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rays. In this case, the plane S divides the open region between S
and S7 into two open regions and the normal vector (a,b,c) of S
points to one of the two open regions. Condition (ii) holds if and only
if S> is tangent to S; along a ray originating from the origin where the
normal vector (@, b, ¢) of So points to the region between S and S
In a similar manner, the remaining two conditions follow. ]

Lemma 1V.2: Consider a linear controlled Lagrangian system of
two degrees of freedom

Mirg" + Mg +Viig' + Viag® =0
Miog" + Mo2§® + Vieq" + Vaog” =u

where (M;;) and (V;;) are constant matrices and (M;;) = 0.
This linear system, put in first-order form on R, is controllable
if and only if M2Vi1 — M1:1Viz # 0. If the system is uncon-
trollable, i.e., M.V, — M;,;Vio = 0, then the uncontrollable
subspace has dimension two and the uncontrollable modes are given
as follows: (l) +i \/"’11(17\/.’[111\2[22 — 17\.[122)/17\.[11 if ‘YH > (), (ll)
:i:\/—l/’]l(kluﬂflgg — M3) /My, if Vi <0.
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Parameter Space Design of Repetitive Controllers for
Satisfying a Robust Performance Requirement

Burak Demirel, Student Member, IEEE, and
Levent Giiveng, Member, IEEE

Abstract—A parameter space procedure for designing chosen parame-
ters of a repetitive controller to satisfy a robust performance criterion is
presented. Using this method, low-order robust repetitive controllers can
be designed and implemented for plants that possibly include time delay,
poles on the imaginary axis and discontinuous weights. A design and simu-
lation study based on a high speed atomic force microscope position control
example is utilized to illustrate the method presented in this paper.

Index Terms—Atomic force microscope (AFM) control, parameter space
method, repetitive control, robust performance.

1. INTRODUCTION

Repetitive controllers are used to accurately track a periodic refer-
ence signal or to reject a periodic disturbance with a known period by
introducing a highly frequency selective gain through a positive feed-
back loop which contains a time delay element as this is a generator
of periodic signals. The delay time is equal to the known period of the
repetitive reference (or disturbance) signal. Repetitive control system
is a special type of servo-system but its basic structure is based on the
Internal Model Principle of Francis and Wonham [1]. Significant im-
provements in the tracking accuracy or disturbance rejection character-
istics of systems subject to periodic exogenous signals can be achieved
using repetitive control. The idea of repetitive control was first created
by Inoue et al. [2] to replace conventional motion control techniques
in the control of a proton synchrotron magnet power supply. Until re-
cently, it has been widely utilized in many application areas including
control of hard disc drives [3], control of optical disc drives [4], con-
trol of noncircular tuning [5], trajectory control of industrial robot arms
[6], [7], motor speed control [8], high precision rotational control [9],
control of material testing machine [10], control of cold rolling process
[11], suppression of torque vibration in motors [12], reduction of wave-
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form distortion in the PWM inverter or UPS [13]-[15] and accurate po-
sition control of piezoelectric actuators [16], [17].

The earlier papers in the literature have generally focused on the sta-
bility analysis in both continuous time [18], [19] and discrete time sys-
tems [20]. Tsao and Tomizuka [5] have analyzed the robust stability of
repetitive control systems applied to plants with unstructured modeling
error. In order to achieve a specified level of nominal performance,
Srinivasan et al. [21] have utilized the Nevanlinna-Pick interpolation
method to modify repetitive controller design by means of optimizing
a measure of stability robustness. Peery and 6zbay have modified H
optimal design approach presented in [22] and then applied the exten-
sion of this methodology based on Youla parameterization to repetitive
control systems in [23]. Moon et al. [4] have developed a robust de-
sign methodology for parametric uncertainty in interval plants under
repetitive control. Similarly, Roh and Chung [24] have created a new
synthesis method based on Kharitonov’s theorem for repetitive control
systems with uncertain parameters. Weiss et al. [25]-[27] have made a
stability and robustness analysis for MIMO repetitive control systems
based on H, control theory. 1 analysis has been used for assessing
stability and performance robustness of SISO continuous time repeti-
tive control systems by Giiveng [28]. x synthesis has been applied to
sampled data repetitive controller design by Li and Tsao [29].

