
University of Zagreb
Faculty of Electrical Engineering and Computing

Sveu£ili²te u Zagrebu
Fakultet elektrotehnike i ra£unarstva

Alisa Devli¢

Semantic agents for location-aware service
provisioning in mobile network

Master thesis
Magistarski rad

Zagreb, 2005

The Master Thesis has been completed at the Department of Telecommunications
of the Faculty of Electrical Engineering and Computing, University of Zagreb

Advisor: Gordan Jeºi¢, Ph.D.
Assistant Professor, FER, University of Zagreb

Master thesis has 126 pages.

Thesis number:

The Master Thesis evaluation committee:

1. Ignac Lovrek, Ph.D., Professor, FER, University of Zagreb

2. Gordan Jeºi¢, Ph.D., Assistant Professor, FER, University of Zagreb

3. Vlatko �eri¢, Ph.D., Professor, Faculty of Economy, University of Zagreb

The Master Thesis defense committee:

1. Ignac Lovrek, Ph.D., Professor, FER, University of Zagreb

2. Gordan Jeºi¢, Ph.D., Assistant Professor, FER, University of Zagreb

3. Vlatko �eri¢, Ph.D., Professor, Faculty of Economy, University of Zagreb

4. Maja Matija²evi¢, Ph.D., Professor, FER, University of Zagreb

Date of Master Thesis defense: December 20th, 2005

Acknowledgements

There is a number of people that have supported me during the process of writing
this thesis. Firstly, I would like to thank my advisor Assistant Professor Gordan Jeºi¢
for his support, patience, and reducing my obligations during the last semester of thesis
completion. I thank also Krunoslav Trºec for directing my research interest towards
Semantic Web technologies, and supporting my e�orts with insightful comments and
arguments.

The majority of work presented in the thesis have been developed in the research
project "Remote Operations Management" at the Department of Telecommunications in
the cooperation with Ericsson Nikola Tesla company. I thank the members of the team
for creating the research atmosphere and contributing with the comments to this work.

I am mostly grateful to my boyfriend, Alan Graf, for his consistent support and for
all the nights he stayed awake with me to encourage me. And �nally, I would like to
thank my family, who always believed in me and supported me to pursue my goals.

Alisa Devli¢

SEMANTIC AGENTS FOR LOCATION-AWARE SERVICE PRO-
VISIONING IN MOBILE NETWORK

SEMANTI�KI AGENTI ZA PRU�ANJE USLUGA OVISNIH O
LOKACIJI U POKRETNOJ MRE�I

The Master Thesis investigates the issues of service provisioning in mobile network.
Service provisioning is de�ned as the setting in place and con�guring of the hardware
and software required for activating a telecommunications service for a customer. The
thesis proposes and implements a solution for a �exible and e�cient service provisioning
using semantic agents in the mobile network. Semantic agents are intelligent software
agents that collect user preferences for the required service, and discover the available
advertised services o�ered by service providers. They use the implemented matchmaking
algorithm in the thesis to determine from the available services the one that best meets
user's requirements. When the service is determined and found on the Web, the user can
install and invoke it on the mobile device.

The service that was utilized for service provisioning is the location-aware content
delivery service that delivers personalized content to mobile users depending on their cur-
rent location, utilized terminal and preferences. It consists of the client and server part,
for which the provisioning is performed separately. The client part is provisioned on the
described manner, using semantic agents. The server part of the service is migrated, in-
stalled and invoked on the remote node, using the multi-agent system supporting remote
software maintenance operations in the network.

Alisa Devli¢

SEMANTI�KI AGENTI ZA PRU�ANJE USLUGA OVISNIH O
LOKACIJI U POKRETNOJ MRE�I

SEMANTIC AGENTS FOR LOCATION-AWARE SERVICE PRO-
VISIONING IN MOBILE NETWORK

Magistarski rad istraºuje probleme pruºanja usluga u pokretnoj mreºi. Pruºanje us-
luge je de�nirano kao postavljanje i pode²avanje sklopovlja i programske opreme potrebne
za aktiviranje telekomunikacijske usluge korisniku. U radu je predloºen i napravljen sus-
tav za �eksibilno i e�kasno pruºanje usluga uporabom semanti£kih agenata u pokret-
noj mreºi. Semanti£ki agenti su inteligentni pokretni agenti koji prikupljaju korisni£ke
preference za zahtijevanu uslugu, i otkrivaju raspoloºive usluge objavljene od strane
pruºatelja usluga. Oni koriste algoritam za semanti£ko uspore�ivanje, izra�en u radu,
kako bi odredili koja od navedenih usluga najbolje odgovara korisnikovim zahtjevima.
Kad je usluga odre�ena i utvr�ena njezina lokacija na Web-u, korisnik ju moºe instalirati
i pokrenuti na svom pokretnom ure�aju.

Usluga koja je kori²tena u svrhu demonstracije pruºanja usluge u magistarskom radu
je usluga za dostavu sadrºaja ovisnog o lokaciji, £ija je funkcionalnost dostava personal-
iziranog sadrºaja pokretnim korisnicima ovisno o njihovoj trenutnoj lokaciji, kori²tenom
terminalu i preferencama. Sastoji se od klijentskog i posluºiteljskog dijela, £ije se us-
luge pruºaju odvojeno i na razli£it na£in. Pruºanje klijentskog dijela usluge je opisano
na naveden na£in, koriste¢i semanti£ke agente. Posluºiteljski dio usluge se migrira, in-
stalira i izvodi na udaljenom £voru, koriste¢i vi²eagentski sustav koji podrºava udaljene
operacije odrºavanja programske opreme u mreºi.

Contents

List of Figures iii

Introduction 1

1 Semantic Web Vision 3
1.1 Knowledge management . 4

1.1.1 Ontologies . 5
1.1.2 Logic . 6

1.2 Semantic Web Architecture . 7
1.3 Web Ontology Languages . 8

1.3.1 RDF . 10
1.3.2 RDF Schema . 12
1.3.3 OWL . 16

1.4 Semantic Web services . 23
1.4.1 Overview of OWL-S . 23
1.4.2 Service Process Model . 25

2 Semantic agents 27
2.1 Intelligent software agents . 28

2.1.1 Agent de�nition . 28
2.1.2 Agent classi�cation . 29

2.2 Semantic matchmaking . 30
2.2.1 OWL-S Matchmaking algorithm 30

2.3 JADE agent platform . 42
2.3.1 LEAP add-on . 44

3 Context-aware services 47
3.1 De�nition of context . 48
3.2 Context information . 49

i

ii CONTENTS

3.3 Location-aware services . 50
3.3.1 Proposed location semantics for building higher-level con-

text information . 51

4 Location-aware content delivery system architecture 53
4.1 Requirements and Usage Scenarios 55
4.2 Reference architecture . 59

4.2.1 Communication layer . 61
4.2.2 Service layer . 61
4.2.3 Application layer . 62
4.2.4 Component interaction . 63

4.3 System architecture . 65
4.3.1 Service architecture for 3G mobile networks 68
4.3.2 Location-based publish/subscribe web service 70
4.3.3 User Pro�le Management Web service 73
4.3.4 User pro�le creation . 75

5 System implementation 81
5.1 Implementation overview . 81
5.2 Client application . 82
5.3 User Pro�le Management Service Implementation 88
5.4 System deployment . 92

6 Service provisioning 95
6.1 Service Provisioning in the Mobile Network 96

6.1.1 Over-The-Air Service Provisioning 97
6.2 Location-aware service provisioning 100

6.2.1 Client application provisioning using semantic agent 101
6.2.2 Server-side installation with RMS 108

7 Related work 113

Conclusion 119

Literature 121

Summary 127

Curriculum Vitae 129

List of Figures

1.1 A Semantic Web layer cake . 7
1.2 RDF model . 10
1.3 RDF generic model . 11
1.4 Graph representation of a triple . 12
1.5 RDQL query . 16
1.6 OWL service ontology . 25

2.1 OWL-S model of the location-aware content delivery Web service . 32
2.2 OWL-S nodes class diagram . 34
2.3 Broker agent components . 41
2.4 The software architecture of JADE Agent Platform 43
2.5 The communication architecture of JADE 44
2.6 The LEAP execution environment 45
2.7 Execution modes . 46

4.1 Zagreb city area . 56
4.2 Reference architecture . 60
4.3 Current location-based subscription 64
4.4 Landmark-based subscription . 65
4.5 Non location-based subscription . 66
4.6 System architecture . 67
4.7 3G service architecture . 69
4.8 Location-based publish/subscribe web service 71
4.9 LBPS interface . 72
4.10 User Pro�le Management . 73
4.11 User Pro�le administration . 74
4.12 Pro�leMgmt interface . 75
4.13 RDF graph . 77

iii

iv LIST OF FIGURES

5.1 System implementation . 82
5.2 MIDlet class diagram . 83
5.3 Login and menu screen . 84
5.4 Declare landmark . 84
5.5 View visited landmarks . 85
5.6 Modify availability . 85
5.7 Get contacts . 86
5.8 Create content . 87
5.9 Subscribe screen . 87
5.10 Content delivered via MMS and e-mail 88
5.11 Authentication . 89
5.12 Main menu . 89
5.13 Creating a new pro�le . 90
5.14 User selection . 91
5.15 View an existing pro�le . 92
5.16 Deployment . 93

6.1 A simpli�ed view of OTA provisioning 97
6.2 A detailed view of OTA provisioning 98
6.3 OTA application provisioning lifecycle 100
6.4 Location-aware service provisioning 101
6.5 FIPA Contract Net interaction protocol 102
6.6 Service o�erer agent ("alisa") started in the main container 103
6.7 Service requester agent started on mobile device 104
6.8 The service output on mobile device 107
6.9 The service installation and execution on mobile device 108
6.10 RMS concept . 109
6.11 Remote maintenance operations with mobile agents 109
6.12 Graphical user interface . 110
6.13 Remote Location Tasks dialog . 111
6.14 Location-aware content delivery service in running state 112

Introduction

In the thesis an idea of service provisioning using semantic agents in mobile net-
work has been investigated. It is applied to deployment of location-aware content
delivery service, that delivers personalized content to mobile users depending on
their current location, utilized terminal and preferences. The requirements and
usage scenarios, that have guided the system design, are discussed, followed by
its architecture proposal that could be easy deployed in the 3G mobile networks
infrastructure, and a prototype implementation.

Semantic agents have been de�ned as a set of agents running around the Web
and executing complex actions on behalf of their user(s). The concept of Semantic
Web is based on an idea of dynamic, heterogeneous, shared knowledge sources
providing machine-understandable content in a similar way to that in which infor-
mation is shared on the World Wide Web. It will gradually evolve from the existing
Web, adding the meaning to the information available. The existing World Wide
Web will transform from a collection of static Web pages for browsing, to become
a Web of interactive, automated, and intelligent services that interrelate via the
Internet.

The problem with the existing Web services model is its inability to dynam-
ically discover the most appropriate Web service that meets user demands. In
the Semantic Web Vision, services are meant to be capable of being discovered,
invoked, composed, and monitored automatically by software agents. A seman-
tic agent, that is implemented in the thesis, solves the problem of semantically
discovering required Web services, and compares the degree of similarity between
the required and the advertised Web service(s) o�ered by service providers. If it
�nds that the advertised service matches the required service, it o�ers the user
the ability to install this service and execute it on his mobile device.

The service provisioning of the location-aware content delivery service is per-
formed separately for client and server part. Semantic agents are utilized for pro-
visioning of the client application on the mobile device. They collect user prefer-

1

2 Introduction

ences that the required service should meet, and discover the available advertised
service(s) o�ered by service provider(s). Both services (the requested and the ad-
vertised service) are matched using the implemented semantic matchmaking al-
gorithm, that assists an agent in �nding the most appropriate service that meets
user needs. When the service is determined and found on the Web, the user is
o�ered a possibility to install and run the application on the mobile device.

The server part of the service is migrated, installed, and invoked on the re-
mote node, using the multi-agent system supporting remote software maintenance
operations in the network, without suspending or in�uencing its regular operation.

Thesis structure. The thesis is organized as follows: Chapter 1 describes the
vision of Semantic Web, and gives a brief overview of its architecture and Web on-
tology languages. Special attention is given to the role of Semantic Web services
in the Semantic Web vision, due to the need for them to be dynamically dis-
covered, invoked, composed, and monitored, without human mediation. Semantic
agents are intelligent software agents envisioned to run on the Web, performing
complex actions on behalf of their users. They reason about the knowledge in-
corporated in Semantic Web services, and their concept is presented in Chapter
2. This chapter describes the concept of semantic matchmaking of Web services,
followed by the precise explanation of the implemented algorithm. Chapter 3 deals
with a theoretical background of context and context-aware services. It also gives a
proposal of the user-understandable location semantics, that can gather and struc-
ture di�erent formats of location information, to build higher-level context used
by various location-aware services. Location-aware content delivery system archi-
tecture is presented in Chapter 4, that could be easy deployed in third generation
mobile network infrastructure. Chapter 5 discusses the system implementation of
the architecture proposed in the previous chapter. In Chapter 6 the idea of ser-
vice provisioning in the mobile network is outlined. The recommended practice
of Over-The-Air provisioning is described, and the new concept of provisioning
applications on mobile devices using semantic agents is presented. The server
part of the service is delivered on the target node in local area network using the
Remote Maintenance Shell (RMS) system, a framework developed for remote soft-
ware maintenance operations, explained in the same chapter. Chapter 7 gives an
overview of the existing solutions and systems related to semantic matchmaking
of Web services and location-aware computing. Their advances and shortcomings
are analyzed and compared to solutions proposed in the thesis.

Chapter 1

Semantic Web Vision

Most of today's Web content is human-understandable. The information is pre-
sented in a satisfactory way, but what lacks is information about content. For
machines to be more data-processable, the meaning of data has to be added to
the content and its formatting information. The term metadata refers to such
information: data about data. Therefrom derives the term semantic in Semantic
Web.

The aim of Semantic Web is to represent Web content in a form that is more
easily machine-processable and use intelligent techniques to take advantage of
these representations. In the vision of Tim Berners-Lee, the initiator of the Se-
mantic Web and inventor of the WWW in the late 1980s, the Semantic Web will
gradually evolve from the existing Web, where the meaning of information will
play an important role.

This chapter outlines a vision of Semantic Web and is organized as follows:
Section 1.1 explains knowledge management issues and promises in the future of
Semantic Web. In Section 1.2 a Semantic Web architecture overview is given. Sec-
tion 1.3 brie�y describes Web ontology languages, such as RDF, RDF Schema
(RDFS), and OWL. Section 1.4 discusses the role of Semantic Web services in the
Semantic web vision and their need to be dynamically discovered, invoked, com-
posed, and monitored, without human mediation. A problem with the existing
Web services model is to �nd the most appropriate service that meets user needs,
meaning that user requests for a service need to be matched against the services
advertised by service providers. An overview of OWL-S, an OWL-based language
used to describe service capabilities, is given in Section 1.4.1. OWL-S allows de-
scribing both the user requested and service provider's advertised services.

3

4 Chapter 1. Semantic Web Vision

1.1 Knowledge management
Knowledge management concerns itself with acquiring, accessing, and maintain-
ing knowledge within an organization [AvH04]. Current knowledge management
techniques su�er from the following limitations:

• searching for information depends on keyword-based search engines that
retrieve a lot of irrelevant documents;

• extracting information involves human interaction to browse the retrieved
documents for relevant information;

• maintaining information can cause problems, such as inconsistencies in ter-
minology and failure to remove outdated information;

• viewing information with restriction to certain group of users cannot be
realized over the Web.

The function of the Semantic Web relies on knowledge representation: computer-
accessible structured collections of information and sets of inference rules that can
be used to conduct automated reasoning.

The Semantic Web promises much more advanced knowledge management
systems:

• knowledge will be organized in conceptual spaces according to its meaning;

• automated tools will support check for inconsistencies and knowledge ex-
traction;

• semantic query answering will replace the traditional keyword-based search:
knowledge will be retrieved, extracted and presented in a human-friendly
form;

• query answering on several documents will be supported;

• de�ning who is authorized to view certain parts of information (even parts
of documents) will be possible.

Chapter 1. Semantic Web Vision 5

1.1.1 Ontologies
The term ontology (from the greek ontologia) originates from philosophy, namely
the branch of metaphysics concerned with identifying the kinds of things that
actually exist, and how to describe them. In the Information Science, an ontology is
a hierarchical knowledge structure organized by subcategorizing things according
to their essential (or at least relevant and cognitive) qualities. In the concept
of Semantic Web, an ontology is de�ned as: an explicit and formal speci�cation
of conceptualization, meaning that it presents a formal description of concepts
and relationships among them in some area of interest. Therefore, ontology is
a terminology that provides a shared understanding of a domain, that can be
communicated across people and application systems.

The most typical kind of ontology for the Web contains a taxonomy and a set
of inference rules [BLHL01]. The taxonomy de�nes classes and relations among
them. A large number of relations among entities can be expressed by assigning
properties to classes and allowing subclasses to inherit such properties. The in-
ference rules enable deriving new data from the data that is already known. A
program could easily deduce, for instance, that a University of Zagreb, being in
Zagreb, must be in Croatia, which is in the Europe, and being situated in Eu-
rope means being European. Therefore, University of Zagreb should be a part of
European universities. The computer doesn't truly "understand" any of this in-
formation, but it can e�ectively manipulate terms in the human-understandable
way.

Ontologies can enhance the functioning of the existing Web in many ways.
They can be used to improve the accuracy of Web searches: the search program
can only look for those pages that refer to a precise concept instead of all the ones
containing ambiguous keywords. More advanced applications will use ontologies
to relate an information on the page to the associated knowledge structures and
inference rules. For example, the page could contain additional information about
the desired subject, that would usually require a human to browse the various
pages turned by a search engine. In a Semantic Web, this page will be linked to
the ontology page that de�nes all the information about the particular subject,
and is easily processed by a computer and queried by the user.

In addition, the ontologies' markup is more suitable to develop programs that
can tackle complicated questions whose answers do not reside on the single Web
page. Suppose an intelligent agent's (represented as software running on the Web
and performing actions on behalf of a user) task is to �nd a person from a telecom-

6 Chapter 1. Semantic Web Vision

munications conference, held last year in Zagreb, whose last name is "Cook", with
�rst name not known, who worked for Ericsson company, and whose son is a
student at a Stockholm University. The program would �rst search for all pages
of people whose name is "Cook" (sidestepping all the pages relating to cooks,
cooking, the Cook Islands and so forth), �nd the ones that mention working for
Ericsson, and follow links to Web pages of their children to track down if any of
them study at the speci�ed university.

1.1.2 Logic
Adding logic to the Web is accomplished by using rules to make inferences, choos-
ing courses of action and answering questions. A mixture of mathematical and
engineering decisions complicates this task. The logic must be powerful enough
to describe complex properties of objects but not so powerful that agents can be
tricked by being asked to consider a paradox. For the Semantic Web to become ex-
pressive enough to be useful in a wide range of situations, it will become necessary
to construct a powerful logical language for making inferences.

Logic (from ancient Greek logos, meaning reason) is the study of arguments. It
is the discipline that studies the principle of reasoning - a set of premises that are
examined and arranged so as to bring a conclusion. In general, logic o�ers, �rst,
a set of formal languages for expressing knowledge. Secondly, it provides a well-
understood formal semantics for describing the meaning of sentences without car-
ing about how it can be deduced. Finally, automated reasoners can deduce (infer)
conclusions from the given knowledge. They can uncover the implicit knowledge,
as well as unexpected relationships and inconsistencies.

Semantic web vision predicts a complex semantic web comprised of a great
number of small ontological components largely created of pointers to each other
and developed by web users in the same way that web content is currently created
[Hen01].

Semantic agents, which are the synonym for intelligent agents in the context
of Semantic Web, will make use of all the technologies described:

• metadata will be used to identify and extract the information from Web
sources;

• ontologies will assist in Web searches to interpret retrieved information, and
to communicate with other agents;

Chapter 1. Semantic Web Vision 7

• logic will be used for processing retrieved information and for drawing con-
clusions.

1.2 Semantic Web Architecture
Figure 1.1 shows the "layer cake" of the Semantic Web (according to Tim Berners-
Lee), that describes main layers of the Semantic Web design and vision. The
diagram depicts a Semantic Web architecture in which languages of increasing
power are layered one of the top of the other. Each language both exploits the
features and extends the capabilities of the layers below.

Figure 1.1: A Semantic Web layer cake

At the bottom of the architecture an XML is placed, a markup language for
writing structured Web documents with a user-de�ned vocabulary. It allows any-
one to design his own document format and then write a document in that format.
It is particularly suitable for sending documents across the Web, because it en-
ables data interchange between applications that both know about what the data
is. XML provides a surface syntax for structured documents, but imposes no se-
mantic constraints on the common interpretation of the data contained in these
documents. This is a major limitation of XML: since XML just describes gram-
mars, there is no way of recognizing the semantic unit from a particular domain
of interest.

XML namespace is used to identify markup elements used in an XML docu-
ment. The namespace points to an URI (Uniform Resource Identi�er) where these

8 Chapter 1. Semantic Web Vision

elements and attributes are de�ned.
XML Schema is a language for restricting the syntax of XML applications. It

represents a description of a type of an XML document, typically expressed in
terms of constraints on the structure and content of documents of that type, thus
extending the basic constraints imposed by XML itself.

The second layer is represented by RDF and RDF Schema (RDFS). Resource
Description Framework (RDF) is a basic data model, like the entity-relationships
model, for writing simple statements about Web objects (resources) and relations
between them. The RDF data model does not rely on XML, but uses an XML-
based syntax.

Just as XML Schema provides the vocabulary de�nition facility for XML, RDF
Schema provides the similar facility for RDF. It provides modelling primitives
for organizing Web objects into hierarchies. Key primitives are classes of RDF
resources and properties, subclasses and subproperty relationships, and domain
and range restrictions. It is based on RDF.

Web ontology languages are built on top of RDF(S), as the RDF Schema
language is powerful enough to de�ne more expressive languages on top of the
limited primitives of RDF.

The logic layer is used to enhance the ontology language further and to allow
the writing of application-speci�c declarative knowledge.

The proof layer involves the actual deductive process as well as representation
of proofs in Web languages (from lower levels) and proof validation.

Digital signatures are another important feature of Semantic Web. They are
encrypted blocks of data that computers and agents can use to verify that the
attached information has been provided by a trusted source.

Finally, the trust layer will emerge through the use of digital signatures and
other kinds of knowledge, based on recommendations by trusted agents or on
rating and certi�cation agencies and consumer bodies. Being located on the top
of pyramid, trust is a very important concept in the Semantic Web: the overall
success of the Semantic Web will depend on people's trust to data and quality of
information provided.

1.3 Web Ontology Languages
Ontology languages allow users to write explicit, formal conceptualizations of do-
main models.

Chapter 1. Semantic Web Vision 9

The main requirements for ontology languages are [AvH04]:

• a well-de�ned syntax

• a formal semantics

• e�cient reasoning support

• su�cient expressive power

• convenience of expression

A well-de�ned syntax is important for machine-processing of information, be-
coming a necessary condition for all languages to ful�ll.

A formal semantics unambiguously describes the meaning of knowledge. Clearly
de�ned and well-understood semantics are essential if the ontology is to be used
within a community for information exchange.

Semantics is a prerequisite for reasoning support. Reasoning support is impor-
tant because it allows one to:

• check for inconsistencies of the ontology and the knowledge;

• check for unintended relationships between classes;

• automatically classify instances in classes.

Automated checking like the preceding ones are valuable for designing large on-
tologies, where multiple authors are involved, as well as for integrating and sharing
ontologies from di�erent sources.

