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Abstract It is well known that under linear normalization a sequence of maxima of iid

random variables converges in distribution to one of the three max-stable laws: Frećhet,

Gumbel, and Weibul. During the last two decades E. Pancheva and her collaborators

developed the limit theory for extremes and extremal processes under non-linear but

monotone increasing normalizing mappings. In the present we discuss the general form

of the limit law for the maxima of iid random variables under monotone normalization.

A theorem for the rate of convergence is also proved.
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1 Introduction

Any limit theorem for convergence of normalized maxima of iid random variables to

a max-stable law G separates a subclass of distribution functions (d.f.’s) MDA(G)

called max-domain of attraction of G. Thus, if we use a wider class of normalizing

mappings than the linear ones, we get a wider class of limit laws which can be used

in solving approximation problems. Another reason for using nonlinear normalization

concerns the problem of refining the accuracy of approximation in the limit theorems:

by using relatively non difficult monotone mappings in certain cases we can achieve a

better rate of convergence. In the last two decades E. Pancheva and her collaborators

were investigating various limit theorems for extremes and extremal processes using
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as normalizing mappings the so-called max - automorphisms (see e.g. Pancheva 2010):

continuous and strictly increasing in each coordinates. The max-automorphisms pre-

serve the max-operation, i.e. L(X∨Y ) = L(X)∨L(Y ), there exist the inverse mappings

L−1 and they form a group w.r.t. the composition. We denote it by GMA.

Choosing mappings from GMA for normalization in the limit theorems, we are

imposed to change the notion of type (F ) for a non degenerate d.f. F : We say a d.f.

G belongs to type(F ) if there exists T ∈ GMA such that G = F ◦ T. Now the three

extreme value distributions (Fréchet’s Φα, Gumbel’s Λ, and Weibull’s Ψα) belong to

the same type, the max-stable type (MS).

Let us recall the major notions of the univariate max-model: A nondegenerate

d.f. G is called max-stable if there exists a continuous one-parameter group (c.o.g.)

L = {Lt : t > 0} in GMA such that for all t > 0

Gt(x) = G(Lt(x)). (1)

A d.f. G satisfying (1) has to be continuous and strictly increasing. Conversely, given G,

let us consider (1) as a functional equation for the unknown L. Solving it one obtains

that there exists a continuous and strictly increasing mapping

h : Support(G) ↔ (−∞,∞)

such that

Lt(x) = h−1(h(x)− log t), t > 0. (2)

Now (1) is equivalent to

G(x) = exp{−e−h(x)}, (3)

and this is the general explicit form of any max-stable d.f. We denote for any d.f. G,

lG = inf{x : G(x) > 0}, rG = sup{x : G(x) < 1}.

Remark 1 Note that representation (3) can be expressed also in the form

G(x) = exp{−e−c1h1(x)}, c1 > 0 (3’)

or in the form

G(x) = exp{−c2e−h2(x)}, c2 > 0 (3”)

for aiming a parametrization of the class MS. Under this parametrization the c.o.g. L
remains the same: since h(x) = c1h1(x) = h2(x)− log c2 then

Lt(x) = h−1(h(x)− log t) = h−1
1 (h1(x)− 1

c1
log t) = h−1

2 (h2(x)− log t).

In this connection, the claims in (Sreehari 2009) are unfounded.
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The convergence to type theorem (CTT) is the main tool for proving limit theorems

for cumulative extremes. A convergence to type takes place if both convergences Fn
w→

F and Fn◦Tn
w→ G, where Tn ∈ GMA, imply G ∈ type(F ), i.e. there exists a T ∈ GMA

such that G = F ◦ T. Using here max-automorphisms we are confronted with similar

difficulties as if we were working in a space with infinite dimensions. Let Rf be the set

of all sequences {Tn} ⊂ GMA satisfying the conditions

a) Tn(x) ≥ x,

b) h ≤ Tn(x + h)− Tn(x) ≤ f(h) → 0, h → 0,

where f : R→ R and h ∈ (0, 1). Denote R =
⋃

f Rf . The sequences {Tn} from R
are equicontinuous and bounded from below. If in addition there exists a limit mapping

T , then the right hand side of b) gives the continuity of T and the left hand side of b)

supplies its strong monotony, i.e. T ∈ GMA.

