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ABSTRACT
With the decreasing price of Head-Mounted Displays (HMDs),
360-degree videos are becoming popular. The streaming of such
videos through the Internet with state of the art streaming
architectures requires, to provide high immersion feeling, much
more bandwidth than the median user’s access bandwidth. To
decrease the need for bandwidth consumption while providing
high immersion to users, scientists and specialists proposed to
prepare and encode 360-degree videos into quality-variable video
versions and to implement viewport-adaptive streaming.
Quality-variable versions are different versions of the same video
with non-uniformly spread quality: there exists some so-called
Quality Emphasized Regions (QERs). With viewport-adaptive
streaming the client, based on head movement prediction,
downloads the video version with the high quality region closer to
where the user will watch. In this paper we propose a generic
theoretical model to find out the optimal set of quality-variable
video versions based on traces of head positions of users watching
a 360-degree video. We propose extensions to adapt the model to
popular quality-variable version implementations such as tiling
and offset projection. We then solve a simplified version of the
model with two quality levels and restricted shapes for the QERs.
With this simplified model, we show that an optimal set of four
quality-variable video versions prepared by a streaming server,
together with a perfect head movement prediction, allow for 45%
bandwidth savings to display video with the same average quality
as state of the art solutions or allows an increase of 102% of the
displayed quality for the same bandwidth budget.

KEYWORDS
360-degree Video, Omnidirectional Video, Quality Emphasized
Region, Viewport Adaptive Streaming
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1 INTRODUCTION
Offering high-quality virtual reality immersion by streaming 360-
degree videos on the Internet is a challenge. The main problem
is that most of the video signal information that is delivered is
not displayed. Indeed, the Head-Mounted Displays (HMDs) that
are used for immersion show a viewport, which represents a small
fraction of the whole 360-degree video. Typically, to extract a 4K
(3840 × 2160 pixels) video viewport from the whole 360-degree
video, the stream should be at least a 12K (11520 × 6480 pixels)
video, from which most information is ignored by the video player.

A solution researchers are exploring to limit the waste of
bandwidth is to prepare and stream 360-degree videos such that
their quality is not homogeneous spatially [6, 11, 19, 23]. Instead
the quality is better at the expected viewport positions than in the
rest of the video frame. Two main concepts that support this
solution are (i) encoding of quality-variable videos, which can be
based on tiling [28], scalable coding [4, 26], and offset
projections [30]; and (ii) implementation of viewport-adaptive
streaming, which is to signal the different quality-variable versions
of the video, to predict viewport movements, and to make sure
that a given user downloads the quality-variable video such that
the quality is maximum at her viewport position.

The design of efficient viewport-adaptive streaming systems
requires the understanding of the complex interplay between the
most probable viewport positions, the coding efficiency, and the
resulting Quality of Experience (QoE) with respect to the traditional
constraints of delivery systems such as bandwidth and latency.
MPEG experts have proposed the concept of quality region, which
is a rectangular region defined on a sphere, characterized by a
quality level ranging from 1 to 100. The main idea is that the content
provider determines some quality regions based on offline external
information (e.g., content analysis and statistics about viewport
positions), and then prepares multiple quality-variable versions of
the same 360-degree video based on these quality regions.

We provide in this paper a theoretical analysis of this concept of
quality regions for 360-degree videos. We present optimization
models to determine the optimal quality regions, subject to a
population of clients, the number of quality-variable video
versions, and the bandwidth. We aim at maximizing the video
quality displayed in the client viewports by identifying (i) the
location of the quality region, (ii) their dimensions (or area size),
and (iii) the quality inside and outside the regions. Our model
enables content providers to prepare 360-degree videos based on
the analytics of the head movements collected from the first
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content consumers. Using a dataset of real head movements
captured on an HMD, we study an optimal set of video versions
that are generated by our algorithms and evaluate the performance
of such optimal viewport-adaptive streaming. We demonstrate
that, for a given overall bit-rate video, the video quality as
perceived by the user improves by 102% on average.

2 RELATEDWORK
2.1 Quality-Variable Videos Implementation
In the literature, we distinguish two approaches to implement
quality-variable 360-degree videos. We give a brief introduction to
these approaches in the following, while providing more details in
Sections 3.2 and 3.3 on how our model applies to these approach.
Tile-based Approach. The motion-constrained tiles are
contiguous fractions of the whole frame, which can be
encoded/decoded independently and can thus be seen as separated
sub-videos. The concept of tiling is part of the High Efficiency
Video Coding (HEVC) standardized decoder [18] and is considered
as a key supporting technology for the encoding of
quality-variable video versions. The tile-based approach has been
developed for other multimedia scenarios where end-users
consume only a fraction of the video, especially in navigable
panorama [10, 22, 25]. This approach has been recently extended
to meet the demand of virtual reality and 360-degree video
systems. In a short paper, Ochi et al. [20] have sketched a solution
where the spherical video is mapped onto an equirectangular video,
which is cut into 8×8 tiles. Zare et al. [28] provide more details on
the encoding performance of tilling when applied on projected
frames. This study demonstrates the theoretical gains that can be
expected by a quality-variable implementation of 360-degree video.
More recently, Hosseini and Swaminathan [11] proposed a
hexaface sphere-based tiling of a 360-degree video to take into
account projection distortion. They also present an approach to
describe the tiles with MPEG Dynamic Adaptive Streaming over
HTTP (DASH) Spatial Relationship Description (SRD) formatting
principles. Quan et al. [21] also propose the delivery of tiles based
on a prediction of the head movements. Their main contribution is
to show that the head movements can be accurately predicted for
short segment sizes by using standard statistical approaches. Le
Feuvre and Concolato [16] have demonstrated the combination of
HEVC tiling with 360-degree video delivery. Their main
contribution is to demonstrate that current technologies enable
efficient implementation of the principles of the tile-based
approach. Finally, Zare et al. [29] show that, by using the extractor
design for HEVC files and using constrained inter-view prediction
in combination with motion-constrained tiles, it is possible to
efficiently compress stereoscopic 360-degree videos while allowing
clients to decode the videos simultaneously with multiple
decoding instances.
Projection-Based Approach. This approach, which has been
proposed by Kuzyakov [14] and is currently implemented in
practical systems [30], takes profit from the geometrical projection.
Indeed, since state-of-the-art video encoding are based on
two-dimensional rectangles, any 360-degree video (captured on
the surface of a sphere) needs to be projected onto a

