
A use-case based analysis of network management
functions in the ONF SDN model

Alisa Devlic, Wolfgang John
Ericsson Research

Kista, Sweden

{alisa.devlic, wolfgang.john}@ericsson.com

Pontus Sköldström
Acreo AB

Kista, Sweden

pontus.skoldstrom@acreo.se

Abstract— The concept of software-defined networking (SDN)
recently gained huge momentum in the industry, driven mainly
by IT companies interested in datacenter applications. In this
paper, however, we apply SDN to the carrier domain, which
poses additional requirements in terms of network management
functions. As a specific use-case we take a virtualized carrier net-
work shared by multiple customers. We consider the current SDN
model as defined by the Open Networking Foundation (ONF),
including the OpenFlow and OF-config protocols. Through a step-
by-step discussion of the procedures required to configure and
manage the virtualized network, we analyze the applicability of
the current SDN model as specified by the ONF. As a result,
we identify shortcomings and propose necessary extensions to
the ONF SDN model. The highlighted extensions include control
network bootstrapping considerations, updates to the SDN and
NOS model, and most importantly extensions of the OF-config
management data model.

I. INTRODUCTION

Traditional network elements have been designed as au-

tonomous entities (Fig. 1, left) using a distributed control plane

to communicate with the outside world. Various protocols

allow autonomous decisions of what actions to take. Typically

this involves a number of processes running within a closed

operating system (OS) calling a proprietary API which in turn

causes the OS to program specialized forwarding hardware,

again using a proprietary API. Adding new functionality to a

network element usually involves standardizing a new protocol

that reinvents mechanisms such as distribution and signaling,

and waiting for the vendors to implement the new protocol.

��������	

��������

������	

������

��� ���

��������	

��������

������	

������

��� ���

��������	

��������

������	

������

��� ���

���������������	
�������

��������	

��������

�����	
 ����
����	��	
 ���!

��������	

��������

��������	

��������

Fig. 1. From autonomous network elements to Software Defined Networking.

Software Defined Networking (SDN) proposes a new model

by creating open APIs between the hardware and the op-

erating system, and between operating system and network
applications. In the SDN model (Fig. 1, right) a Network

Operating System (NOS) is responsible for maintaining an up-

to-date view1 of the network and its current state. The NOS

does not only maintain a view of the network, but is also

responsible for handling changes to the view and transferring

those changes both to the network hardware and to the network

applications. Changes to the view come either from network
applications running on top of the operating system or from

the underlying network hardware, e.g. in the case of failures.

The network applications are software modules that are able to

access and modify the network view maintained by the NOS,

which greatly simplifies the addition of new functionalities.

It only takes to write a software module utilizing the API

provided by the NOS, and the NOS is responsible for updating

the network and distributing the new state.
SDN research and development is currently centered around

an official standardization body, the Open Networking Foun-

dation2, which was established in 2011. The ONF has so far

mainly focused on the specification of OpenFlow [1], an open

protocol designed to expose the internals of a network element

and provide an API to modify them. The protocol basically

models a network element as flow table(s). Flow tables contain

rules that can be used to match incoming packets and associate

them to a number of actions. If an incoming packet does not

match an existing rule in the network element, the packet can

be sent to the NOS where a network application can investigate

the packet further and decide what to do, e.g., installing a new

rule that takes care of all packets in this particular packet flow.

The OpenFlow protocol is mainly intended for managing the

flow table(s) by installing permanent or transient rules with a

relatively high frequency.

A. Status of Network Management in SDN
The SDN framework enables centralized control of data path

elements, independently of the network technology used to

connect these devices originating from different vendors. The

centralized control embeds all the intelligence and maintains

the network-wide view of the data path elements and links that

connect them. This centralized up-to-date view makes the NOS

suitable to also perform network management (NM) functions.
Acknowledging the need for explicit NM functionalities in

SDN, the ONF has recently proposed OF-config as additional

1A graph of the nodes and links in the network, with all their attributes.
2www.opennetworking.org

2012 European Workshop on Software Defined Networking

978-0-7695-4870-8/12 $26.00 © 2012 IEEE

DOI 10.1109/EWSDN.2012.11

85

configuration and management protocol besides OpenFlow.

