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Abstract— We consider the joint design of transmission
schedules and controllers for networked control loops that use
WirelessHART communication for sensor and actuator data. By
parameterizing the design problem in terms of the sampling
rate of the control loop, the co-design problem separates into
two well-defined subproblems which admit optimal solutions:
transmission scheduling should be done to maximize the delay-
constrained reliability while the control design should optimize
closed-loop performance under packet loss. We illustrate how
these problems can be solved and demonstrate our co-design
framework for the case of linear-quadratic control.

I. INTRODUCTION

Networked control has been an active area of research for
more than a decade (e.g. [1] and the references therein) and
the literature is by now rather extensive. The research has
mainly focused on structured control design methods for a
given (typically linear) system and a high-level abstraction
of the underlying communication system in terms of its
latency or loss. The state-of-the art control design techniques
are very powerful when the control system is able to cope
with the network deficiencies. However, when the resulting
closed-loop performance is unsatisfactory, they typically do
not provide any feedback on how the communication system
should be modified to yield better system performance.

In wired control systems where sensor data and actuator
commands are transferred over a high-speed bus, extensive
latencies and losses are often due to interaction with other
traffic. Hence, co-design issues do not appear until the system
is very highly loaded and can often be dealt with improved
priorities between traffic flows or simply by adding an
additional communication bus. The situation is very different
for low-power wireless multi-hop communications. Non-
negligible latencies and packet losses are to be expected
already in a lightly loaded network and the use of capacity
expansion for dealing with high-traffic scenarios is non-
trivial since the wireless medium is shared with existing
equipment. Furthermore, transmission scheduling policies
have a strong impact on the guaranteed latency, loss and
energy consumption of end-to-end transmissions, particularly
when link losses are correlated in time [2]. Hence, co-design
issues arise already for single-loop controllers operating
alone in a wireless network.
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Fig. 1. Our framework separates the system design into two well-defined
subproblems that admit optimal solutions: delay-constrained maximum
reliability routing and the associated characterization of the achievable loss-
latency pairs (the shaded region) and the design of optimal controllers under
latency and loss and their associated performance evaluation (blue surface).

We would like to stress that the design-space of net-
worked control systems is huge. It involves the selection
of networking technology, protocol decisions from physical
to application layers, the selection of sampling strategies
and control laws. While one could attempt to pick certain
parameters such as sampling time using classical rules-of-
thumb, this would impact other parameters such as the
achievable end-to-end reliability. It is not immediately clear
if a shorter sampling interval is better if it also results in
increased loss probability. Adding energy consumption and
network life-time to the picture complicates decisions further.

This paper proposes a co-design framework for wire-
less control systems targeting WirelessHART and emerging
scheduled multi-channel medium access control standards
such as IEEE 802.15.4e. By parameterizing the system
design in terms of the sample-time of the digital control
loop, the co-design problem separates into two well-defined
and solvable problems: to schedule the multi-hop network to
maximize the deadline-constrained reliability, and to design
a controller with optimum performance under (independent)
packet losses. The deadline-constrained maximum reliability
routing problem has recently been addressed [2], [3] and al-
lows to compute optimal scheduling policies and characterize
the achievable loss-latency region for multi-hop wireless net-
works. Similarly, for a given communication latency and loss
probability, we can derive optimal controllers and estimate
the achievable closed-loop performance, see Figure 1. In this
paper, we detail our co-design framework for system-level
design of a single-loop wireless control system with an LQG
performance criterion. We derive the optimal scheduling



policy and control law and illustrate the co-design process
in numerical examples.

II. BACKGROUND AND MOTIVATION

A well-designed co-design framework requires insight
and understanding of networking and control and how they
interact. To this end, this section contains some background
information on current and emerging standards on wireless
control, basic insight about control and estimation under la-
tency and loss, and related co-design efforts in the literature.

A. Wireless technologies for networked process control

Recent communication standards for real-time wireless
control, such as WirelessHART [4], ISA-100 [5] and IEEE
802.15.4e [6], are converging toward a design that combines
a multi-hop multi-path routing layer with a globally time
synchronized channel hopping (TSCH) medium access con-
trol. Global scheduling removes the non-determinism and
sometimes significant delays associated with random access
protocols while the diversity offered by multipath routing
and channel hopping can improve the end-to-end reliability.