two-dimensional video before encoding. Scientists have been
studying spherical projection onto maps for centuries. The most
common projections are equirectangular, cube map, and
pyramid [6, 27]. The main idea introduced by Kuzyakov [14] is to
leverage a feature of the pyramid, projection: the sampling of
pixels from the spherical surface to the two-dimensional surface is
irregular, which means that some parts of the spherical surface get
more distortion after the projection than others. Depending on the
position of the base face of the pyramid, the projection, and
consequently the video encoding, is better for some parts of the
spherical surface. A refined approach based on geometrical
projections is the offset projection [30], where a constant directed
vector is applied during the projection to change the pixel
sampling in the sphere domain while keeping the same pixel
sampling (resolution) in the projected domain. It results in a better
quality encoding near the “offset direction” and a continuously
decreasing qualities for viewports far from this direction.

2.2 Viewport-Adaptive Streaming
Several researchers have concomitantly studied solutions to
stream 360-degree videos based on the same principle as in
rate-adaptive streaming [5, 6, 15, 16, 21]. A server splits the video
into different segments which duration typically vary between 1 s
to 10 s. Each segment is then encoded into different
representations each representation having different size (in byte)
and having different quality distribution. A client decides, thanks
to an adaptation algorithm using local information and predictions,
which video representation (or set of representations) to download,
to match the available bandwidth budget and the future position of
the user viewport.

Zhou et al. [30] studied a practical implementation of
viewport-adaptive streaming made for the Occulus HMD, and
showed that the occulus’ implementation is not efficient: 20% of
the bandwidth is wasted to download video segments that are
never used. Le Feuvre and Concolato [16] and Concolato et al. [5]
studied practical implementation of tile-based quality-variable
360-degree videos viewport-adaptive streaming. Corbillon et al. [6]
studied an optimal viewport-adaptive streaming selection
algorithm based on different heuristically defined quality-variable
versions of 360-degree videos. In this paper, we focus on an
optimization model to generate quality-variable video versions for
viewport-adaptive streaming that maximize the quality inside
users’ viewports when number of video versions available to the
user is limited. To the best of our knowledge, nobody studied
before us optimal parameters to generate limited number of
quality-variable versions for 360-degree videos.

2.3 Regions of Interest
Ourwork has also some common roots with the literature on Region
of Interest (RoI) in video delivery. The human vision system can
only extract information at high resolution near the fovea, where
the gaze focuses its attention; the vision resolution decreases with
eccentricity. Within the same video picture, it is common that most
users focus their gaze on some specific regions of the picture, named
RoI. Researchers have studied saliency map, which measures the
gaze location of multiple users watching the same video. The goal
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is to extract RoI and, if possible, to corroborate RoI with picture
structures to enable automatic RoI prediction [3, 9]. However, the
concept of saliency map should be revisited with 360-degree videos,
because the head movement is the prevailing factor to determine
the attention of users. To the best of our knowledge, the relation
between gaze-based saliency map and head movements in HMD
has not been demonstrated.

The attention-based video coding [2, 13, 17] is a coding strategy,
which takes advantage of the gaze saliency prediction. The
quantization parameters of the encoder are adjusted to allocate
more bits near the different RoI and less bits farther away. A live
encoder can perform attention-based video coding by using either
feedback from a set of specific users or predicted RoI.

We revisit this approach to 360-degree videos in this paper. Our
work is both to study per-segment RoI localization based on head
movement information and to generate RoI-based encoded video
representations. The creation of spherical quality-variable video
versions based on head movement analysis enables
viewport-adaptive streaming in the same manner that saliency
map and attention-based video coding enable efficient video
delivery on regular planar videos [9].

3 QUALITY-VARIABLE VIDEOS
We first introduce a model for quality-variable 360-degree videos
and then provide some illustrations of this model on some
implementation proposals.

3.1 Generic Model
Spherical videos. The unit sphere that underlies the 360-degree
video is split intoN non-overlapping areas that cover the full sphere.
The set of areas is denoted by A. In essence, each area corresponds
to the video signal projected on a given direction of the sphere.
Let us denote by sa the surface of an area a on the sphere and
observe that the smallest possible surface sa is the pixel (in which
case the set A is the full signal decomposition and N is the video
resolution). However, video preparation processes are generally
based on a video decomposition A with larger surface sa , such as
the concept of tiles in HEVC [18]. For the preparation of 360-degree
videos, any decomposition of the video into A can be considered if
it respects that it covers the whole sphere, formally

∑
a∈A sa = 4π .