OF-config is based on NETCONF [2], a transactional protocol

that uses remote procedure calls (RPCs) on top of a secure

transport channel (such as SSL and SSH) to manage configu-

rations on remote devices. It provides methods for installing,

manipulating, and deleting configuration not only on a single

device but also on multiple devices within a single transaction.

While NETCONF itself is XML-based, the data model - that

describes what can be configured and how different classes of

configuration relate to one another - is written in YANG [3].

OF-Config adopts the NETCONF protocol, extending it with

specific YANG models.
Figure 2 shows the current SDN architecture as defined by

ONF [4]. In this model, an OpenFlow capable switch, which is

a physical or virtual network element, is hosting one or more

OpenFlow logical switches. The logical switches represent

the actual OpenFlow network elements, which are controlled

by one or more OF Controllers via the OpenFlow protocol.

Network Apps on top of the OF Controller use the network via

the OF Controller’s northbound API (NB API)). Finally, an

OF Configuration Point represents the service which commu-

nicates via the OF-Config protocol with an OpenFlow capable

switch and partitions resources among OF logical switches

(such as ports and queues). The relationship between OF

Controller and OF Configuration Point is currently deliberately

not defined by the ONF, however, both functional elements can

be considered to be part of the NOS in general SDN terms.

���� ����	
�

�
	��
� �� �����

�������
��

��
�����

������

��
������������
�
���	�
�

�����

������!�

Fig. 2. The current ONF SDN model with an OF Configuration Point (OF-
CP) separate from the OF Controller (OF-Ctrl).

B. Our contribution
SDN has gained momentum in the industry forum, being

primarily driven by leading IT companies with a focus on

data center applications. However, the focus of this paper is

on SDN in modern carrier networks, as studied within the

framework of the EU FP7 SPARC project3. In order to be

considered a carrier grade network, an SDN solution needs to

provide network and service management capabilities [5], [6].
In this paper, we analyze the ONF model by applying

it on the use-case of a virtualized carrier network. We put

the a focus on network configuration, but also consider fault

and performance management functions4. As a result of this

analysis, we derive an updated view of the ONF model and

propose extensions to the ONF protocols.

3www.fp7-sparc.eu
4The FCAPS functions Security and Accounting are not considered here.

We describe the use case of a virtualized carrier-grade SDN

in section II. We then discuss the procedures used to configure

and monitor this type of network scenario in section III. In

order to fulfill these required functional areas, we propose

updates to the SDN model in terms of NOS and protocol

extensions in section IV. Finally, we summarize and conclude

the analysis in section V.

II. USE CASE

In this paper, we consider virtualization of carrier-grade net-

works in order to share physical infrastructure among multiple

virtual network operators (VNOs) (see Fig. 3). Besides the

expected OPEX and CAPEX savings for managing such a

complex network, using SDN to control the entire infras-

tructure enables to go beyond traditional services such as E-

Line or E-LAN by offering different abstraction levels to the

customers. As example, some customers may want managed

connectivity services (e.g., E-Lines), treating the underlying

network as a black-box. Others may require more fine-grained

exposure of network details in order to gain full control of the

network, e.g. for advanced traffic engineering (TE) purposes.

Physical network

Virtual networks

Virtual Network
NOS

Network Owner
NOS

��������	
�����
�	��������	������������	

Abstraction layer

Fig. 3. The use case considered: A carrier-grade virtualized SDN able to
provide clients with services ranging from point-to-point (E-Line like) services
to fully virtualized SDN networks.