The repetitive controller design approach presented in this paper is
a continuation of the work presented in Giiven¢ and Giiveng [30] on
repetitive controller design based on mapping the nominal performance
and robust stability frequency domain constraints to controller param-
eter space where a servo-hydraulic material testing machine applica-
tion was used. This work, in contrast, treats the robust performance
constraint. Additionally, the efficiency of methodology is illustrated by
using a high-speed AFM scanner application. Moreover, the repetitive
controller design approach presented in this paper is significantly dif-
ferent from those of the abovementioned references including the appli-
cation of H, methods. The significant advantages of the approach here
in comparison with H ., methods are: 1) the ease of visualization due
to the graphical representation of the solution in the parameter space
approach and the capability and ease of doing multi-objective optimiza-
tion by simply intersecting solution regions for different objectives; 2)
the determination of a solution region rather than one specific solution
for the control system satisfying a frequency domain constraints (this
makes it easier to design non-fragile controllers as changes in controller
parameters will not violate the chosen objectives so long as the param-
eters are within the solution region); 3) the determination of controller
parameters that guarantee robust performance; 4) being able to treat
plants with time delay and poles on the imaginary axis; 5) not having
to use rational, continuous weights in the robust performance specifi-
cations; and 6) obtaining fixed structure low-order repetitive controller
filters that are easily implementable. There are also some shortcomings
of the proposed design method in comparison to the methods that exist
in the literature including H ., methods such as: 1) the method can si-
multaneously accommodate the design of only two controller parame-
ters due to its graphical display of the solution region and 2) the method
does not result in a single analytical solution and the methods used
do not look mathematically elegant as a constructive frequency-by-fre-
quency design approach is used.

It is difficult to apply standard robust control methods like H .., con-
trol to repetitive controller design for robust performance as the repet-
itive control system is infinite dimensional due to the presence of the
inherent time delay in the controller. Robust control methods such as
H . optimal control have been extended to infinite dimensional sys-
tems and applied to repetitive control (see [21] and [23] for example).
However, very high-order weighting functions need to be used in the
robust controller synthesis. Consequently, the resulting repetitive con-
troller filters also have high order. Model-order reduction techniques
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Fig. 1. Repetitive control structure.

are used to reduce the order of the repetitive controller filters in an ac-
tual implementation. Some of the most powerful characteristics of the
proposed method are that the weights used in the design do not need
to be continuous functions of frequency and that plants can have time
delay and/or poles on the imaginary axis because the computations are
naturally carried out only at the frequencies of interest. Secondly, the
choice of the frequency grid used is not a problematic issue for the
repetitive control design procedure presented here as the main design
frequencies are exactly known and are the fundamental frequency of
the periodic exogenous signal (reference or disturbance) with the pe-
riod 74 and its harmonics. The largest harmonic frequency considered
is chosen to be close to the bandwidth of the repetitive control system
which is limited by the bandwidth of the actuator used in the imple-
mentation. The method presented here is for SISO systems; however,
it can be used to design controllers for MIMO systems where one loop
at a time design is possible.

The organization of the rest of the paper is as follows: Section II
gives some basic information on robust repetitive controller design. In
Section III, the technique of mapping robust performance frequency
domain specifications into repetitive controller parameter space is ex-
plained in detail. Then, a numerical example of a high speed AFM
scanner position control application is utilized in order to demonstrate
the effectiveness of the proposed method in Section IV. The paper ends
with conclusions in Section V.

II. REPETITIVE CONTROL BASICS

Consider the repetitive control structure shown in Fig. 1 where G,,
is the nominal model of the plant, A, is the normalized unstructured
multiplicative model uncertainty, W+ is the multiplicative uncertainty
weighting function and 74 is the period of the periodic exogenous
signal. ¢(s) and b(s) are filters used for tuning the repetitive controller.
Repetitive control systems can track periodic signals very accurately
and can reject periodic disturbances very satisfactorily. This is due
to the fact that the positive feedback loop in Fig. 1 is a generator of
periodic signals with period 74 for ¢(s) = 1. A low pass filter with
unity dc gain is used for ¢(s) for robustness of stability [18], [25].