Area Quality. The goal of a video encoder is to compress the
information of the video signal corresponding to a given area a
into a decodable byte-stream (lossy compression generating
distortion when the video is eventually played). An encoder uses a
compression algorithm with various parameter settings to encode
the video. For a given encoder, the more compression due to the
encoding settings, the more distortion in the decoded and played
video. Using MPEG terminology, we use the generic term quality
to express the settings of the encoding scheme on a given area,
regardless of the used area encoding process. The number of
different ways to encode areas is finite, which results in a set of
available qualities Q for this encoder (typically the quality ranges
from 1 to 100 in MPEG). The set Q is totally ordered with a
transitive comparison function, noted with >.

We provide some natural notations: qmin (respectively qmax) is
the lowest (respectively highest) possible quality for areas. The

encoder processes an area a ∈ A with a quality q to generate a
byte-stream of size ba,q . Given the usual strictly increasing feature
of the rate-distortion performance of video encoders, we get that if
a quality q1 ∈ Q is better than a quality q2 ∈ Q (formally q1 > q2),
then we have ba,q1 > ba,q2 , ∀a ∈ A.
Video Version. We use the term version to represent the
transportable full video signal byte-stream. It is the video as it can
be delivered to clients. Based on the definitions of areas and
qualities, a version is a function that associates with every area
a ∈ A a unique quality q ∈ Q , which corresponds to the encoding
quality of a. Let us denote by R the set of all possible versions.
Please note that the number of possible versions is finite since
both the set of areas A and the set of qualities Q are finite.
However, the number of different versions is N |Q | . We use the
notation r (a) to denote the quality q that corresponds to the
quality at which the area a ∈ A is encoded in the version r ∈ R.

Let B be a positive real number. We denote by RB the subset
of versions in R such that r ∈ RB satisfies that the sum of the
byte-stream sizes for every area a ∈ A is equal to B. Formally, we
have :

∀r ∈ RB ,
∑
a∈A

ba,r (a) = B

Viewport. One of the peculiarities of 360-degree videos is that at
a given time t a user u watches only a fraction of the whole video,
which is generally called the viewport. The viewport displays only a
subset of all the areas of the sphere. Letvu,t,a be a real number equal
to the ratio of the surface of area a that is inside the viewport of
useru at time t and letvu,a be the average value ofvu,t,a during all
time t in a video segment: vu,a =

∑
t vu,t,a/T , withT the duration

of the segment. With respect to the same definition of quality, we
have that the average viewport quality during a video segment can
be defined as being the sum of the qualities of all the areas that
are visible in the viewports, formally

∑
a vu,a · r (a). In practice, the

satisfaction of the user watching a viewport is more complex since
it depends not only on the visible distortion of the different areas in
the viewport but also on the possible effects that different levels of
distortion on contiguous areas can produce. Nevertheless, for the
sake of simplicity, and with regards to the lack of formal studies
dealing with subjective satisfaction evaluation of multi-encoded
videos, we consider here that the satisfaction grows with the sum
of qualities of the visible areas.

3.2 Illustration: Offset Projections
To apply the implementation of offset projection as presented by
Zhou et al. [30] to our model, we need to introduce some additional
notations. Let 0 ⩽ β ⩽ 1 be a real number, which is the magnitude
of the vector used by the “offset” projection. We denote by θ the
angular distance between the “offset direction” and a given point
on the sphere. The variation of the sampling frequency compared
to the frequency of the same projection without offset at angular
distance θ is:

f (θ ) =

(
1 + 2β + β2

1 + β

) (
β cos(θ ) + 1

1 + 2β cos(θ ) + β2

)
If we denote by D(a1,a2) the angular distance between the centers
of two areas a1 and a2, offset projections could be modeled by the
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set of version r ∈ R such as there exists aof f set ∈ A such as
∀a ∈ A, r (a) = f (D(aof f set ,a)) · r (aof f set ).

3.3 Illustration: Tiling
We define the concept of tile and tiled partition to extend our model
to tiled versions. A tile is a set of contiguous areas of A. A tiled
partition T of A is a set of non overlapping tiles that cover A. A
tiled version using the tiled partition T , is a version r ∈ R such that
the quality is uniform on each tile of T . Formaly we have ∀τ ∈ T ,
|r (τ )| = 1.

Note that in the tiled scenario, the service provider can generate
a version for each tile individually without offering a version for
the whole video. In this case, the client has to select separately a
version for each tile to generate what we denote by a tiled version in
our model. This differs from the other scenarios where the service
provider is the one that decides which video version to generate.

4 VIEWPORT-ADAPTIVE STREAMING
An adaptive streaming system is modeled as being one client and
one server, where the server offers J different versions of the video,
and the client periodically selects one of these versions based on a
version selection algorithm.
Server. The main question is to prepare J versions in R among all
the possible combinations of qualities and areas. In the practical
360-degree video streaming system described by Zhou et al. [30],
the number of versions J is equal to 30, while the solution that is
promoted by Niamut et al. [19] is to offer all the combinations of
tiles (typically 8 × 4) and qualities (typically 3). In practice, a low
number of versions J is suitable since it means less files to manage
at the server side (96 files in the latter case) and less complexity in
the choice of the version at the client side (more than 32 thousand
combinations in the aforementioned case). The main variable of
our problem is the boolean xr , which indicates whether the server
decides to offer the version r ∈ R. Formally, we have:

xr =

{
1, if the server offers r ∈ R

0, otherwise

Since the server offers only J different versions, we have∑
r ∈R xr = J . In the following, we restrict our focus on the case of