We desire an SDN design able to provide full network

virtualization through which a customer can connect their

own NOS to the logical switches. Additionally, we propose

an abstraction layer, which provides an abstracted view of

the virtual networks that are running on top of the physical

infrastructure. An example of an abstracted view can be an

abstract switch consisting of a number of virtual switches

and ports. The advantages of having such a layer between

customers and switches is that it provides any level of desired

customer control, ranging from full dataplane exposure to a

single-switch interface. Virtualization is, in this use case, done

directly on top of the physical network [7]–[10]. Specifically,

we consider datapath virtualization as described in [9], since

it provides the highest level of flexibility by giving each VNO

access to the full flow space. This virutalization approach

applies encapsulation-based link separation combined with

86

flow table partitioning and strict resource isolation. Virtual

connectivity is provided by tunnels, which can be monitored

using OAM tools (e.g., BFD or performance monitoring tools)

that are adapted to SDN/Openflow [11].

In the cases where network details are exposed to the cus-

tomer (i.e., a VNO), the network is controlled via the VNO’s

own NOS. The advantages of this scenario could include more

efficient network utilization through customer controlled TE

and delegation of control to applications using the network

(e.g., over-the-top, network-aware applications). Besides, the

proposed approach is also reducing the amount of management

tasks for the physical network owner. Advantages of this

approach have already been identified in the data center/cloud

environments [12], but we argue that this concept can be

generalized to any type of networks, including carrier-grade

access/aggregation and Fixed Mobile Convergence (FMC).

The desired topology, level of abstraction, switch capabil-

ities, network bandwidth and switch resources of the virtual

network are specified in an agreement between the VNO and

the network owner. An SLA is also part of this agreement.

III. CONFIGURATION PROCEDURES

In this section, we discuss a step-by-step procedure list for

configuration of virtual SDNs on top of one physical infras-

tructure, according to the use-case. For many of the steps,

multiple alternative solutions might exist - in these cases we

try to detail the solution which allows for the highest level

of automation. Note that not all steps listed are currently

supported by the ONF SDN model. The missing functions

will be listed later in section IV.

The procedure list starts with bootstrapping the devices and

configuration of the physical network. In order to fulfill SLAs,

we configure performance and fault monitoring on the physical

network. The procedure completes when the virtual network

topologies are computed, configured, validated, and handed

over to customers.

1) Device configuration and network bootstrapping:
a) Newly connected switches request connection identi-

fiers for connecting to the OF Configuration Point5.

The connection identifiers required are at least the

local address and the address for the OF configura-

tion point. If non-default values are used, this may

also include transport protocols and port numbers.

For example, in an IP based control network address
(auto)configuration can be done via DHCP [13] (see

Fig.4). Additionally, if a certificate from an authentica-

tion service is required, the connection identifiers for

this service also need to be provided.

b) Credentials for a secure connection to the OF config

point and the OF controller can be pre-configured

on the device. For a more dynamical bootstrapping

process, credentials can be requested from an au-
thentication and authorization service (AA). In this

case, initial trust is established with the AA service

5We assume either an existing out-of-band or in-band control network.

using an authentication mechanism (e.g. by adding a

unique switch identifier to a database). Once trust is

established, the required certificates (e.g. SSH keys and

X.509 certificates) are transferred to the switch.

c) The switch initiates an OF-Config session with the OF

configuration point. They use the obtained certificates

to mutually authenticate themselves.

�� �� �� ��

��	
��

������� �� �����

��	
�
�������
�����

��
�������

������

��

� ���
��	
�� ��
�
�����"

Fig. 4. Bootstrapping procedures: 1a) address configuration; 1b) authen-
tication and authorization; 1c) OF-Config session to the OF control point
(OF-CP); 2b) OF sessions to the OF controller (OF-Ctrl) are not established
before a logical switch is instantiated. The entities depicted in the top of the
figure can be separate nodes, but are here considered to be part of the NOS.