The repetitive controller design involves the design of the two filters
q(s)and b(s) seenin Fig. 1. In the frequency domain, the ideal low-pass
filter ¢(jw) would be 1 in the frequency range of interest and zero at
higher frequencies. This is not possible and ¢(jw) will have negative
phase angle which will make ¢(jw) differ from 1, resulting in reduced
accuracy. So as to improve the accuracy of the repetitive controller, a
small time advance is customarily incorporated into ¢(s) to cancel out
the negative phase of its low-pass filter part within its bandwidth. This
small time advance can easily be absorbed by the much larger time
delay 74 corresponding to the period of the exogenous input signal and
does not constitute an implementation problem (see Fig. 2).

The main objective of the usage of the dynamic compensator b(s) is
improving the relative stability, the transition response and the steady-
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Fig. 2. Modified repetitive control structure.

state accuracy in combination with the low-pass filter ¢(s). Consider
the function of frequency given by

1+ G(jw) M

R = [ati) 1= i) S5
which is called the regeneration spectrum in [19]. R(w) < 1—¢ for Vw
and some positive = is a sufficient condition for stability [19]. More-
over, R(w) can be utilized to obtain a good approximation of the locus
of the dominant characteristic roots of the repetitive control system for
large time delay, thus resulting in a measure of relative stability, as well.
Accordingly, the compensator b(s) is designed to approximately invert
G /(14 @) within the bandwidth of in an effort to minimize R(w). The
dynamic compensator b( s) can be selected as only a small time advance
or time advance multiplied by a low-pass filter in order to minimize
R(w). In order to make R(w) < 1, the time advance in the filter b(s)
is chosen to cancel out the negative phase of G//(1 + G). This small
time advance can easily be absorbed by the much larger time delay 74
corresponding to the period of the exogenous input signal and does not
constitute an implementation problem (see Fig. 2).

The ¢(s) and b(s) filters are thus expressed as

@
3

£(9) = gy()e"°
b(s) =bp(s)e™®.

The time advances 7, and 7 are firstly chosen to decrease the magni-
tude of R(w) given in (1). Then, the design focuses on pairs of chosen
parameters in ¢, (s) or by(s) to satisfy a frequency domain bound on
the robust performance criterion. If L denotes the loop gain of a control
system, its sensitivity and complementary sensitivity transfer functions
are

1
ST

T:=—.
1+ L

“

~

&)

The parameter space design, presented in the following section, aims

at satistying the condition
[WsS|+ |WrT| < 1 forVw ©6)

which is similar to satisfying the robust performance requirement
IIWsS| 4+ |WrT||,, < 1 where Ws and Wr are sensitivity and
complementary sensitivity function weights.

The loop gain of the repetitive control system seen in Figs. 1 and 2
is given by

L=3G, <1 + dp (—7'(1+7’q+7'b)-") i (7)

(. — A
11— qu(f"d‘qu)s P
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|WTL| 1

Fig. 3. Illustration of the point condition for robust performance.

The robust performance design requires

[Ws(w)SGw)|+ [Wr (w)T(jw)]
_’ W (w)
|1+ L(jw)

forVw (8)

Wr(w)L(jw)
1+ L(jw)

or equivalently

W (w)| + |Wr(w)L(jw)| < |1 + L(jw)| forvw (9)

to be satisfied.

III. MAPPING ROBUST PERFORMANCE FREQUENCY-DOMAIN
SPECIFICATIONS INTO REPETITIVE CONTROLLER PARAMETER SPACE

In the present section, a repetitive controller design procedure based
on mapping the robust performance frequency domain performance
specification given in (9) with an equality sign into the chosen repeti-
tive controller parameter plane at a chosen frequency is described.

Consider the robust performance problem given in Fig. 3 illustrating
(9) with an equality sign (called the robust performance point condi-
tion). Apply the cosine rule to the triangle with vertices at the origin
—1 and L in Fig. 3 to obtain
(IWs(@)|+Wr (@) L(jw)))* =[L(jw)[*+1*+2|L(jw)| cos fr.