In designing a powerful ontology language one should be aware of a trade-o�
between su�cient expressive power (what language can say) and e�cient reason-
ing support (whether the language is computable in real-time). The richer the
language is, the more ine�cient the reasoning support becomes. Therefore a com-
promise should exist - a language that can be supported by e�cient reasoners
while being su�ciently expressive to design large ontologies.

The W3C has given a �nal approval to two key Semantic Web technologies,
the revised Resource Description Framework (RDF) and Web Ontology Language
(OWL), which will be brie�y described in the following subsections.

10 Chapter 1. Semantic Web Vision

1.3.1 RDF
The Resource Description Framework (RDF) [RDF03], developed by World-Wide
Web Consortium (W3C), provides a framework for describing and exchanging
metadata on the Web. It allows descriptions of Web resources to be made publicly
available in a machine understandable form through the Uniform Resource Identi-
�er (URI). With the de�ned semantics services can develop processing mechanisms
to exchange information between applications.

The motivation for introducing RDF in the Semantic Web came from well-
known limitations of XML markup language. Despite its characteristics for data
interchange between applications, as well as providing parsers, it does not provide
any semantics associated to the data.

The RDF basic concept is built upon describing resources through a collection
of properties, called RDF Description, each of them consisting of property type
and value (Fig. 1.2). Resources can be thought as "things" that will be talked
about. They can be authors, books, publishers, places, people, hotels, rooms, etc.
Every resource is assigned an URI. An URI can be an URL (Uniform Resource
Locator, or Web address) or some other identi�er that does not necessarily enable
access to the resource.

Figure 1.2: RDF model

RDF uses XML model and syntax to describe resources. It utilizes the XML
Namespace facility, which points to an URI, to uniquely identify set of proper-
ties, commonly called the schema. Multiple namespaces can be used to provide
properties in a single rdf document.

Properties are a special kind of resources, that describe relations between re-
sources, for example "written by", "age", "title", and so on. Properties in RDF
are also de�ned with URIs (in practice with URLs).

Chapter 1. Semantic Web Vision 11

An RDF document consists of statements, combinations of a resource, a prop-
erty and a value assigned to that property. Values can either be resources or literals
(Fig. 1.3). Literals are atomic values (strings), the structure which is not further
discussed.

Figure 1.3: RDF generic model

RDF statements are written in triples: subject, predicate and object. The re-
lationship of the RDF Schema with the RDF document is as follows: classes are
mapped to subjects and predicates to properties. RDF statements present the main
idea of creating semantics and describing relationships between objects, while the
RDF Schema contains interpretations of information given in the statement.

An example of a statement is
Alisa Devlic is the author of the Master thesis.

The simplest way of interpreting this statement is to use the de�nition and con-
sider the triple:

(http://www.tel.fer.hr/masterThesis.pdf, http://www.mydomain.org/author,
"Alisa Devlic").

The triple (x, P, y) can be thought of as a logical formula P(x, y), where the
binary predicate P relates the object x to the object y. RDF o�ers only binary
predicates (properties). It is important to notice that the property "author" and
one of the two objects are identi�ed by URLs, whereas the other object is simply
identi�ed by string.

The graph representation of the correspondent statement is presented on Fig. 1.4.
An RDF graph consists of nodes represented as ovals and contain their RDF
URI references where they have them, all the predicate arcs labelled with RDF

12 Chapter 1. Semantic Web Vision

Figure 1.4: Graph representation of a triple

URI references and plain literal nodes written in rectangles [rdf04c]. Graphs are
a powerful tool for human understanding. But the Semantic Web vision requires
machine-accessible and machine-processable representations.

Therefore, the third and the o�cial RDF speci�cation de�nes an XML repre-
sentation of RDF and the following serialization represents the given statement:

<?xml version="1.0" encoding="UTF-16"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:mydomain="http://www.mydomain.org/my-rdf-ns">

<rdf:Description
rdf:about="http://www.tel.fer.hr/masterThesis.pdf">
<mydomain:author>Alisa Devlic</mydomain:author>

</rdf:Description>

</rdf:RDF>

The RDF document begins with an XML element with the tag rdf:RDF [AvH04].
The content of this element is a number of descriptions, that use rdf:Description
tags. Every description makes a statement about a resource, identi�ed in one of
the three possible ways:

• using an about attribute to reference an existing attribute;

• an ID attribute to create a new resource;

• without a name, creating an anonymous resource.

The rdf:Description element in the example above makes a statement about the
resource http://www.tel.fer.hr/masterThesis.pdf. Within the resource, the prop-
erty author is used as a tag, and the value of the property is represented by a
literal "Alisa Devlic".

1.3.2 RDF Schema
RDF doesn't have a built-in mechanism for de�ning properties and describing re-
lationships between resources and properties. That is the task of the RDF Schema

Chapter 1. Semantic Web Vision 13

(RDFS). It speci�es how to use RDF to describe RDF vocabularies. This speci�-
cation provides modelling primitives for expressing information in the Web.

Resources are de�ned as instances of one or more classes that can contain
properties and they are described with the hierarchy of classes and subclasses.

Classes are themselves resources that are often identi�ed with RDF URI ref-
erences and may be described using RDF properties.

The core classes are [rdf04a]:

• rdfs:Resource, the class of all resources;

• rdfs:Class, the class of all classes;

• rdfs:Literal, the class of literal values such as strings and integers;

• rdfs:DataType, the class of RDF datatypes; each instance of rdfs:DataType
is a subclass of rdfs:Literal ;

• rdf:XMLLiteral, the class of XML literals values, and an instance of rdfs:DataType;

• rdf:Property, the class of all properties.

Properties are de�ned with domain and range of classes. The domain of a
property refers to the class the property belongs to, and it is not restricted to a
single class. The range represents the type of values the property can assume, and
that can be simple data types or further classes having its own properties.

Core properties for de�ning relationships are:

• rdf:type, that relates resource to its class;

• rdfs:subClassOf, that relates a class to one of its superclasses; all instances
of a class are subclasses of its superclass;

• rdfs:subPropertyOf, that relates a property to one of its superproperties.

An example is provided stating that all assistants are faculty members:

<rdfs:Class rdf:about="assistant">
<rdfs:subClassOf rdf:resource="facultyMember"/>

</rdfs:Class>

Often it is useful to provide more information about a resource for human
readers with the following properties:

14 Chapter 1. Semantic Web Vision

• rdfs:label, associates a human-friendly name (label) to a resource;

• rdfs:comment, associates comments, typically longer text to a resource.

Core properties for restricting properties are:

• rdfs:domain, that speci�es a domain of a property;

• rdfs:range, that speci�es a range of a property.

Here is an example, stating that lab exercises apply to assistants only and that
their value is always a literal.

<rdf:Property rdf:ID="labExercise">
<rdfs:comment>
It is a property of assistants and takes literals as values.

</rdfs:comment>
<rdfs:domain rdf:resource="#assistant"/>
<rdfs:range rdf:resource="&rdf;Literal"/>

</rdf:Property>

Utility properties used to describe resources and de�ne links to resources on
the Web are:

• rdfs:seeAlso, relates resource to another resource that explains it;

• rdfs:isDe�nedBy, relates a resource to the place where its de�nition, typically
RDF Schema, is de�ned;

• rdf:value, idiomatic property used to describe structured values.

Container classes and properties are used to represent collections. Three dif-
ferent kinds of containers are de�ned, as well as the RDF container class itself:

• rdf:Bag, the class of bags used to indicate that properties in the container
are intended to be unordered;

• rdf:Seq, the class of sequences used to indicate the numerical ordering of the
container membership properties;

• rdf:Alt, the class of alternatives used to indicate that one of the members of
the container will be selected;

• rdfs:Container, the superclass of all container classes including the three
preceding ones.

Chapter 1. Semantic Web Vision 15

The class rdf:ContainerMembershipProperty has as instances container member-
ship properties, that are used to state that a resource is member of the container.

Container membership properties are referenced with the property rdfs:member,
that represents a superproperty of all container membership properties.

Rei�cation classes and properties de�ne a vocabulary for describing RDF state-
ment without stating them.

• rdf:Statement, the class of all rei�ed statements;

• rdf:subject, that relates a rei�ed statement to its subject;

• rdf:predicate, that relates a rei�ed statement to its predicate;

• rdf:object, that relates a rei�ed statement to its object.

Querying in RDQL

RDQL (RDF Data Query Language) has been implemented in a number of RDF
systems for extracting information from RDF graphs. Therefore it is referenced as
a query language for RDF. The reason why a new query language is introduced
instead of using XML query language lies in the fact that XML is located at a
lower level of abstraction than RDF.

XPath is a language for addressing and querying XML documents [xpa99].
Since XML can have di�erent representations of a statement, di�erent XPath
queries would have to be written for each form [AvH04]. A better solution is to
write queries at the level of RDF.

Currently, there is no standardized query languages for RDF and RDFS. RDQL
has a status of a member submission at W3C [rdq04], meaning that it is still a
subject to change.

An RDF model is a graph, often represented in triples. RDQL preserves a
graph pattern, expressed as a list of triple patterns. Each triple pattern consists
of named variables and RDF values (URIs and literals). An RDQL query can
additionally have a set of constraints on the values of those variables, and a list of
the variables required in the answer set. An example of RDQL query is provided
on the Fig. 1.5.

This query matches all statements in the graph that have the predicate
http://www.w3.org/1999/02/22-rdf-syntax-ns#type and the object
http://example.com/someType. The variable "?x" will be bound to the label of
the subject resource, and all such "x" will be returned as a result.

16 Chapter 1. Semantic Web Vision

SELECT ?X
WHERE (?X, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://example.com/someType>)

Figure 1.5: RDQL query

RDQL was �rst released in Jena 1.2.0. Since then the following systems are
known that provide RDQL:

• Jena [Jen]

• RDFStore [rdf04b]

• Sesame [ses05]

• PHP XML Classes [php]

• 3Store [3st04]

• RAP - RDF API for PHP [rap04]

In addition, RDQL is one language used for remote query by the Joseki RDF
Server [jos03]. Joseki is a server for publishing RDF models on the web.

1.3.3 OWL
The expressivity of RDF and RDF Schema, de�ned as a measure of the range of
constructs that can be use to formally, �exibly, explicitly, and accurately describe
the components of ontology, is very limited. RDF is limited to binary predicates
and RDF Schema is limited to a subclass hierarchy and a property hierarchy, with
domain and range de�nitions of these properties. Therefore a need for a more
powerful ontology modelling language has appeared.

This led to a joint initiative of a number of research groups from the United
States and Europe to de�ne a richer language, called DAML+OIL [dam01]. The
name is a join of the U.S. proposal DAML-ONT [dam00] and the European lan-
guage OIL [oil00].

DAML+OIL was a starting point for the W3C Web Ontology Working Group
in de�ning OWL, a language that would be broadly accepted and standardized
ontology language in Semantic Web. OWL is developed as a vocabulary extension
of RDF and is derived from the DAML+OIL Web Ontology Language.

Chapter 1. Semantic Web Vision 17

OWL is designed for use by applications that need to process the content of
information instead of just presenting information to humans [owl04]. It facili-
tates greater machine interpretability of Web content than that is supported by
XML, RDF, RDF Schema by o�ering additional vocabulary along with a formal
semantics.

Ideally, OWL would be an extension of RDF Schema, where RDF meaning
of classes and properties would be preserved, and additional language primitives
to support the richer expressiveness required would be added. Such an extension
would be consistent to the layered structure of Semantic Web architecture, but
would work against obtaining expressive power and e�cient reasoning.

To ful�ll the full set of requirements for an ontology language, OWL is de�ned
as three increasingly expressive sublanguages: OWL Lite, OWL DL, and OWL
Full, each geared towards ful�lling di�erent aspects of this requirements set.

OWL Lite

OWL Lite [owl02] presents a subset of the full OWL language constructors, hav-
ing a few limitations. Unlike the full OWL language (and DAML+OIL), classes
can only be de�ned in terms of named superclasses and only certain kinds of re-
strictions can be used. Equivalence on classes, and subclass between classes are
allowed only on named classes. Similarly, property restrictions in OWL Lite use
named classes. OWL Lite also has a limited notion of cardinality - it only permits
cardinality values of 0 and 1.

The advantage of this sublanguage is that it is easier to grasp (for users)
and easier to implement (for tool builders). The disadvantage is its restricted
expressivity.

OWL DL

OWL DL (short for Description Logic) [owl04] is a sublanguage of OWL Full that
o�ers the users maximum expressiveness, while retaining computational complete-
ness (all conclusions are guaranteed to be computed) and decidability (all com-
putations will �nish in time) of reasoning systems. OWL DL includes all OWL
language constructs, but they can be used only under certain restrictions (for
example, while a class may be a subclass of many classes, a class cannot be an
instance of another class).

OWL DL is so named due to its correspondence to description logics [BCM+02],
a �eld of research that has studied a particular decidable fragment of �rst order

18 Chapter 1. Semantic Web Vision

logic. OWL was designed to support the existing Description Logic and has de-
sirable computational properties for reasoning systems. The disadvantage is that
a full compatibility with RDF is lost: an RDF document needs to be extended in
some ways and restricted in others to become a legal OWL document. But, every
legal OWL DL document is a legal RDF document.

OWL Full

The entire language is called OWL Full and uses all the OWL language primi-
tives. It also allows combining these primitives in arbitrary ways with RDF and
RDF Schema, enabling the possibility to augment the meaning of the prede�ned
(RDF or OWL) vocabulary by applying the language primitives to each other.
For example, in OWL Full a class can be treated simultaneously as a collection of
individuals and as an individual in its own right.

The advantage of OWL Full is its full upward compatibility with RDF, both
syntactically and semantically. But it is unlikely that any reasoner will support
every feature of OWL Full, thus imposing no computational guarantees. The lan-
guage has become so powerful to be undecidable, without any hope of complete
(or e�cient) reasoning support.

Ontology developers should consider to adapt the OWL sublanguage that best
suits their needs. Each of these languages is an extension of its simple predecessor,
both in what can be legally expressed and in what can be validly concluded. The
following set of relations hold:

• Every legal OWL Lite ontology is a legal OWL DL ontology;

• Every legal OWL DL ontology is a legal OWL Full ontology;

• Every valid OWL Lite conclusion is a valid OWL DL conclusion;

• Every valid OWL DL conclusion is a valid OWL Full conclusion.

The choice between OWL Lite and OWL DL depends on the extent to which users
require the more expressive constructs provided by OWL DL. The choice between
OWL DL and OWL Full mainly depends on the extent to which users require
the meta-modelling facilities of RDF Schema (e.g. de�ning classes of classes, or
attaching properties to classes). When using OWL Full as compared to OWL DL,
reasoning support is less predictable since complete OWL Full implementations
will not be possible.

Chapter 1. Semantic Web Vision 19

OWL syntax

OWL builds on RDF and RDF Schema and uses RDF's XML syntax. The OWL
syntax will be explained on simple examples.

OWL documents are commonly called OWL ontologies and are RDF docu-
ments. An OWL document consists of optional ontology headers (generally at
most one), plus a number of classes and properties de�nitions and facts about
individuals.

The header of OWL ontology begins with an rdf:RDF element, that specify
the number of namespaces.

<rdf:RDF
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-synatx-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#">

Classes are de�ned using an owl:Class element. The following representation
de�nes a class Professor as follows:

<owl:Class rdf:ID="Professor">
<rdfs:subClassOf rdf:resource="#AcademicStaff"/>

</owl:Class>

This way the class Professor is de�ned as a subclass of the class Academic-
Sta�. To emphasize that this class is disjoint from the assistantProfessor class, an
owl:disjointWith element can be used:

<owl:Class rdf:about="#Professor">
<owl:disjointWith rdf:resource="#AssistantProfessor"/>

</owl:Class>

Equivalence of classes can be expressed with owl:equivalentClass element:

<owl:Class rdf:ID="FacultyMember">
<owl:equivalentClass rdf:resource="#AcademicStaff"/>

</owl:Class>

Two OWL class identi�ers are prede�ned, namely the classes owl:Thing and
owl:Nothing. The former is the most general class, representing a set of all indi-
viduals, and the latter is the empty set.

An enumeration class description is used in OWL to list individuals that are the
instances of the class. It is de�ned with owl:oneOf property. The list of individuals
is usually represented with RDF construct rdf:parseType="Collection", for a set
of list elements:

20 Chapter 1. Semantic Web Vision

<owl:Class rdf:ID="Continents">
<owl:oneOf rdf:parseType="Collection">

<owl:Thing rdf:about="#Europe"/>
<owl:Thing rdf:about="#Asia"/>
<owl:Thing rdf:about="#Africa"/>
<owl:Thing rdf:about="#NorthAmerica"/>
<owl:Thing rdf:about="#SouthAmerica"/>
<owl:Thing rdf:about="#Australia"/>
<owl:Thing rdf:about="#Antarctica"/>

</owl:oneOf>
</owl:Class>

OWL distinguishes between two types of properties when building an ontology:

• Object properties, that link individuals to other individuals;

• Datatype properties, that link individuals to datatype values.
An object property is de�ned as an instance of the built-in OWL class

owl:ObjectProperty. Here is an example of an object property:
<owl:ObjectProperty rdf:ID="isLedBy">

<rdfs:domain rdf:resource="#labExercise"/>
<rdfs:range rdf:resource="#assistant"/>

</owl:ObjectProperty>

A datatype property is de�ned as an instance of the built-in OWL class
owl:DatatypeProperty. Here is an example of an datatype property:
<owl:DatatypeProperty rdf:ID="name">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
</owl:DatatypeProperty>

Both owl:ObjectProperty and owl:DatatypeProperty are subclasses of the RDF
class rdf:Property. RDF Schema constructs, such as: rdfs:subPropertyOf, rdfs:subClassOf,
rdfs:domain and rdfs:range, can be applied to an OWL document.

Equivalence of properties can be de�ned through the use of the element
owl:equivalentProperty :
<owl:ObjectProperty rdf:ID="lectures">

<owl:equivalentProperty rdf:resource="#teaches"/>
</owl:ObjectProperty>

OWL also provides a construct owl:inverseOf to de�ne an inverse relation between
properties:
<owl:ObjectProperty rdf:ID="leads">

<owl:inverseOf rdf:resource="#isLedBy"/>
</owl:ObjectProperty>

Property restrictions are a special kind of class description, describing a class
of all individuals that satisfy a certain restriction. OWL distinguishes two types
of property restrictions: value constraints and cardinality constraints.

Chapter 1. Semantic Web Vision 21

• A value constraint puts constraints on the range of the property when applied
to this particular class description. Value constraints are: owl:allValuesFrom,
owl:someValuesFrom, and owl:hasValue;

• A cardinality constraint puts constraints on the number of values a property
can take. OWL provides three constructs for restricting the cardinality of
properties locally within a class context: owl:maxCardinality, owl:minCardinality,
and owl:cardinality.

owl:allValuesFrom is used to specify the class of possible values the property
speci�ed by owl:onProperty can take. A simple example declares that all under-
graduate courses are led by academic sta� members:
<owl:Class rdf:about="#UndergraduateCourse">

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#isLedBy"/>
<owl:allValuesFrom rdf:resource="#AcademicStaff"/>

</owl:Restriction>
</rdfs>subClassOf>

</owl:Class>

owl:someValuesFrom is used to specify the class of individuals for which at
least one value of the property concerned is an instance of the class description or
a data value in the data range. The following example declares that all academic
sta� members must teach at least one undergraduate course:
<owl:Class rdf:about="#AcademicStaff">

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#teaches"/>
<owl:someValuesFrom rdf:resource="#UndergraduateCourse"/>

</owl:Restriction>
</rdfs>subClassOf>

</owl:Class>

owl:hasValue states a speci�c value that the property speci�ed by owl:onProperty
must have. The following example declares that NetworkMobilityCourse is taught
in the nineth semester.
<owl:Class rdf:about="#NetworkMobilityCourse">

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#isTaughtIn"/>
<owl:hasValue rdf:resource="#9thSemester"/>

</owl:Restriction>
</rdfs>subClassOf>

</owl:Class>

owl:maxCardinality describes a class of all individuals that have at most N
semantically distinct values for the property concerned, where N is the value of
the cardinality constraint. Similarly, owl:minCardinality describes a class of all

22 Chapter 1. Semantic Web Vision

individuals that have at least N semantically distinct values for the property con-
cerned. For example, it can be declared that a department needs to have at least
ten and at most �fty members:
<owl:Class rdf:about="#Department">

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasMember"/>
<owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">10</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasMember"/>
<owl:maxCardinality
rdf:datatype="&xsd;nonNegativeInteger">50</owl:maxCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

A restriction containing owl:cardinality constraint describes a class of all in-
dividuals that have exactly N semantically distinct values for the property con-
cerned, where N is the value of the cardinality constraint. The following example
declares that a PhD student must have exactly two supervisors:
<owl:Class rdf:about="#PhDStudent">

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasSupervisor"/>
<owl:cardinality
rdf:datatype="&xsd;nonNegativeInteger">2</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Some properties of property elements can be de�ned directly:

• owl:TransitiveProperty de�nes a transitive property, such as "has better
grade than", "is taller than", or "is parent of";

• owl:SymmetricProperty de�nes a symmetric property, such as "has same
grade as";

• owl:FunctionalProperty de�nes a property that can take at most one value,
such as "age" or "height";

• owl:InverseFunctionalProperty de�nes a property for which two di�erent
individuals cannot have the same value, for example "isTheSocialSecuri-
tyNumberFor".

Chapter 1. Semantic Web Vision 23

It is possible to use Boolean combinations (union, intersection and comple-
ment) of classes in OWL ontology, expressed with the following constructs: owl:unionOf,
owl:intersectionOf and complementOf. Boolean combinations can be nested arbi-
trarily. The following example de�nes administrativeSta� to be those sta� mem-
bers that are neither faculty nor technical support sta�:

<owl:Class rdf:ID="AdminStaff">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#StaffMember"/>
<owl:Class>

<owl:complementOf>
<owl:Class>

<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Faculty"/>
<owl:Class rdf:about="#TechSupportStaff"/>

</owl:unionOf>
</owl:Class>

</owl:complementOf>
</owl:Class>

</owl:intersectionOf>
</owl:Class>

1.4 Semantic Web services
World Wide Web is transforming from a collection of static web pages for browsing,
to become a web of interactive, automated, and intelligent services that interoper-
ate through the Internet. Multiple web services will interoperate to perform tasks,
provide information, transact business, and generally take action for users, dy-
namically and on demand. That is very important for conducting business faster
and more e�ciently than before.

Today web services are discovered and invoked by human users, limiting the
ability to dynamically discover and interact with each other autonomously, thus
reducing the need for human mediation.

The problem that arises with the existing web services model is to match user
requestors with service providers, in order to �nd the most appropriate service that
meets users' needs. The problem is even bigger because the amount of information
and available services on the web grows rapidly every day.

1.4.1 Overview of OWL-S
OWL-S provides a set of constructs for modelling Web services to be machine-
interpretable. These constructs are de�ned in OWL language.

OWL-S is expected to accomplish the following tasks:

24 Chapter 1. Semantic Web Vision

• Automated Web service discovery - is an automated process for location of
Web services that can provide a particular class of service capabilities, that
adhere to client-speci�ed constraints. Rather than having user to manually
conduct search for a service, the information describing the service could be
expressed in OWL-S and a search agent could then read and interpret such
descriptions ("advertisements") and �nd a suitable match;

• Automated Web service invocation - is the automatic invocation of a Web
service by a computer program or an agent, with given only an ontology de-
scription of the service. To do the speci�ed, an agent has to understand the
inputs required from the service, the outputs provided, and how to execute
the service automatically. OWL-S provides a declarative API for Web ser-
vices that includes semantic of the arguments to be speci�ed when executing
the calls to services, as well as the semantics of what is returned in messages
when services succeed or fail;

• Automated Web service composition and interoperation - involves the auto-
mated selection, composition, and interoperation of Web services to perform
some more complex task. This process needs to be automated, which im-
plies that the prerequisites and consequences of individual services have to
be available to the composing agent.