2) Physical network configuration:
a) Physical resources and capabilities are discovered by

the OF configuration point using the newly established

OF-config session. Examples of physical resources are

switch CPU, memory, and ports. Capabilities of the

OF-capable switch are hardware and software capabil-

ities, such as a list of supported OAM tools, OpenFlow

actions and QoS functions.

b) In order to connect the switch to an OF controller,

the OF configuration point first needs to instantiate

a logical switch with access to all physical ports,

which we refer to as the master logical switch6. The

master logical switch is assigned a minimum amount of

resources (e.g., CPU, bandwidth) and a high priority in

order to ensure control also during periods of high load.

The OF configuration point then assigns connection

identifiers and credentials for an OpenFlow session

to a master OF controller, i.e., the controller of

the infrastructure owner. The result is an established

OpenFlow session with access to all physical ports.

c) Discovery of the physical topology can be done in a

controller-based (i) or distributed manner (ii).

(i) When considering pure OpenFlow switches, the

OF controller is required to take part in the physical

topology discovery. The master OF controller that is

connected to the master logical switch initiates physical

topology discovery using controller based methods,

e.g. the centralized LLDP mechanism used in the NOX

discovery module. The discovered physical topology is

shared with the master OF configuration point.

6Please refer to step 4b for details on the instantiation.

87

(ii) Discovery of the physical topology can also be done

in a distributed way, in which switches autonomously

use methods such as LLDP or a Spanning Tree Proto-

col. The local adjacencies can then be retrieved by the

OF-config point in order to create the global view of

the topology. This approach assumes support for legacy

protocols in the switches (i.e., hybrid switches).

3) Physical fault and performance monitoring: After

discovering the physical topology, it is important to

verify that the physical links and resources are correctly

instantiated and to continuously monitor their perfor-

mance. To achieve this, OAM tools for fault detection

and performance monitoring are needed.

a) OAM for fault detection and performance monitoring

of physical links is configured on the OF-capable

switches. Additionally, monitoring of other switch re-

sources, such as CPU and memory, is configured.

For each OAM tool the following parameters can be

configured: parameters for scheduling of measurements

and reporting, thresholds, and switch local actions.

Scheduling of measurements and reporting includes

the type of measurements (active, passive), the mon-

itoring periods (i.e., how often the measurement is

performed), and the reporting method (periodic, on

demand, on change, or when a threshold is breached).

Thresholds are configured on performance metrics

such as bandwidth performance degradation or specific

link state changes.

Switch local actions are triggered upon threshold vi-

olations and can be corrective actions such as failover,

flow table actions, or alarms that are sent to the NOS

through the OpenFlow session.

b) When an alarm or measurement data is received by the

NOS it can react in several ways, for example through

network restoration, physical resource reassignment, or

potentially migration of the logical switch to another

physical switch. Details about alarm and measurement

handling at the NOS are out of scope of this paper.

4) Virtual network setup:
a) Using the discovered physical topology and switch

capabilites combined with pre-established customer

agreements for virtual network topologies and SLAs,

the virtual topologies can be computed. Based on

these virtual topologies, the master OF configuration

point can create virtual links. Virtual links are tunnels

requiring configuration of tunnel endpoints (i.e., logi-

cal ports) and corresponding flow table configuration

using OpenFlow. Bandwidth isolation is performed by

applying QoS to the virtual links.

b) After creating virtual links, the master OF configu-

ration point is ready to instantiate logical switches
for the virtual network. It does so by partitioning the

physical resources and assigning the capabilities to

each logical switch. This defines the view of resources

and capabilities that are presented to the VNO through

the OpenFlow protocol. Additionally, the view of re-

sources and capabilities that is presented to the VNO

through the OF-config protocol is specified here as

well, defining for example which tunneling protocols

can be used.

c) Before handing over the newly created virtual net-

work to a customer, topology and capabilities should

be validated. In order to get the customer view, a

special test-NOS is connected to the virtual SDN.