a given overall bit-rate budget B, which is a real number. The main
idea is to offer several versions of the video meeting the same
bandwidth requirement but with different quality distributions. All
the versions have thus the same overall bit-rate “budget” but they
differ by the quality of the video, which is better at some directions
in the sphere than others.
Client. The version selection algorithm first determines the most
suitable bit-rate, here B, and then selects one and only one
versions among the J offered versions for every segment of the
videos, ideally the version that is the best match to user viewport.
To simplify notations, we omit in the following the subscripts
related to temporal segments, and we thus denote by yu,r the
binary variable that indicates that user u selects r ∈ R for the
video. Formally:

yu,r =

{
1, if the client u selects r ∈ R

0, otherwise

Since the user selects only one offered versions, we have∑
r ∈R yu,r · xr = 1. We consider an ideal version selection

algorithm and we thus assume that the client always selects the
version that maximizes the viewport quality as previously defined,
which is r such that

∑
a vu,a · r (a) is maximum.

4.1 Model Formulation
Our objective is to determine, for a given set of users who request
the video at bit-rate B, the J versions that should be prepared at the
server side so that the quality of the viewports is maximum. In its
most generic form, the problem can thus be formulated as follows.

max
yu,r

∑
u

∑
r ∈R

yu,r ·
∑
a

vu,a · r (a)

Such that:∑
a

ba,r (a) = B ∀r ∈ R (1a)∑
r

xr ⩽ J (1b)∑
r
yu,r = 1 ∀u (1c)

yu,r ⩽ xr ∀r ,u (1d)
Note that with this formulation the problem is tractable.

5 PRACTICAL OPTIMIZATION MODEL
We take into account some practical additional constraints and some
further hypothesis to formulate a tractable optimization problem,
which meets key questions from content providers.

5.1 Practical Hypothesis
We first suppose that each area a ∈ A in the whole spherical video
has the same coding complexity. This means we suppose that for a
given quality, the byte-stream size of a area is proportional to its
size. We derive the concept of surface bit-rate, which expresses in
Bps/m2 the amount of data that is required to encode an area at a
given quality. We obtain that bmax (respectively bmin) corresponds
to the surface bit-rate for the maximum (resp. minimum) quality.

Second, we restrict our study to only two qualities per version.
We follow in that spirit the MPEG experts in the Omnidirectional
Media Application Format (OMAF) group [12], and notably we
follow their recommendation to implement scalable tiled video
coding such as HEVC Scalable Extension (SHVC) [4] for the
implementation of quality-variable 360-degree video versions. It
means that for each version we distinguish a Quality Emphasized
Region (QER), which is the set of areas that are at the high quality
noted bqer , and the remaining areas, which are at the low quality
bout . In the SHVC encoding, bqer corresponds to the video signal
with the enhancement layer, while bout contains only the base
layer. Let sr be the overall surface of the areas that are in QER for
a given version r ∈ R. The bit-rate constraints (1a) can thus be
expressed as follow:

sr · bqer + (4π − sr ) · bout = B (2)
Third, we introduce a maximum gap between both qualities.

The motivation is to prevent the video to have too visible quality
changes between areas. This quality gap ratio, denoted by rb , can
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hDim
vDim

c

Figure 1: A rectangular region of the sphere: in blue the two
small circle that delimit the region and in red the two great
circles that delimit the region.

be defined as the maximum ratio that relate the qualities bqer and
bout :

bqer

bout
< rb (3)

Finally, we define the QER as a rectangular region defined on
the sphere as shown in Figure 1. We thus adopt the restriction that
has been introduced in the MPEG OMAF [12] to delimit a so-called
rectangular region on the sphere. We also adopt the same way to
define the region by delimiting two small circles (angular distance
vDim), two great circles (angular distance hDim) and the spherical
coordinates of the region center is (1,θ ,φ).

In the following, we consider only video versions r ∈ R such
that there exists −π ⩽ θ ⩽ π , 0 ⩽ φ ⩽ π , −π ⩽ hDim ⩽ π , and
0 ⩽ vDim ⩽ π such that for all area a ∈ A, if a is inside the
rectangle characterized by (θ ,φ,hDim,vDim), the bit-rate of a is
bqer otherwise it is bout . We denote such a version by
rθ,φ,hDim,vDim .

5.2 Bit-Rate Computation
The objective function (1) imply that if two versions have a QERs
containing the same areas, the optimal set of offered video versions
can only contains the version that maximize the bqer subject to the
bit-rate constraint (2) and the ratio constraint (3).

In order to simplify the complexity of the model, we
pre-computed the value of bqer and bout depending on the size of
the QER sr . We identify four different cases depending on the size
of the QER sr . For simplicity, we provide in the following the main
ideas of the algorithm and put the details of the mathematical
model in the Appendix of the paper.

We first combine the constraints given by the overall bit-rate
budget with Equation (2) and the knowledge that bmin ⩽ bout <
bqer ⩽ bmax . There are two cases, depending on whether the QER
is small or not:
• When the surface of the QER is small, i.e., sr ⩽ B−4πbmin

bmax−bmin
(see

in Appendix) , the constraint on the maximum surface bit-rate
prevails for bqer . The surface bit-rate inside the QER can be
maximum. The bit-rate budget that remains after deducing the
bit-rate in the QER is B − (sr · bmax). This remaining bit-rate
budget is large enough to ensure that the surface bit-rate for the
areas outside the QER is greater than bmin. We obtain that bqer
is equal to bmax and bout is derived as:

bout =
B − (bmax · sr )

4π − sr
(4)