Now, the CTT in our model claims: The compactness (w.r.t. the pointwise con-

vergence) of the normalizing sequence Tn is necessary and sufficient for a convergence

to type. Unfortunately, this new formulation of CTT makes it difficult for application.

This is the reason for RESTRICTING our investigation to REGULAR normalizing

sequences only. In this way we lose in generality but win in clarity.

Definition 1 We refer to a sequence {Ln} ⊂ GMA as regular for n → ∞ on a set

S × T if for every x ∈ S and t ∈ T there exists a limiting max-automorphism

Lt(x) = lim
n→∞

L−1
[nt] ◦ Ln(x) (4)

uniformly on compact subsets of T and the mapping t → Lt is one-to-one.

The main advantage of the restriction to the regular normalizing sequences is that

instead of using CTT we use the continuity of the composition.

Let X1, X2, . . . be iid r.v.s with d.f. F . Let G be a nondegenerate d.f. Suppose that

there exists a regular on (lG, rG)× (0,∞) normalizing sequence {Ln} such that

Fn(Ln(x))
w→ G(x). (5)

Using the regularity of the sequence we see immediately that the limit law G

satisfies functional equation (1), hence G is max-stable w.r.t. the c.o.g. L = {Lt, t > 0}
determined by (4). If (5) is met we say that F belongs to the max-domain of attraction

of G w.r.t.L, briefly F ∈ MDA(G).

We underline that the regularity of the normalizing sequence is requested on (lG, rG)

with the following example.

Example 1 Let F (x) = Λ(x) and Ln(x) =


en (x− 1

n

)
if x ≤ 1

n

log nx if x > 1
n .

Then (5) is met

with G(x) = Φ1(x) and

lim
n→∞

L−1
[nt] ◦ Ln(x) = Lt(x)

where

Lt(x) =


{ x

t , x > 0,

−∞, x ≤ 0
for t ∈ (0, 1){ x

t , x > 0,

0, x ≤ 0
for t ≥ 1.

Hence {Ln} is regular on (0,∞)× (0,∞), Φ1 is max-stable with h(x) = log x, Lt(x) =

exp(log x− log t).
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Theorem 5 in (Pancheva 1984) says: A nondegenerate d.f. F belongs to MDA(G)

iff

1− F (x) = [1 + o(1)]R(h(x))e−h(x), x → rF ,

where R(x) is a regularly varying function at infinity. The normalizing mappings can

be chosen as

Ln(x) = h−1{h(x) + log[nL(log n)]}.

Sreehari [7] pointed out that the necessary part of the above statement is wrong

and proposed the following theorem: If a nondegenerate d.f. F ∈ MDA(G) then there

exists a sequence of positive functions {L∗(x; n)} such that

K{h(x) + log(nL∗(x; n))}
L∗(x; n)

→ 1, as n →∞, for x ∈ (lF , rF ), (6)

where K(x) = [1−F ◦h−1(x)]ex. Conversely, if for some strictly increasing continuous

function h(x) and a sequence of positive functions {L∗(x; n)} equation (6) holds then

F ∈ MDA(G), G(x) = e−e−h(x)
. In this case Ln(x) can be chosen as

Ln(x) = h−1{h(x) + log[nL∗(x; n)]}. (7)

We are deeply thankful to Professor Sreehari for discovering the boring mistake. Yet,

in the framework of our max-model the suggested normalization (7) cannot be adopted:

the variables x and n in L∗ are not separated and in general one can not check if (7)

defines (or does not define) a regular normalizing sequence. The aim of the present

paper is to give a revised answer to the problem of conditions for F ∈ MDA(G)

and to show the advantage of using regular mappings for normalization: they may

yield a better rate of convergence to the limit max-stable distributions. They may also

yield non-degenerate max-stable limits for distributions like the Poisson (which were

previously thought not to have non-degenerate limits). We start with several illustrative

examples, then in Section 3 we state and prove our main results.