(10)

Equation (10) is a quadratic equation in | L(jw)| and its solutions are

—cosfy, + |IV§‘(JJ)| |W”,7’ (u))l) + VA
1= Wr ()P

|LGw)] = ¢ an

where

A = cos” 0 + [Ws(w) ] + [Wi(w)|?
—2|Ws(w) 2| Wr(w)|? cos b, — 1. (12)

Only, positive and real solutions for | L| are allowed, i.e., Ays > 0in
(11) must satisfied. The point condition solution procedure is outlined
below.

M1. Define the set of frequencies to be used as

)= {wl-/ W2, ooy WniWndl, Wnd2,-00 5 Wiy
Wl Wm42y .- 7”1}3
where wi = 27 /74 is the frequency of the periodic exogenous input

and wp = 27k /74 is the chosen bandwidth of repetitive control (lim-
ited by the bandwidth of the actuator used). Frequencies w41 tow, are
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high frequencies where significant model uncertainty exists (wm+1 >
10wy, ) and the intermediate frequencies wy+1 t0 Wy, .

Remark: It should be noted that the inherent time delay in a repeti-
tive control system will improve performance only at the fundamental
frequency w1 = 2w /74 and its harmonics. Repetitive control will
worsen performance at frequencies between the fundamental frequen-
cies and harmonics. For this reason, repetitive control is only used in
the presence of a periodic external input (reference or disturbance) as
it will result in degraded performance for non-periodic external inputs.
For that reason, the weights (WWs and W) can be assumed to be zero
outside the finite set €2 given in step M 1. Once the design is complete,
the designer checks the |S| plot at low frequencies and the |T'| plot
at high frequencies to make sure that the magnitude envelopes corre-
sponding to intermediate frequencies (between the harmonics) are at
an acceptable level. Another approach will be to specify weights for
intermediate frequencies in between the fundamental frequency and
harmonics. A major deficiency of parameter space methods is that one
needs to use a large number of frequencies in the set {2 to make sure
that the robust performance condition will not be violated at frequen-
cies outside of €2. In the case of repetitive control, this problem is less
severe at low frequencies where the designer is interested mainly in
reducing the sensitivity function at the fundamental frequency and its
harmonics. A large number of frequency points can be used at higher
frequencies above the bandwidth of the repetitive controlled system.

M2. Choose a specific frequency value w = w; € Q,i=1,2,...,1
from set 2 in step M1. [Ws(w)|, [Wr(w)| and |G(w)]| at a frequency
w are known at this point.

M3. Let 8, € [0,2x]. Evaluate Ay, by using (12) and select the
active range of 7, where Ap; > 0 is satisfied. For all values of #1, in
the active range:

M3a. Evaluate | L| by using (11). Keep only the positive solutions.

M3b. Evaluate L = |L|e’?"

Ma3c. Solve for the corresponding repetitive controller filters g, (jw)
and g, (jw) at the chosen frequency w by utilizing

L) =GUw)  (rg=ro)se
L(jw)=G(j)[1=b(jw)]

S — s . 1_q(jw)6_rdjw —TpIw
by G =[2G~ Gl LI T (14

(13)

qp(jw)=

Ma3d. Using the specific structure of ¢, (jw) or b,(jw), back solve
for the two chosen controller parameters within them. For example,
¢p(s) and b, (s) can be chosen as a multiplication of the second-order
controllers given by

)= [ 2,

q2i$°+q1is+qoi

L bsis? +bais+bsi
i bais?+biis+boi
1s)
There are six tunable parameters for n = 1 in (15) which can be used
to represent different types of controllers. These six tunable parame-
ters are gs;, qai, qsi, q2i, 1 and qo; for g,(s). For n = 1, the con-
troller structure in (15) consists of some well-known controller types
such as proportional-integral-derivative (PID), lead-lag controller, first
or second-order filters as illustrated in Table I. If the performance of
the filters which are utilized in the repetitive controller for n = 1 is
unsatisfactory, n can be increased and new higher order filters can be
synthesized. For the filter structure choice in (15), the back solution
procedure uses

by(s)=

=1

_ (g —g5iw?)(qoi — q2iw?) F qriqasw?®
(q0i — q2iw?)* +(q1,w)?
q1,w(qoi — q2iw?) — quiw(qzi— gsiw?)
(qoi — q2iw?)* + (q1iw)?