• When the surface of the QER is large, i.e., sr ⩾ B−4πbmin
bmax−bmin

, the
constraint on the minimum surface bit-rate prevails. The surface
bit-rate inside the QER cannot be bmax, otherwise the remaining
bit-rate that can be assigned to the video area outside the QER
would not be large enough to ensure that bout is greater than
bmin . Here, we first have to set bout to bmin and then assign the
remaining budget B − (bmin · (4π − sr )) to the QER area.

bqer =
B − (bmin · (4π − sr ))

sr
(5)

Next, we consider the quality gap ratio, which applies to both
previously discussed cases:
• When the QER is small, setting bqer = bmax and br,out to (4)
can lead to not respect Equation (3). It occurs for any QER such
that (see in Appendix) :

sr ≥
4π · bmax − B · rb
(1 − rb ) · bmax

The surface bit-rate bqer should be instead reset as bqer = rb ·

bout . This constraint makes that some extra bit-rate are not
assigned: sr · (bmax − rb · bout ). These extra bit-rates can thus
be re-assigned to both bqer and br,out (see in Appendix) .

• When the QER is large, setting bout = bmin and br,qer with
Equation (5) can also lead to not respect Equation (3). It occurs
for any QER such that:

sr ⩽
4π · bmin − B

(1 − rb ) · bmin
Similarly as in the previous case, resetting bqer with respect
to the quality gap ratio leads to release of some extra bit-rates,
which can be re-assigned to both bout and bqer .
We represent in Figure 2 the algorithm with the four cases

when it applies to standard settings1 of the overall bit-rate B, the
maximum surface bit-rate bmax, the minimum surface bit-rate
bmin, and the quality gap ratio rb . Finally, we show in Figure 3 how
the surface bit-rates are assigned depending on the surface sr for a
given parameter configuration (see in caption and in Section 6).
Here the thin gray vertical lines correspond to the threshold at
which the algorithm runs a different case.

6 EVALUATION – CASE STUDY
6.1 Settings
We used a custom-made C++ software publicly available on github.2
This software uses the IBM Cplex library to solve our optimization
problem.
Dataset of Head Movements. We used the public head
movement dataset that we recently extracted and shared with the
community [7].3 This dataset contains the head orientation of 59
persons watching, with a HMD, five 70-second-long 360-degree
videos. In this paper we used the results from only two out of the
five videos available: roller-coaster and diving. We selected those
1In some configurations, it is possible that some of the presented cases do not hold
since the threshold for the cases can be negative, greater than 4π , or interfering with a
prevailing constraint. This however does not occur for the most common configuration
parameters such that a quality gap ratio not too large and consistent values for both
bmin and bmax .
2 https://github.com/xmar/optimal-set-representation-viewport-adaptive-streaming
3http://dash.ipv6.enstb.fr/headMovements/
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(1) set bqer = bmax
(2) set bout with the remaining bit-rate

B −
(
bqer · sr

)
(1) set bout =

B−(bmax ·sr )
4π−sr(2) set bqer = rb · bout

(3) get extra bit-rate
sr ·

(
bmax − bqer

)
(4) re-allocate the extra bit-rate in the

QER and non-QER areas

(1) set bout = bmin(2) set bqer = rb · bout
(3) get extra bit-rate

B −bmin(4π − sr ) − rb · bmin · sr(4) re-allocate the extra bit-rate in QER
and non-QER areas

(1) set bout = bmin(2) set bqer with the remaining
bit-rate B − (bout · (4π − sr ))

sr = 0 sr =
4π ·bmax−B ·rb(
1−rb

)
·bmax sr =

B−4πbmin
bmax −bmin

sr =
4π ·bmin−B(
1−rb

)
·bmin sr = 4π

Figure 2: Algorithm for surface bit-rates in and out of the QER. The algorithm depends on the surface of the QER sr . We show
here the four different cases, for various surfaces (smallest to largest from left to right).

0 π 2π 3π 4π0

1

2

3

surface bit-rate for a uniform quality

surface of the QER sr

su
rfa

ce
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Figure 3: Surface bit-rates as a function of the QER surface.
The overall video bit-rate B is 12.56Mbps, so the surface
bit-rate for a uniform quality is 1Mbps/m2. The maximum
surface bit-ratebmax is 2.1Mbps/m2 while theminimumbmin
is 0.45Mbps/m2. Finally, the quality gap ratio rb is 3.

videos because users exhibit different behaviors while watching
them: most users focus on a single RoI in the roller-coaster video
while people move their heads to explore the scene in the diving
video.

number of offered versions J 4
overall bit-rate B 12.56Mbps

maximum surface bit-rate bmax 2.1Mbps/m2

minimum surface bit-rate bmin 0.45Mbps/m2

quality gap ratio rb 3.5
number of areas N 400
video segment size 2 s

Table 1: Default evaluation settings

Content Provider Case Study. The default parameters are
summarized in Table 1. The content provider generates up to
K = 4 video versions and solves the optimization problem for
every video segment (i.e., each video segment has its own set of
versions). The parameters related to the bit-rates are similar as in
Figure 3: a total bit-rate budget B of 12.56Mbps, a maximal surface
bit-rate bmax of 2.1Mbps/m2 and a minimal surface bit-rate bmin
of 0.45Mbps/m2. We restricted the positions of the center of the
QER on the sphere to 17 possible latitudes and 17 possible
longitudes. Moreover the angular distance hDim and the angular
distance vDim can take 12 different values. We split the sphere
into a total of N = 400 areas. We cut the videos of the dataset into
2 s long segments. We solved the optimization model
independently for each video segment.
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Figure 4: Visible surface bit-rate depending on the global
bit-rate B. The horizontal red arrow shows the difference
in total bit-rate to deliver viewports with the same average
quality as a user would observe with a video encoded with a
uniform quality. The vertical red arrow indicates the gain in
quality (measure in surface bit-rate) compared to viewports
extracted at the same position on a video with uniform
quality with the same total bit-rate.