2 Examples

Example 2 Let X1, X2, . . . be i.i.d. r.v. with c.d.f. F (x) = 1− x−x, x ≥ 1. Denote by

Mn = max{X1, X2, . . . , Xn}. We want to find a normalizing sequence Ln(x) such that

P (Mn ≤ Ln(x)) = P{L−1
n (Mn) ≤ x} → proper limit distribution.

It is natural to assume that the function U(x) :=
1

1− F (x)
= xx, x ≥ 1 will play an

important role. Let us check some properties of U(x). We have that U ′(x) = xx(1 +

ln x) > 0 for every x ≥ 1. So, U(x) is strictly increasing and continuous on the interval

[1,∞), U(1) = 1, and U(x) ↑ ∞ as x →∞, and

U : [1,∞) → [1,∞).

Therefore, there exists the inverse function U−1(x), that is

U(U−1(x)) = U−1(x)U
−1(x) = x and U−1(U(x)) = x
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for every x ≥ 1. The function U−1(x) is also strictly increasing on [1,∞), U−1(1) = 1,

U−1(x) →∞ as x →∞, and

U−1 : [1,∞) → [1,∞).

2.1. Fréchet limit distribution. Let us denote Ln(x) = U−1(nx) and then L−1
n (x) =

U(x)
n , for every x > 0 and n = 1, 2, . . .

We prove that as n →∞,

P
{

L−1
n (Mn) ≤ x

}
= P

{
U(Mn)

n
≤ x

}
→ exp(−1/x), x > 0.

Indeed

P

{
U(Mn)

n
≤ x

}
= P

{
Mn ≤ U−1(nx)

}
=
(
P
{

X1 ≤ U−1(nx)
})n

=
(
1− U−1(nx)−U−1(nx)

)n
=

(
1− 1

U−1(nx)U
−1(nx)

)n

=

(
1− 1

nx

)n

→ exp(−1/x) = Φ1(x), n →∞.

The sequence Ln(x) = U−1(nx) is regular. For this one has only to check that for

t > 0, L−1
[nt]

◦ Ln(x) → Lt(x) = x/t. Recall, Φ1(x) is max-stable d.f. w.r.t. the c.o.g.

{Lt(x) = x
t , t ≥ 0}. Indeed

L−1
[nt] ◦ Ln(x) =

U(Ln(x))

[nt]
=

U(U−1(nx))

[nt]
=

nx

[nt]
→ Lt(x) = x/t, n →∞.

2.2. Gumbel limit distribution. It appears that there exists another nonlinear nor-

malization for the sequence Mn which leads to the Gumbel limit distribution. In other

words we find a normalizing sequence Ln(x) such that

P{Mn ≤ Ln(x)} = P{L−1
n (Mn) ≤ x} → exp(−e−x) = Λ(x).

Let us denote Ln(x) = U−1(nex) and then L−1
n (x) = log

U(x)
n , for every x > 0 and

n = 1, 2, . . . . Then as n →∞,

P

{
log

U(Mn)

n
≤ x

}
→ exp(−e−x), x ∈ (−∞,∞).

Indeed

P

{
log

U(Mn)

n
≤ x

}
= P

{
Mn ≤ U−1(nex)

}
=
(
P
{

X1 ≤ U−1(nex)
})n

=
(
1− U−1(nex)−U−1(nex)

)n
=

(
1− 1

U−1(nex)U
−1(nex)

)n

=

(
1− 1

nex

)n

→ exp(−e−x), n →∞.

In order to prove that the sequence Ln is regular one has to check that for t > 0,

L−1
[nt]

◦ Ln(x) → Lt(x) = x − log t. Recall, Λ(x) is max-stable w.r.t. c.o.g. {Lt =

x− log t, t ≥ 0}, hence h(x) = x. Indeed,
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L−1
[nt] ◦ Ln(x) = log

U(Ln(x))

[nt]

= log
U(U−1(nex))

[nt]
= log

nex

[nt]
= x + log

n

[nt]
→ x− log t, n →∞.

Remark 2 The nonlinear normalization Ln(x) = U−1(nex) in the Example 2.2 can not

be represented in an explicit form, but U−1(.) can be determined asymptotically as

the solution of the equation log x + log log x + t = 0 (see e.g. (de Bruijn 1958)).