Re [q,(jw)]

Im [q,(jw)]= (16)
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TABLE I
CONTROLLER COEFFICIENTS TABLE

Control Action || n || gsi [ qu || a5 [[ || av || qui
P 1 0 0 K 0 0 1
PD 1 0 KTy K 0 0 1
PI 1 0 K KT; 0 1 0
PID 1 KTy K KT; 0 1 0
Lag (B> 1) 1] o |[kr || & o || BT || 1
Lead O<a<1) 1 0 KT K 0 aTl 1
15" Order Filter 1 0 0 K 0 T 1
2" QOrder Filter 1 0 0 Ko? 1 2€o || o?
Re [bp(j;u)]:(b3i_b5iw2)(b0iTzziw2)+b_lib4iwz
(boi = ba;w?)” 4 (brsw)?
I'm [bp(jw)]:b4iw(b0i_62iwz)_bliw(bm—bsiwg). a7

(bo: —b21w2)2+(b1,‘w‘)2

M4. The solution in step M3 above results in a closed curve which
is plotted for solving two of the twelve parameters go; to ¢5; and bo;
to bs;. Plot the closed curve obtained in the chosen controller param-
eter space. Either the inside (drawn with a solid boundary) or outside
(drawn with a dashed boundary) of this curve is a solution of (8) at the
chosen frequency (see the ellipses in Fig. 5, for example). The region
obtained is the point condition solution in the chosen repetitive con-
troller parameter plane at the frequency chosen in step M2.

MS. Go back to step M2 and repeat the procedure at a different fre-
quency until all frequencies in set €2 are used.

MB6. Plot the intersection of all point condition solutions for all fre-
quencies in set €2. This is the overall solution region for the robust per-
formance requirement.

As the solution procedure only uses frequency response data and is
numerical in nature, plants with time delay or poles on the imaginary
axis and discontinuous weights do not pose any problems. Note that
solution regions for nominal performance |WWs S| < 1 for Vw and for
robust stability |WpT| < 1 for Vw can easily be obtained using the al-
gorithm above by setting Ws = 0 and W7 = 0, respectively. It is then
possible to concentrate on nominal performance at low frequencies,
robust performance at intermediate frequencies and robust stability at
high frequencies, obtaining three solution regions. The overall solution
region in the controller parameter space is then determined by the in-
tersection of all three regions for nominal performance, robust perfor-
mance and robust stability. This procedure is easily programmable and
quickly results in a controller parameter space representation of the so-
lution. The controller parameter space presentation obtained offers the
ease of visualization of parameter space methods (see Fig. 5) when one
accepts the shortcoming of treating only two controller parameters at a
time. Multi-objective design can easily be formed in parameter space
as it amounts simply to intersection of individual solution regions. It
is also possible to determine the final design (or tuning point) by opti-
mizing some other criteria, such as nominal time domain performance
within the solution region obtained. In contrast to H .., optimal control
synthesis, there is no relationship between the order of repetitive con-
trol filters and the complexity of weights in this proposed method. The
main strength of this method is that low-order easily implementable
repetitive control filters are specified from the beginning.

It is possible that for certain data sets |Ws|, [Wr|, G, w; no solu-
tions to the solution procedure outlined above exist. Nonexistence of a
solution for a specific frequency w could be because of nonexistence
of a positive A in (12) or nonexistence of a positive solution |L| in
(11). Nonexistence of a solution usually results from a weight |1¥s|
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Fig. 4. Bode magnitude plot of high speed AFM-scanner with the mapping fre-
quencies for the nominal performance, robust performance and robust stability.

or |Wp| that is too restrictive. The solution procedure, which is pro-
grammed in an interactive fashion, results in no solution points in this
case. Then, the user will know that his robust performance requirement
at that frequency was too restrictive and has the choice of relaxing this
requirement. Note that solutions might exist at all individual frequen-
cies, however; their intersection in Step M6 resulting in the overall so-
lution region might still be empty. In that case, the user must change
the sensitivity and complementary sensitivity weights at the problem-
atic frequencies.