6.2 Theoretical Gains of Viewport-Adaptive
Streaming

Our first goal is to evaluate the possible (theoretical) gains that the
implementation of viewport-adaptive streaming can offer to the
content providers. The gains can be evaluated from two
perspectives: either the opportunity to save bandwidth while
offering the video at the same level of quality as if the video was
sent with uniform quality, or the opportunity to improve the
quality of the video that is displayed at the client side for the same
bit-rate as for a standard delivery. We computed the average
surface bit-rate inside the viewport of the users (named visible
surface bit-rate in the following) for different bit-rate budgets. The
average visible surface bit-rate bvqer in the viewport during a
segment can be formally written as follow, with Nu the number of
user:

bvqer =
∑
r,u

yu,r ·

(∑
a vu,a · br (a) · sa

Nu ·
∑
a vu,a · sa

)
(6)

Figure 4 represents the mean average visible surface bit-rate for
all segments of the two selected videos. The horizontal dashed line
shows the average visible surface bit-rate for the bit-rate budget of
12.56Mbps that is uniformly spread on the sphere, while the
vertical dashed line indicates the quality for a constant bit-rate of
12.56Mbps. We also represent the gains from the two
aforementioned perspectives (either bit-rate savings or quality).

For a constant average quality inside the user viewports, the
delivery of optimally generated QER versions enables 45%
bandwidth savings. For a constant bit-rate budget, the optimal
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Figure 5: Visible surface bit-rate depending on the number
of offered QER versions. The dark red line representes the
visible surface bit-rate of a video encoded with the same
overall bitrate but with uniform quality.

viewport-adaptive delivery enables an average increase of visible
surface bit-rate of 102%.

6.3 Video Content vs. Delivery Settings
We now study the settings of the viewport-adaptive streaming
systems, especially the parameters related to the number of different
versions (J ) and the segment size (T ). We compare the set of versions
that are generated by the optimal solver for both selected videos.
We are interested in studying whether there exists a common best-
practice setting to generate versions, regardless of the video content,
or whether each video should be prepared with respect to the
content by a dedicated process with its own setting. We show the
results computed separately for the roller-coaster and the diving
video. Recall that the roller-coaster video has a single static RoI and
most of the 59 users focus on it. On the contrary, the diving video
has multiple moving RoI, which most users alternatively watch.

Figure 5 represents the average visible surface bit-rate bvqer of
the optimal QER versions for each user and each video segment for
both videos: the roller-coaster video is in plain-green lines while the
diving video is in dashed-blue lines. The results are shown with a
box plot, with the 10th, 25th, 50th, 75th and 90th percentiles for the
30 segments watched by the 59 users of each video in an optimal
viewport-adaptive delivery system.

The viewport-adaptive streaming systems make that the higher
the number of QER versions offered by the content provider, the
better the average quality watched by the users because the set
of versions covers more user behaviors. However, we notice that
there exists a threshold value after which increasing the number of
versions does not significantly improve the quality of the viewport
of the users. This threshold depends on the video content. For the
roller-coaster video, the limit is four QER versions while this limit
is eight for the diving video. Please note that both threshold are
significantly lower than the thirty versions that are generated by
state-of-the-art viewport-adaptive delivery systems [14].

In Figure 7 we fix the number of QER versions to four and we
evaluate the impact of the segment size on the generated QER
versions. Like for Figure 5 the results are displayed with a box plot,
which follows the same color code.

The median quality decreases while the size of the segments
increases. Indeed, the higher the segments size, the wider are the
head movements of the users. But, similarly as in the number of
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Figure 6: Visible surface bit-rate depending on the size of the
segment. The dark red line representes the visible surface
bit-rate of a video encoded with the same overall bitrate but
with uniform quality.
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Figure 7: CDFs of the surface of the QER of the offered
version for different bit-rate budget.

video versions, we notice that the median average displayed quality
for the diving video is more sensitive to the segment size than
for the roller-coaster video. For the latter, the quality decreases for
segments longer than 2 s while for the diving, the quality decreases
for segment longer than 1 s.

6.4 QER Dimensions vs. Overall Bit-rate
We study the main characteristics of the generated QER versions
with a focus on the impact of the global bit-rate budget on the
dimensions. We evaluate both the size of the QER inside each video
version and the shape of the QERs.

Figure 7 represents the cumulative density function (CDF) of
the surface of the QER inside each generated optimal version, for
different global bit-rate budget, for both video. The dashed vertical
black line represents the surface of the viewports of the users as it
is seen in the HMD.

The size of the QERs increases with the overall bit-rate budget.
If the bit-rate budget is small, the size of each QERs is smaller than
the surface of the viewports. It means that no user has a viewport
with full quality everywhere. The optimal solver prefers here to
keep a high quality on an area that is common to the viewport of
many users. If we increase the available bit-rate budget, the surface
of the optimal QERs increases and is now wider than the viewport,
so when a user who moves the head can nevertheless still have a
viewport within the QER.