OWL-S is a OWL-based Web service ontology, which has been developed to
provide a core set of markup language constructs for describing the properties and
capabilities of Web services. The OWL-S (formerly DAML-S) provides three types
of knowledge associated to a Web service: Service Pro�le (what the service does),
Service Model (how the service works), and Service Grounding (how to use the
service). The structure of OWL ontology is presented on Fig. 1.6, consisting of
four classes each aimed to enable execution of one of the main Web service tasks.

The class Service provides an entry point for any Web service description. One
instance of Service will exist for each published Web service. Properties presents,
supports, and describedby are properties of Service. Classes ServicePro�le, Service-
Model, and ServiceGrounding present ranges of these properties, respectively. Each
of these classes provides an essential type of knowledge about particular service,
as it is explained below.

The Service Pro�le provides the information needed for an agent to discover
the service and to decide whether the service ful�lls its demands. More speci�cally,

Chapter 1. Semantic Web Vision 25

Figure 1.6: OWL service ontology

it speci�es capabilities of the Web service by stating the inputs that are expected
by the Web service as well as the outputs produced by it.

The Service Model, on the other hand, gives a description how the service
works by decomposing the service into consistent sub-processes. It describes how
to request the service and what outcomes will occur when the service is carried
out. The exact functionality is presented through a process model (i.e. through
the Process ontology and Process Control ontology).

Finally, the Service Grounding speci�es the details how an agent can access the
service. Typically, the grounding speci�es the communication protocol, message
formats, and other service-speci�c details, such as used port number in contacting
the service.

The upper ontology for services speci�es only two cardinality constraints: a
service can be described by at most one service model, and a grounding must be
associated with exactly one service.

Due to the understanding of implementation of the matchmaking algorithm,
that is explained in the next section, the Service Model will be further elaborated.

1.4.2 Service Process Model
OWL-S distinguishes three types of processes: atomic, simple, and composite.
Atomic processes correspond to operations the provider can perform directly, in a
single interaction. They have no subprocesses and execute in a single step. Simple
processes are used as elements of abstraction. They can be thought of as having
single-step executions, but are not invocable. Composite processes are collections
of processes (either atomic or simple) organized on the basis of some control �ow

26 Chapter 1. Semantic Web Vision

structure that is speci�ed by control constructs.
The OWL-S speci�es the following control constructs:

• Sequence

• Split

• Split+Join

• Choice

• Any-Order

• If-Then-Else

• Iterate

• Repeat-While

• Repeat-Until

The Sequence construct de�nes a composite process whose subprocesses are exe-
cuted one after the other; the components of the Split process are a bag of processes
to be executed concurrently; with Split+Join some of component subprocesses are
joined to be executed concurrently, thus having a partial synchronization; the Any-
Order construct allows the process components to be executed in some unspeci�ed
order, but not concurrently; the Choice construct is used for non-deterministic
choices between alternative �ows; the If-Then-Else class is used for conditional
expressions; the Iterate construct does not de�ne how iterations are made or
when they are initiated, terminated, or resumed. It serves as an abstract class
for Repeat-While and Repeat-Until constructs. Both of these constructs iterate
until a condition becomes false or true, following familiar programming language
conventions.

Chapter 2

Semantic agents

Agents are pieces of software that work autonomously and proactively. They per-
form tasks on behalf of a user or other agent. Intelligent agents are agents that
incorporate some reasoning or planning. Agents can be viewed as a model for
distributed intelligence or a new model for developing software to interact over
a network. Conceptually they evolved out of the concepts of object-oriented pro-
gramming and component-based software development.

The Sematic Web is based on the idea of dynamic, heterogeneous, shared
knowledge sources providing machine-understandable content in a similar way to
that in which information is shared on the World Wide Web. To this extent, agents
could use this knowledge to achieve their own goals, producing new knowledge that
could be disseminated or published within a common framework. The e�ectiveness
of such software agents will increase exponentially when more machine-readable
Web content and automated services (including agents) will be available.

Semantic agents represent a term envisioned for a set of agents running around
the Web, being able to perform complex actions on behalf of their users. In com-
pletion of its actions, an agent will receive some tasks and preferences from the
user, seek information from Web sources, communicate with other agents, com-
pare information about user requirements and preferences, select certain choices,
and give answers to the user [AvH04].

This chapter is organized as follows: Section 2.1 deals with intelligent software
agents, also called semantic agents, that reason about the knowledge incorporated
in Semantic Web services. Section 2.1.1 gives a de�nition of an agent, while an
agent classi�cation is outlined in Section 2.1.2. Section 2.2. describes a concept of
semantic matchmaking, that is realized through the implementation of an OWL-S
matchmaking algorithm, fully explained in Section 2.2.1. Section 2.3 introduces

27

28 Chapter 2. Semantic agents

JADE, an agent platform chosen for implementation of semantic agents, and its
add-on for mobile devices, LEAP, discussed in Section 2.3.1.

2.1 Intelligent software agents

2.1.1 Agent de�nition
The general de�nition of the agent, accepted in the thesis is [Her96]:
An agent is de�ned as a hardware or (more usually) software-based computer sys-
tem that enjoys the following properties:

• autonomy - agents operate without the direct intervention of humans or
others, and have some kind of control over their actions and internal state;

• social ability - agents interact with other agents (and possibly humans) via
some kind of agent communication language;

• reactivity - agents perceive their environment (which may be the physical
world, a user via graphical user interface, a collection of other agents, the
Internet, or perhaps all of these combined), and respond in a timely fashion
to changes that occur in it;

• pro-activeness - agents do not simply act in response to their environment,
they are able to exhibit goal-directed behavior by taking the initiative;

• temporal continuity - agents are continuously running processes (either run-
ning active in the foreground or sleeping/passive in the background), not
once-only computations or scripts that map a single input and then termi-
nate;

• goal orientedness - an agent is capable of handling complex, high-level tasks.
The decision how such a task is best split-up in smaller subtasks, in which
order and in which way these subtasks should be best performed, should be
made by an agent itself.

This group of characteristics give a global impression of what an agent is and
are connected to the weak notion of the concept "agent".

Intelligent software agents are a popular research object nowadays in the �elds
of psychology, sociology, and computer science. Agents are most intensely studied

Chapter 2. Semantic agents 29

in the discipline of Arti�cial Intelligence (AI). Therefore the AI research commu-
nity has given a "stronger" and more speci�c de�nition of an agent than that
is sketched out above. In addition of having the previously de�ned properties, an
agent is meant to have more human-like characteristics, such as: knowledge, belief,
intention, emotion, and obligation.

Agents that �t into the stronger notion of agent have one or more following
characteristics:

• mobility - the ability of an agent to move around an electronic network;

• benevolence - the assumption that agents do not have con�icting goals, and
that every agent will therefore always try to do what is asked of it;

• rationality - the assumption that an agent will act in order to achieve its
goals and will not act in such a way as to prevent its goals to be achieved,
at least insofar as its beliefs permit;

• adaptivity - an agent should be able to adjust itself to the habits, working
methods and preferences of its user;

• collaboration - an agent should not unthinkingly accept (and execute) in-
structions, but should take into account that the human user makes mis-
takes (e.g. give an order that contains con�icting goals), omits important
information, and/or provides ambiguous information. For instance, an agent
should check things by asking questions to user, or use a built-up user model
to solve problems like these. An agent should even be allowed to refuse to
execute certain tasks, because (for instance) they would put an unaccept-
ably high load on the network resources or because it would cause damage
to other users.

2.1.2 Agent classi�cation
Agents may be usefully classi�ed according to the subset of the properties that
they enjoy. They can be further classi�ed according to the tasks they perform, for
example as [Lov99]:

• information;

• cooperation;

• transaction agents.

30 Chapter 2. Semantic agents

Information agents provide operations of information retrieval and �ltering, as
well as information providing. Cooperation agents usually cooperate together to
solve some complex problem. Transaction agents perform speci�c tasks in business
process management, such as transaction handling and supervision in e-commerce,
manufacturing, etc.

2.2 Semantic matchmaking
In the Semantic Web vision, services are meant to be capable of being discovered,
invoked, composed, and monitored automatically by software agents. In the thesis
a semantic matchmaking agent will be presented, i.e. an intelligent software agent
that �rst solves the problem of semantically discovering required Web services
and then compares the discovered service with advertised services, in order to �nd
the most appropriate service that meets user's needs [MDT05]. It requires the
user's requested service and service provider's advertised services to be described
in OWL-S, an OWL-based language for describing service capabilities, and it uses
the implemented matchmaking algorithm to perform a semantic matchmaking of
user requests with advertisements from service providers.

The terminology used in the thesis consists of entities that make use of Web
services: service requester and service provider.

The entity that seeks to invoke an external Web service in order to ful�ll its
task is called service requestor. The service that the requestor seeks to invoke is
referred to as the requested service. The requested service is not an actual service,
but an ideal abstraction of a Web service.

Any entity that provides a Web service is referred to as the service provider
and the Web service he is o�ering is called the advertised service. Ideally, if it
happens that the advertised service is exactly what the requester was looking for,
then the advertised service exactly matches the required service.

2.2.1 OWL-S Matchmaking algorithm
The goal of the matchmaking algorithm is to assist a software agent in selecting
the most suitable Web service for given user preferences.

The algorithm will decide if a Web service, based on the available semantic
information encoded in OWL-S, ful�lls requirements speci�ed by the user in the
requested service. More speci�cally, it will match advertised service parameters

Chapter 2. Semantic agents 31

with requested capabilities (parameters). This match will result with some match-
ing degree, a ranking result. Such a ranking will eventually become necessary since
it is highly unlikely that there will always be a service that o�ers the exact func-
tionality the user requests. Based on these rankings, a user (or an agent that acts
on behalf of user) can decide if he wants to make use of a Web service that does
not match exactly the desired functionality or can use the service that match this
functionality to some extent.

Matchmaking algorithms, presented so far, have been based on Service Pro-
�le, and have operated by comparing the required inputs and outputs against the
advertised inputs and outputs. The intention of the thesis is to utilize the service
model, based on the key concept of process, to enhance the service matchmaking.
The process model does not just describe service in terms of inputs, outputs, pre-
conditions, and e�ects, but decomposes the service into component subprocesses,
and by doing this gives an insight into the manner how inputs are transformed into
outputs. The DAML-S matchmaking algorithm, based on service process model
and developed at the University of South Carolina [Ban02], has been modi�ed and
extended in this work to support semantic matchmaking of Web services written
in OWL-S. The details about the algorithm functionality and its implementation
are described further in the text.

For example, imagine an OWL-S advertisement for the location-aware content
delivery Web service. As it is shown in Fig. 2.1, such a composite service is consid-
ered to be a sequence of processes corresponding to the retrieval of the geographi-
cal map that presents user's located area, choosing target location, determination
of the content type user wants to receive on his mobile terminal (e.g. tra�c or
weather information), and subscribing to the selected content [TDJ+05]. In the
process of determination of target location where the selected content should be
checked, the user can choose the target location either by selecting the landmark
or by letting the service to determine his current location. Furthermore, when
selecting the landmark, the user has the option to specify whether he wants to
choose bookmarked landmark, mark the landmark using the map, or simply write
the landmark name. Inputs expected from the user and outputs returned will be
di�erent in each case.

In case the user wants to select a landmark when using location-aware content
delivery service, the traditional matchmaking based on the service pro�le would
result with successful match only if the user provided inputs for all three possible
options. However, by using the process model, the user has the ability to di�eren-

32 Chapter 2. Semantic agents

Figure 2.1: OWL-S model of the location-aware content delivery Web service

tiate among possible options and obtain a successful match by accepting an input
corresponding to only one of these options.

The user can choose which parts of the OWL-S service description will use.
The hierarchical decomposition of processes leads to the tree representation, where
the root corresponds to the composite node representing the entire Web service
and leaves correspond to atomic processes. As it can be seen in Fig. 2.1 the root
node represents the entire location-aware content delivery service, and leaf nodes
correspond to atomic processes of the service advertisement. Atomic nodes with
corresponding inputs and outputs are listed in the Table 2.1.

Due to the better understanding of the algorithm, a matching degree is de�ned
since it is not particularly useful to determine that an advertisement and the query
are semantically incompatible. Based on the semantical equivalence of the query
and the advertisement, following categories of matching degrees have been de�ned:

• Exact. The match is said to be exact when the requested service is the same
as the advertised service;

• PlugIn. A plug-in match results when the requested service is subsumed by
the advertised service. Hence, the advertised service can be substituted or

Chapter 2. Semantic agents 33

plugged-in in place of the requested service. Such a match is less accurate
but is also capable of satisfying the request;

• Subsume. When the requested service subsumes the advertised service, such a
match is called Subsume. Consequently, the advertisement will only partially
satisfy the request;

• Fail. The matchmaking results in failure if neither of the above matching
degrees is satis�ed.

These values have an ordering imposed on the following hierarchy: exact>plug-
in>subsume>fail.

Table 2.1: Inputs and outputs for the location-aware Web service advertisement

Atomic Process Inputs Outputs
Retrieve geographical map geographical map
Select bookmarked landmark bookmarked landmark landmark name
Mark landmark on map location on map landmark name
Input landmark name landmark name
Use detection of current location current location
Determine content type content type
Subscribe to content location-aware content

A sample query posted to the service advertisement can be constructed from
speci�cations in Fig. 2.1 and Table 2.1. It consists of inputs provided by the user
and expected outputs to be matched against inputs and outputs of the node,
respectively. The query could, for example, request a service that accepts a book-
marked landmark and sends a location-aware content as the output. Taking into
account the service process model illustrated in Fig. 2.1, the query results in a
positive match even all the possible inputs were not speci�ed, since it is possible
to execute the service with the inputs provided and produce the desired output.

The implemented algorithm employs a tree data structure to represent the
OWL-S Service Process Model advertisement and is recursive by nature. Each
type of composite nodes, as well as atomic nodes have their own matchmaking al-
gorithm. The matchmaking procedure starts by initiating matchmaking algorithm
at the root node, which in turn invokes the matchmaking process for its child
nodes, and so on until the process reaches leaf nodes of the advertisement tree.

34 Chapter 2. Semantic agents

Figure 2.2: OWL-S nodes class diagram

The inheritance hierarchy of the OWL-S nodes is depicted in Fig. 2.2 with the
UML class diagram. Each node type has its own algorithm for matching inputs
and outputs.

BTNode represents an abstract class (binary tree node) that is extended by
each node type, having the following data:

• children: an array of child nodes;

• matchSet : a set of outputs that are currently matched against the node;

• inputs : a list of inputs of the node;

• outputs : a list of outputs of the node.

Inputs and outputs are speci�ed only for the Atomic Node, the node with no
children. The matchSet of all the tree nodes is initially empty.

Split Node/Sequence Node

In the Split/Sequence node, inputs and outputs of the node are matched against
query inputs and query outputs. In case any of children nodes fails to match on
inputs, the entire sequence fails. Similarly, if desired outputs can be satis�ed by

Chapter 2. Semantic agents 35

all children collectively, the match is a success, otherwise a failure. Components
of a split process need to be executed concurrently, while a sequence consists of
subprocesses that have to be done in order.

The pseudocode for matching inputs of either a split or sequence node is the
following:

Algorithm 2.2.1: matchInputs(In, numChildren, children)

for i ← 0 to numChildren

do if children(i) does not match In

then
{
the entire sequence fails
return (false)

return (true)

In both algorithms (for matching inputs and outputs) numChildren denotes
the number of the children nodes. Variable children represents the children of the
sequence/split node, while In and Out are sets of inputs and outputs, respec-
tively. Due to the code simplicity and redundancy, variables numChildren and
children are written as arguments of both methods (matchInputs and matchOut-
puts), hence they are retrieved at the beginning of both methods.

The matchOutputs algorithm employs a recursion to �nd a distribution of the
outputs over the children. It matches all possible distributions of outputs before
returning a matching result.

The algorithm checks, at the beginning, if the list of outputs is empty and
returns true to indicate that all outputs were matched successfully. Also, at the
�rst call of the procedure, the matching degree is set to the maximum possible
(exact).

Then, the list of outputs is iterated and its �rst element is placed in the match-
Set of the �rst child node. The matchOutputs procedure is invoked recursively to
match outputs in the matchSet against the �rst child.

If the match fails, the output is removed from the child's matchSet, and in the
next iteration of the loop the output is matched against the next child of the node.
If the output holds a negation of the value, meaning that an advertised service
should not produce the desired output, it is removed from the other (already seen)
children's matchSet as well. In that case an overall matching degree is set to fails,
and false is returned as the result of matchmaking.

The outputs matching algorithm pseudocode is given here:

36 Chapter 2. Semantic agents

Algorithm 2.2.2: matchOutputs(In, Out, numChildren, children)

if Out is empty
then return (true)

if firstcall

then matchDegree ← exact

firstOutput ← iterate Out
for i ← 0 to numChildren

do

children(i).matchSet ← firstOutput

if children(i) matchOutputs (In, children(i).matchSet)

then

if matchDegree > children(i).matchDegree

then matchDegree ← children(i).matchDegree

if �rstOutput is not negated or (�rstOutput is negated
and i = numChildren− 1)

then

remove �rstOutput from Out
firstcall ← false
if matchOutputs(In, Out) and In is match
then return (true)

else

remove �rstOutput from children(i).matchSet
if �rstOutput is negated

then

for j = 0 to i

do remove �rstOutput from children(j).matchSet
matchDegree ← fails

return (false)

matchDegree ← fails

return (false)

If the match succeeds, remaining outputs in the list are matched against the
child's node through a recursive call to matchOutputs procedure. If the matching
of remaining outputs against the node completes successfully, the true value is
returned to indicate that all outputs from the current output onwards have been
successfully matched. If, however, it is not possible to match remaining outputs
against the entire node, the output is redrawn from the current's child matchSet
and is tried to be matched against the next child in the sequence.

This process continues until the current output is matched against all children
of the node. If no match is obtained for the current output or the remaining outputs
of the list, a false value is returned as a result of the matchOutputs procedure.

Chapter 2. Semantic agents 37

Choice Node

A choice node consists of a set of processes from which one or more processes is
selected to be executed. Inputs of this node are matched against query inputs. If
it happens that any of children nodes satis�es inputs speci�ed in the query, then
the entire node matches inputs.

Algorithm 2.2.3: matchInputs(In, numChildren, children)

for i ← 0 to numChildren

do if children(i) matchInputs In
then return (true)

return (false)

Outputs of the children of this node are matched against query outputs. If
outputs for any child node match, then the match for the entire choice node
succeeds. The highest match degree achieved among children nodes is set as the
overall match degree. Otherwise, if none of child nodes matches, the match fails
and a false value is returned as a result of the matchOutputs procedure.

Algorithm 2.2.4: matchOutputs(In, Out, numChildren, children)

matchDegree ← fails

for i ← 0 to numChildren

do if children(i) matchOutputs (In, Out)

then

if children(i).matchDegree > matchDegree

then matchDegree ← children(i).matchDegree

return (true)

return (false)

If-Then-Else Node

An If-Then-Else node selects one from two alternative processes for execution,
depending on whether the associated condition is evaluated as true or false. Thus,
two child nodes exist for the if-then-else node: the thenNode that corresponds to
the process executed if the condition evaluates to true, and the elseNode that
represents the process executed if the condition is set to false.

Inputs and outputs of this node are distributed over one of child nodes, de-
pending on the evaluated condition.

38 Chapter 2. Semantic agents

Algorithm 2.2.5: matchInputs(In, condition, thenNode, elseNode)

if condition = true

then
{
if thenNode matchInputs (In)
then return (true)

else
{
if elseNode matchInputs (In)
then return (true)

return (false)

Algorithm 2.2.6: matchOutputs(In, Out, condition, thenNode, elseNode)

if condition = true

then

if thenNode matchOutputs (In, Out)

then
{

matchDegree ← thenNode.matchDegree

return (true)

else

if elseNode matchOutputs (In, Out)

then
{

matchDegree ← elseNode.matchDegree

return (true)

return (false)

Atomic Node

An Atomic Node is, as its name says, an indivisible node - it has no subprocesses,
is directly invocable, and can be executed in one step from the user's perspective.

Matching of inputs and outputs is performed as operation of iterating all in-
puts/outputs of one list and comparing them to members of the other list. The
inputs denotes in the algorithm list of inputs of the node, while the In is the list
of query inputs. Similarly, the outputs de�nes the list of node outputs and the Out
represents the list of outputs speci�ed in the query.

The matching result also takes into account negated inputs/outputs, that can
be speci�ed in the query as requirements for the requested service, that it should
not request the speci�ed inputs or produce the given outputs. Both algorithms are
presented below:

Chapter 2. Semantic agents 39

Algorithm 2.2.7: matchInputs(In, inputs)

if inputs ⊂ In

then

if i ∈ inputs is not negated
then return (true)

else return (false)

else

if i ∈ inputs is negated
then return (false)

else return (true)

The subset operation, de�ned in the algorithm, is borrowed from the math set
terminology. It is used to determine the actual degree of match among two sets of
outputs. That is, instead of returning only true or false based on exact matches,
it uses the rule based engine to deduce if the match is exact, plug-in, subsumed,
or there is no match possible.

Algorithm 2.2.8: matchOutputs(In, Out, outputs)

matchDegree ← exact

if Out ⊂ outputs and matchInputs(In)

then

if o ∈ Out is not negated
then return (true)

else
{

matchDegree ← fails
return (false)

else

if ∃ o' ∈ Ontology (o' is a superclass of o ∈ Out) ⊂ outputs

then

if o ∈ Out is not negated

then

if matchDegree > plugIn

then matchDegree ← plugIn

return (true)

else
{

matchDegree ← fails

return (false)

else

if ∃ o' ∈ Ontology (o' is a subclass of o ∈ Out) ⊂ outputs

then

if o ∈ Out is not negated

then

if matchDegree > subsumes

then matchDegree ← subsumes

return (true)

else
{

matchDegree ← fails

return (false)

40 Chapter 2. Semantic agents

The algorithm sets the highest matching degree (exact) at the beginning. It
�rst checks if the inputs and outputs speci�ed in the query are contained in the
service advertisement. Then, it checks for each output from the query if it is
negated, and if true, returns false and sets the matching degree to the lowest one
(fail). Otherwise, it returns true.

If it happens that the output speci�ed in the query is not exactly the same
as the one contained in the advertisement, the algorithm checks if this output is
perhaps a subclass of any of the outputs speci�ed in the advertisement. If this is
the case (and if the output is not negated), it reduces the match degree to plugIn,
if the present match degree holds a higher value. Hence, if the output is negated,
the match fails, the match degree is set to fail, and false is returned as the result
of the procedure.

To determine the class hierarchy and its relations, there must exist an OWL
ontology, and it is speci�ed in the algorithm as an external variable, called Ontol-
ogy.

If the algorithm determines that the output speci�ed in the query subsumes the
output contained in the advertised service, it sets the match degree to subsumes,
if the current match degree is higher than this one. In case of negated output,
match process fails as it is described before.

Semantic agent for matchmaking of OWL-S service descriptions

The semantic agent that performs complex reasoning tasks, including interpret-
ing service provider advertisements and user queries, is equipped with two com-
ponents: OWL Inference Engine and OWL-S Matchmaker. The OWL Inference
Engine component is used to transform OWL �les (requested and advertised ser-
vice) in the form appropriate for the OWL-S Matchmaker component, that using
the matchmaking algorithm semantically compares transformed OWL �les and
calculates the degree of similarity between Web services.