With the help of the test-NOS, the network owner

performs a capability discovery and a controller-based

topology discovery. The obtained discovery results can

be compared with the virtual network parameters to

verify if they satisfy the customers requirements. Initial

validation of the SLA is performed through OAM

performance measurement tools.

d) Optionally, the abstraction layer can be configured, e.g.

defining the level of abstraction exposed (cf. Fig. 3).

The abstraction system is external to the switches,

running either as an separate entity, as a part of the

Network Owner NOS (if it is provided as a service),

or in the Service Provider NOS. How an abstraction

system is configured is out of the scope for this paper.

5) Virtual network operation:
Once the virtual network is created and validated by the

network owner, the virtual network is handed over to the

customer. The customer is given either a full view or an

abstracted view as illustrated in Figure 3.

The virtual network can have the pre-assigned customer-

defined addresses and credentials that are configured

by the network owner. Alternatively, the customer may

choose to bootstrap its network in a similar fashion as

described in step 1a for the physical network.

From the customer’s point of view the connected virtual

network seems like any physical SDN network enabling

the virtual service provider to perform control and man-

agement operations using its own NOS. Typical service

provider operations include forwarding configuration,

tunnel creation, OAM and QoS configuration, etc.

IV. DERIVED EXTENSIONS

In order to perform the procedures listed above, several

extensions to the ONF model and protocols are required.

These include bootstrapping considerations, a revised SDN

architecture, and extensions to the ONF protocols.

A. Control network bootstrapping

The current ONF OpenFlow specification does not describe

how initial address assignment and control channel setup

is performed. In this paper we do not propose a particular

method, instead we point out that automatic bootstrapping

requires mechanisms for control network setup, address as-

signment, authentication, and transfer of credentials. These

mechanisms need to be supported by the OpenFlow switches

and the NOS. Detailed discussions about bootstrapping proce-

dures are planned for future work.

88

B. SDN architecture and NOS model

The current ONF controller model defines OF configuration

points (OF-CP) and OF controllers (OF-Ctrl) as separate

entities. As we can see from the procedures, there is a need for

sharing data between these entities. In the list of procedures

described in Section III in step 2a, physical capabilities are

obtained by the OF-CP. However, the OF-Ctrl is responsible

for obtaining and updating the physical topology through

topology discovery (step 2c) and OAM data (step 3b). The

combination of this data may be volatile and is required for

instantiation and maintenance of the virtual networks. We

argue that in order to quickly react upon this data, a system

with tight coupling of the OF-CP and OF-Ctrl is needed. We

indicate this in Fig. 5 with a shared data storage in the NOS.

���������	��

�����������	

����
���
�����
��������

�����
��������

���� ��

�����
�
��

�����
�
��

�����
�
��

���
�����������������������
	��

���
����

����

���
����

����

����
���

����
����

���

�

���
����

����

����
���

����
����

���

�

���� ��

��	��� ����������

Fig. 5. Updated ONF model, including a network owner NOS, a master
logical switch and limited per-customer OF-config interfaces.

Additionally, we see a need for being able to connect mul-

tiple OF-CPs with different views and capabilities to the OF-

capable switches. In the ONF model, the network owner has

full administrative capabilities, being able to instantiate logical

switches, configure physical link level OAM, etc. However, a

customer may also need an OF-config interface to configure its

own tunnel endpoints, OAM tools, etc. Therefore, we propose

to provide the customers with a reduced view of the switch and

reduced configuration rights via OF-config interface. Through

this reduced OF-config interface, the customer would see, for

example, only one logical switch, which would seem to be

connected directly to the physical ports.

C. Protocol requirements

Based on the configuration procedures we identified a number

of missing functions in the current ONF protocols. These are

primarily configuration related functions that naturally fit into

the OF-Config protocol. Additionally, we suggest functions

that deal with rapidly changing information to be better suited

in the OpenFlow protocol.