IV. NUMERICAL EXAMPLE

In this part of the paper, the high speed atomic force microscope
(AFM) scanner which is designed and modeled in [31] is utilized as a
numerical example to explain the methodology of the multi-objective
parameter space approach for SISO repetitive controller design. The
second-order and fourth-order mathematical models of this high speed
AFM scanner are given in [31]. In this example, the fourth-order model
is used because it includes the first mode of the piezoelectric stack in
the vertical direction. The transfer function of the AFM scanner is given
by

K (.5'2 + 2 was + w%)
(52 + 2Ciwis + w?) (2 + 2(3wss + w3)

G(s) = (18)

where K = 1 x 10'? nm/V includes the power amplifier and sensor
gain. The system seen in (18) has two resonant frequencies and one
anti-resonant frequency. The numerical values of these frequencies are
given as f1 = 40.9 kHz, f» = 41.6 kHz and f3 = 120 kHz and
can be seen in Fig. 4. The numerical values of the relative damping
coefficients are given as (; = 0.016, ¢» = 0.016 and (3 = 0.17. The
dynamic compensator b(s) is chosen as a pure time advance as

b(s) = by(s)e™ = 3107 (19)
The low-pass filter ¢(s) is chosen as
a(s) = qp(s)e” = ao ’7.5><10*6.q_ (20)

s2+ai1s+ag

The parameters of ¢,,(s) given in (20) are chosen as gs1 = ¢g41 = 0,
g1 = 1, ¢31 = go1 = ao, and ¢11 = a1 in the general form
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TABLE II
DESIRED SENSITIVITY MAGNITUDE UPPER BOUNDS AT 7, = 0.0005 s

Frequency Range || k || f=k/t4(kHz) || Ws || Wr
Low (NP) 1 2 500 0
Low (NP) 2 4 225 0
Low (NP) 3 6 115 0
Low (NP) 4 8 75 0

Intermediate (RP) 40 80 33 0.001

Intermediate (RP) 50 100 4.5 0.045

Intermediate (RP) 55 110 4.5 0.001

Intermediate (RP) 60 120 1.5 0.005

Intermediate (RP) 70 140 1.5 0.01
High (RS) 80 160 0 0.05
High (RS) 90 180 0 0.05
High (RS) 100 200 0 0.05

(15) in order to obtain unity dc. gain. Phase advance is also added to
this low-pass filter phase cancellation. Thus, a decrease in the steady
state error is aimed. The region in the go1 — ¢11 controller parameter
space are computed for three cases which are, respectively, the nom-
inal performance at low frequencies (Wr = 0), robust performance
at intermediate frequencies, and robust stability at high frequencies
(Ws = 0).

The sensitivity constraints are specified at a set of discrete frequen-
cies. The periodic input command of the high speed AFM scanner
has a period of 74 sec. The specific numerical values of the chosen
weights used in the computation of the controller parameters are seen
in Table II. The frequencies corresponding to the weights in Table II are
shown with dots in the Bode magnitude plot of Fig. 4. The overall re-
gion calculated for nominal performance, robust performance and sta-
bility robustness can be seen in Fig. 5(b). The method in Aksun Giiveng
and Giiveng [30] where the solution region is obtained by intersecting
the nominal performance and stability robustness plots is presented
in Fig. 5(a) for allowing easy comparison with an existing method.
Note that the sufficient stability condition R(w) < 1 for Vw was also
mapped and nominal stability is thus satisfied for the two solution re-
gions shown in Fig. 5. Also note that the results in reference [30] are
for the more conservative problem where nominal performance and ro-
bust stability solution regions are found separately. This conservatism
is reduced by the method in the present paper where the robust perfor-
mance condition in (6) is handled directly. The method in this paper
is more general in nature and contains the method of [30] as a special
case.