These standards operate over low-power radios compliant
with the IEEE 802.15.4-2006 physical layer which supports
16 channels in the 2.4GHz ISM band. Channel blacklisting
is used to avoid channels with consistently high interference
levels (e.g. due to coexistence with IEEE 802.11 standard)
or to protect wireless services that share the ISM band.

The medium access control layer is based on a globally
synchronized multi-channel TDMA that performs channel
hopping at each slot boundary. One time slot is typically 10
ms long and allows for channel switching and the transmis-
sion of a single packet and the associated acknowledgement.
Transmission opportunities can be dedicated or shared. To
logically structure the global transmission schedule, time
slots are organized into multiple frame structures (so called
superframes in WirelessHART or frame cycles in the IEEE
802.15.4e proposals) that are repeated periodically, see e.g.
Figure 2. Each frame can be used for scheduling one net-
working operation such as the collection of measurements
from a subset of sensors, or the dissemination of commands
to a set of actuators. Multiple superframes with different
lengths can operate at the same time and unless conflicts
between superframes have been eliminated in the scheduling
phase, the standard prescribes how nodes should behave to
resolve such conflicts. For a thorough description, we refer
to the documentation of each standard [4], [5], [6] .

B. Insight from estimation under latency and loss

While there is a large body of work on networked estima-
tion and control under packet loss, there are few closed-form
expressions that allows to gain analytical insight into how
various networking parameters influence the overall system
performance. To develop such an insight, we will consider a
simple scenario where the state of a stochastic linear system

dx(t) = ax(t)dt+ dw(t)
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Fig. 2. This example describes the data collection from the two sensors, and
then control command dissemination to an actuator. These basic operations
are scheduled separately and aligned to form a 100ms slot frame. The slot
frame is repeatedly scheduled to form a superframe. The global transmission
schedule consists of multiple (non-conflicting) superframes.

should be estimated based on periodic noise-free samples of
the state x(kh). The aim is maintain a state estimate x̂(t)
that minimizes the expected mean-square error

Je = lim sup
T→∞

1

T

∫ T

0

E
{

(x(t)− x̂(t))2
}
dt

Samples transmitted from the sensor to the estimator over
an unreliable channel where packet experience a stochastic
delay D. If the delay exceeds one sampling interval, the
transmission is aborted and the packet is considered lost.
This gives rise to a networked control system with both a
time-varying delay and a loss probability. As shown in [7],
it is then possible to explicitly characterize the optimal loss:

Je = E
{
e2aD

} (1− p)(e2ah − 1)

4a2h(1− pe2ah)
− 1

2a
(1)

provided that pe2ah < 1. This expression reveals that
the achievable loss depends both the sampling interval h,
the loss probability p and the complete delay distribution.
Specifically, Je is monotone increasing in h and p, and the
smaller the average delay and its variance, the lower the loss.

However, latency and loss can typically not both be made
small. As an illustration, consider communication over a
single link and assume that the medium is divided into time
slots of length ts. A single time slot allows to transmit one
packet, and a transmission attempt fails with probability ps.



Assuming that h = kts and that unacknowledged packets are
retransmitted in the next time slot, the probability that the
packet arrives with delay nts equals (1 − ps)pn−1s and the
probability that the packet is not transmitted until the end
of the sampling interval is p = pks . Note that to guarantee a
small loss probability we must allow for more retransmission
attempts and hence a longer sampling interval. Unfortunately,
for this specific scenario there is no interesting co-design:
Je is bounded if pkse

2akts =
(
pse

2ats
)k

< 1, so if we
cannot stabilize the estimation error variance for h = ts,
then we cannot do so no matter how many retransmissions
we allow for; moreover, Je = c

(
e2atsk − 1

)
/k which

is monotone increasing in k, so the optimal performance
is obtained for h = ts. As we will see in Section V,
however, these observations do not hold when we move from
this restricted setting to closed-loop control over multi-hop
wireless networks. In such cases, there is a non-trivial co-
design decision to trade off latency and loss.

C. Related work on co-design of wireless control systems

This paper is by no means the first to consider controller-
communication co-design. Early attempts, e.g. [8] focus on
resource-constrained scenarios where the amount of bits
that can be communicated over a wireless channel during
a sampling interval is limited and needs to be allocated
to different control loops, or assumes that only a single
controller can access the communication medium at each
sampling instant [9]. The paper [7] focuses on co-design
of contention-based medium access and networked estima-
tion and studies the dependencies between the number of
contenders, the sampling interval, and the latency and loss
distributions of sensor-estimator communication. For Wir-
lessHART networks, our earlier paper [10] argues for struc-
turing the communication schedule into network primitives
such as unicast and convergecast and develops latency-
optimal schedules under the assumption that communication
links are reliable. The co-design aspect investigates how
the additional latency introduced by heuristic retransmis-
sion policies (which improve end-to-end reliability) impact
the closed-loop performance. Related is also the work by
Hou [11] which extends the schedulability analysis tools for
embedded systems to unreliable wireless systems.