In the context of e-market the semantic agent is called a broker agent (or a
middle agent), since it plays a brokerage role between the buyer agents, wishing
to purchase an access to a service that meets their needs, and the seller agents
representing the service providers, o�ering similar, but not the same services. Thus,
broker agents assist buyer agents in matchmaking of services, o�ered by one or
more seller agents in the e-marketplace.

Figure 2.3 shows matchmaking process in the e-market as well as broker com-
ponents used for matchmaking OWL-S service descriptions. In the matchmaking

Chapter 2. Semantic agents 41

Figure 2.3: Broker agent components

process a buyer agent (which acts on behalf of a user) sends a query to the broker
that compares the advertisements sent by seller agents (which act on behalf of
service providers) and chooses the most appropriate service according to match-
making algorithms.

The matchmaking process requires two di�erent reasoning tasks: to abstract
from query provider's required capabilities and to compare and match these capa-
bilities with what available providers can really do. In order to accomplish these
tasks the broker �rst uses OWL Inference Engine that, actually, represents OWL-
JessKB [owl] o�-the-shelf component for reasoning with OWL ontologies. Brokers
invoke OWLJessKB methods to load RDF as well as OWL documents. OWL-
JessKB uses Another RDF Parser (ARP), which is part of the Jena toolkit [Jen],
to parse RDF/OWL documents. The OWLJessKB component is used to convert
the OWL advertisement �le into a set of Subject-Verb-Object (SVO) triples. These
triples are then inserted into the Jess (Java Expert System Shell) [EH03] knowl-
edge base and the rules of the OWL language are then applied by Jess. Jess is a
rule-based engine used to create an agent knowledge base and populate it with
facts and rules used to deduce new information. The broker agent then queries Jess
to obtain the information necessary for building the advertisement tree. Finally,

42 Chapter 2. Semantic agents

the request query is parsed and the matchmaking process is performed by OWL-S
Matchmaker on the basis of previously described matchmaking algorithms.

The semantic (broker) agent that performs a matchmaking algorithm is imple-
mented in JADE agent platform, that is brie�y explained in the following section.

2.3 JADE agent platform
JADE (Java Agent DEvelopment Framework) [jad] is a leading open source FIPA
(Foundation for Intelligent Platform Agents) [�p] compliant agent platform. As a
consequence, JADE agents can communicate with other agents that comply with
the same standard. FIPA is an international non-pro�t association of companies
and organizations sharing the goal and the e�ort to produce standard speci�ca-
tions for agent technology. JADE represents a Java framework for development of
multi-agent systems. The goal of the JADE is to simplify development of interop-
erable intelligent multi-agent systems while ensuring standard compliance through
a comprehensive set of system services and agents.

JADE project has started in July 1998 as a joint development of Telecom Italia
Lab and Parma University. Currently, JADE development is driven by "JADE
board" composed of �ve industrial partners: TILAB, Motorola, Whitestein Tech-
nologies AG, Profactor GmbH, and France Telecom R&D.

The organizational structure of JADE is illustrated at Fig. 2.4 Basically, JADE
can be run on a single machine or split over several hosts (physical machines).
However, acting as a truly distributed system, JADE appears to the outside world
as a single entity. A JADE system consists of several Agent Container instances,
each one of them running in a separate Java Virtual Machine, but not necessarily
on di�erent hosts. The set of all containers is called the platform. A single special
Main Container must always be active in the platform and all other "normal"
containers register with it on startup. The main container is �rst started in a
platform and every other container has to be told where to �nd (host and port)
their main container.

Basically, agents are implemented as Java threads and live inside agent con-
tainers that represents runtime environment for their execution. Concurrent tasks
can still be performed by one agent, and JADE schedules these tasks in a more
e�cient way than the Java Virtual Machine does for threads.

As a FIPA-compliant agent platform, JADE consists of AMS (Agent Man-
agement System), DF (Directory Facilitator), and ACC (Agent Communication

Chapter 2. Semantic agents 43

Figure 2.4: The software architecture of JADE Agent Platform

Channel). The AMS provides the naming service functionality, meaning that it
ensures that each agent in the platform has a unique name, and it does so by
maintaining a directory of agent identi�ers (AIDs) and agent states. The agent
gets a valid AID when it registers with the AMS. AMS also represents the author-
ity in the platform that can create or kill agents on remote containers and there is
always one AMS per platform. Directory Facilitator is an agent that provides Yel-
low Pages service by means of which an agent can �nd other agents providing the
service he requires in order to achieve his goals. Agents wishing to advertise their
services register with the DF. Visiting agents can then ask (search) the DF looking
for agents which provide the services they desire. Agent Communication Channel
is a Message Transport System that controls all messages within the platform,
including messages to/from remote platforms. All three agents are automatically
activated at the platform start-up.

Agents communicate by asynchronous message passing, where FIPA ACL is
a language used to represent messages. Each agent has a sort of mailbox (the
agent message queue) where the JADE runtime posts messages sent from other
agents. Whenever a message is posted in the message queue, the receiving agent
is noti�ed. If and when the agent actually picks up the message from the message
queue depends completely of programmer.

JADE agents are identi�ed by a unique name and, provided they know each
other's name, they can communicate transparently regardless of their actual loca-

44 Chapter 2. Semantic agents

Figure 2.5: The communication architecture of JADE

tion: same container, di�erent containers in the same platform or di�erent plat-
forms (Fig. 2.5). In JADE, agents can migrate between connected containers.

The communication architecture of JADE o�ers �exible and e�cient messaging
by means of a number of protocols. Communication is possible via Java RMI,
event-noti�cation, IIOP, and HTTP protocol. Java events are used for e�ective and
lightweight communication between agents that reside on the same host. Java RMI
is used for communication between agents in di�erent containers (intra-platform
communication), while Corba (IIOP) and HTTP are utilized for communication
of agents situated in di�erent platforms (inter-platform communication).

2.3.1 LEAP add-on
LEAP [Cai05] is an extension of JADE designed to run on wireless devices such as
mobile phones, PDAs, and Palm computers. It stands for Lightweight Extensible
Agent Platform. The LEAP software was mainly developed within the scope of
LEAP IST project and has been made available as a JADE add-on since JADE
3.0.

Due to the memory footprint of several MBytes, version 1.4 of Java platform
(or higher) it requires, and wireless network constraints that are not present in the
�xed network, JADE could not be run on small devices. The LEAP was created to
solve these problems and when used with JADE, it replaces some parts of JADE
kernel forming a modi�ed runtime environment that can be deployed on a wide
range of devices varying from servers to Java enabled mobile phones. It provides
three modes of work to adapt to di�erent circumstances (Fig. 2.6):

• J2SE : it can run in PCs and servers in the �xed network with jdk1.4 or

Chapter 2. Semantic agents 45

superior;

• J2ME CDC con�guration (former PersonalJava): it can run in handheld
devices such as most of todays PDAs supporting J2ME CDC con�guration;

• J2ME CLDC/MIDP : it can run in devices that support MIDP1.0 such as
mobile phones.

Figure 2.6: The LEAP execution environment

Though implemented di�erently, the three versions o�er the same API to the
developers, independently of the underlying type of network and supported java
platform.

The JADE-LEAP runtime environment can be executed on handheld devices
in two di�erent ways (Fig. 2.7): the "Stand-alone" execution mode, where a com-
plete container is executed on the handheld device, and the "Split" execution
mode, where the container is split into a FrontEnd (actually running on the hand-
held device) and a BackEnd (running on a J2SE host) linked together through a
permanent connection. Since the version 3.3, stand-alone mode is no longer main-
tained and tested, so its use is discouraged. The split execution mode is particularly
suitable for wireless resource-constrained devices for the following reasons:

• The FrontEnd is more lightweight than a complete container;

• The bootstrap phase is faster;

46 Chapter 2. Semantic agents

Figure 2.7: Execution modes

• Less bytes are transmitted over a wireless link.

Concerning a wireless connectivity between agents running in mobile devices
and service-providing agents running in �xed PCs, JADE-LEAP works at a high
communication level, establishing TCP/IP connections between containers and
without caring about the physical means by which these connections are actually
performed.

Chapter 3

Context-aware services

Context-aware computing is a computing paradigm in which applications can dis-
cover and take advantage of contextual information such as user location, time of
the day, nearby people and devices, and user activity.

An idea of context-aware computing came from the growing number of wireless
and mobile devices used in the user everyday life and the user's need to be served
with timely delivered information anyplace, anytime and on any device, while on
the move [DJ05].

Users want to access the same content and services on various devices, e.g. lap-
tops, handheld devices, mobile phones, that have di�erent processing capabilities,
memory capacity, screen size, and support di�erent media formats. They may also
wish to change mobile device during the session and the service task is to recognize
the user and enable him the smooth transition to the other device, while providing
the continuity of the service use. This procedure is called personal mobility and
is de�ned as the user ability to access other telecommunication services from any
terminal and location, while on the move. Technical and service infrastructure
(network, mobile positioning system, as well as available applications) can also
change in the mobile environment.

The context of the mobile user should be continuously tracked and the so-
called context-awareness is important for applications to be able to adapt their
behavior according to the present situation and the conditions in the environment.
The services that have implemented the context-awareness in their behavior are
called context-aware services.

This chapter is organized as follows: Section 3.1 gives a de�nition and classi-
�cation of context. The low-level context information, that is retrieved from the
user environment, is used to create a higher-level context that can be used by

47

48 Chapter 3. Context-aware services

context-aware applications. The context modelling and representation issues are
discussed in Section 3.2. Location-aware services, that are represented as a subset
of context-aware services, are described in Section 3.3. Section 3.3.1 gives a pro-
posal of location semantics that can gather and structure di�erent formats of user's
location information, to build a higher-level context used by various location-aware
services.

3.1 De�nition of context
Mobile user context is de�ned [RLF00] as: �any information that can be used to
characterize the situation of the entity, where an entity can be a person, place, or
object that is considered relevant to the interaction between a user and an appli-
cation, including the user and the application themselves.�.

Schilit et al. [NAW94] claim that important aspects of the context answer the
following questions where are you, who are you with, and what resources are near
you.

Chen and Kotz [CK00] have extended the Schilit's division of context [NAW94]
into four categories to achieve a better understanding of the concept:

• Computing context, including network connectivity, bandwidth, commu-
nication costs, and nearby resources such as printers, displays, and worksta-
tions;

• User context, described with user pro�les, user location information, and
nearby users and people;

• Physical context, referring to conditions in the environment, such as light-
ing, temperature, and humidity;

• extended with Time context, including time of the day, week, year, and
the season of the year.

A de�nition of context-awareness is given in [BBC97] as: a system is context-
aware if it uses context to provide relevant information and/or services to the user,
where relevancy depends on the user's task. Context-aware applications look at the
who's, where's, when's, and what's (what the activities are occurring) of entities
and use this context information to determine why a situation is occurring and
how to act upon it (what action to perform) [tel03].

Chapter 3. Context-aware services 49

3.2 Context information
There are certain types of context information that are, in practice, more im-
portant than others. These are: user location, identity, time, and activity. They
characterize the situation of a particular entity. These context types not only an-
swer the questions of who, what, when, and where, but also act as indices into
other sources of contextual information.

Context-aware services build on context information services, because opera-
tors of context-aware services are usually not able to create the complete required
context on their own.

Context can be classi�ed as static and dynamic [tel03]. Static context informa-
tion describes invariant aspects, such as person's date of birth. The persistence of
dynamic information can be highly variable, for example a user location that can
change from minute to the next. The sensing of context changes is either a con-
tinuous process, in which the information requestor polls the information provider
for new information sampled over �xed time intervals, or an event-based mech-
anism, that allows the information requestor to supply noti�cation rules to the
information provider.

Persistence characteristics in�uence the means by which context information
must be gathered. The process of gathering context information from di�erent
context sources is called context sensing. Context information is usually provided
in some required parameters and stored in the internal model. Typically, this refers
to a low-level context information, such as user status, location, or time.

In a later stage, context information is re�ned, e.g. a location speci�ed by a
longitude and latitude pair is associated with a speci�c landmark name, address, or
building, to denote a user's location of interest and it can be used in modelling high-
level context information for context-aware services. Alternatively, this information
can be aggregated with some other context information, for instance with time,
to indicate that a user has reached the target location in certain time interval,
meaning that his average speed was 80km/h and he probably travelled by car.

The problem with dynamic context is that information describing it can quickly
become out of date. Also, context has multiple representations in di�erent forms
and at di�erent levels of abstraction that need to interrelate.

Therefore, a representation of the context information should be applicable
through the whole process of gathering, transferring, storing, and interpreting of
context information. It is suggested in [HBS04] that the context representation
should be:

50 Chapter 3. Context-aware services

• Structured - structured representation allows di�erent forms of context in-
formation and provides the means for �ltering relevant information;

• Interchangeable - context pro�les must be interchangeable among the di�er-
ent components of the system, which requires a serializable representation;

• Composable/decomposable - by allowing decomposition and composition,
pro�les can be stored and maintained in a distributed way;

• Uniform - uniform representation of all information contained in context
pro�le (device, user, additional context data) eases the interpretation during
the process of service mediation and content adaptation;

• Extensible - pro�le representation format should allow future extensions;

• Standardized - there is a strong need for a standardized representation of
the context information as the entities in the system may not belong to the
same administrative domain.

These features of context information are essential when de�ning a context
model approach. It is claimed that a commitment to an ontology [Gua98] is a
�rst step towards implementing this model within a knowledge representation
technology.

3.3 Location-aware services
User location has been one of the main drivers for building context-aware services.
Modelling of location information is an interesting and importing topic, that in-
�uences the quality of developed location-aware systems. Location-aware services
could be, therefore, seen as a subset of context-aware services, that adapt their
behavior according to user location information.

For humans it is easy to understand and to exchange the location information,
but for application it represents a quite di�cult task. The complexity lies in the
interrelation between di�erent location formats and also in the di�erent methods
for location determination that can be utilized to produce these various forms of
location information.

Nowadays, there are many positioning methods that can locate the mobile
device and determine the mobile user's position, both in indoor and outdoor en-
vironments [pos01]. Positioning technologies are based either on technology in the

Chapter 3. Context-aware services 51

network, or the technology in the headset. Each of them has implications in terms
of the complexity, cost of implementation, the accuracy achieved, and future mi-
gration path, especially in terms of roaming. Almost all of them are based on the
concept of triangulation, i.e. measuring multiple signals from di�erent sources to
give a reliable estimate of position. The source of signals may be in the wireless
network or some other source, such as satellites.

The positioning methods overview is not intended to be a part of this thesis,
they are just listed and will not be further explained: Cell ID or Cell Of Origin
(COO), Angle Of Arrival (AOA), Time Of Arrival (TOA), Enhanced Observed
Time Di�erence (E-OTD), and Assisted Global Positioning System (A-GPS).

3.3.1 Proposed location semantics for building higher-level
context information

It is expected that in the near future most of devices will be equipped with the posi-
tion sensing technology [DJ05], e.g. GPS, GSM, Bluetooth, WLAN, RFID. There-
fore the adaptivity - the ability of various resources to interrelate under changeable
connection conditions becomes an important issue in providing location-based ser-
vices in mobile environments.

There are multiple resources of location information that can produce various
forms of user location information, such as:

• geographic coordinates in the form of longitude, latitude pair using position-
ing system;

• WLAN/Bluetooth access point address in the indoor environment;

• MSISDN as the user terminal identi�cation in mobile/�xed telecommunica-
tion network;

• IP address as the user trace in the local area network;

• URL as the homepage of the Internet site where the user was last registered.

Apart from the technology used, the location model should hide the process of
location acquisition, providing higher level abstractions for application designers.
In order to manipulate the given location information, the location model should
provide the support for aggregation of various forms of location information, and
assign them an appropriate user-understandable semantics. A term landmark is
used in the thesis to assign a particular location name to a located user position.

52 Chapter 3. Context-aware services

The semantic interpretation of location should be structured in a generic pre-
sentation format and stored in the location repository database, from which it
could be used as a foundation for building more comprehensive location-aware
services.

A de�nition of location semantics is proposed in order to gather the speci�ed
interpretations of user location information. For instance, the following service
could be considered: when the user accesses the Internet site of the Faculty of
Electrical Engineering and Computing, his/her geographic location is automati-
cally retrieved and he/she is o�ered with content and services available on that
location:

<rdf:Description rdf:about="http://www.example.org/
UserProfile#Location">

<ms:landmark>
Faculty of Electrical Engineering and Computing

</ms:landmark>
<ms:homepage>http://www.fer.hr</ms:homepage>
<ms:IPaddress>

<rdf:Bag>
<rdf:li>161.53.17.*</rdf:li>
<rdf:li>161.53.19.*</rdf:li>

</rdf:Bag>
</ms:IPaddress>
<ms:coordinates rdf:resource="http://www.example.org/

UserProfile#Coordinates"/>
<ms:msisdn>+38516129999</ms:msisdn>
<ms:wlanAP>192.168.2.19</ms:wlanAP>
<ms:bluetoothAP>192.168.1.240</ms:bluetoothAP>

</rdf:Description>

<rdf:Description rdf:about="http://www.example.org/
UserProfile#Coordinates">

<ms:longitude>N451083</ms:longitude>
<ms:latitude>E153005</ms:latitude>

</rdf:Description>

This example shows how user location can be gathered from di�erent sources
and how its di�erent formats can be structured in a way that a higher-level con-
text, that is built upon it, can be further used in various location-aware services.
The location semantics is serialized in RDF, a technique used to represent the
knowledge using metadata, brie�y described in chapter 1.

Chapter 4

Location-aware content delivery
system architecture

The appearance of third generation mobile systems with the increased bandwidth
and network coverage has caused a growing need for applications that will uti-
lize the provided network resources. The new types of services, such as multi-
media services, are currently being introduced in the network infrastructure by
network operators: multimedia streaming services such as video telephony and au-
dio streaming, as well as multimedia content engineering applications will play a
signi�cant role in the near future [eur01].

In the recent time information services gained a lot of popularity among mobile
users, especially business type of people. The access to the right information at the
right time and the right place is becoming a main driver to the development of new
generation information services. Weather and tra�c noti�cation services, as well
as stocks reports are examples of applications that rely on content dissemination.
Personalization will be essential to services that deliver content to mobile users:
content must be actively tailored to individuals based on rich collected knowledge
about their preferences.

Mobile positioning has enabled a new set of services that adapt their behavior
to the obtained user location information, called location-based services (LBS).
Location-based information services are services that provide di�erent information
set to the user as he moves and changes the location.

Location-aware content delivery service presents a mobile location-based infor-
mation service that enables the delivery of personalized content to mobile users,
depending on user's current location, presence information, utilized terminal, and
preferences. Presence information is introduced to describe user's current state and

53

54 Chapter 4. Location-aware content delivery system architecture

activity in order to assist the service in providing relevant content to the user and
presenting it on the target terminal according to his current communication sta-
tus. The presence attributes are reused from the Wireless Village Initiative [wvi02]
and contain the information about user terminal status (busy/idle/detached), his
current location information, and information about his availability for communi-
cation (available/not available/discreet).

Location-based publish/subscribe middleware o�ers means for content person-
alization: subscribers de�ne characteristics of content that is of interest to them
and the location where they would like to receive it, and get noti�ed when such
content becomes available. Subscribers can choose to subscribe to the speci�c con-
tent that is published on their current location, or to receive the speci�ed content
on some other location of interest (de�ned landmark). For the purpose of this the-
sis, location-based subscription is de�ned as a name of the topic used to publish
content to interested parties, bound to the name of location where user would
like to receive the noti�cation. Locations are mapped to speci�c geographic co-
ordinates, and referred to as the user current location or the de�ned landmark.
Therefore, two types of location-based subscriptions are introduced and used in
the thesis: current location-based and landmark-based subscription.

Nowadays, user can apply various mobile terminals to access the same content
and services. The usage requirement of the service is to support user mobility, i.e.
to maintain the same user identity irrespective of the terminal used and its network
point of attachment. Terminals used may be of di�erent types. They range from
laptops, tablet PCs, Portable Digital Assistants (PDAs) to cellular phones, having
di�erent processing capabilities, memory capacity, screen size, and supporting dif-
ferent media formats. The pervasive presence of heterogeneous mobile terminals
needs for a middleware component, that provides optimal adaptation of content
and alters the service behavior according to the preferences explicitly expressed
by the user and the current state of the involved terminals (screen resolution,
software characteristics, communication status). The latest standards are used for
resources, terminal capabilities, and user preferences description, proposed by the
World Wide Web Consortium (Resource Description Framework - RDF) [RDF03]
and Wireless Application Forum (User Agent Pro�le - WAP UAProf) [UaP99].
Attributes about user location and presence information, as well as personal data
and preferences are de�ned in a RDF scheme that describes a user pro�le. The
scheme reuses presence attributes from Wireless Village Initiative, and terminal
capabilities and user preferences attributes from WAP UAProf scheme.

Chapter 4. Location-aware content delivery system architecture 55

This section lists and analyzes requirements of location-aware content dissem-
ination service and illustrates usage scenarios of a system o�ering personalized
content dissemination to mobile users depending on their current location, uti-
lized terminal, and preferences.

The chapter is structured as follows: Section 4.1 investigates functional require-
ments and usage scenarios that have guided the design of the reference architecture
which is presented in Section 4.2. The reference architecture has a layered structure
that consists of a set of components. The identi�ed components and interaction
between them is described in Section 4.2.4. Section 4.3 discusses the service ar-
chitecture design for 3G mobile networks, with the entrance of new business roles
in the value-chain. The service implementation is described with an architecture
and service interface in the section 4.4.

4.1 Requirements and Usage Scenarios
For the purpose of usage scenarios two people and their everyday's lives are sim-
ulated in the Zagreb city area (Fig. 4.1). These people di�er in age, occupation,
and daily habits, and it is envisioned that they follow the same routine every day:
they leave from home to work in the morning, then in the afternoon on the way
home they stop to do the shopping, afterwards they go to some sort of recreation,
and eventually return home. During that time they walk, take the tram or drive
in the car to reach the target destination. For each user there is a set of landmarks
that he/she visits every day:

• Homei - the place of living for the user i, (Hi on map);

• Worki - the working place for the user i, (Wi);

• Shoppingi - the shopping destination for the user i, (Si);

• Recreationi - the place for recreation activities for the user i, (Ri).

Each landmark is assigned a determined user position in the form of geographic
coordinate (longitude, latitude), so that the current position of the user can be
tracked and seen on the map, and the names of landmarks can be further used in
the system for specifying a landmark-based subscription.

A number of usage scenarios for location-aware content delivery services in
mobile environment are described. At �rst, the simplest scenario is analyzed that

56 Chapter 4. Location-aware content delivery system architecture

Figure 4.1: Zagreb city area

o�ers no support for location-aware content, and gradually is extended with more
functionality for service users. In the �rst scenario a user employs a mobile phone
Sony Ericsson P900 to publish and receive the content. He chooses MMS as a pre-
ferred delivery method to receive the content on his mobile terminal. The second
scenario enables the user to subscribe to the location-aware content and receive it
on the current location. He can change the preferred delivery method to e-mail or
SMS, or set to be unavailable and receive no content. In the third scenario a user
can apply another mobile phone, Nokia 6600, to subscribe to the location-aware
content and select the landmark where he would like to receive it. The user personal
data, his applied terminal's capabilities, landmark-based subscription preferences,
and presence information are stored in the pro�le repository at the operator infras-
tructure. This data is managed and retrieved through the user pro�le management
subsystem. At the moment we will consider both components, the location-aware
content delivery system and user pro�le management subsystem, as black boxes
and discuss the functionalities from the user's perspective.