The mathematical model of the high-speed AFM scanner cannot
be fitted very well for frequencies above 160 kHz. A uniform weight
for the robust stability requirement for frequencies above this value is
chosen here as |T'| < 0.05 for f > 160 kHz. This corresponding dis-
continuous weight Wy has been shown graphically with red-colored
cross sign in Fig. 4. The relative multiplicative error |(G — G ) /G|
has to be below the weight specified in the stability robustness consid-
erations given in Fig. 4. The intersection of the regions, which are cal-
culated in order for the nominal performance, the robust performance
and the robust stability requirements, in the ¢o1 — ¢i1 controller pa-
rameter space is filled with green color. The designation procedure is
concluded by choosing a point in the controller parameter plane given
in Fig. 5. The solution within this region is chosen arbitrarily in this
example and is point is marked with a cross in Fig. 5. The simulation
result for a triangular wave input with the period 2 kHz and ampli-
tude can be seen in Fig. 6. This result shows the effectiveness of the
repetitive controller in decreasing the steady-state error while tracking
a periodic input signal.
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Fig. 6. Simulation results for triangular wave input at 2 kHz. (a) Output signal of the controlled system. (b) Error signal of the controlled system.

V. CONCLUSION

A multi-objective parameter space repetitive controller design pro-
cedure for satisfying a robust performance objective was presented
here. The main idea was to use a simple easily implementable struc-
ture for the repetitive controller filters and compute solution regions in
the chosen controller parameter space where frequency domain spec-
ifications on the nominal performance at low frequencies (Wr = 0),
robust performance at intermediate frequencies and robust stability at
high frequencies (Ws = 0) are satisfied. The abovementioned method
is well suited to the structure of a repetitive control system with discrete
frequencies of interest and the computations were also quite fast. The
proposed method is successfully applied to the infinite dimensional na-
ture of the repetitive control system with its inherent time delay. The
effectiveness of the proposed method was demonstrated by carrying
out a design and simulation study for high-speed AFM scanner posi-
tion control problem.
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On the Characterization of Strict Positive Realness
for General Matrix Transfer Functions

Martin Corless, Member, IEEE, and Robert Shorten, Member, IEEE

Abstract—We present conditions which are necessary and sufficient for
a transfer function (or transfer function matrix) to be strictly positive real.
A counter-example is given to illustrate that the conditions presented here
differ from those previously presented in the literature. The proof of our
results differs from previous related proofs in that it only uses properties
of analytic functions and matrices and does not require state-space realiza-
tions. Also, the results are not restricted to rational transfer functions with
real coefficients.

Index Terms—KYP lemma, strictly positive real (SPR).

I. INTRODUCTION

The concept of strict positive realness (SPR) of a transfer function
matrix appears frequently in various aspects of engineering. Applica-
tion oriented areas such as optimal control, adaptive control, VLSI de-
sign and in particular, stability theory, have all benefited greatly from
the concept of SPR [1]-[3]. It is therefore vitally important to char-
acterize this property via conditions which can readily be computed or
verified experimentally. While such conditions have been readily avail-
able in the literature [4]-[7] for some time, our main purpose here in
this note is to demonstrate by means of an elementary counter-example
that these conditions are in fact incomplete. We then present an alterna-
tive characterization of a strictly positive real transfer function matrix
that takes care of the problems highlighted by the counter-example.

Definition 1 (SPR): A transfer function G : € — C"*™ is strictly
positive real (SPR) if there exists a real scalar ¢ > 0 such that G is
analytic in a region for which R(s) > —e and

Gw—€)+Gw—€)">0 forall weR. €))

We say that G is regular if det[G(jw) + G(3w)”] is not identically
zero for allw € R.

The first appearance of the above definition seems to be [8] and [2]
in the scalar case. Although the literature contains other definitions of
SPR, the above one is consistent with the requirements of the KYP
lemma for rational transfer functions. Assuming G is stable, rational,
and proper, it was known that the dissipativity condition, G(jw) +
G(yw)* > 0 for all finite w, was necessary but not sufficient for SPR.
Requiring in addition that G(o0) + G/(o0)* > 0 yields sufficiency but
not necessity. Thus, starting with [8], a search was initiated for a side
condition which in addition to the dissipativity condition yielded an
equivalent characterization of SPR. We present here a new side con-
dition which along with stability and the dissipativity condition yields
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