In OF-Config we see four areas that need extensions:

(i) Physical resource discovery currently can only use the

OpenFlow Resource structure in the OF-config model [4],

which consists of details about physical ports, queues, flow

tables, and certificates. The missing information here includes

the supported OAM tools, CPU and memory resources,

and upper limits of these resources. For OAM tools we

need to discover the type of OAM tools supported and the

maximum number of OAM tool instances that can be active.

Additionally, if we are going to run multiple OpenFlow

protocol instances on the switch (with different priorities) we

want to assign hardware resources to them. Many upper limit

values of physical resources are missing. While it is possible

to configure OpenFlow resources, there is no information

about the maximum number of the resources reported. This

information is, however, crucial in order to instantiate logical

switches and calculate the virtual network topologies.

We propose updates to the existing OpenFlow Resource

structure and addition of two new structures in the model

(see Figure 6):

OpenFlow Resource: the existing OpenFlow Resource
structure (section 7.6 in [4]) extended with group tables and
meters.
Physical Switch Resource: memory and CPU resources; list
of available OAM tools; list of supported tunnel types.
Physical Switch Capabilities: Maximum number of logical
switches on the OF capable switch; Upper limits of physical
resources per logical switch.

Fig. 6. Updated UML diagram of the OF-config model with new objects in
dashed lines. Existing depicted objects are modified. Object with three dots
indicate further sub-elements not depicted here, but listed in this subsection.

(ii) Logical link configuration is supported by OF-Config

via the OpenFlow Tunnel structure, however, only for a small

number of IP based tunneling protocols and with limited

QoS capabilities. A logical link is represented as a logical

port, which is actually a tunnel endpoint. The logical port

can be set with a specific bit-rate but is missing other QoS

configuration such as priority or physical port queue.

OpenFlow Tunnel: existing OpenFlow Tunnel structure
(section 7.7 in [4]), extended with additional tunnel-types;
QoS configuration parameters (priority, queue).

(iii) Logical switch instantiation is currently considered

out of scope for OF-Config, however, using the existing

(currently read-only) parameters in OpenFlow Logical Switch

89

Capabilities, logical switch instantiation should be possible.

In addition to the existing parameters we propose to add

more hardware resources (see (i)), masks for the supported

OAM tools, and supported tunneling protocols. Additionally,

upper limits need to be specified for logical switch resources

shared between multiple logical switches.

OpenFlow Logical Switch: OpenFlow Resource structure
(section 7.6 in [4]), extended with CPU and memory
reservation; list of OAM tools; list of tunnel types; meters,
group tables.
Logical Switch capabilities: Logical Switch Capabilities
structure (section 7.4 in [4]), extended with upper limits for
the number of flow and group table entries, queues, tunnels,
OAM tools, and meters.

(iv) Device and link OAM configuration is currently not

supported. The OAM functions we consider are monitoring of

various parameters, such as CPU load and memory usage on

the device, path connectivity verification, loss rate, delay, and

bandwidth measurements on links. For OAM tools there are

many tool-specific configuration parameters such as timing

intervals and identifiers for BFD sessions, one or two-way

measurements in case of delay measurements, etc.

However, OAM tools share a number of parameters as well,

e.g., how often measurements are performed (on-demand

or periodically), how often measurements are reported (on-

demand or periodically), and thresholds specifying conditions

which when reached should trigger sending of alarms or

performing autonomous action(s) by the switch.

OAM:
OAM parameters: OAM instance identifier, OAM tool type,
type of measurement;
Managed entity: type of resource, resource identifier;
Scheduling of measurements and reporting: monitoring
period; reporting method;
Thresholds: threshold type; threshold value; list of actions;
Switch local actions: action type; action-specific parameters;
Optional parameters: OAM tool specific parameters.

Besides OF-Config, our procedures also require an ex-

tension of the OpenFlow protocol. While OAM tools are

configured by OF-Config, the reporting of results and alarms

are better suited for the OpenFlow protocol due to its real-

time characteristics. OpenFlow is currently lacking a dedicated

monitoring message, therefore we propose to add a new

message type for both the asynchronous alarm messages and

the periodic measurement results. The exact specification of

these message structures will be highly dependent on the

specific alarm and OAM tool.