Scenario 1. User A wants to receive the tra�c noti�cation service that informs
him about the current tra�c conditions. He is just in the car on the way to his

Chapter 4. Location-aware content delivery system architecture 57

o�ce. He accesses the service with his mobile phone, subscribes to the tra�c news,
and selects the MMS as a preferred delivery method. On the other side user B at
the other part of the town �nds himself in the middle of tra�c congestion, takes
a picture of the situation with the camera, and publishes the tra�c report on the
delivery system. The delivery system enables the publishers to de�ne a topic for
content classi�cation and once the content is published, it initiates the delivery of
a tra�c report to all subscribers with a matching subscription. Before the delivery
process begins, the system checks from the user pro�les the subscribers' preferred
delivery method and their availability status, and for each subscriber determines
whether it will send the report to him and in what form (as SMS, MMS or e-
mail). The tra�c report is sent as MMS to the mobile terminal of the user A, and
consequently A decides to take an alternative route to the o�ce. If he needs an
additional information, he can request a map of the located area with his current
position drawn on it, to help him decide which direction to take.

In case the content cannot be delivered to the user's terminal (the user is
currently set to be unavailable or he has switched o� his mobile phone), it must
be stored by the system for subsequent delivery. The system needs to provide a
functionality to store the undelivered content until the conditions that enable the
content delivery change (i.e. user becomes 'available' again or turns on his mobile
phone) or until the validity period of the undelivered content expires.

Scenario 2. In this scenario user A would like to receive only tra�c noti�ca-
tions that refer to his current location, i.e. that are published in his vicinity. He
subscribes to the location-aware content with a current location-based subscrip-
tion type. At some time during the day, user B passes near by the user A and
publishes the tra�c report. The system determines that the user B is located in
the location area of user A and initiates the content delivery to the user A. In
the meantime user A has changed his preferences, and set the preferred delivery
method to e-mail. The system will read the user preferences stored in the user A's
pro�le and check his availability status before it sends the content to his applied
terminal. Consequently, tra�c report will be delivered as e-mail to the user A's
terminal.

Scenario 3. In this scenario user A would like to receive tra�c noti�cations
only in the morning when he is at home, and is preparing to go to work. He
doesn't want to be disturbed with receiving tra�c reports at any other time and
location. Due to the low power supply condition, he switches to his other terminal,
Nokia 6600 to access the service, and subscribes to the location-aware content

58 Chapter 4. Location-aware content delivery system architecture

with a landmark-based subscription type. The system recognizes the user with a
di�erent terminal and enables him the continuity of the service use. The user A
selects Home as a desired landmark, and submits his subscription to the system.
In any time when user B publishes the tra�c information, the system will compare
the user A's location with the speci�ed landmark's position, and decide whether
to start the delivery of the tra�c report to the user A.

A content-based �ltering is needed to provide a set of rules/�lters to apply
on the messages for the 'tra�c' topic and deliver only the ones that match sub-
scriber's preferences. The matching rule will be met when the publisher and sub-
scriber are located in the same location area (in the case of current location-based
subscription), or the subscriber has reached his landmark's position (landmark-
based subscription) and the publication contains the same topic name as speci�ed
in the subscription. The former match condition is de�ned as a location match,
and the latter as a topic match.

Due to the variations in user terminals' capabilities, content adaptation and
presentation are important parts of all scenarios. For example, user A will receive
a map of his location area that �ts his applied terminal's screen. The content has
to be adapted and displayed on terminals with di�erent processing capabilities,
screen size, and supported media formats. User pro�le comprises information about
applied terminal's capabilities.

Service functional requirements can be speci�ed after the scenarios discussion.
They have guided the design of the system architecture:

• User pro�le generation: user pro�le should be generated for every user
and his applied device, based on his personal data, terminal capabilities,
and preferences to receive location-aware content based on preferred delivery
method (SMS/MMS/e-mail), availability for communication, and name of
the topic;

• Landmark declaration: user can declare his current position as a landmark
giving it a semantic meaning (e.g. Home, Work, Shopping, Recreation);

• Location-aware content: user can create content related to his current
location or to one of the speci�ed landmarks, with a possibility to de�ne a
validity period for the contained information. The system should provide the
user with a mechanism to disseminate this information to other interested
users, and to retrieve the location-aware content (published by other users)
on the targeted device, when he is located at the speci�ed location;

Chapter 4. Location-aware content delivery system architecture 59

• Preview of most frequently visited landmarks: user can view his most
frequently visited landmarks;

• View map: user can retrieve a part of the city map displaying his current
location area;

• User preferences modi�cation: user can modify his initial settings stored
in the pro�le: the availability status, the list of preferred contacts and pri-
orities, and preferences to receive di�erent information set at the speci�ed
location;

• Terminal heterogeneity: user can access the application from di�erent
terminals, and the system should recognize the user with a di�erent terminal
and enable him to continue with the service use.

4.2 Reference architecture
This section begins with a de�nition of the architecture and then proposes the
reference architecture of the location-aware content delivery system based on the
speci�ed functional requirements.

Numerous de�nitions have been proposed describing the concept of the archi-
tecture, widely varying in the scope and emphasis. The main focus of the system
architecture de�nition is on describing the structure of components, relationships
between them, and the way they interact dynamically. The following de�nition is
adopted in the thesis:

An architecture of the system is de�ned as the structure or structures of the
system, which consist of elements and their externally visible properties, and the
relationships among them. [CBB+02]

Elements incorporate hardware and software components in the scope of the
system's architecture.

A reference architecture refers to the system architecture that has already been
created for a particular domain of interest. It typically includes many di�erent
architecture styles, applied in di�erent areas of its structure.

In this section the reference architecture of the location-aware content delivery
system is proposed (Fig. 4.2). The architecture is logically divided into four layers:
application layer, service layer, communication layer, and transport layer, following
the 3GPP/Open Service Access (OSA) approach [3gp00].

60 Chapter 4. Location-aware content delivery system architecture

Figure 4.2: Reference architecture

The application layer enables subscribers to declare landmark(s) as their lo-
cation(s) of interest, binds it to their current position at the moment they have
been located on it, and uses in the subscription to specify where they would like
to receive the desired content. It also provides the means for subscribers to modify
their preferences stored in the user pro�le repository. Furthermore, it o�ers pub-
lishers possibility to create and manage location-aware content, and deals with
content presentation and delivery to the subscriber's applied terminal.

The service layer contains services that are needed to provide location-aware
content delivery to the subscriber's applied terminal. These services need to access
the network elements (user pro�le, status, and location server) and to be suit-
able for various underlying networks and supported terminals. The services are:
location-based publish/subscribe management, user location management, user
mobility management, user pro�le management, and content adaptation.

The communication layer provides the publish/subscribe messaging function-
alities and terminal positioning to the higher layers.

The identi�ed services in the service layer are de�ned as generic services and
use the communication and positioning capabilities from the underlying layer.
Nowadays they would be deployed as Web services, that are managed and o�ered
from a mobile operator infrastructure.

Chapter 4. Location-aware content delivery system architecture 61

4.2.1 Communication layer
A publish/subscribe mechanism is used in the system as a means of communi-
cation between two types of users: publishers and subscribers [DP03]. Publishers
de�ne the content that is submitted to the service for the subsequent delivery
to subscribers. Subscribers de�ne subscriptions that describe the type of content
they are interested in receiving. A noti�cation produced by the publisher is de-
livered to the subscriber if the publication matches the subscription, according to
the speci�ed matching rule. The topic-based subscription scheme is used to match
published events against subscriptions.

To o�er support for mobility, the publish/subscribe middleware should provide
temporary storage for published content for outreached subscribers using the store
and forward mechanism for persistent noti�cations. It serves as a distribution
media for noti�cations to subscribers' applied terminals.

The publish/subscribe mechanism is extended in the service layer to support
location-based subscriptions and publications of location-based content. This en-
ables publishers to publish the content related to their current geographical po-
sition, while subscribers declare interest in receiving the particular information
set at their current location or at the speci�ed landmark. The mobile position-
ing component is needed to locate the end-user's terminal and to determine its
position. In order to manipulate the given location information, the appropriate
user-understandable semantics is assigned to this information by a user location
management component. The semantic interpretation of location is then used for
location-based content �ltering, i.e. comparing the locations associated to both
publications and subscriptions and �ltering the noti�cation events to the match-
ing condition.

4.2.2 Service layer
The location-based publish subscribe component serves as a mediator between
the application layer and the publish/subscribe middleware. It manages and co-
ordinates other services: Firstly, it activates and deactivates user subscriptions
according to user availability status and user subscription preferences regarding
location. Secondly, it provides location-based content �ltering, i.e. noti�cations
produced by publishers are �ltered according to the location associated with pub-
lication and subscription events. Thirdly, it manages the content adaptation ac-
cording to capabilities of the applied user's terminal, which is being tracked by

62 Chapter 4. Location-aware content delivery system architecture

a user mobility management component. The component cooperates with user
location management, user mobility management, user pro�le management, and
content adaptation component, and relies on publish/subscribe middleware and
mobile positioning for receiving and disseminating the location-aware content to
interested subscribers.

The user location management component binds landmark names speci�ed by
subscribers to their current location information.

The user mobility management component keeps track of subscriber's pres-
ence mode, which involves information about his applied terminal status and his
availability for communication.

The user pro�le management component administers user pro�les and enables
subscribers to customize service behavior with the information stored in pro�le.
The user pro�le is de�ned for every subscriber's applied terminal. The information
in the pro�le comprises subscriber's personal data, terminal capabilities, presence
information, and location-based subscription preferences.

A subscriber can declare which subscriptions apply to a particular landmark
and how he would prefer to receive the content on the applied terminal (via SMS,
MMS, or e-mail).

The content adaptation component adapts the content to �t the subscriber's
applied terminal. For example, an image has to be transformed to the supported
format and cropped to the actual screen size to be displayed on the phone screen.

4.2.3 Application layer
The application layer contains components that manage content delivery and pre-
sentation according to user preferences. It is a�ected by a type of the content
that is distributed to subscribers and the particular application purpose. The user
speci�es his requirements and manipulates the service behavior through these com-
ponents. The landmark declaration component retrieves the subscriber's current
position and enables the subscriber to assign the name of the landmark to this
position. The user preferences component o�ers the subscriber the possibility to
modify his preferences stored in the pro�le, which are the following: subscription
preferences, preferred delivery method, and availability status. The content man-
agement component enables the publisher to select the topic and create a content
which will be published on the speci�ed topic. The publisher can decide whether
this content will be location-based or not, and in the case of location-based con-
tent the component will retrieve the publisher's current position and bind it to the

Chapter 4. Location-aware content delivery system architecture 63

publication. He can also specify the validity period of this information set, after
which it will not be distributed to subscribers. The content presentation com-
ponent is responsible for terminal-dependent content representation: the content
must be adapted to suit the applied terminal screen size and must be transformed
to one of terminal's supported formats. The java platform for constrained mobile
devices (J2ME CLDC/MIDP) takes care of content presentation and structuring
on the low-level user interface [Knu03]. The content delivery component deliv-
ers the content to the subscriber's applied terminal using the preferred delivery
method speci�ed in the user pro�le.

4.2.4 Component interaction
The interaction between components of the proposed reference architecture is
presented using Uni�ed Modelling Language (UML) sequence diagrams [BJR98].
The following use cases are described: process of user's subscribing to the topic
with current location-based subscription, landmark-based subscription, and non
location-based subscription, as well as content publishing and content delivery.

The sequence diagram (Fig. 4.3) depicts the component interaction for two
representative use cases: current location-based subscription (a subscriber sub-
scribes to the topic with a current location-based subscription) and location-aware
content publishing (a publisher publishes a content that is related to his current
location). The subscriber sends a subscription request from GUI to Location-based
Pub/Sub Mng component. The User Mobility Mng component recognizes the user
and his terminal with the given msisdn. After the received subscription request, the
Location-based Pub/Sub Mng component sends the request to Mobile positioning
component to locate the subscriber, and when received location result, it creates
a current location-based subscription and subscribes to the topic at the Pub/Sub
component. When a publisher at some time publishes the content, the Location-
based Pub/Sub Mng component will receive a noti�cation. The Mobile positioning
component periodically sends a location push to the subscriber, containing his new
geographic position. If it determines that the publisher and subscriber are located
at the same position, it will deliver the content to the subscriber. The content is
previously adapted to subscriber's applied terminal's capabilities by the Content
adaptation component. A subscriber receives the adapted content on his mobile
terminal via a preferred delivery method (SMS, MMS or e-mail) if his status is set
to available.

The sequence diagram in Fig. 4.4 presents a scenario where a subscriber sub-

64 Chapter 4. Location-aware content delivery system architecture

Figure 4.3: Current location-based subscription

scribes to the topic with a landmark-based subscription. It is assumed that the
subscriber has previously de�ned his landmarks and that they are stored in the
repository. The subscriber subscribes to the topic with landmark-based subscrip-
tion, similarly to the previous scenario. The di�erence lies in the way how the
Location-based Pub/Sub Mng component determines whether the subscriber has
reached the target location. It compares the location of the subscriber received by
location push with the location of the landmark speci�ed in his subscription. If
the location match condition is met, the Location-based Pub/Sub Mng component
delivers the (adapted) content to the subscriber.

The sequence diagram in Fig. 4.5 shows the simplest scenario when a sub-
scriber subscribes to the topic with a non location-based subscription. In this case
the Mobile Positioning component is not involved in the component interaction.

Chapter 4. Location-aware content delivery system architecture 65

Figure 4.4: Landmark-based subscription

The subscriber subscribes to the topic, and at some time when the publisher pub-
lishes the content on that topic, the adapted content is immediately sent to the
subscriber's applied terminal.

4.3 System architecture
The system architecture (Fig. 4.6) consists of components from the proposed ref-
erence architecture. It is built around two distributed components: the location-
aware content delivery service and the user pro�le management service.

The user pro�le management service provides the interface for the user equip-

66 Chapter 4. Location-aware content delivery system architecture

Figure 4.5: Non location-based subscription

ment and other system components (through the location-aware content delivery
service), to access and modify information stored in the pro�le and location repos-
itory. On the other hand, it maintains up-to-date records with time-sensitive infor-
mation and provides the functionality of creating and administrating user pro�les
and user de�ned landmarks in the pro�le and location repository, respectively.

The location-aware content delivery service is responsible for receiving HTTP
requests from the user equipment, routing them to one of the following component
handlers: positioning handler, map handler, content provider handler, location
handler, status handler, and pro�le handler, that will process the request to the
target component and return the received result to the user. An implementation
of the location-aware content delivery service and user pro�le management service
is brie�y described in the following section.

Two actors that interact with the system are identi�ed: an administrator and a

Chapter 4. Location-aware content delivery system architecture 67

Positioning system

Administrator

Location
 server

WLAN
access point RAN

GPS

Bluetooth
access point

Profile
repository

User profile
management

UE

Location-aware
content delivery

service
Map

 server

Content
provider

Status
server

Location
repository

RMI

Figure 4.6: System architecture

user. The administrator can access the user pro�le management service through the
administrator interface, and his responsibility is to administrate user pro�les. The
user can access the application using the user equipment (UE), that communicates
with other system components through the location-aware content delivery service.

The user equipment (UE) can be tracked from various positioning resources,
such as WLAN and Bluetooth access points in indoor, as well as from GPS and
Radio Access Networks (RANs) in outdoor environments (Fig. 4.6). Depending
on the utilized positioning method, the application installed on the UE can be
designed to periodically report its position to the location server (if the position-
ing is terminal-based), or the positioning system can be con�gured to periodically
report the user position to the location server (in the case of network-based posi-
tioning). The system should enable the user to �nd out his own location as well
as the location of other entities by initiating the request to the location server.
It is assumed that in the worst case scenario at least one system should function
properly. Di�erent forms of location information generated from positioning sys-
tems are collected and integrated into the generic presentation format and stored
with the user-de�ned landmark name in the location repository.

68 Chapter 4. Location-aware content delivery system architecture

The status server tracks changes in the user equipment status (busy/idle/detached)
and reports this information on request to the location-based publish/subscribe
service. User can set/modify his availability status anytime using the client ap-
plication, executing on the UE. Should any information become available (from
the UE or the location server), the system will update the user pro�le with this
information in pro�le repository.

The map server loads the map of the city and dynamically crops the region
centered around the user position with dimensions of user terminal's screen.

The content provider is presented by a publish/subscribe component that re-
ceives users' subscriptions for content and delivers it to them when the appropri-
ate information set is published. The delivery method is speci�ed for every user's
applied terminal in the user pro�le. Subscriptions can be location-based or non-
location-based. If the subscription is location-based, the component will �rst check
if there are users located in the speci�ed area, and if true, deliver the content.

4.3.1 Service architecture for 3G mobile networks
Considering the scenario for service provisioning in 3G mobile networks, it is nec-
essary to change the service model from the "monolithic" 2G telecommunication
model, where a mobile operator has played a central role in the value chain, and
include several more actors in the provisioning of mobile services (like connec-
tivity provider, service component provider, broker for 3rd party service access,
portal content provider, and service/application provider) [BCMS]. The connec-
tivity provider should enable the mobile operator a functionality to con�gure and
customize the connections to provide �exible value-added service o�erings (e.g.
di�erent QoS policies). The service component provider should enable the mobile
operator to provide in a secured, controlled, and accountable way a customized and
extensible set of service components to be used by 3rd party application providers.
The broker for (3rd parties) service access should enable the mobile operator to
provide its customers the personalized, secured, and authenticated access to a wide
set of a�liated service providers. The portal content provider should enable the
mobile operator to provide di�erent content o�erings to its customers from any
point of origin. The service/application provider should enable the mobile operator
a support to develop its own services and possibly improve development process.

The reference architecture should, for these reasons, be mapped to a new service
architecture model designed for third generation mobile networks. The architecture
must be considered from an end-to-end perspective, including end-users' terminals,

Chapter 4. Location-aware content delivery system architecture 69

application servers, but mainly focused on components providing telecommunica-
tion features in the mobile operator's infrastructure.

Figure 4.7: 3G service architecture

The service architecture (Fig. 4.7) consists of three di�erent components:

• User Equipment environment: provides the users capabilities and func-
tions to access the service with any terminal implementing this component,
e.g. mobile phones, PDAs, smart phones, PCs with PCMCIA card for mobile
network connection, etc. The terminal has to be equipped with the applica-
tion software in order to access the service;

• Application environment: provides the service and portal content providers
capabilities and functions to o�er end-users value-added services and content.
Systems that implement this component are Web servers, application servers,
and telecommunication platforms (e.g. Service Nodes, publish/subscribe sys-
tem);

• Mobile Operator environment: provides several capabilities and func-
tions to handle the connectivity among terminals or between terminals and
application environments. It provides, in addition to the basic connectiv-
ity, more advanced capabilities, such as: terminal positioning, session con-
trol, user pro�le management, user authentication/authorization, messag-
ing store/forward, etc. The systems that implement this component are

70 Chapter 4. Location-aware content delivery system architecture

GSM/GPRS BSS, UTRAN, SGSN, GGSN, VLR, HLR, SMSC, MMSC, Po-
sitioning center, E-mail gateway, and User pro�le management component.

The business roles introduced in the functional description of the service
architecture are the following: a mobile network operator that manages the
mobile operator environment, and possibly the application environment, in
case it wants to play the role of the (internal) service provider; a user that
manages and interacts with the user equipment environment; and service
providers and portal content providers that manage the application environ-
ment.

4.3.2 Location-based publish/subscribe web service
Having the service architecture in mind, the location-based publish/subscribe ser-
vice will be hosted by the service provider, who will enable the mobile operator to
provide its functionality to the customers, independently of their point of attach-
ment.

Web services are designed to provide interoperability between diverse appli-
cations [TDJ+04]. Platform and language independent interfaces of Web services
allow easy integration of heterogeneous systems. Because of this �exibility, the idea
of mobile Web services is to integrate datacom services with mobile applications,
as well as mobile telecom services with PC-based applications.

Architecture

Figure 4.8 depicts the architecture of the proposed location-based publish/subscribe
web service. The service is designed to be a Web service, used by mobile appli-
cation, which implements the service layer of the proposed reference architecture
and utilizes functionalities of publish/subscribe middleware placed in the commu-
nication layer.

The layered approach is adopted because other applications, such as content
delivery, can be built upon the location-based publish/subscribe mechanism and
they all rely on speci�c data transport components, such as e-mail, SMS, and
MMS component. The publish/subscribe middleware in the communication layer
is realized using Joram, an open source JMS API [jor], and is extended in the
service layer to support location-based subscriptions and publications of location-
aware content.

Chapter 4. Location-aware content delivery system architecture 71

Figure 4.8: Location-based publish/subscribe web service

Service interface

The location-based publish/subscribe web service o�ers the remote service inter-
face to the mobile users, which consists of the methods: publish, subscribe, and
unsubscribe, as illustrated in Fig. 4.9 [DJ05].

A publication represents an event distributed at the publisher's current loca-
tion. It conveys the following information: name of the topic, serialized object
containing content elements (text, image), content validity period, and location
coordinate (longitude, latitude). Users that are enrolled in the service as publishers
use the publish() method to create and distribute the publication.

Regarding the type, the publication can be location-based, when it is bound
to publisher's particular location coordinate, or non-location-based. Considering
the validity period of the information set, the publication can be persistent or
non-persistent. Non-persistent publications are disseminated at the time of the
publication using the two publish() method variants leaving out timeToLive argu-
ment. With the persistent publication, an event can be distributed to the interested
subscribers located at the determined location before the event's validity period is
expired. Persistent publications are performed using other two publish() variants
taking timeToLive argument.

A subscription is a request to receive a noti�cation from the publisher when the
publication matches the subscription event, according to the following matching
rule: the matching rule condition is met when the publisher and the subscriber

72 Chapter 4. Location-aware content delivery system architecture

public interface LBPS extends Remote {

void publish(
String topic, Message message

) throws RemoteException;
void publish (

String topic, Message message, String longitude, String latitude
) throws RemoteException;

void publish (
String topic, Message message, long timeToLive
) throws RemoteException;

void publish (
String topic, Message message, String longitude, String latitude,
long timeToLive) throws RemoteException;

Subscription subscribe (
User user, boolean onCurrentLocation, String topic
) throws RemoteException;

Subscription subscribe (
User user, String topic, String longitude, String latitude
) throws RemoteException;

void unsubscribe (
Subscription sub
) throws RemoteException;

}

Figure 4.9: LBPS interface

are both located at the same position (in the case of current location-based sub-
scription) or the subscriber has reached his landmark's position (landmark-based
subscription), and the publication contains the same topic as speci�ed in the sub-
scription. The former match condition is de�ned as a location match, and the latter
as a topic match.

The subscription is performed using the subscribe() method taking four argu-
ments, i.e., (1) user, (2) topic, (3) longitude, and (4) latitude, if the subscription
is landmark-based (where longitude and latitude correspond to subscriber's land-
mark coordinate pair). Alternatively, the subscribe() variant with three arguments,
i.e., (1) user, (2) onCurrentLocation, and (3) topic, can be used to denote that the
subscription should be location-based or not. In case of location-based subscrip-
tion the subscriber's current position will be used. The subscribe method returns a
subscription object, which can be used by a subscriber to cancel the corresponding
subscription with the unsubscribe() method.

Chapter 4. Location-aware content delivery system architecture 73

4.3.3 User Pro�le Management Web service
User pro�le management is hosted by the mobile operator, providing the remote
interface to the user equipment domain and the application environment to access
and modify the information stored in the pro�le and location repository. On the
other hand, it maintains up-to-date records with time-sensitive information and
provides the functionality of creating and administrating user pro�les, as well as
user de�ned landmarks in the pro�le and location repository, respectively. User
can modify his preferences and de�ne his landmarks using the client application
(installed on his mobile terminal), which cooperates with the user pro�le manage-
ment service.

