_{s^{\prime} \varphi^{m}}\left(L^{\circ(m)} x\right)$, (4.5), and (4.3), we get

$$
\begin{gathered}
\frac{g_{t^{\prime}}}{g_{1}}=\left[\frac{G\left(L^{\circ(-m)} x\right)}{G(x)}\right]^{\left(\varphi-t^{\prime} \varphi^{-n}\right) /(\varphi-1)}\left[\frac{G\left(L^{\circ(-n-1)} x\right)}{G(x)}\right]^{\left(t^{\prime} \varphi^{-n}-1\right)(\varphi-1)} \\
=\left[\prod_{k=1}^{n} Q_{1}\left(L^{\circ(-k)} x\right)\right]^{\left(\varphi-t^{\prime} \varphi^{-n}\right) /(\varphi-1)}\left[\prod_{1}^{n+1} Q_{1}\left(L^{\circ(-k)} x\right)\right]^{\left(t^{\prime} \varphi^{-n}-1\right) /(\varphi-1)} \\
=\prod_{k=1}^{n} Q_{1}\left(L^{\circ(-k)} x\right)\left[Q_{1}\left(L^{\circ(-n-1)} x\right)\right]^{\left(t^{\prime} \varphi^{-n}-1\right) /(\varphi-1)}
\end{gathered}
$$

$$
\begin{aligned}
& \text { and also } \\
& \frac{g_{1}}{g_{s^{\prime}}}=\left[\frac{G(x)}{G\left(L^{0(m)} x\right)}\right]^{\left(\varphi-s^{\prime} \varphi^{m}\right) /(\varphi-1)}\left[\frac{G(x)}{G\left(L^{\circ(m-1)} x\right)}\right]^{\left(s^{\prime} \varphi^{m}-1\right) /(\varphi-1)} \\
& =\left[\prod_{k=1}^{m-1} Q_{1}\left(L^{\circ(k)} x\right)\right]^{\left(\varphi-s^{\prime} \varphi^{m}\right) /(\varphi-1)}\left[\prod_{k=1}^{m-2} Q_{1}\left(L^{\circ(k)} x\right)\right]^{\left(s^{\prime} \varphi^{m}-1\right) /(\varphi-1)}=\prod_{k=1}^{m-2} Q_{1}\left(L^{\circ(k)} x\right)\left[Q_{1}\left(L^{\circ(m-1)} x\right)\right]^{\left(\varphi-s^{\prime} \varphi^{m}\right) /(\varphi-1)} .
\end{aligned}
$$

Obviously, $g_{t^{\prime}} / g_{s^{\prime}}$ is a max-i.d. d.f.
(e) $1 \leq s^{\prime}<\varphi \leq t^{\prime}$. Here again $g_{t^{\prime}} / g_{s^{\prime}}$ is a max-i.d. d.f., and one shows this in a similar way as in (d) by decomposing

$$
\frac{g_{t^{\prime}}}{g_{s^{\prime}}}=\frac{g_{t^{\prime}}}{g_{\varphi}} \frac{g_{\varphi}}{g_{s^{\prime}}}
$$

Finally, let us summarize: a d.f. $g_{t}, t \geq 0$, is max-i.d. hence the set int $\left\{g_{t}>0\right\}$ is the open block $(C(t), \vec{\infty})$. Thus the quotient g_{t} / g_{s}, for $0<s<t$ uniquely determines the d.f. of the max-increment $U(s, t\rangle \geq C(t)$ a.s. So $\left\{g_{t}: t \geq 0\right\}$ is the family of univariate marginals of an extremal process Y that satisfies conditions (i)-(iii). Furthermore, (4.4) implies that $\lim _{t \rightarrow \infty} \mathbf{P}(Y(t)<x)=0$, i.e., $Y(\infty)=\bar{\infty}$ a.s.

5. Semi-Self-Similar Extremal Processes with Stationary Increments

Let us consider the same asymptotic model as in Theorem 4.1 with one additional condition: the initial extremal process X has stationary max-increments, i.e., for $0 \leq s<t$

$$
U_{X}(s, t]=C_{X}(t) \vee \sup \left\{X_{k}: s<t_{k} \leq t\right\} \stackrel{d}{=} U_{X}(0, t-s) .
$$

Then the limit extremal process Y with d.f. g :
(a) is semi-ss w.r.t. a time-space change $\eta=(\tau, L)$, i.e.,

$$
g(\tau(t), x)=g\left(t, L^{-1} x\right)
$$

(b) belongs (cf. [11!) to the Resnick and Rubinovich class \Re, i.e.,

$$
g(t, x)=G^{t}(x), \quad G \in \max \text {-i.d. }
$$

The extremal processes of the class \Re are stochastically continuous processes starting at the origin with independent and stationary max-increments, hence they are the counterpart of the Lévy processes in the extreme value theory.