Figure 8 represents the probability density function (PDF) of
the difference between the horizontal and vertical dimensions of
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Figure 8: Difference between the horizontal and vertical dimension of the QERs

the generated QERs. For instance, Figure 8a indicates that 21%
of the QERs have a horizontal size hDim that is within the range
[−1 +vDim,−0.5 +vDim). The more occurrences of QER on the
right, the more horizontal QERs are generated by the optimal solver.

QERs have often a squared shape (the horizontal dimension is
close to the vertical dimension), and are mostly more horizontal
than vertical. The horizontal shape can be explained by the fact
that users move more often horizontally than vertically (they often
stay close to the horizon). Moreover, when the bit-rate budget is
limited, shapes are less often squared. Our interpretation is that,
given that the generated QERs are narrower, the optimal solver
generates QERs that cover various positions, corresponding to more
users whose attention is on various positions around the horizon.

7 CONCLUSION
This paper investigates some theoretical models for the
preparation of 360-degree video for viewport-adaptive streaming
systems. Viewport-adaptive streaming has recently received a
growing attention from both academic [6, 20, 21] and
industrial [1, 8, 24] communities. Despite some promising
proposal, no previous work has explored the interplay between the
parameters that characterize the video area in which the quality
should be better. We denote this special video area a QER. In this
paper, we address, on a simplified version of our theoretical model,
the fundamental trade-off between spatial size of the QERs and the
aggregate video bit-rate. We show that some new concepts, such
as the surface bit-rate, can be introduced to let the content
provider efficiently prepare the content to be delivered. Finally, we
demonstrate the potential benefits of viewport-adaptive streaming:
the gains compared to streaming of a video version with a uniform
quality are greater than 102% in terms of displayed quality to a
user given a constant bit-rate budget, and a bit-rate budget
reduction for more than 45% for the same displayed video quality.

In this paper, we assumed that content provider already has
some user head movement statistics. In future work we will study
the generic QERs parameters that the provider can use to generate
initial video versions of a 360-degree video, without video specific
statistics. When the provider receives enough analytic, he will be
able to generate versions adapted to real user behavior on each
video segment. Such functionality would be required in both the
processed and the live video viewport-adaptive streaming.
Additionally, in this paper we studied only a simplified version of
the theoretical model with only two different levels of quality per

versions. We plan to study smoother decreasing of the quality
inside video versions.

APPENDIX
Limits in the Optimal Bit-Rate Algorithm
Constraint on maximum and minimum bit-rate. Let set
bqer = bmax, which makes that sr · bmax bit-rate are used for the
QER. The remaining bit-rate can be used to the non-QER:
bout =

B−(sr ·bmax)
4π−sr . We know that bmin ⩽ bout . So:

bmin ⩽
B − (sr · bmax)

4π − sr

sr ⩽
B − 4πbmin
bmax − bmin

Constraint on the quality gap ratio. Let set bqer = bmax and
bout be computed from Equation (4). However, for some sr , it can
happen that rb · bout is lower than bmax:

rb ·
B − bmax · sr

4π − sr
⩽ bmax

sr ⩾
4πbmax − rb · B

(1 − rb )bmax

Extra bit-rate assignment. In some cases, the algorithm obtains
(at the step 3 in Figure 2) some so-called extra bit-rate, which comes
from the quality gap ratio. This extra bit-rate must be assigned
to both the QER and non-QER areas while still maintaining the
constraints. Let E be the extra-bit-rate. Let y be the ratio of the
extra bit-rate that is assigned to the non-QER areas. Let bint be an
intermediate surface bit-rate computed as in the step 1 in Figure 2.
We have:

bout = bint + y ·
E

4π − sr

bqer = rb · bint + (1 − y) ·
E

sr
Given that the quality gap ratio is the prevailing constraint in the
considered cases, bqer = rb · bout . We thus obtain:

rb · bint + (1 − y) ·
E

sr
= rb ·

(
bint + y ·

E

4π − sr

)
y =

4π − sr
4π + sr · (rb − 1)

Session: Fast Forward 4 MM’17, October 23-27, 2017, Mountain View, CA, USA

950



REFERENCES
[1] A. Aminlou, K. Kammachi Sreedhar, A. Zare, and M. Hannuksela. Testing

methodology for viewport-dependent encoding and streaming. MPEG meeting,
Oct. 2016. m39081.

[2] G. Boccignone, A. Marcelli, P. Napoletano, G. Di Fiore, G. Iacovoni, and S. Morsa.
Bayesian integration of face and low-level cues for foveated video coding. IEEE
Transactions on Circuits and Systems for Video Technology, 2008.

[3] A. Borji and L. Itti. State-of-the-art in visual attention modeling. transactions on
pattern analysis and machine intelligence, 2013.

[4] J. M. Boyce, Y. Ye, J. Chen, and A. K. Ramasubramonian. Overview of SHVC:
scalable extensions of the high efficiency video coding standard. IEEE Trans.
Circuits Syst. Video Techn., 26(1):20–34, 2016.

[5] C. Concolato, J. Le Feuvre, F. Denoual, F. Maze, N. Ouedraogo, and J. Taquet.
Adaptive streaming of hevc tiled videos using mpeg-dash. IEEE Transactions on
Circuits and Systems for Video Technology, 2017.

[6] X. Corbillon, A. Devlic, G. Simon, and J. Chakareski. Viewport-adaptive navigable
360-degree video delivery. CoRR, abs/1609.08042, 2016.

[7] X. Corbillon, F. De Simone, and G. Simon. 360-degree video head movement
dataset. In Proc of ACM Multimedia Systems (MMSys). ACM, 2017.

[8] P. Di, Q. Xie, and J. Alvarez. Adaptive streaming for fov switching. MPEG
meeting, Oct. 2016. m39207.