Figure 4.10: User Pro�le Management

Architecture

User Pro�le Management (Fig. 4.10) is designed as a web service component that
communicates with the pro�le and location repository through the JDBC API. It
is assumed that only an administrator can access this service using the web form,
whose responsibility is to administrate user pro�les. User pro�le administration
(Fig. 4.11) includes functions for creating, viewing, updating, and deleting the
pro�le.

Pro�le repository (table 4.1) consists of the records described with the user-
name, terminal, and pro�le column. It is assumed here that the user can apply a
number of terminals and therefore the username and terminal are set as a primary
key to identify the user pro�le. The pro�le is serialized in an RDF/XML form and
stored as a blob in the repository.

Location repository (table 4.2) consists of the records containing the follow-
ing �elds: username, landmark's name, it's longitude and latitude, and a counter

74 Chapter 4. Location-aware content delivery system architecture

Create profile

View profile

Update profile
Delete profile

Administrator

Figure 4.11: User Pro�le administration

Table 4.1: Pro�le repository
username terminal pro�le
A Sony Ericsson P900 rdf/xml
A PC rdf/xml
B Nokia 6600 rdf/xml

of user's visits to the landmark. The de�nition of user landmarks has followed
the user's daily routine: he goes to work in the morning, after which he goes in
the shopping or to recreation, and later on he returns home. Therefore the user
landmark declaration has been limited to the �nite set: {Home, Work, Shopping,
Recreation}.

Table 4.2: Location repository
username landmark longitude latitude counter
A Home 165248E 452931N 3
B Work 162153E 451424N 2

Chapter 4. Location-aware content delivery system architecture 75

Service interface

The User pro�le management web service provides the remote interface to the
administrator and the location-based publish/subscribe web service to create, up-
date and delete user pro�les from the pro�le repository, as well as to store and
retrieve user-de�ned landmarks from the location repository (Fig. 4.12).

public interface ProfileMgmt extends Remote {

String getProfile(
String username, String terminal

) throws RemoteException;
void storeProfile(

String username, String terminal, String profile
) throws RemoteException;
void deleteProfile(

String username, String terminal
) throws RemoteException;
Vector getComponent(

String username, String terminal,
String componentName) throws RemoteException;

void updateComponent(
String component, AttributeList attributes

) throws RemoteException;
void defineLandmark(

String username, String landmarkName,
Coordinate coordinate) throws RemoteException;

Landmark[] getLandmarks(
String username
) throws RemoteException;

}

Figure 4.12: Pro�leMgmt interface

4.3.4 User pro�le creation
In general, data about the user is stored in the so-called user pro�le. The infor-
mation contained in the pro�le can be considered as contextual information in
the sense that it describes the environment in which users desire to operate. As
such, it represents only a small part of the information domain of context-aware
systems.

Motivation for RDF

User can make requests for information that may not be relevant to him at a certain
time, but will be when a particular event occurs, such as reaching a location of

76 Chapter 4. Location-aware content delivery system architecture

interest. If the location relevance of the information, together with the location's
coordinates and the information validity period were structured in a metadata
format, it would be possible to automatically retrieve the information relevant to
the current context of the user. To this extent, location-aware information services
could be seen as context-aware services, because a location change event could,
for example, trigger an action of searching and disseminating the appropriate
information set to the user. The triggering could be more personalized to user's
needs if it would depend on several context parameters. The example is the user's
availability for communication, as the user may not wish to be disturbed with the
receiving of information, as he may set his availability for communication to "not
available". These dependencies could be applied to all metadata elements, if they
were represented in a well-structured, common data format, so the server could
match them and produce the appropriate information set.

From the reasons discussed above and the context representation characteris-
tics outlined in Section 3.2, RDF was chosen to create a data model comprising
the properties that will be used in creation of user pro�les.

User pro�le structure

User pro�les are created using the pro�le ontology written in RDF [RDF03]. The
ontology used to describe pro�le structure resembles the structure of the CC/PP
schema [CCP03].

The user pro�le comprises the following components: User Info, Terminal
Capabilities, Presence, and Subscription with the properties characterizing them
(Fig. 4.13). Properties can contain static and dynamic values which can be sup-
plied either automatically (by the services in the system) or can be input directly
by the user.

The pro�le ontology reuses as much ontologies and speci�cations rather then
reinventing them again, such as terminal capabilities properties from the WAP
UAProf scheme [UaP99] and presence attributes form the Wireless Village Initia-
tive [wvi02].

User personal information

The user personal data represent the static contextual information in the user
pro�le structure. They describe the aspects of the system that usually do not
change over time, for example: the username, user's e-mail address, mobile phone

Chapter 4. Location-aware content delivery system architecture 77

Figure 4.13: RDF graph

number, etc. The user can also prioritize the preferred contact means to emphasize
the order in which he would like to receive information on the applied device (the
delivery method). The pro�le ontology introduces a component called UserInfo
consisting of the simple properties such as username, password, email, msisdn, as
well as complex ones, such as contacts, pointing to the class Pre�eredContacts,
which in turn has properties for describing contact, such as contactName and
contactPriority. These examples are serialized as follows:
<rdf:Description rdf:ID="UserInfo">

<rdf:type rdf:resource="&rdfs;Class"/>
<rdfs:subClassOf rdf:resource="&rdfs;Resource"/>

</rdf:Description>

<rdf:Description rdf:about="username">
<rdf:type rdf:resource="&rdf;Property"/>
<rdfs:domain rdf:resource="#UserInfo"/>
<rdfs:range rdf:resource="&xsd;string"/>

</rdf:Description>

<rdf:Description rdf:about="password">
<rdf:type rdf:resource="&rdf;Property"/>
<rdfs:domain rdf:resource="#UserInfo"/>
<rdfs:range rdf:resource="&xsd;string"/>

</rdf:Description>

<rdf:Description rdf:about="e_mail">
<rdf:type rdf:resource="&rdf;Property"/>
<rdfs:domain rdf:resource="#UserInfo"/>
<rdfs:range rdf:resource="&xsd;string"/>

</rdf:Description>

78 Chapter 4. Location-aware content delivery system architecture

<rdf:Description rdf:about="msisdn">
<rdf:type rdf:resource="&rdf;Property"/>
<rdfs:domain rdf:resource="#UserInfo"/>
<rdfs:range rdf:resource="&xsd;positiveInteger"/>

</rdf:Description>

<rdf:Description rdf:about="contacts">
<rdf:type rdf:resource="&rdf;Property"/>
<rdfs:domain rdf:resource="#UserInfo"/>
<rdfs:range rdf:resource="#PrefferedContacts"/>

</rdf:Description>

<rdf:Description rdf:ID="PrefferedContacts">
<rdf:type rdf:resource="&rdfs;Class"/>
<rdfs:subClassOf rdf:resource="&rdfs;Resource"/>

</rdf:Description>

<rdf:Description rdf:about="contactName">
<rdf:type rdf:resource="&rdf;Property"/>
<rdfs:domain rdf:resource="#PrefferedContacts"/>
<rdfs:range rdf:resource="&xsd;string"/>

</rdf:Description>

<rdf:Description rdf:about="contactPriority">
<rdf:type rdf:resource="&rdf;Property"/>
<rdfs:domain rdf:resource="#PrefferedContacts"/>
<rdfs:range rdf:resource="&xsd;positiveInteger"/>

</rdf:Description>

Terminal characteristics

The terminal capabilities data introduce the detailed information about user ter-
minal hardware, software, and network characteristics when accessing services or
some other content. The pro�le ontology de�nes component called TerminalCa-
pabilities with the simple property clientType and reuses properties de�ned in
WAP UAProf scheme [UaP99], such as: Vendor and Model for describing hard-
ware characteristics. The client type property describes the type of the mobile
terminal, which can be mobile phone, PDA, or PC.

<rdf:Description rdf:about=
"http://www.example.org/UserProfile#TerminalCapabilities">

<ms:clientType>mobile_phone</ms:clientType>
<uaprof:vendor>Nokia</uaprof:vendor>
<uaprof:model>6600</uaprof:model>
<ms:javaPlatform>
<rdf:Bag>

<rdf:li>CLDC/1.0</rdf:li>
<rdf:li>MIDP/2.0</rdf:li>

Chapter 4. Location-aware content delivery system architecture 79

</rdf:Bag>
</ms:javaPlatform>

</rdf:Description>

The declaration of namespaces used in the user pro�le document is the follow-
ing:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:uaprof="http://www.wapforum.org/profiles/UAPROF/

ccppschema-20000405#"
xmlns:ms="http://stella.zavod.tel.fer.hr:8080/RDF/myScheme.rdf#"/>

The terminal characteristics component can be further extended with other
properties speci�ed in WAP UAProf ontology to express information about dis-
playing images, audio or video content, browser user agent, or wap capabilities.
The intention of its use in the system was to provide minimum system informa-
tion capable to discover user's applied terminal in order to provide the user with
continuity of the service.

Location-based subscription

Information services require some user-de�ned preferences for the type of infor-
mation that users want to receive. In the context of location-aware information
services the location-based subscription is de�ned as a name of the topic used
to publish and deliver content to interested parties, together with the location
where the user would prefer to receive the published content. The landmark-based
subscription is used to denote that the user can choose to receive his favorite con-
tent only when he is located on the selected landmark. A landmark consists of
the name of the location and it's geographic coordinate (longitude, latitude). The
following RDF serialization contains de�nition of the location-based subscription
component, as well as its properties.

<rdf:Description rdf:about="Subscription">
<rdf:type rdf:resource="&rdfs;Class"/>
<rdfs:subClassOf rdf:resource="&rdfs;Resource"/>

</rdf:Description>

<rdf:Description rdf:about="topic">
<rdf:type rdf:resource="&rdf;Property"/>
<rdfs:domain rdf:resource="#Subscription"/>
<rdfs:range rdf:resource="&xsd;string"/>

</rdf:Description>

<rdf:Description rdf:about="landmark">
<rdf:type rdf:resource="&rdf;Property"/>

80 Chapter 4. Location-aware content delivery system architecture

<rdfs:domain rdf:resource="#Subscription"/>
<rdfs:domain rdf:resource="#Presence"/>
<rdfs:range rdf:resource="&xsd;string"/>

</rdf:Description>

Presence information

The presence information is introduced to describe user current state and activity
in order to assist the application in providing him the relevant content and present-
ing it on the target terminal according to his current communication status. For
example, if the user is currently in a meeting, and his presence status is "busy",
the content delivery service will not send him the time-sensitive information. The
presence attributes are reused from the Wireless Village Initiative [wvi02] and
contain the following information: the user terminal status (busy/idle/detached),
his current landmark (Home/Work/Shopping/Recreation), and information about
his availability for communication (available/not available/discreet). The presence
component use is demonstrated on the following example:

<rdf:Description rdf:about=
"http://www.example.org/UserProfile#Presence">

<ms:landmark>Work</ms:landmark>
<ms:onlineStatus>busy</ms:onlineStatus>
<ms:userAvailability>available</ms:userAvailability>

</rdf:Description>

Presence properties are dynamic, meaning that their values change in time.
They are collected from di�erent parts of the system, such as location and status
server, as well as user equipment, and their change triggers the update of the
presence information in the user pro�le.

Chapter 5

System implementation

This chapter presents the system implementation of the proposed architecture
described in the previous chapter. The system consists of a MIDlet client and a
server represented by two Java web-based applications: the location-aware content
delivery service and the user pro�le management service, both of them composed
of appropriate components and built in a Java servlet and Java Server Pages (JSP)
technology (Fig. 5.1).

The client application enables the user to declare his landmarks, publish and
subscribe to (location-aware) content, and specify his preferences regarding receiv-
ing the desired content on his mobile terminal. The server side of the system was
brie�y described in the previous chapter, and it won't be discussed again.

The chapter is structured as follows: Section 5.1 gives an overview of the system
implementation. The focus of the chapter is put on the implementation of the client
application, to show the user's perspective and the interaction with the system,
which is described in Section 5.2. Section 5.3 outlines the implementation of the
user pro�le management service from an administrator's point of view. The system
deployment is described in Section 5.4.

5.1 Implementation overview
The communication between client and server is performed through XML over
HTTP. Client requests are received by the HTTP request handler, which depend-
ing on the required action, routes them to one of the following component handlers:
positioning handler, map handler, content provider handler, location handler, sta-
tus handler, and pro�le handler. The appropriate component handler, on the other
hand, communicates with one of the following components: location server, map

81

82 Chapter 5. System implementation

Figure 5.1: System implementation

server, content provider, location repository, status server, and pro�le repository.
The selected component handler transforms the request into the form that is more
appropriate for the target component, and waits for the result from the component.
When available, it forwards the received result to the user.

5.2 Client application
The client application runs in a MIDP-enabled phone. It provides a user interface
for logging into the system, landmark declaration, creating and publishing the
location-aware content, as well as subscribing to the desired content.

The MIDlet class diagram is presented on Fig. 5.2. The BeginMIDlet �rst cre-
ates a HttpPoster, passing it the URL of the server. The BeginMIDlet then creates
a MenuScreen as a starting point for the user to choose a desired functionality from
the menu, and a LoginScreen, passing it a reference back to the HttpPoster, the
MenuScreen, and the reference to itself for callbacks.

The LoginScreen is displayed �rst (Fig. 5.3). It calls the HttpPoster to send a
login request to the server to authorize the user for the application use; it passes
the HttpPoster the reference to itself as a HttpPosterListener, so the HttpPoster
can use callbacks when the response arrives. Since the HttpPoster does not see a
LoginScreen but the HttpPosterListener, it does not depend on the LoginScreen,
and therefore the HttpPoster-HttpPosterListener combination is used by other
screen classes, too.

Chapter 5. System implementation 83

Figure 5.2: MIDlet class diagram

The LoginScreen uses a WaitingScreen as an intermediate screen when waiting
for the login response to arrive. Noti�cationScreen is used to display noti�cations
to the user. The LoginScreen uses a ValueParser to parse the application response,
that it receives from the server. All screens that communicate with the server do
this; this detail is not repeated in the descriptions below.

When the login completes successfully, the LoginScreen displays the MenuScreen
(Fig. 5.3). When the user chooses an action from menu, the MenuScreen creates
one of the following screens: a De�neLandmarkScreen, a NewContentScreen, a
ViewLocationsScreen, a SubscriptionVariantsScreen, a ModifyAvailabilityScreen,
or a GetContactsScreen, dependently of the chosen action (passing it a reference
to the BeginMIDlet, to HttpPoster and itself for callbacks).

84 Chapter 5. System implementation

Figure 5.3: Login and menu screen

At the beginning of the application, it is assumed that the user �rst de�nes
his landmarks. The positioning request is sent to the location server and when the
response arrives, the De�neLandmarkScreen is created and displayed (Fig. 5.4). It
presents the user geographical coordinate pair (longitude, latitude) with the time
when the position is determined, and o�ers him a choice group of landmarks to
select from. The screen contains commands for viewing the map of the located
area and submitting the landmark to the system for storing it in the location
repository.

Figure 5.4: Declare landmark

The De�neLandmarkScreen creates a MapCanvas and sends the request for
map to the server, passing it the screen size of the mobile terminal. The system
will, after receiving this request, dynamically crop the map of the city according to
the located user position and adapt its size to mobile terminal's screen dimensions.
The application response will contain the url of the desired map location, that will
be used to retrieve the map image from the web server, which will be displayed

Chapter 5. System implementation 85

on the MapCanvas (Fig. 5.4). After viewing his position on the map, user can
decide whether he wants to assign this location to one of the provided landmarks.
If true, the De�neLandmarkScreen will send the request to the server to submit
the selected landmark to the system.

Figure 5.5: View visited landmarks

Due to the fact that the positioning system periodically sends a location push to
the system and locations that correspond to user landmarks' coordinates are stored
in the location repository, the user has an option to preview his most frequently
visited landmarks. In that case, the ViewLocationsScreen is created and displayed
to the user (Fig. 5.5). It o�ers the user a text �eld to input the number of the most
visited landmarks he wants to check, which will be sorted upon the received request
according to the counter of user's visits to the speci�ed location. This number is
then sent within the request to the server, and the answer reception will trigger
the ViewLocationsScreen to create a FrequentLocationsScreen that will list the
sorted landmarks with their corresponding counters of visits (Fig. 5.5).

Figure 5.6: Modify availability

86 Chapter 5. System implementation

If the user wants to modify the setting for his availability for communication,
he can select this action from menu, which will initiate the MenuScreen to cre-
ate the ModifyAvailabilityScreen (Fig. 5.6). The ModifyAvailabilityScreen o�ers
availability values to the user from which he can choose and modify his current
setting. It sends then the new value in the request to the server to update the user
pro�le in the pro�le repository.

The user has an option to modify his contacts and priorities, meaning that
he can specify the means of content delivery and prioritize them. After selecting
this action from menu, the MenuScreen creates the GetContactsScreen (Fig. 5.7),
that retrieves the list of existing contacts and their priorities from the user pro�le
and o�ers command for modifying this setting. Upon selecting this command,
the GetContactsScreen will create a ModifyContactsScreen that o�ers possible
contacts and priorities to be assigned to them. When selected, values are inserted
into the request and submitted to the server.

Figure 5.7: Get contacts

If the user chooses to create and publish the new content, the MenuScreen
will create a NewContentScreen (Fig. 5.8), which o�ers the user a choice group
of topics, as well as an option to determine if the content will be location-based
or not, and an expires �eld that denotes the content validation time, to specify
how the content will be published. The screen o�ers commands for adding text,
image, and preview the content, before it is submitted for publishing. Therefore,
a TextScreen, an ImageList and/or a PreviewScreen are created when needed
(Fig. 5.8). The TextScreen provides a text box for entering the textual part of the
content. The ImageList o�ers a set of images that can be included in the content.
It creates an ImageScreen when the user wants to have a look at the image, before
making a selection. The PreviewScreen makes a preview of the user's created

Chapter 5. System implementation 87

Figure 5.8: Create content

content and after pressing the command for publishing the content, encapsulates
it in the request and sends the request to the server.

When the user chooses an option from menu to subscribe to the content, the
SubscriptionVariantsScreen will be created and displayed (Fig. 5.9). It enables
the user to select the subscription variant which determines the way he wants to
subscribe to the desired content, i.e. he can subscribe either using the subscription
de�ned in the user pro�le or he can choose to de�ne a new subscription.

Figure 5.9: Subscribe screen

After the completed selection, the SubscriptionVariantsScreen creates either a
Noti�cationScreen, if the subscribing procedure using the subscription de�ned in
the user pro�le has been successfully completed, or a SubscribeScreen (Fig. 5.9)
with three possible subscription types: the current location-based, the landmark-
based, and the non location-based subscription, and following topics to choose
from: News, Tra�c and TV Guide. If the landmark-based subscription type is
selected, the Subscribe screen creates a LandmarkSelectionScreen which o�ers the
user to choose the landmark where he would prefer to receive the desired content.

88 Chapter 5. System implementation

Figure 5.10: Content delivered via MMS and e-mail

After providing the needed data, the subscribe request is sent to server. From that
moment, the content is expected to arrive on the applied terminal in the form
speci�ed in the user pro�le (as SMS, MMS, or e-mail) (Fig. 5.10).

The SubscribeScreen also enables the user to check his existing subscriptions,
before he de�nes a new one, or to unsubscribe from one of the existing subscrip-
tions. In the former case, a ViewSubscriptionsScreen is created and the list of valid
user subscriptions (which are stored in the user pro�le) is presented on display.
In the latter case, the request for unsubscribe from the speci�ed subscription is
submitted in request to the server.

5.3 User Pro�le Management Service Implemen-
tation

The user pro�le management service implements a Web interface de�ned in Sec-
tion 4.3.3. using Java RMI. The service is accessed through a web interface that
is created for the administrator to access user pro�les stored in the pro�le reposi-
tory. At the beginning, a windows authentication (Fig. 5.11) using username and
password is required. Due to the personal nature and privacy of data stored in
the user pro�le, only the administrator has a privilege and rights to preview and
modify them.

After the successful login, the administrator gets a menu page where from he
can choose one of the following actions: to create a new user pro�le, or to preview,

Chapter 5. System implementation 89

Figure 5.11: Authentication

update, and delete the existing pro�le from the repository (Fig. 5.12).

Figure 5.12: Main menu

Creating a new pro�le opens a new page with a web form to be �lled with
a user's data which is required for user pro�le creation (Fig. 5.13). The form
contains:

• the user's personal information (username, full name, password, msisdn)

• the content delivery information (the preferred delivery method with the

90 Chapter 5. System implementation

assigned priority, the type of device, the content he is interested in receiving,
as well as landmarks where he would like to receive it on his mobile phone)

• the presence information (his availability for communication)

After retrieving the required data, the service creates a user pro�le document,
assigns these values to properties obtained from namespaces speci�ed in the doc-
ument, and attaches them to the user pro�le.

Figure 5.13: Creating a new pro�le

The pro�le is generated using Jena, a Java API for RDF. Jena represents
an open-source Java framework for building Semantic Web applications [Jen]. It
provides a programmatic environment for RDF, RDFS, and OWL, including a
rule-based inference engine. It is grown out of work with the HP Labs Semantic
Web Programme [HP]. The Jena Framework includes in its current version (2.0)
the following: an RDF API, an OWL API, in-memory and persistent storage,
an RDQL - a query language for RDF, and integrated parsers and writers for
an RDF/XML, a N3, and N-triples. The RDF/XML, the N3, and N-triples are
di�erent serialization techniques for reading and writing an RDF model [RDF].
The querying functionality is used when searching for or updating properties in the
user pro�le. Jena facilitates understanding of the RDF data model to a developer
as opposed to the learning from theory.

When generated, the user pro�le is stored in the pro�le repository together

Chapter 5. System implementation 91

with the user's username and his terminal identi�er. The user pro�le's structure
was brie�y described in Section 4.3.4.

Figure 5.14: User selection

If the administrator chooses to preview the existing pro�le, he has to enter the
username and the type of device (terminal identi�er) that will identify the pro�le
that needs to be retrieved from the database (Fig. 5.14).

Properties and assigned data values from the pro�le are then displayed in the
table in the view pro�le page (Fig. 5.15).

The action of updating an existing pro�le is very similar to one of creating a
new pro�le, with a di�erence that the username and the terminal identi�er of the
user, whose pro�le is to be modi�ed, need to be passed to the service by �lling in
the user selection page (Fig. 5.14).

The pro�le generation form is then presented, but �lled with values from the
existing pro�le. The �elds in the form are editable, and every modi�cation entered
by the administrator will be stored in the pro�le.

The deleting operation also requires the username and the terminal identi�er
entered in the user selection page, followed by a question to the administrator to
con�rm that the pro�le can be deleted from the database.

92 Chapter 5. System implementation

Figure 5.15: View an existing pro�le

5.4 System deployment
Having in mind the service architecture for 3G mobile networks discussed in Sec-
tion 4.3.1, system components are deployed across several nodes in the network
(Fig. 5.16).

Components are the following:

• the city map provider - hosts the city map of Zagreb on the Apache web
server;

• the content provider - provides a publish/subscribe middleware using the
Joram messaging system;

• the service provider - deploys the location-aware content delivery service on
the Tomcat servlet container;

• the mail server - uses pop.tel.fer.hr as an incoming mail server;

• the user equipment (Sony Ericsson P900 smart phone) - has installed a client
application written in J2ME for CLDC1.0/MIDP2.0 devices;

Chapter 5. System implementation 93

• the mobile network operator - deploys the user pro�le management service
on the Tomcat servlet container that communicates with the location and
pro�le repository (built on MySQL server), as well as hosts a MMS-C, a
SMS-C, and a Mobile positioning system, to provide a multimedia messaging
service, a short messaging service and a positioning functionality to mobile
users.