2.3. Linear normalization. Since the tail of the d.f. F (x) = 1− x−x, x ≥ 1 is very

light there should exist sequences an > 0 and bn such that

P{Mn ≤ anx + bn} → e−e−x

, x ∈ (−∞,∞).

Note, the above relation is equivalent to

n(1− F (anx + bn)) → e−x. (8)

The normalizing sequences can be chosen as follows bn = U−1(n) and an = 1
log bn

, n ≥
2. For every n ≥ 2 let us mention that bbn

n = n and bn log bn = log n. Then

n(1− F (anx + bn)) = n

(
x

log bn
+ bn

)−(
x

log bn
+bn

)

= n

[
bn

(
x

bn log bn
+ 1

)]−[
bn

(
x

bn log bn
+1

)]

= n
(
b−bn
n

)(
x

log n +1
)(

x

log n
+ 1

)−(log n)
[

bn
log n

(
x

log n +1
)]

= n−
x

log n

(
x

log n
+ 1

)−(log n)
[

bn
log n

(
x

log n +1
)]

= e−x
(

x

log n
+ 1

)−(log n)
[

bn
log n

(
x

log n +1
)]

.

We observe that
bn

log n
=

1

log bn
→ 0, n →∞

because bn ↑ ∞, as n →∞. Using this and the fact that(
x

log n
+ 1

)− log n

→ e−x,

we obtain (
x

log n
+ 1

)−(log n)
[

bn
log n

(
x

log n +1
)]
→
(
e−x

)0
= 1,

which complete the proof. After some standard calculations one can see that the se-

quence of linear transforms Ln(x) = x
log bn

+ bn is regular.
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Example 3 Let X1, X2, . . . be i.i.d. r.v.s with standard exponential d.f.

F (x) =

{
1− e−x, x > 0,

0, x ≤ 0.

3.1. Linear normalization. It is well known that the sequences an = 1, bn = log n,

n = 1, 2, . . . provide that for every fixed x ∈ R,

(F (anx + bn))n =
(
1− e−(anx+bn)

)n
=
(
1− e−(x+log n)

)n

=
(
1− e−xe− log n

)n
=

(
1− e−x

n

)n

→ e−e−x

, n →∞.

The sequence Ln(x) = x + log n is regular.

3.2. Nonlinear normalization

3.2.1. Gumbel limit distribution. Let us define

U(x) =
1

1− F (x)
=

{
ex, x > 0,

1, x ≤ 0

and its inverse

U−1(x) =

{
log x x > 1,

−∞, x ≤ 1.

Take the normalizing monotone transforms Ln(x) = U−1(nex). Assume that x ∈ R is

fixed, then nex > 1 for every n > e−x and then Ln(x) = log(nex) = x + log n which

coincides with the linear normalization given above and Fn(Ln(x)) → Λ(x). This is

not surprising because the exponential distribution belongs to the normal max-domain

of attraction of Λ (NMDA(Λ)). Hence the normalizing sequence

Ln(x) = L1/n(x) = x + log n

can not be other than linear (or asymptotically equivalent to a linear one).

3.2.2. Fréchet limit distribution. Recall Φα is max-stable w.r.t. Lt(x) = xt−1/α =

exp{ 1
α (α log x− log t)}. Hence for α > 0,

h(x) =

{
α log x, x > 0,

−∞, x ≤ 0.
(9)

Now we take the following monotone normalizing sequence

Ln(x) = U−1(neh(x)) = log(nxα) = α log x + log n (10)

and obtain the convergence

(F (Ln(x)))n = (1− e−Ln(x))n = (1− e− log(nxα))n = (1− 1

nxα
)n → e−x−α

, n →∞.

Therefore under the regular normalizing sequence (10) the exponential distribution

belongs to the MDA(Φα).

Remark 3 Note that if using nonlinear normalizing sequences, the classical relation

F ∈ MDA(Φα) ⇔ 1− F ∈ RV−α

is not true, as Examples 2 and 3 show.
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Example 4 Let X1, X2, . . . be i.i.d. r.v.s with Pareto distribution, i.e.