From (a) and (b) we see that the d.f. $G(x)=\mathbf{P}(Y(1)<x)$ satisfies the functional equation

$$
\begin{equation*}
G^{\tau(1)}(x)=G\left(L^{-1} x\right) \tag{5.1}
\end{equation*}
$$

Hence G is a max-semistable d.f. This class of d.f.'s are studied in $[5,6,8]$.
Recall that a max-i.d. d.f. G is called max-semistable (briefly max-ss) if there exists a pair (α, L), $\alpha \in(0,1), L(x)>x$, such that $G^{\alpha}(x)=G(L x)$. Obviously, if $G \in \max$-ss, then $\forall t>0 G^{t}$ is max-ss w.r.t. the same pair (α, L). In R^{1}, the solution of the functional equation (5.1) is given by

$$
\begin{equation*}
G(x)=\exp \left\{-e^{c h(x)} p_{\alpha}(h(x))\right\} \tag{5.2}
\end{equation*}
$$

where $L(x)=h^{-1}(h(x)+e \log \varphi), \alpha=1 / \tau(1), c>0$ is the unique solution of $\alpha \varphi^{c}=1$, and $p_{\alpha}(y)$ is a positive bounded periodic function with period $T=\log \varphi$.

Theorem 5.1. Let $Y:[0, \infty) \rightarrow[0, \infty)^{d}$ be an extremal process with d.f. g and stationary max-increments. Then Y is semi-self-similar if and only if g_{1} is a max-semistable d.f.

Proof. We still have to prove the "only if" part. Let $g_{1}=G$ be max-ss w.r.t. (α, L) and, without loss of generality, let us assume that $G(x)<1 \forall x \in[0, \infty)^{d}$. Then $\forall t>0, x>C(t)$

$$
g(t \alpha, x)=G^{t \alpha}(x)=G^{t}(L x)=g(t, L x)
$$

Further, the cyclic group of $\eta=(1 / \alpha, L)$ is a norming group, since $t / \alpha^{n} \rightarrow \infty, L^{\circ(n)}(x) \rightarrow \vec{\infty}$ as $n \rightarrow \infty$. Hence Y is semi-ss w.r.t. $\Gamma(\eta)$.

Note that the lower curve of a process $Y \in \Re$ is always constant, namely, $C(t)=C(1)=\inf \{G>0\}$.
Let us consider the multivariate version of (5.2). Since $Y \in \Re$, the mean measure μ of the associated Poisson point process N has the form

$$
\mu\left([0, t] \times[0, x)^{c}\right)=t \nu\left([0, x)^{c}\right), \quad \forall x>C(1),
$$

where $\nu(\cdot)$ is the exponent measure of $G=g_{1}$ (cf. [4]), which satisfies the semi-stability equation

$$
\begin{equation*}
\alpha \nu(A)=\nu(L A), \quad \forall A \in \mathcal{B}([C(1), \vec{\infty}] \backslash\{C(1)\}) \tag{5.3}
\end{equation*}
$$

Recall that here $\alpha \in(0,1)$ and $L=[\varphi, h]$.
Denote $\chi=\left\{a \in(0, \infty)^{d}: \max \left(a_{1}, \ldots, a_{d}\right)=1\right\}$ and set $s(x, a):=\min _{1 \leq i \leq d} \exp \left\{h_{i}\left(x_{i}\right)-h_{i}\left(a_{i}\right)\right\}$. There exists a finite measure Q on $\mathcal{B}(\chi)$ such that the solution of (5.3) is given by (cf. [9])

$$
\nu\left([0, x)^{c}\right)=\int_{x} s^{-1}(x, a) \rho_{\varphi}(\log s(x, a)) Q(d a)
$$

and such that the function

$$
\rho\left(h_{i}\left(x_{i}\right)\right)=\int_{x} \exp \left\{h_{i}\left(a_{i}\right)\right\} \rho_{\varphi}(\log s(s, a)) Q(d a)
$$

is a positive bounded periodic function with period $T=\log \varphi$.
Let us come back to (5.2). We can rewrite it as

$$
G(x)=\left[e^{-e^{-c h(x)}}\right]^{p_{\infty}(h(x))} .
$$

The expression in the brackets is the general form of a max-stable d.f. (cf. [9]). Hence, (5.2) says that any max-ss d.f. has the form of a max-stable d.f. to a power $p_{\alpha}(h(x))$. Using this and Theorem 5.1, we construct examples of semi-self-similar extremal processes.