Figure 5.16: Deployment

Chapter 6

Service provisioning

In the telecommunications domain, a provisioning is de�ned as the setting in place
and the con�guring of hardware and software required to activate a telecommuni-
cations service for a customer. In many cases hardware and software may already
be in place, and the provisioning entails only con�guration tasks such as creat-
ing (or modifying) a customer record in a database and associating it with the
service(s) and the service level for which the customer has been subscribed.

Another de�nition speci�es the provisioning as an act of acquiring the telecom-
munication service from the submission of the requirement through the activation
of the service, including everything necessary to set up the service, such as an
equipment, a wiring, and a transmission.

In a wireless environment, the provisioning refers to the service activation and
involves programming various network databases with the customer's information.

An agent paradigm is discussed and applied in this work for the service provi-
sioning. Agents are general-purpose carriers of programs, rather than individual
and application-speci�c programs. Agent-based paradigm enables an easy develop-
ment of autonomous software agents that can discover, retrieve, install, execute,
and monitor services dynamically, without shutdown/restart, as well as retool
clients by loading new programs on the �y. This is very important feature, used
for delivering of services on the air to clients in the mobile network. As it was
mentioned earlier, software agents can play a brokerage role to match user re-
quirements against service capabilities, and provide the user with the service that
best suites his needs.

Furthermore, distributed software in the network can be managed by software
agents. Remote operation management includes operations, such as software in-
stallation, upgrading, and testing on the remote target system. These operations

95

96 Chapter 6. Service provisioning

are performed by mobile agents. Mobile agent is a program that represents its user
in the network and can autonomously migrate from node to node to perform some
actions on behalf of its user. Mobile agents with an associated task are injected in
the network that allows them to roam toward the target node, and return to their
home node to report results.

The chapter is organized as follows: Section 6.1 gives an overview of the service
provisioning in the mobile network. An Over-The-Air provisioning, the current
recommended practice to support the service deployment on mobile devices, is
explained in the Section 6.1.1. Section 6.2 outlines the proposed provisioning of
the location-aware content delivery service, physically separated in two parts. The
client application on the mobile terminal will be provisioned using the semantic
agent and its matchmaking capabilities, and it is described in Section 6.2.1. The
server part of the service will be migrated, installed, and run on the remote network
node using the Remote Maintenance Shell (RMS), a framework developed for the
remote software maintenance and execution of above speci�ed remote operations,
outlined in Section 6.2.2.

6.1 Service Provisioning in the Mobile Network
As the functionality of mobile devices grows at an increasing rate, con�guring
and maintaining mobile applications and services becomes a complex and time-
consuming task. For instance, enabling WAP, GPRS, MMS, and data connectivity
requires con�guration of multiple settings. Even with limited features of today,
many customers �nd it di�cult to con�gure their mobile devices. Operators should
ensure that the phone con�guration and the service delivery and deployment on
the customer's mobile device can be done quickly and easily.

An e�ective and widespread adopted, standard-accepted mechanism for service
provisioning and device management in the mobile network is an Over-The-Air
(OTA) provisioning. The OTA mechanism is a process of a remote management
of device settings and applications, that no longer requires from users to change
their devices and go to a physical location of the service provider to subscribe
to services of interest. For mobile network operators and service providers this
reduces the cost and the complexity of provisioning services and provides a fast
and easy way to introduce new services, as well as manage provisioned services by
dynamically adjusting to network changes.

The following text gives a brief overview of an OTA provisioning.

Chapter 6. Service provisioning 97

6.1.1 Over-The-Air Service Provisioning
The Over-The-Air (OTA) Service Provisioning is a process of provisioning mo-
bile station (user equipment) operational parameters over the air interface. From
the mobile client's perspective, OTA represents an ability to �nd an interesting
application on the Web and to initiate its download over a mobile network. It
is intended for deploying Mobile Information Device Pro�le (MIDP) applications
(referred to as MIDlet suites) on J2ME/MIDP-enabled devices, but can be used
to provision other types of content, too.

Both MIDP 1.0 and MIDP 2.0 devices support OTA provisioning. The �rst
version of MIDP OTA speci�cation appeared after the MIDP 1.0 speci�cation,
as a recommended practice [ota01], not as part of the speci�cation itself. Many
devices currently support the MIDP 1.0 recommendation.

MIDP 2.0 improved the MIDP 1.0 recommendation and made it part of the
speci�cation [ota02]. Because it is now part of the standard, all future MIDP
devices will support OTA in a consistent, standard way. It's a great bene�t to be
able to distribute applications to many di�erent mobile devices all in the same
way.

In its simplest form, OTA is illustrated in the Figure 6.1 [Ort02].

Figure 6.1: A simpli�ed view of OTA provisioning

The following entities participate in the process:

• Client device with a discovery application: devices must have software
that allows them to locate MIDlet suites at a particular provisioning portal
on the network, and to choose which applications to download - this software
is referred to as a discovery application (DA). In some cases, discovery will
be performed using a device's resident browser (e.g. WAP), which is the

98 Chapter 6. Service provisioning

same for MIDP OTA, as long as a common provisioning protocol with the
download server is HTTP;

• Mobile network: this can be any mobile network that includes a radio
network and a WAP gateway. It has two main functions: it provides properly
formatted menus, often written in WML or HTML, that list applications
currently available for download, and it provides access to applications;

• Download server: it is also called a provisioning portal, and represents a
host, visible in the network, that typically runs a web server and has access
to a content repository;

• Content repository: as the name implies, it is the repository of application
descriptors and applications that are available for download.

In the actual use, an OTA provisioning system is not so simple. It encompasses
a content publication and management, an access control, an installation (and
upgrading) of applications, and a tracking the use of applications (content) for
billing purposes. Figure 6.2 illustrates the detailed view of an OTA provisioning
system:

Figure 6.2: A detailed view of OTA provisioning

Chapter 6. Service provisioning 99

The detailed provisioning process follows the following steps:

• 1. Content management: The server-side software manages the repository,
typically a database, and supports content versioning, ways for third-party
developers to drop their applications, and so on. Sometimes applications
need to be certi�ed before being available for OTA;

• 2. Content discovery: The user points the discovered application to a
download portal, that accesses the application repository and provides the
properly formatted menu of the available content and applications;

• 3. Authenticate: If the provisioning server supports an authentication
module, the user is authenticated before gaining access to repository;

• 4. Application retrieval and installation: Once the authentication is
completed, downloading the application is performed in two parts, handled
by the application management system (AMS). AMS is the software on the
device that manages the download, installation, execution, and removal of
application and other resources in device. If an application description exists
(in the form of JAD �le), AMS downloads it from the provisioning server's
repository. Based on information found in the downloaded application de-
scriptor, AMS automatically downloads the application (the MIDlet suite
JAR) from the repository. If the application is retrieved successfully, the
installation is automatic;

• 5. Con�rmation: AMS sends a con�rmation status to indicate whether the
installation succeeded or failed;

• 6. Tracking: The con�rmation status can be used to track the use of appli-
cation, for example for billing purposes. A billing system is often integrated
into the provisioning server.

During the download and the installation process, the user has an option to
control the download, determine which versions of software are installed, remove
MIDlet suites once downloaded, and obtain information about the MIDlet suite(s)
on the device.

The OTA lifecycle has been summarized in Figure 6.3. It starts with the user
instructing the device (using the DA) to search for an application of interest on the
provisional portal in the network. On �nding one, the user selects the application
to download and install. After the installation, the application can be executed,

100 Chapter 6. Service provisioning

Discover Execute

Install Update

Remove

Figure 6.3: OTA application provisioning lifecycle

updated, or removed from the device. All stages of the OTA lifecycle are managed
by AMS.

6.2 Location-aware service provisioning
An integration of public telecommunication and internet information services has
created an environment for advanced personalized mobile services that can be exe-
cuted in heterogeneous systems. The personalization concept refers to mechanisms
of discovering, selecting, and combining services according to user preferences. The
requirements for user mobility in heterogeneous environments include the delivery
of the same set of services independent of the user current location and his applied
terminal, thus requiring the adaptation of content according to user requirements
and terminal capabilities.

Also, in the network with a number of remote nodes with a di�erent set of
installed services, there is a problem of service provisioning, as well as remote
software maintenance and monitoring. In the context of remote software mainte-
nance, service provisioning refers to the delivery of the service on the remote node,
the monitoring of its execution, and the management of the service in the runtime.
The service delivery encompasses remote operations, such as service migration and
installation, while monitoring and service management involve operations of start-
ing/stopping the service execution, the service removal, and its upgrade.

These concepts are applied on the location-aware content delivery service, that
delivers location-aware content chosen by the user to his applied terminal. The ser-
vice consists of the client and server part, and its architecture and implementation

Chapter 6. Service provisioning 101

are explained in Sections 4 and 5, respectively.

RMS system
1. migrate
2. install
3. run

Mobile agent

Location-aware
content delivery

service

Network
node

Client app

Semantic
agent

service
provisioning

Figure 6.4: Location-aware service provisioning

The service provisioning is performed in two di�erent parts (Fig. 6.4). First
part refers to the utilization of the semantic agent for provisioning of the client
application on the mobile device. Second part concerns the delivery of the server
part of location-aware content delivery service on the remote node. Software deliv-
ery operations include migration, installation, and service execution on the remote
node, using mobile agents. A Remote Maintenance Shell (RMS) is a framework
developed as a multi-agent system supporting remote software operations, such
as software installation, starting, stopping, execution of several versions in paral-
lel and selective mode, upgrading, testing, and version replacement on a remote
target system [JKL+04].

6.2.1 Client application provisioning using semantic agent
Semantic agents are implemented as JADE-LEAP agents running on the mobile
device and the PC, forming a distributed platform. A Service o�erer agent is
started on the PC, representing a service provider that o�ers services to the users.
A Service requester agent represents the user on the mobile device, specifying his
requirements for the requested service. They will communicate in order to �nd the
appropriate matching service that best suites user requirements.

102 Chapter 6. Service provisioning

Figure 6.5: FIPA Contract Net interaction protocol

The communication between the service requester and the service o�erer agent
is realized through the FIPA-Contract-Net protocol. For every conversation among
agents, JADE distinguishes an Initiator role (the agent initiating the conversation)
and a Responder role (the agent engaging in a conversation after being contacted
by some other agent) [BCTR05]. This interaction protocol allows the Initiator to
send a Call for Proposal (CFP) to a set of responders, evaluate their proposals,
and then accept the preferred one (or even reject all of them).

The interaction protocol is illustrated in Fig. 6.5, deeply described in FIPA
speci�cations [�p]. The initiator sends a CFP message to obtain proposals from
other (responder) agents. The CFP message speci�es an action to be performed,
and if needed, conditions upon its execution. Responders reply by sending a PRO-
POSE message including the preconditions that they set out for the action, for
instance the price or the time. Alternatively, responders may refuse a proposal by
sending a REFUSE message, or eventually, a NOT-UNDERSTOOD to commu-
nicate communication problems. The initiator can then evaluate all the received

Chapter 6. Service provisioning 103

proposals and make its choice of which agent proposals will be accepted and which
will be rejected. Once the responders whose proposal has been accepted (i.e. those
that have received an ACCEPT-PROPOSAL message) have completed their task,
they can, �nally, respond with an INFORM of the result of the action (eventually
just that the action has been done) or with a failure if anything went wrong.

Before the action has been performed and the last message has been received,
the initiator can even decide to cancel the protocol by sending a CANCEL message,
but due to the fact that this feature is not well speci�ed in FIPA speci�cations, it
has not yet been implemented in JADE.

Figure 6.6: Service o�erer agent ("alisa") started in the main container

The service requester agent plays an initiator role while the service o�erer
agent represents a responder in the conversation. The Figure 6.6 shows the service
o�erer agent, named alisa, started at the J2SE host (PC) in the main container.
It is now in the state of waiting for CFP from the service requester agent.

When the service requester agent is created on the mobile device, running
a MIDP 1.0 or higher, the midp version of JADE-LEAP is started in a split
execution mode. As a consequence, its FrontEnd is added as a BackEnd on the
LEAP platform created on the PC (Fig. 6.7).

On the mobile device a graphical user interface (Fig. 6.7) is displayed to the
user, where he can select from choice groups inputs, outputs, and a condition
that the required service should meet. Inputs and outputs speci�ed in the user
interface correspond to inputs and outputs of the atomic processes that are part
of the location-aware content delivery service model, described in Section 2.2.1.

104 Chapter 6. Service provisioning

Figure 6.7: Service requester agent started on mobile device

The condition is related to the if-condition associated to the If-Then-Else process,
upon which evaluation depends the selection and the execution of one of the two
alternative processes.

As the Figure 6.7 illustrates, the user can require a service that uses the book-
marked landmark to specify the location where he wants to receive the desired
content (i.e. the content type). As a result, the service should output the landmark
name and the location-aware content should be delivered to the user's mobile de-
vice. The user location should be, therefore, determined manually (i.e. by selecting
the bookmarked landmark). The selected inputs, outputs, and the condition have
to be �lled into the CFP message and sent to the service o�erer agent.

Application-speci�c ontologies describe elements that agents use to create the
content of messages. Content elements are distinguished by their semantic char-
acteristics into:

• Predicates are expressions that say something about the status of the world
and can be true or false, e.g.
(Works-for (Person :name Alisa) (Company :name FER))

stating that "the person Alisa works for the company FER";

• Terms are expressions identifying entities (abstract or concrete) that "ex-
ist" in the world and that agents talk and reason about. They are further
classi�ed into:

Chapter 6. Service provisioning 105

� Concepts i.e. expressions that indicate entities with a complex structure
that can be de�ned in terms of slots, e.g.
(Person :name Alisa :age 25)

� Agent actions i.e. special concepts that indicate actions that can be
performed by some agents, e.g.
(Sell (Book :title "Harry Potter") (Person :name Alisa))

� Primitives i.e. expressions that indicate atomic entities such as strings
and integers;

� Aggregates i.e. expressions indicating entities that are groups of other
entities e.g.
(sequence (Person :name Alisa) (Person :name Alan))

� Identifying Referential Expressions (IRE) i.e. expressions that identify
the entity (or entities) for which a given predicate is true e.g.
(all ?x (Works-for ?x (Company :name FER))

identifying "all the elements x for which the predicate (Works-for ?x
(Company :name FER)) is true, i.e. all the persons that work for com-
pany FER)." These expressions are typically used in queries and require
variables;

� Variables i.e. expressions (typically used in queries) that indicate a
generic element not known apriori.

An ontology for a given domain is a set of schemas de�ning the structure of
the predicates, agent actions, and concepts that are pertinent to that domain.
The appropriate Java classes have to be developed for all type of predicates, agent
actions, and concepts and associated to the PredicateSchema, AgentActionSchema,
and ConceptSchema classes.

To turn back to the example of the service requester and the service o�erer
agent, the ontology created consists of the concepts such as: Service (used to
represent the advertised service) and Query (used to specify service requirements),
the predicate Match (used to match the query against the service), and the agent
action Retrieve (used to retrieve the service, if the match ended up successfully).

Inputs, outputs and the condition are set into the Query concept class, as
shown below.

public class Query implements Concept{
private String _inputs;
private String _outputs;
private String _condition;

106 Chapter 6. Service provisioning

public String getCondition() {
return _condition;

}

public String getInputs() {
return _inputs;

}

public String getOutputs() {
return _outputs;

}

public void setCondition(String condition) {
_condition = condition;

}

public void setInputs(String inputs) {
_inputs = inputs;

}

public void setOutputs(String outputs) {
_outputs = outputs;

}
}

The Query is, then, inserted into the Match predicate, and �nally the Match
is set as the content object of the CFP message. In order to set the content of
a message using the ontology, the ontology and the content language need to be
registered with a content manager. In the example, SLCodec is used to parse and
assembly the content of messages.

Match match = new Match();
Query query = new Query();
query.setInputs(inputs);
query.setOutputs(outputs);
query.setCondition(condition);
match.setQuery(query);

try {
ACLMessage queryMsg = new ACLMessage(ACLMessage.CFP);
// Register language and ontology
queryMsg.setLanguage(FIPANames.ContentLanguage.FIPA_SL0);
queryMsg.setOntology(ServiceOntology.ONTOLOGY_NAME);
...
getContentManager().fillContent(queryMsg, match);

} catch (Exception ex) {
ex.printStackTrace();

}

Chapter 6. Service provisioning 107

JADE includes codecs for two content languages: a SL language and a LEAP
language. The SL language is a human-readable string-encoded content language
and is suggested to agent-based applications to adopt it, because of its openness
(i.e. agents developed on di�erent platforms can communicate). On the other hand,
the LEAP language is non-human-readable byte-encoded content language that
has been de�ned ah-hoc for JADE within the LEAP project. Although it is lighter
than the SL, the LEAP language is intended to be used only by JADE agents.

Figure 6.8: The service output on mobile device

When received the CFP message from the service requester, the service o�erer
agent parses its content and performs a matchmaking algorithm using retrieved
parameters and the ontology advertisement of the service it o�ers. If the match
completes successfully, it sends the PROPOSE message to the service requester
agent, containing the name of the service (Location-aware content delivery ser-
vice). Alternatively, if the advertised service does not match user requirements,
the REFUSE message is sent to the service requester agent. After receiving the ser-
vice proposal, the service requester agent replies with the ACCEPT_PROPOSAL;
or if the sender does not exist and it didn't received the proposal message from
the sender, it replies with the REJECT_PROPOSAL. Finally, if the service of-
ferer agent receives an acceptance of the proposal, it sends the last, INFORM
message, in which it inserts a path to the service where it can be retrieved and
installed from. More speci�cally, the service path represents a JAD �le of the client

108 Chapter 6. Service provisioning

application to be installed on the mobile device via OTA provisioning.
The �gure 6.8 illustrates the message sequence dialog between the service re-

quester and the service o�erer agent outputted on the screen of the mobile device.
It also shows the last received message with the path to the service located on the
web server on PC. Also, it can be seen on the JADE console gui that the service
requester agent, named alan, has been created and added to the platform.

Figure 6.9: The service installation and execution on mobile device

The client application provides an ability to install the service on the mobile
device. The service installation and execution is shown on Fig. 6.9.

6.2.2 Server-side installation with RMS
The RMS system provides the protected environment for software deployment,
upgrade, and testing without suspending or in�uencing its regular operation. It
supports software delivery to the remote system and remote software operations,
such as remote installation/uninstallation, start/stop, tracing, maintaining several
versions of software, selective or parallel execution of two versions, and version
replacement.

Basic RMS concept is shown on Figure 6.10 [JKD+03]. It consists of a manage-
ment station and of remote systems distributed over the network. The management
station is responsible for software delivery to remote systems and for conducting
remote operations on them.

Chapter 6. Service provisioning 109

Figure 6.10: RMS concept

A new software (the application) that will be installed using RMS system
has to be adapted to RMS. An Application Testbed, the application-dependent
part, has to be built along with the application to provide a design for remote
maintenance. When the application is ready for delivery, it is migrated together
with the Application Testbed on the remote system.

A maintenance environment is the application-independent part of RMS, that
is pre-installed on the remote target system(s) to enable maintenance actions. The
maintenance environment is responsible for communication with the management
station. Its main tasks are enabling remote operations and storing data in the
installed software.

Figure 6.11: Remote maintenance operations with mobile agents

In order to accomplish the given remote operation task, an agent is created
and equipped with the required knowledge (communication protocol), data (e.g.
software package to be installed), and access rights to the remote system. The

110 Chapter 6. Service provisioning

Figure 6.12: Graphical user interface

agent carrying the load is injected into the network and sent to the target system.
The same agent can, later, visit other nodes (according to itinerary provided by
an agent's owner) and repeat the same action.

Maintenance operations are performed using the set of communicating and co-
operating mobile agents, responsible for a particular action. Figure 6.11 illustrates
a software state change after completion of a particular operation. Therefore exists
one agent for each remote operation: a migration agent responsible for software
migration, an installation agent for software installation, an un-installation agent
for software un-installation, a starting agent for starting, and a stopping agent for
stopping software execution. Only a trace agent, activated by the starting agent,
does not change state after it completes the operation. It is used for creating and
dispatching the software trace.

Agents are started either directly from a remote console or by other agents.
When complete with their actions, agents return back to the management station
to report the obtained results.

The server part of the location-aware content delivery service is provisioned us-

Chapter 6. Service provisioning 111

Figure 6.13: Remote Location Tasks dialog

ing RMS system. It is migrated, installed, and run on the remote node (rope.labs.tel.fer.hr)
using mobile agents in the RMS management console.

When the console is started, the graphical user interface is displayed on the
screen. As it is shown on Fig. 6.12, it is logically separated in two windows: a
Remote Locations Status and a Changes Status List.

The Remote Location Status window shows the list of remote locations that
are available for managing applications with RMS, and includes the list of software
currently available on those locations. The detailed information about the current
state of the software managed is available on the screen, as well as the information
about the tracing the software and its execution mode. New locations for remote
software maintenance can be added, and nodes that are currently monitored can
be removed.

The Changes Status List window displays newly assigned tasks that will change
the software state on the remote node. Tasks are added through the Add/Edit
remote Location Tasks button, specifying the �nal state of the software on the
remote location. When the desired software is selected to be installed on the spec-
i�ed remote locations, tasks can get executed. Changes on remote locations can

112 Chapter 6. Service provisioning

be easily tracked, since the Changes Status List window is refreshed with green
check-marks every time the software parameter reaches the user-de�ned �nal state.
When all the tasks completed successfully, a con�rmation message is popped up
in the alert window.

As it can be seen in Fig. 6.12, the remote node rope.labs.tel.fer.hr is added
to the remote locations list and the location-aware content delivery application
testbed, together with the version 1 of the service, is migrated and installed on
it. The noti�cation message indicates that all remote operation tasks have been
successfully completed.

The Remote Location Tasks dialog (Fig. 6.13) enables the RMS user to add
the software that he wants to be installed on the remote location, set its �nal state
(e.g. installed or running), set execution parameters for each software that will be
managed on the remote system, and to copy current software con�guration to any
of remote locations the RMS user is managing. Through the Add Version button
user can add a new version of the software, which parameters can be managed on
the manner described above.

Figure 6.14: Location-aware content delivery service in running state

After the service is installed, it can be executed on the remote node. The
�gure 6.14 shows the location-aware content delivery service in running state.

Chapter 7

Related work

The section explains di�erent approaches and investigations about the work pre-
sented in the thesis. It is logically divided into two parts: �rst explaining research
e�orts in the area of the Semantic Web regarding concepts of the semantic ser-
vices matchmaking using intelligent software agents, and the second presenting
the considerable work devoted to location-aware computing and location-based
applications.

Semantic services matchmaking. The service matchmaking is the process
whereby potential trading partners become aware of each other existence in the e-
market [TDJ+05]. A buyer wish to purchase access to a service must �nd potential
service providers able to meet its needs. The matchmaking is required since the
buyer's requirements may not be initially fully speci�ed, and service providers may
o�er similar, but not the same services.

Current standard solutions that are used for matchmaking of Web services,
such as WSDL or UDDI, do not support semantic description of services and
the matchmaking can only be done by string equality matching on some �elds,
such as name, location, or URL. To avoid these shortcomings, researchers have
been focused on use of web ontologies for providing richer description of service
capabilities and �nding ways of combining and extending them.

Applying semantic web technologies, speci�cally RDF and OWL-S (formerly
DAML-S), to solve this problem o�ers a great �exibility and expressiveness to per-
form service matchmaking. Web services are matched on the basis of the subsump-
tion hierarchy provided by the ontology relating to the concept being matched,
rather than on syntactic similarity between them. As such, the ontology provides
the context in which services are interpreted.