[9] S. Dodge and L. Karam. Visual saliency prediction using a mixture of deep neural
networks. arXiv preprint arXiv:1702.00372, 2017.

[10] V. Gaddam, H. Ngo, R. Langseth, C. Griwodz, D. Johansen, and P. Halvorsen. Tiling
of Panorama Video for Interactive Virtual Cameras: Overheads and Potential
Bandwidth Requirement Reduction. In Picture Coding Symposium (PCS), 2015.

[11] M. Hosseini and V. Swaminathan. Adaptive 360 VR video streaming based on
MPEG-DASH SRD. In Proc. of IEEE ISM, pages 407–408, 2016.

[12] ISO/IEC 23000-20. Omnidirectional media application format (omaf) committe
draft. âĂć, January 2017. ISO/IEC JTC1/SC29/W11.

[13] L. Itti. Automatic foveation for video compression using a neurobiological model
of visual attention. Transactions on Image Processing, 2004.

[14] E. Kuzyakov. End-to-end optimizations for dynamic streaming. Blogpost,
February 2017. https://code.facebook.com/posts/637561796428084.

[15] E. Kuzyakov and D. Pio. Next-generation video encoding techniques for
360 video and vr. Blogpost, January 2016. https://code.facebook.com/posts/
1126354007399553.

[16] J. Le Feuvre and C. Concolato. Tiled-based Adaptive Streaming using MPEG-
DASH. In ACM MMSys, 2016.

[17] J.-S. Lee, F. De Simone, and T. Ebrahimi. Efficient video coding based on
audio-visual focus of attention. Journal of Visual Communication and Image
Representation, 22(8):704–711, 2011.

[18] K. M. Misra, C. A. Segall, M. Horowitz, S. Xu, A. Fuldseth, and M. Zhou. An
overview of tiles in HEVC. J. Sel. Topics Signal Proc., 7(6):969–977, 2013.

[19] O. A. Niamut, E. Thomas, L. D’Acunto, C. Concolato, F. Denoual, and S. Y. Lim.
MPEG DASH SRD: spatial relationship description. In ACM MMSys, 2016.

[20] D. Ochi, Y. Kunita, A. Kameda, A. Kojima, and S. Iwaki. Live streaming system
for omnidirectional video. In IEEE Virtual Reality (VR), 2015.

[21] F. Quan, B. Han, L. Ji, and V. Gopalakrishnan. Optimizing 360 video delivery over
cellular networks. In ACM SIGCOMM AllThingsCellular, 2016.

[22] Y. Sánchez, R. Skupin, and T. Schierl. Compressed domain video processing for
tile based panoramic streaming using HEVC. In IEEE ICIP, 2015.

[23] K. K. Sreedhar, A. Aminlou, M. M. Hannuksela, and M. Gabbouj. Viewport-
adaptive encoding and streaming of 360-degree video for virtual reality
applications. In Proc. of IEEE ISM, pages 583–586, 2016.

[24] E. Thomas. Draft for ve on region and point description in omnidirectional
content. MPEG meeting, Oct. 2016. m39576.

[25] H. Wang, V.-T. Nguyen, W. T. Ooi, and M. C. Chan. Mixing Tile Resolutions in
Tiled Video: A Perceptual Quality Assessment. In Proc. of ACM NOSSDAV, 2014.

[26] R. G. Youvalari, A. Aminlou, M. M. Hannuksela, and M. Gabbouj. Efficient coding
of 360-degree pseudo-cylindrical panoramic video for virtual reality applications.
In Proc. of IEEE ISM, pages 525–528, 2016.

[27] M. Yu, H. Lakshman, and B. Girod. A Framework to Evaluate Omnidirectional
Video Coding Schemes. In IEEE ISMAR, 2015.

[28] A. Zare, A. Aminlou, M. M. Hannuksela, and M. Gabbouj. Hevc-compliant tile-
based streaming of panoramic video for virtual reality applications. In Proc. of
ACM Conf. on Multimedia MM, 2016.

[29] A. Zare, K. K. Sreedhar, V. K. M. Vadakital, A. Aminlou, M. M. Hannuksela,
and M. Gabbouj. Hevc-compliant viewport-adaptive streaming of stereoscopic
panoramic video. In Picture Coding Symposium (PCS). IEEE, 2016.

[30] C. Zhou, Z. Li, and Y. Liu. A measurement study of oculus 360 degree video
streaming. In Proc. of ACM MMSys, 2017.

Session: Fast Forward 4 MM’17, October 23-27, 2017, Mountain View, CA, USA

951

https://code.facebook.com/posts/637561796428084
https://code.facebook.com/posts/1126354007399553
https://code.facebook.com/posts/1126354007399553

	Abstract
	1 Introduction
	2 Related Work
	2.1 Quality-Variable Videos Implementation
	2.2 Viewport-Adaptive Streaming
	2.3 Regions of Interest

	3 Quality-Variable Videos
	3.1 Generic Model
	3.2 Illustration: Offset Projections
	3.3 Illustration: Tiling

	4 Viewport-Adaptive Streaming
	4.1 Model Formulation

	5 Practical Optimization Model
	5.1 Practical Hypothesis
	5.2 Bit-Rate Computation

	6 Evaluation – Case Study
	6.1 Settings
	6.2 Theoretical Gains of Viewport-Adaptive Streaming
	6.3 Video Content vs. Delivery Settings
	6.4 QER Dimensions vs. Overall Bit-rate

	7 Conclusion
	References