III. A MODULAR CO-DESIGN FRAMEWORK

We propose a co-design framework that separates the co-
design problem into well-defined networking and control
design tasks. These tasks are parameterized by a single
parameter: the sampling interval of sensors. The optimal
co-designed system is found by evaluating the optimal
performance of the networked control loop for each fixed
sampling interval and select the one that yields the best
overall performance.

Our aim is to solve the following problem

minimize J(D, p, h)
subject to (D, p, h) ∈ S

Here, J is the control loss function which depends on the
communication latency distribution D, the loss probability p
and the sampling interval h, while the notation (D, p, h) ∈
S denotes that the triple (D, p, h) should be schedulable,
i.e. there should exist a transmission schedule that realizes
latency distribution D and end-to-end loss probability p when
packets are generated every h seconds.

In interest of simplicity, our co-design framework has
some limitations. The main restriction is that we use a time-
triggered control architecture that operates on the data that
is available a fixed time-interval after it has been measured
at the sensors. Nilsson [1] demonstrated that this control
structure is suboptimal and that better performance can be
obtained by an event-triggered architecture that acts imme-
diately as data arrives. However, our assumption simplifies
both the control design and the network scheduling. In
particular, the time-triggered architecture guarantees that the
controller-to-actuator communication occurs at well-defined
points in time, which is critical for efficient reservation of
network resources. For example, in the scheduling exercise
in Figure 2, the time-triggered architecture allows to separate
sensor and command scheduling into two non-conflicting
operations. If we would use an event-triggered controller
there is a chance that the sensor readings will be already
delivered after the second time slot, but to be able to act
at this point in time, we would need to reserve network
resources for the controller-actuator communication over
time slots 3−10. Not only would such a resource reservation
demand more energy (all devices that are scheduled to
possibly receive in a time slot must have their radios on) but
it would also complicate the superframe alignment process,
especially when there are multiple control loops and many
sensor and actuator communication flows. For simplicity, we
set the communication interval equal to the sampling interval
(i.e. we allow the communication to take a full sampling
interval). The co-design problem now becomes

minimize J(Ih, p(h), h)
subject to (Ih, p(h), h) ∈ S

where D = Ih denotes that the communication delay is one
sampling interval, and p(h) is now the probability that the
packet is not delivered within this time.

Now, since J(Ih, p(h), h) is monotone increasing in p(h)
(see [12] for the details), the optimal solution to the co-
design problem for any fixed h separates into two well-
defined problems which we can solve to optimality when
link losses are independent in space and time. Network re-
sources should be allocated to minimize p(h). This deadline-
constrained maximum-reliability forwarding problem is de-
fined and solved in Section IV-A. The optimal control under
independent packet losses has been addressed for linear-
quadratic loss in e.g. [13], but we present some of the ex-
tensions necessary for the co-design setting in Section IV-B.
This includes sampling of the continuous-time loss functions
to allow the comparison of the optimal losses for different
values of h and the treatment of cross-terms in the loss
function which now becomes instrumental.



IV. CO-DESIGN FOR LINEAR-QUADRATIC CONTROL

In this section we describe the networking and control
design tasks. Firstly we describe the optimal networking
design for a specified packet deadline (the next sampling
time for sensor recallings). This allows to characterize the
achievable latency-reliability pairs for a given network. This
input is then used in the control task to find the optimal
sampling period.

A. Deadline-constrained maximum reliability forwarding

We consider a multi-hop wireless mesh network whose
routing topology can be represented by a directed acyclic
graph (DAG) G = (N ,L) with nodes N = {1, . . . , N}
and links L = {1, . . . , L}. The presence of a directed link
(n,m) ∈ Lmeans that node n is able to successfully transmit
a packet to node m. Each device is equipped with a half-
duplex radio transceiver and cannot transmit and receive
simultaneously. Communication is slotted, and each time
slots (of length ts ms) allows the transmission of a single
packet and its associated acknowledgement. Links are unre-
liable with independent erasure events following a Bernoulli
process with average link-loss probabilities p = [pl] (i.e.
communication on link l in time slot t fails with probability
pl, independently on other links). We assume that each node
n knows its shortest hop-count dn,min from the destination
and the set O(n) of its outgoing links, which can be easily
obtained during DAG construction [14].