V. SUMMARY AND CONCLUSIONS

The ONF currently specifies two protocols of an SDN envi-

ronment, both interfacing network elements with the Network

Operating System (NOS), which represents the centralized

control and management plane. These protocols are OpenFlow,

used to program flow-tables in flow and packet time scales;

and the recent OF-config, with the main task of network wide

configuration of the network elements in human time scales.

In this paper, we apply the ONF’s SDN model, resulting out of

these two specifications, on the use-case of a carrier network

which is virtualized and shared by multiple customers (VNOs).

We outline the steps required to configure and manage this

type of virtualized SDN, ranging from device and network

bootstrapping to the setup of the virtual networks and final

handover to the VNO. A per-step analysis of this procedure

enabled us to identify shortcomings and propose necessary

extensions to the ONF SDN model in terms of network

management functionality. The highlighted extensions include

control network bootstrapping considerations, updates to the

SDN and NOS model, and most importantly extensions to the

OF-config management data model. We believe that this type

of use-case specific analysis is important in order to verify the

applicability and usefulness of the ONF SDN model and its

protocols in terms of network management functionality.

ACKNOWLEDGMENT

This work was funded by the European Commission under the

FP7 ICT research project SPARC. The authors would like to

thank all SPARC partners for discussions and comments.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[2] R. Enns, “NETCONF Configuration Protocol,” RFC 4741 (Proposed
Standard), Internet Engineering Task Force, Dec. 2006, obsoleted by
RFC 6241. [Online]. Available: http://www.ietf.org/rfc/rfc4741.txt

[3] M. Bjorklund, “YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF),” RFC 6020 (Proposed Standard),
Internet Engineering Task Force, Oct. 2010. [Online]. Available:
http://www.ietf.org/rfc/rfc6020.txt

[4] Open Networking Foundation (ONF), “Openflow configuration
and management protocol of-config 1.1,” 2012. [Online].
Available: http://www.opennetworking.org/images/stories/downloads/
of-config/of-config-1.1.pdf

[5] The SPARC consortium, “SPARC Delivarable D2.1: Initial definition
of use cases and carrier requirements,” 2011. [Online]. Available:
http://www.fp7-sparc.eu/projects/deliverables

[6] Metro Ethernet Forum. (2012, April) Carrier ethernet defined. [Online].
Available: http://metroethernetforum.org/page loader.php?p id=140

[7] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Flowvisor: A network virtualization layer,”
OpenFlow Switch Consortium, Tech. Rep, 2009.

[8] N. Chowdhury and R. Boutaba, “Network virtualization: state of the
art and research challenges,” Communications Magazine, IEEE, vol. 47,
no. 7, pp. 20–26, 2009.

[9] P. Skoldstrom and K. Yedavalli, “Network virtualization and resource
allocation in openflow-based wide area networks,” in Proceedings of
SDN’12: Workshop on Software Defined Networks. IEEE ICC, 2012.

[10] B. Sonkoly, A. Gulys, J. Czentye, K. Kurucz, G. Vaszkun, A. Kern,
D. Jocha, and A. Takacs, “Integrated openflow virtualization framework
with flexible data, control and management functions,” in Proceedings
of IEEE INFOCOM Demo, 2012.

[11] J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takacs, and P. Skold-
strom, “Scalable fault management for openflow,” in Proceedings of
SDN’12: Workshop on Software Defined Networks. IEEE ICC, 2012.

[12] A. Fewell. (2012, April) Google showcases openflow network.
[Online]. Available: http://www.networkworld.com/community/blog/
google-pwns-networking-part-1

[13] OpenFlow.org. (2010) Openflow 1.0 reference implemenatation.
[Online]. Available: http://www.openflow.org/wp/downloads

90