F (x) =

{
1− (1 + x)−α, x > 0,

0, x ≤ 0,

where α > 0.

4.1. Linear normalization. It is well known that the sequences an = n1/α, bn = −1,

n = 1, 2, . . . provide that for every fixed x > 0,

(F (anx + bn))n =
(
1− (1 + anx + bn)−α

)n
=
(
1− (1 + n1/αx− 1)−α

)n

=
(
1− n−1x−α

)n
=

(
1− x−α

n

)n

→ e−x−α

, n →∞,

i.e. Pareto distribution belongs to NMDA(Φα) with the regular normalizing sequence

Ln(x) = n1/αx− 1.

4.2. Nonlinear normalization.

4.2.1. Fréchet limit distribution. Let us define

U(x) =
1

1− F (x)
=

{
(1 + x)α, x > 0,

1, x ≤ 0

and its inverse

U−1(x) =

{
x1/α − 1 x > 1,

−∞, x ≤ 1.

Take h(x) as in (9) and define the monotone normalizing sequence

Ln(x) = U−1(neh(x)) = n1/αx− 1.

It is in fact the linear transform given above.

4.2.2. Gumbel limit distribution. Put now h(x) = x for x ∈ R and define the regular

normalizing transforms Ln(x) = (nex)1/α − 1. Then we have

Fn(Ln(x)) = (1− e−x

n
)n → e−e−x

, n →∞,

thus the Pareto d.f. belongs to MDA(Λ) w.r.t. the above normalizing sequence.

3 Main results

Let F be an arbitrary nondegenerate d.f. Denote again U(x) =
1

1− F (x)
. The mapping

U : (lF , rF ) → (1,∞) is monotone increasing.

Lemma 1 There exists a continuous and strictly increasing function g(x) such that

g(x)

U(x)
→ 1, as x → rF , (11)

if and only if U is asymptotically continuous at rF , i.e.

U(x + 0)

U(x− 0)
→ 1, as x → rF . (12)
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This statement is a light modification of Lemma 2 (Faktorovich 1989). The proof goes

in the same way.

Theorem 1 (On max-domain of attraction). Let F ∈ MDA(H), H(x) = e−e−h(x)
.

Then F is asymptotically continuous at rF and the normalizing sequence Ln can be

taken as

Ln(x) = g−1(neh(x)), (13)

where g is continuous and strictly increasing on (lF , rF ) and satisfies (11). Conversely,

let F be asymptotically continuous at rF and let h : (lF , rF ) ↔ (−∞,∞) be continuous

and strictly increasing. Then there exists a continuous and strictly increasing function

g, such that the sequence g−1(neh(x)) is regular and normalizes the convergence

Fn(Ln(x)) → exp{−e−h(x)}, n →∞, (14)

i.e. F ∈ MDA(H).

Remark 4 Roughly speaking, Theorem 1 says that, given F is asymptotically contin-

uous at its right endpoint, then Fn(Ln(x)) → H(x) iff the tail of F , the tail of H and

the regular normalizing sequence Ln are connected by the asymptotic relation

Ln(x) ∼
(

1

1− F

)←
(n.eh(x)), n →∞. (15)

Here U← is left continuous inverse of U . The later is equivalent to

n(1− F (Ln(x))) → e−h(x), n →∞.

Proof (of Theorem 1) Let F ∈ MDA(H). Assume that F is not asymptotically con-

tinuous at rF , but has mass F (x− 0) → p, as x → rF , 0 < p < 1. Then

F (x + 0)

F (x− 0)
→ 1

p
6= 1, as x → rF .

For x fixed and n → ∞ the normalizing sequence Ln(x) ↑ rF , hence F (Ln(x)) → p

and Fn(Ln(x)) ∼ pn → 0 in contradiction to the assumption F ∈ MDA(H). Thus F

has to be asymptotically continuous at rF . In this case, by Lemma 1, there exists a

strictly increasing and continuous function g, with

g(x) ∼
(

1

1− F

)
(x) = U(x), as x →∞.

The inverse function g−1(x) exists. It is strictly increasing and g−1(x) ↑ ∞, as x →∞.

Therefore

U(g−1(x)) ∼ g(g−1(x)) ∼ x, as x →∞.