Approaches that are relevant to the matchmaking algorithm realized in the

113

114 Chapter 7. Related work

thesis are the DAML-S Matchmaker based on Service Pro�le, developed at the
Technical University of Berlin [Tan04], and the matchmaker of Web services based
on DAML-S Service Model, created at the University of South Carolina [Ban02].

DAML-S Matchmaker. The matchmaking procedure is based on DAML-
S Service pro�le and is split into four stages of matching: an input parameter
matching, an output parameter matching, a pro�le matching, and a user-de�ned
matching. Each stage is independent of the other three, and the �nal result is
based on individual results of these four stages. Degrees of matching will de�ne
how well the functionality of any advertised service �ts to that of a requested
service. The algorithm de�nes a concept and a property matching, thus classifying
di�erent relations between concepts and properties when comparing two concepts
or two properties.

The concept matching denotes three types of relationships between the concept
A and the concept B:

• Equivalent(A,B) - A and B are equivalent, meaning that both denote exactly
the same concept.

• Subsumes(A,B) - The concept B is subsumed by the concept A, meaning
that A denotes a more general concept than B.

• Fail(A,B) - Concepts A and B are not in relation to each other with respect
to all referenced ontologies.

Similarly, property matching de�nes three types of relationships between prop-
erty R and property S:

• Equivalent(R,S) - R and S are equivalent which means that both denote
exactly the same concept.

• Subproperty(R,S) - The property R is a subproperty of the property S.

• Fail(R,S) - Two properties R and S are not in relation to each other with
respect to all referenced ontologies.

For each parameter (either input or output) several matching degrees of the
concept match and the property match exist, depending on the semantic relation-
ship between the service advertisement and request. The property match is given
a higher priority than the concept match, since the classi�cation of the parameter

Chapter 7. Related work 115

gives more insight into its purpose than its type de�nition. Based on these results
a general matching degree is determined.

With the pro�le matching it can be determined how good the service category
of the advertised service �ts into the service category that the requested service
demands. This matching is based on possibility of classifying the class Pro�le
into subclasses/subcategories. Consequently, the pro�le matching is based on the
concept matching, i.e. the matching between classes.

In the user-de�ned matching, the entity who manages the matchmaking algo-
rithm can de�ne additional matching functions by the means of plug-in. E�ective
use of this matching type can be done when evaluating an additional information
of the service pro�le provided by DAML-S, for example exploiting the quality of
service aspects for Web services.

The �nal matching result for the two considered services is composed of the
matching results of the four previously described matching parts and of so called
minimal matching degrees the user expects. Therefore, the user needs to specify
minimal requirements for matching degrees of the input parameter, the output
parameter and the pro�le matching to be satis�ed, for the matching algorithm to
succeed. In addition, if the user-de�ned matching fails, then the �nal matching
result will also fail, regardless of results of other three partial matching results.

Simulations of this algorithm have shown the high degree of positive matches,
due to the ranking scheme de�ned for each stage of the matching procedure. What
seems as a drawback of the matchmaking algorithm based on Service Pro�le, is
that the user has to de�ne all possible inputs that are expected by the Web service
as well as outputs produced by it, in order for the service to be executed.

Matchmaker of Web services based on DAML-S Service Model. The
implemented algorithm allows the user to make queries based on the manner
in which inputs are transformed into outputs, what is speci�ed by the Service
Process Model. It allows the user to di�erentiate among possible input options,
and obtain a successful match by accepting an input corresponding to only one of
these options.

The match between the service advertisement and the request occurs when
all outputs of the request are matched against outputs of the advertisement and
all inputs of the advertisement are matched against the inputs provided by the
user needed for the operation. If one of request's outputs is not matched against
outputs of the advertisement, the match fails.

Based on the semantic equivalence of the request and the advertisement, the

116 Chapter 7. Related work

same categories of match have been identi�ed in the algorithm implemented in
the thesis:

• Exact

• Plug-In

• Subsumes

• Fail

Details about the matchmaking algorithm and a de�nition of matching degrees
are given in Section 2.

Both of the matching algorithms described are based on DAML-S ontologies.
The latter algorithm, based on Service Model, is extended and modi�ed in the
thesis, to support the matchmaking of Web services descriptions written in OWL-
S. OWL-S has a status of a member submission at W3C since the November 2004.

Location-aware computing. Context-aware computing refers to the special
capability of the information infrastructure to recognize and react to the real world
context. The context, in this sense, includes any number of factors, such as a user
identity, his current physical location, weather conditions, the time of the day,
date or season, and a user activity (whether the user is asleep or awake, driving,
or walking). Location-aware computing systems respond to the user's location,
either spontaneously or when activated by a user request. Such a system might
utilize the location information without the user's knowledge.

Location-aware computing and location-based services are extremely active
areas of research that have important implications for future availability of, and
access to, geospatial information. Other examples include the delivery of location-
aware information such as noti�cations of tra�c congestion, warnings of severe
weather conditions, announcements of nearby educational or cultural events, etc.

Providing the contextualized content to mobile users has gained a lot of atten-
tion at this time. Not only third party content providers, but individual users can
produce and publish the content. The content can be �ltered, personalized, and
adapted to certain context elements.

Researchers at VTT Technical Research Centre of Finland have demonstrated
the content adaptation based on combined contexts (location, time, social aspects,
and device characteristics) on the example of a personalized mobile wap portal
in the scope of the KONNTI project [TKL03]. They introduced social contexts
consisting of a user's state of mind (or mood), a mode of spending time, and group

Chapter 7. Related work 117

contexts, as well as provided an RDF serialization of the ontology relevant concepts
and their relationships. Mobile users that use this portal need to be always online
to access the needed information. The location-aware content delivery service,
described in the thesis, o�ers the means of the content delivery even when the
user is o�ine and is not actively involved in using the application on the mobile
device.

The problem of location-based services is that they are mostly bound to a
speci�c positioning technology, and when it happens that the system needs to
change it (e.g. from GPS positioning to WLAN or Bluetooth positioning), it has
to be entirely reengineered. Authors in [IH04] have described the utilization of
di�erent positioning methods in location sensing. They have shown the use of Web
services standards (WSDL and SOAP) for propagation, discovery, and composition
of location-based services in mobile environments. RDF was used to add semantics
to the location information expressed in GPS coordinates or cell ID, addressing
its limitations of expressivity and processing capabilities. The location semantics
proposed in the thesis o�ers a solution to integrate di�erent forms of location
information in the generic presentation format to be used by various location-
aware services.

The GeoNotes system [EPS+01] allows posting notes to other people in the sur-
roundings, sharing context information. Users can participate as content providers
and access other people notes depending on preferences, situation, and informa-
tion needed. On the other hand, the navigation is supported by collecting and
aggregating users' usage of the system, and distribute this data to other users in
some re�ned form. Information �ltering techniques, therefore, become essential to
prevent the information overload and a user's disturbance. Content-based �ltering
is based on matching the user's keywords. Users' traces are tied to speci�c geo-
graphical positions. Usage-based �lters are used to aggregate and match the usage
data with other users to enhance and enrich the social navigation and awareness.
The system lacks the user mobility functionality and the terminal heterogeneity.
The location-aware content delivery system enables the user to apply several ter-
minals to use the same service and to change it during the service use, without
suspending its regular operation.

Collaborative work of researchers from Sun Microsystems and University of
Lausanne has produced the concept of location-based publish/subscribe system
[EGH05], intended for use by mobile ad-hoc applications to communicate with
each other based on location. Topics are expressed as dynamic proximity area and

118 Chapter 7. Related work

there is no possibility for the user to make the subscription to the desired content
related to the location of interest. In the thesis the similar architectural pattern
of publish/subscribe system as the one created in this thesis has been followed,
but for the purpose of location-aware content delivery. The implemented system
takes care about tracking the subscriber and �ltering the content delivery to the
following user preferences: a subscription to the topic depending on his location
of interest, a presence information, the utilized terminal, and a preferred delivery
method (SMS, MMS, or e-mail).

Conclusion

Current solutions developed in the area of service provisioning and device manage-
ment in the mobile network greatly involve the Over-The-Air (OTA) provisioning,
a standard-accepted and widespread mechanism for remote management of device
settings and applications. Instead of users going to the physical location of the
service provider to subscribe to the services of interest, the service is automati-
cally delivered and installed on the �y to their mobile device. What lacks is the
capability for users to specify their requests about the service they wish to invoke,
as well as the ability of the telecommunication system to dynamically discover it,
execute and monitor its behavior during the runtime. The next limitation concerns
the semantic diversity between the required and the available service(s), since it
is highly unlikely that the exact service that matches user requirements will be
found.

The role of the Semantic Web and the idea of the semantic matchmaking,
performed by intelligent software agents, can be utilized in this purpose. Seman-
tic Web services capabilities are described using OWL-S. Based on the semantic
information about the services available, the matchmaking procedure determines
the degree of semantic similarity of the requested and advertised services, that can
help the user to decide if he wants to make use of the service.

Another bene�t of this approach lies in the way the matchmaking algorithm is
realized. It is built on service process model that divides service functionality into
a set of subprocesses responsible for transforming inputs into the desired outputs.
Therefore, it is not necessary for the user to specify all the possible inputs that
the service requires to produce the expected outcome.

The thesis has presented a solution for a �exible and e�cient service provision-
ing concept using semantic agents in the mobile network. An agent representing
the user requesting the service is started on the user mobile device, and it commu-
nicates with an agent acting on behalf of a service provider, o�ering the available
services running on personal computer, that is connected to the Internet. If it hap-

119

120 Conclusion

pens that after the matchmaking procedure, the appropriate service that matches
user demands is found, the user is provided the possibility to install this service
over the air on his mobile device.

The novel service that is provisioned this way is the location-aware content
delivery service. It delivers personalized content to the mobile subscribers based
on their current location, subscription preferences and applied terminal. The con-
tent adapted to the device characteristics is sent as SMS, MMS or e-mail to the
subscriber's terminal, after it is published on the topic speci�ed by subscriber,
and when it is determined that the location of the publisher matches the location
speci�ed in the user subscription. The publish/subscribe mechanism is utilized for
push-based delivery of data to the subscribers' communication point according to
his presence status. At any time the subscriber can set his availability for commu-
nication to 'not available' and decide not to receive the time-sensitive information.
In that case, the information has to be stored for subsequent delivery until the
user communication status becomes 'available' again.

Compared to the existing location-aware systems and content delivery services,
this service enables a personalized and selective delivery of the location-aware
content to numerous users, using existing transport mechanisms. It is believed that
it will open up new excitement opportunities for both the mobile operators and
the content providers, o�ering a variety of information services targeting di�erent
users needs.

Literature

[3gp00] 3GPP TS 23.127: Virtual Home Environment/Open Service
Architecture. http://www.3gpp.org, 2000.

[3st04] Project: 3store. http://sourceforge.net/projects/threestore/, 2004.

[AvH04] Grigoris Antoniou and Frank van Harmelen. A Semantic Web
Primer. The MIT Press, Cambridge, Massachusetts, 2004.

[Ban02] Sharad Bansal. Matchmaking of Web Services based on DAML-S
Service Model. Master thesis, University of South Carolina, 2002.

[BBC97] Peter J. Brown, John D. Bovey, and Xian Chen. Context-aware
applications: from the laboratory to the marketspace. IEEE Personal
Communications, 1997.

[BCM+02] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele
Nardi, and Peter F. Patel-Schneider. The Description Logic
Handbook: Theory, Implementation and Application. Cambridge
University Press, 2002.

[BCMS] Fulvio Bosko, Ivano Costa, Corrado Moiso, and Maximiliano Dario
Sommantico. 3g service architecture for mobile networks: A reference
model. exp in search of innovation.

[BCTR05] Fabio Bellifemine, Giovanni Caire, Tiziana Truco, and Giovanni
Rimassa. JADE Programmer's Guide.
http://jade.tilab.com/doc/programmersguide.pdf, 2005.

[BJR98] Grady Booch, Ivar Jacobson, and James Rumbaugh. Uni�ed
Modelling Language User Guide (Object Technology).
Addison-Wesley, 1998.

121

122 LITERATURE

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic
web. Scienti�c American, 2001.

[Cai05] Giovanni Caire. LEAP User Guide.
http://jade.tilab.com/doc/LEAPUserGuide.pdf, 2005.

[CBB+02] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James
Ivers, Reed Little, Robert Nord, and Judith Sta�ord. Documenting
Software Architectures. Addison-Wesley, 2002.

[CCP03] Composite Capabilities/preference pro�les (CC/PP): Structure and
vocabularies. W3C Working Draft available at:
http://www.w3c.org/TR/CCPP-struct-vocab/, March 2003.

[CK00] Guanling Chen and David Kotz. A Survey of Context-Aware Mobile
Computing Research. Technical report TR2000-381, 2000.

[dam00] DAML-ONT Initial Release.
http://www.daml.org/2000/10/daml-ont.html, 2000.

[dam01] DAML+OIL. http://www.daml.org/2001/03/daml+oil-index.html,
2001.

[DJ05] Alisa Devlic and Gordan Jezic. Location-Aware Information Services
using User Pro�le Matching. In Proceedings of the 8th International
Conference on Telecommunications (ConTEL 2005), pages 327�334.
University of Zagreb, Faculty of Electrical Engineering and
Computing, 2005.

[DP03] Alisa Devlic and Ivana Podnar. Location-Aware Content Delivery
Service Using Publish/Subscribe. In In Proceedings of the
Telecommunications and Mobile Computing (tcmc 2003), pages
159�177. OVE-Mediacenter, Austrian Electrotechnical Association
(OVE), 2003.

[EGH05] Patrick Th. Eugster, Benoit Garbinato, and Adrian Holzer.
Location-based Publish/Subscribe. UNIL Technical report
DOP-20050124, 2005.

[EH03] E.J.Freiedman-Hill. Jess in Action: Java Rule-based System.
Manning Publications, Greenwich, Connecticut, US, 2003.

LITERATURE 123

[EPS+01] Fredrik Espinoza, Per Persson, Anna Sandin, Hanna Nyström, Elenor
Cacciatore, and Markus Bylund. Geonotes: Social and navigational
aspects of location-based information systems. In Proceedings of the
Ubiquitous Computing, 2001.

[eur01] MobilUS: Next generation Mobile Information Services on UMTS.
http://www.eurescom.de/ pub-deliverables/P1100-
series/P1105/TI1/p1105ti1.pdf,
2001.

[�p] The Foundation for Intelligent Physical Agents (FIPA).
http://www.�pa.org.

[Gua98] N. Guarino. Formal Ontology in Information Systems. In Proceedings
of the Formal Ontology in Information Systems (FOIS 1998), pages
3�15. Amsterdam IOS Press, 1998.

[HBS04] Albert Held, Sven Buchholz, and Alexander Schill. Modelling of
Context Information for Pervasive Computing Applications. In
Proceedings of the World Multiconference on Systemics, Cybernetics
and Informatics (SCI 2004), 2004.

[Hen01] James Hendler. Agents and the semantic web. IEEE Intelligent
Systems, 16:30�37, 2001.

[Her96] Björn Hermans. Intelligent Software Agents on the Internet.
http://www.broadcatch.com/agent_thesis/, 1996.

[HP] HP Labs Semantic Web research. http://www.hpl.hp.com/semweb/.

[IH04] Peter Ibach and Matthias Horbank. Highly available location-based
services in mobile environments. In Proceedings of the International
Service Availability Symposium, 2004.

[jad] Java Agent Development Framework (JADE). http://jade.tilab.com.

[Jen] Jena 2 - A Semantic Web Framework.
http://www.hpl.hp.com/semweb/jena2.htm.

[JKD+03] Gordan Jeºi¢, Mario Ku²ek, Sa²a De²i¢, Antun Cari¢, and Darko
Huljeni¢. Multi-Agent System for Remote Software Operations. In

124 LITERATURE

Knowledge-Based Intelligent Information and Engineering Systems
(ISSN 0302-9743), volume 2774. Lecture Notes in Computer Science,
Springer-Verlag, 2003.

[JKL+04] Gordan Jeºi¢, Mario Ku²ek, Ignac Lovrek, Sa²a De²i¢, and Björn
Dellas. Agent-based framework for distributed service management.
In Proceedings of the 16th IASTED International Conferance on
Parallel and Distributed Computing and Systems, pages 583�588.
Cambridge, ACTA Press, 2004.

[jor] Java Open Reliable Assynchronous Messaging (JORAM).
http://joram.objectweb.org/.

[jos03] Joseki - The Jena RDF Server. http://www.joseki.org/, 2003.

[Knu03] Jonathan Knudsen. Wireless Java: Developing with J2ME. Apress,
2003.

[Lov99] Ignac Lovrek. Soft Mobility, 1999.

[MDT05] Ivan Me¢ar, Alisa Devli¢, and Krunoslav Trºec. Agent-oriented
Semantic Discovery and Matchmaking of Web Services. In
Proceedings of the 8th International Conference on
Telecommunications (ConTEL 2005), pages 603�607. University of
Zagreb, Faculty of Electrical Engineering and Computing, 2005.

[NAW94] Bill N.Schilit, Norman Adams, and Roy Want. Context-aware
computing applications. In Proceedings of the First IEEE workshop
on Mobile Computing Systems and Applications, 1994.

[oil00] Description of OIL. http://www.ontoknowledge.org/oil/, 2000.

[Ort02] C. Enrique Ortiz. Introduction to OTA application provisioning.
http://developers.sun.com/techtopics/mobility/midp/articles/ota/,
2002.

[ota01] Over The Air User Initiated Provisioning Recommended Practice for
the Mobile Information Device Pro�le.
http://java.sun.com/products/midp/OTAProvisioning-1.0.pdf, 2001.

[ota02] MIDP 2.0 speci�cation. http://www.jcp.org/jsr/detail/124.jsp, 2002.

LITERATURE 125

[owl] OWLJessKB: A Semantic Web Reasoning Tool.
http://edge.cs.drexel.edu/assemblies/software/owljesskb.

[owl02] Feature Synopsis for OWL Lite and OWL.
http://www.w3.org/TR/2002/WD-owl-features-20020729/, 2002.

[owl04] OWL Web Ontology Language Overview.
http://www.w3.org/TR/owl-features/, 2004.

[php] PHP XML Classes. http://phpxmlclasses.sourceforge.net/.

[pos01] Cellular location technology.
http://www.vtt.�/tte/tte35/pdfs/CELLO-WP2-VTT-D03-007-
Int.pdf, November
2001.

[rap04] RAP - Rdf API for PHP.
http://www.wiwiss.fu-berlin.de/suhl/bizer/rdfapi/, 2004.

[RDF] RDF Test Cases. http://www.w3.org/TR/rdf-testcases/.

[RDF03] RDF Vocabulary Description Language 1.0: RDF Schema. W3C
Working Draft available at: http://www.w3c.org/TR/rdf-schema/,
January 2003.

[rdf04a] RDF Vocabulary Description Language 1.0: RDF Schema.
http://www.w3.org/TR/rdf-schema, 2004.

[rdf04b] RDFStore - PERL/C RDF storage and API.
http://rdfstore.sourceforge.net/, 2004.

[rdf04c] RDF/XML Syntax Speci�cation (Revised).
http://www.w3.org/TR/rdf-syntax-grammar, 2004.

[rdq04] RDQL - A Query Language for RDF.
http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/,
2004.

[RLF00] Andry Rakotonirainy, Seng Wai Loke, and Geraldine Fitzpatric.
Context-awareness for the mobile environment. In Proceedings of the
Human Factors in Computing Systems Conference, 2000.

126 LITERATURE

[ses05] Sesame: RDF Schema Querying and Storage.
http://www.openrdf.org/, 2005.

[Tan04] Stefan Tang. Matching of Web Service Speci�cations using DAML-S
Descriptions. Diploma Thesis, Technical University of Berlin, 2004.

[TDJ+04] Krunoslav Trzec, Alisa Devlic, Gordan Jezic, Mario Kusek, and Sasa
Desic. Semantic Matchmaking of Advanced Personalized Mobile
Services using Intelligent Agents. In In Proceedings of the 12th
International Conference on Software, Telecommunications and
Computer Networks (SoftCOM 2004), pages 387�391. University of
Split, Faculty of Electrical Engineering, Mechanical Engineering and
Naval Architecture, 2004.

[TDJ+05] Krunoslav Trºec, Alisa Devli¢, Gordan Jeºi¢, Mario Ku²ek, and Sa²a
De²i¢. Semantic matchmaking of mobile web services using intelligent
agents. Journal of Communication Software and Systems (JCOMSS),
to be published in 2005.

[tel03] Context-aware services. https://doc.telin.nl/dscgi/ds.py/Get/File-
27859/Context-aware_services-sota,_v3.0,_�nal.pdf, November
2003.

[TKL03] Sanntu Toivonen, Juha Kolari, and Timo Laakko. Facilitating mobile
users with contextualized content. In Proceedings of the Arti�cial
Intelligence in Mobile System Workshop (AIMS 2003), 2003.

[UaP99] Wireless Application Group User Agent Pro�le Speci�cation.
http://www.wapforum.org/what/technical/SPEC-UAProf-
19991110.pdf,
1999.

[wvi02] Wireless Village Presence Attributes V1.0.
http://www.openmobilealliance.org/tech/a�liates/wv/wv_pa_-
v1.0.pdf,
2002.

[xpa99] XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath, 1999.

Summary

The master thesis investigates the issues of service provisioning in mobile net-
work. Service provisioning is de�ned as the setting in place and con�guring of the
hardware and software required for activating a telecommunications service for a
customer. The thesis proposes and implements a solution for a �exible and e�cient
service provisioning using semantic agents in the mobile network. Semantic agents
are intelligent software agents that collect user preferences for the required service,
and discover the available advertised services o�ered by service providers. They
use the implemented matchmaking algorithm in the thesis to determine from the
available services the one that best meets user's requirements. When the service
is determined and found on the Web, the user can install and invoke it on the
mobile device.

The service that was utilized for service provisioning is the location-aware con-
tent delivery service that delivers personalized content to mobile users depending
on their current location, utilized terminal and preferences. It consists of the client
and server part, for which the provisioning is performed separately. The client part
is provisioned on the described manner, using semantic agents. The server part of
the service is migrated, installed and invoked on the remote node, using the multi-
agent system supporting remote software maintenance operations in the network.

Keywords:
semantic agents, location-aware services, personalized content delivery, service pro-
visioning, semantic matchmaking

127

Curriculum Vitae

I was born on August 15th, 1979 in Kutina. After �nishing high school with ex-
cellent grades, I started the undergraduate program at the Faculty of Electrical
Engineering and Computing, University of Zagreb, in 1997. I graduated on May,
15th 2002 from the Telecommunication Department. My Diploma thesis was based
on location-based services and developing an application based on mobile posi-
tioning for Palm OS mobile devices in GSM/GPRS environment. I am currently a
guest researcher at Wireless@KTH center in Kista, Sweden, where I am involved
in the "Adaptive & Context-Aware Services" research project, under the guidance
of prof. Maguire from the KTH. I was employed as a research associate with the
Telecommunication Department, FER, from July 2002 till September 2005, when
I have been granted a scholarship from the Swedish Institute. I was involved in
the research project Remote Operation Management, under the leadership of Gor-
dan Jeºi¢, that is performed in cooperation with Ericsson Nikola Tesla company.
My current research interests include location and context-aware services, mobile
software agents, as well as issues of user, terminal and service mobility in mobile
networks. I have published 6 papers on international and domestic conferences in
the area of location-based services and mobile agents. I am �uent in English and
German. I am a member of IEEE.

129