Example 1. Let $Y:(0, \infty) \rightarrow(-\infty, \infty)$ be an extremal process with d.f.

$$
g(t, x)=\exp \left\{-t e^{-[x]}\right\}, \quad t>0, \quad x \in \mathbf{R}
$$

Here $Y \in \Re, g_{1}(x)$ is max-ss w.r.t. $\alpha=e^{-1}$, and $L(x)=x+1$. Then Y is semi-ss w.r.t. $\eta(t, x)=(t / \alpha, x+1)$.
Example 2. Let $g(t, x)=\exp [-(t / x)\{\log x\}]$ be the d.f. of an extremal process $Y:(0, \infty) \rightarrow(0, \infty)$. Here $p(y)=\{y\}$ is the fractional part of y and has period $T=1$. Comparing with (5.2), we conclude that $h(x)=\log x$, $\varphi=e, L(x)=x \varphi, \alpha=\varphi^{-1}$. Then

$$
g(t, x \varphi)=\exp \left[-\frac{t\{\log x+1\}}{x \varphi}\right]=g\left(\frac{t}{\varphi}, x\right)
$$

and Y is semi-ss w.r.t. $\eta(t, x)=(t \varphi, x \varphi)$.
Example 3. Let, the r.v. X be uniformly distributed on the diagonal of the square $[0,1]^{2}$. Then its d.f. G has the form

$$
G\left(x_{1}, x_{2}\right)= \begin{cases}0, & x \in\{y>0\}^{c} \\ x_{1}, & x_{1} \leq x_{2} \leq 1 \\ x_{2}, & x_{2} \leq x_{1} \leq 1 \\ 1, & x \in\{y \geq 1\}\end{cases}
$$

and G is semi-MSD w.r.t. $L(x)=\left(x_{1} / \alpha, x_{2} / \alpha\right), \alpha \in(0,1)$. Hence, by Theorem 4.2, there is a d.f. g with $g(1, x)=G(x)$ so that g is the d.f. of a semi-ss extremal process $Y:(0, \infty) \rightarrow[0,1]^{2}$ w.r.t. $\eta(t, x)=\left(t / \alpha, x_{1} / \alpha, x_{2} / \alpha\right)$.

Note that the d.f. G has a zero density. Such a d.f. cannot be self-decomposable in the classical model of sums of i.r.v.s.

Example 4. The d.f. $G(x)=\exp \{-(1 / x)(c-\sin (\log x))\}, x>0, c>1$, is max-ss w.r.t. $\left(\alpha=e^{-2 \pi}, L(x)=x / \alpha\right)$. For c large enough, the function $-\log G$ is convex, hence $G \in$ MSD. Thus, the d.f. $g(t, x)=G^{t}(x)$ is the d.f. of a semi-ss extremal process $Y:(0, \infty) \rightarrow(0, \infty)$ w.r.t. $\eta(t, x)=(t / \alpha, x / \alpha)$.

REFERENCES

1. J. Aczel, "Some general methods in the theory of functional equations with one variable. New applications of functional equations," Usp. Mat. Nauk, 3, No. 69, 3-67 (1956).
2. A. A. Balkema and E. I. Pancheva, "Decomposition for multivariate extremal processes," Commun. Statist. Theor. Meth., 25, No. 4, 737-758 (1996).
3. A. A. Balkema and E. I. Pancheva, "Convergence of extremal processes" (1998) (to appear).
4. A. A. Balkema and S. I. Resnick, "Max-infinite divisibility," J. Appl. Probab., 14, 309-319 (1977).
5. I. Grinevich, "Max-semistable limit distributions with linear and power normalization," Teor. Veroyatn. Primen., 37, No. 4, 774-776 (1992).
6. I. Grinevich, "Domain of attraction of max-semistable distributions under linear and power normalizations," Teor. Veroyatn. Primen., 38, No. 4, 787-799 (1993).
7. M. Maejima and K. Sato, Semi-Self-Similar Processes, Research Report DSTR/RR-97/005 (1997).
8. E. I. Pancheva, "Max-semistable distribution," in: Stability Problems of Stochastic Models, TVP/VSP, Moscow (1993).
9. E. I. Pancheva, "Extreme value theory with nonlinear normalization," in: Extreme Value Theory and Applications, Kluwer Academic (1994), pp. 305-318.
10. E. I. Pancheva, Limit Theorems and Characterization Problems for Maxima of Independent Random Vectors, Dr. Sci. Thesis (1996).
11. E. I. Pancheva, "Self-similar extremal processes," J. Math. Sci., 92, No. 3, 3911-3920 (1997).
12. S. I. Resnick and M. Rubinovich, "The structure of extremal processes," Adv. Appl. Probab., 5, 287-307 (1973).

Institute of Mathematics and Informatics,
Bulgarian Academy of Science,
1113 Sofia,
Bulgaria
e-mail: pancheva@math.bas.bg

[^0]: *Supported by the Bulgarian Ministry of Education and Science (grant No. MM-705/97).