The sequence Ln(x) = g−1(neh(x)) satisfies Fn(Ln(x)) → H(x), n →∞. Indeed,

P

{
n∨

i=1

Xi ≤ Ln(x)

}
= P

{
n∨

i=1

Xi ≤ g−1(neh(x))

}

= Pn
{

X1 ≤ g−1(neh(x))
}

=
[
1− (1− F (g−1(neh(x))))

]n
=

[
1− 1

U(g−1(neh(x)))

]n

∼
[
1− 1

neh(x)

]n

=

[
1− e−h(x)

n

]n

→ exp{−e−h(x)},
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as n →∞.

Besides, the sequence Ln is regular because for t > 0,

L−1
[nt] ◦ Ln(x) = h−1

(
log

g(Ln(x))

[nt]

)
= h−1

log
g
(
g−1(neh(x))

)
[nt]


= h−1

(
log

neh(x)

[nt]

)
= h−1

(
log eh(x) + log

n

[nt]

)
= h−1

(
h(x) + log

n

[nt]

)
→ h−1 (h(x)− log t) = Lt(x), n →∞.

Similarly one shows the converse part. ut

Corollary 1 1. Let F ∈ MDA(Φα). Then h(x) = α log x and Ln(x) ∼
(

1
1−F

)←
(nxα).

The function R(x) = nxα is regularly varying at infinity, hence U(Ln(x)) ∈ RVα.

Since U(y) = 1
1−F (y)

for y → rF we conclude that F̄ ◦Ln ∈ RV−α. This means, in

our max-model with nonlinear normalizing sequences the condition F̄ ∈ RV−α is not

more a necessary and sufficient condition for F ∈ MDA(Φα), but F̄ ◦ Ln ∈ RV−α

(cf. Ex 2, 3 and 4).

2. Let F ∈ MDA(Λ). Then h(x) = x and Ln(x) ∼
(

1
1−F

)←
(nex). Hence

1

n

(
1

1− F

)
(Ln(x)) → ex, n →∞.

Choose yn ↑ rF such that 1− F (yn) = 1
n . Then for U =

(
1

1−F

)←
U←(Ln(x))

U←(yn)
→ ex, n →∞.

The converse is also true (cf. (de Haan 1970)).

Remark 5 Examples 2, 3, and 4 from Section 2 show that a distribution may belong to

MDA of two different max-stable laws. It will be very wrong to conclude that “domains

of attractions of different types are not disjoint if using monotone normalization” as

read in some authors. In fact, if using monotone normalization, there is only one type

of max-stable laws!

Theorem 2 Let F ∈ MDA(H), H(x) = e−e−h(x)
, w.r.t. the regular normalizing se-

quence Ln, defined in Theorem 1. If g(x) = U(x) then∣∣Fn(Ln(x))−H(x)
∣∣ = O (1/n) , n →∞.

Remark 6 If the function g(x) is asymptotically equivalent to U(x) then the rate of

convergence depends also on the rate of convergence in the asymptotic relation
g(x)
U(x)

→
1 as x →∞.

Proof Since Fn(Ln(x)) =
[
1− e−h(x)

n

]n
then we have to estimate∣∣∣∣∣

[
1− e−h(x)

n

]n

− e−e−h(x)

∣∣∣∣∣
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The following inequality is valid for every u, v such that 0 < v < u and α > 1

α(u− v)vα−1 < uα − vα < α(u− v)uα−1.

Let x > 0 be fixed. Then

e−e−h(x)
−

(
1− e−h(x)

n

)n

=
(
e−e−h(x)/n

)n
−

(
1− e−h(x)

n

)n

≤ n

(
e−e−h(x)/n − 1 +

e−h(x)

n

)(
e−e−h(x)/n

)n−1

e−e−h(x)
−

(
1− e−h(x)x

n

)n

=
(
e−e−h(x)/n

)n
−

(
1− e−h(x)

n

)n

≥ n

(
e−e−h(x)/n − 1 +

e−h(x)

n

)(
1− e−h(x)

n

)n−1

From the power series for the exponential function we have that as n →∞,(
e−e−h(x)/n − 1 +

e−h(x)

n

)
=

e−2h(x)

2n2
(1 + o(1)).

Since (
e−e−h(x)/n

)n−1
→ e−e−h(x)

and (
1− e−h(x)

n

)n−1

→ e−e−h(x)

as n →∞ we can conclude that∣∣∣∣∣e−e−h(x)
−

(
1− e−h(x)

n

)n∣∣∣∣∣ = O

(
1

n

)
as n →∞. ut

Corollary 2 Let Ln and Tn be two normalizing sequences of max-automorphisms,

such that

n(1− F (Ln(x))) → e−h(x), (16)

n(1− F (Tn(x))) → e−h(x) (17)

for h continuous and strictly increasing. Then both sequences are regular and asymp-

totically equivalent in the sense that

L−1
n (Tn(x)) → x, n →∞.

Conversely, if (16) holds and {Tn} is asymptotically equivalent to {Ln} in the above

sense, then (17) also holds.
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Proof Covergences (16) and (17) imply that

Ln(x) ∼
(

1

1− F

)← (
neh(x)

)
∼ Tn(x).

Take Ln(x) = g−1(neh(x)) and Tn(x) = f−1(neh(x)) where g and f are continuous

and strictly increasing functions satisfying (11). Both g−1 and f−1 are asymptotically

inverse to U(x) = 1
1−F (x)

. Since L−1
n (y) = h−1(log g(y)− log n) we have

L−1
n ◦ Tn(x) = h−1

{
log

g(Tn(x))

n

}
= h−1

{
log

g ◦ f−1(neh(x))

n

}
∼ h−1

{
log

neh(x)

n

}
= x.

Conversely, (17) can be rewritten as

n(1− F (Tn(x))) = n
{

1− F (Ln[L−1
n ◦ Tn(x)])

}
∼ n {1− F (Ln(x))} → e−h(x).

ut

As a conclusion let us consider the normalization of maxima of normally distributed

iid random variables.

Example 5 ( Normal distribution.) Let X1, X2, . . . , be iid r.v.s with standard normal

d.f.

N(x) =
1√
2π

∫ x

−∞
e−u2/2du and density n(x) =

1√
2π

e−x2/2, x ∈ (−∞,∞).

By Theorem 1 the regular normalizing sequence Ln(x) = U−1(nex), where U =
1

1−N
,

causes the weak convergence

Nn(Ln(x)) → e−e−x

. (18)

Theorem 2 says that the rate of this convergence is O(1/n). Unfortunately, the sequence

U−1(nex) is not very useful in practice, because of the fact that the inverse function(
1

1−N

)−1
is not explicitly known. Thus we go through the well known asymptotic

relation

U(x) =
1

1−N(x)
∼ g(x) =

x

n(x)
=
√

2πxe
x2
2 , x →∞ (19)

in order to find an asymptotic inverse of g(x) and of U(x), respectively. Following the

same way as in the proof of (Leadbetter et al. 1983, Theorem 1.5.3) we obtain the

following asymptotic inverse of g(x) as x →∞

g−1(x) =
√

2 log x− log 4π − log log x

for which

U(g−1(x)) ∼ g(g−1(x)) ∼ x, as x →∞.

Now we define the sequence

Tn(x) = g−1(nex) =
√

2 log n + 2x− log 4π − log(log n + x).
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Next we show that both sequences Tn and Ln are asymptotically equivalent in the

sense that L−1
n ◦ Tn(x) → x as n →∞. Indeed, since L−1

n (y) = log
U(y)

n we have

L−1
n ◦ Tn(x) = log

U(Tn(x))

n
= log

U(g−1(nex))

n
∼ log

nex

n
= x.

Then one can use the sequence Tn(x) for normalization in (18), thus

Nn(Tn(x)) → Λ(x), n →∞. (20)

Accordingly to Theorem 2 the rate of convergence in the equation (18) is O(1/n). On

the other hand the rate of convergence in the equation (20) depends also on the rate

of convergence in the asymptotic relation (19). It is not difficult to show that in this

case the rate of convergence is equivalent to that in the liner case, namely O(
1

log n
)

(see e.g. (de Haan 1970)).
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