On this network, we consider the deadline-constrained
maximum reliability unicast problem. A sensor device pe-
riodically produces data with period h ms to be delivered
to a controller node, the gateway, within a strict latency
bound of D time slots. We consider a co-design problem
where h = D · ts, that is, sensors inject a single packet into
the network each sampling interval, and declare the packet
lost if it has not arrived at the controller node within one
sampling interval. For this problem, we study jointly optimal
transmission scheduling and routing policy that maximize the
probability of delivering the packet on time.

At time slot t ≥ 1, let d , D − t + 1 be the time left to
deliver the packet from any node n to the gateway, and let
ρn(d) denote the maximum end-to-end reliability for packet
delivery from node n to the destination with deadline d.
Clearly,

ρn(d) = 0 ∀ d < dn,min, and ρgw(d) = 1 ∀ d. (2)

A node holding a packet at time t with deadline d ∈ [1, D]
has two choices: it can hold its transmission, thus yielding a
reliability ρn(d) = ρn(d − 1); Or it can forward the packet
to a neighbor, yielding a forward reliability ρfn(d) defined as

ρfn(d) , max
l=(n,j)∈O(n)

{(1− pl)ρj(d) + plρn(d− 1)}. (3)

The next theorem characterizes the optimal forwarding
policy.

Theorem 4.1: Given a DAG routing topology with inde-
pendent link loss probabilities pl ∈ [0, 1), the optimal policy

Algorithm 1 Optimal multi-path routing and scheduling.
Initialize: ρgw(d) = 1,∀d ∈ [0, D]; ρn(d) = 0,
∀n ∈ N ,∀d ∈ [0, D]; S(t) = ∅,∀n ∈ N ,∀t ∈ [1, D];
for dmin = 1 to dmax do

for each n with dn,min = dmin do
for d = dmin to D − (dmax − dmin) do

Time slot: t = D − d+ 1.
Update S(t) = S(t)

⋃
l?t with l?t from Eq. (5).

Compute ρn(d) with Eq. (4).
end for

end for
end for

for node n holding a packet at time t with deadline d ∈
[dn,min, D] is to maximize the end-to-end reliability

ρn(d) = max{ρfn(d), ρn(d− 1)}, (4)

scheduling a transmission on the link l?t defined as

l?t = arg max
l=(n,j)∈O(n)

{(1− pl)ρj(d) + plρn(d− 1)}. (5)

Proof: Please refer to [3] for the proof details.
Thus, ρn(d) can be efficiently computed through (4)-(5)

using dynamic programming as in Algorithm 1, where S(t)
is the set of links that can be potentially used at time t
and Θ = maxn | O(n) |. Since the time complexity to
compute l?t is O(Θ), the time complexity of the algorithm is
O(ΘN(D−dmax)) where dmax = max

n∈N
dn,min. Theorem 4.1

characterizes the achievable latency-reliability pairs (h, ρ(h))
for a given DAG, link loss probability p = [pl], and sampling
time h. The solution to this problem is a jointly optimal
scheduling and routing policy, where higher reliability is
achieved with more retransmissions. Figure 3 illustrates this
tradeoff for sampling times h ∈ [0, 450]ms with ts =
10ms and three scenarios in which the network becomes
increasingly unreliable by randomly picking the average links
loss probability pl in various intervals. Several extensions
to this basic deadline-constrained scheduling can be found
in [2], [3].

The control design task exploits the latency-reliability
pairs (h, ρ(h)) to find the optimal sampling time h? that
minimizes a control cost. Characterizing the optimal linear-
quadratic loss function of a linear system under latency and
loss is done next.

B. Linear-quadratic control under independent packet losses
We consider a stochastic linear continuous-time system

dx = Axdt+Budt+ dvc, (6)

where A ∈ Rn×n and B ∈ Rn×m are the system matrices
and vc is a Wiener process with the incremental covariance
Rcvdt. We assume that a noisy measurement of the system is
taken every sample period h and is sent to the controller over
an unreliable network. The corresponding sampled system is

x(kh+ h) = Φx(kh) + Γu(kh) + v(kh),

y(kh) = ρCx(kh) + w(kh),
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Fig. 3. DAG routing topology with a sensor at 6-hop from the gateway.

where Φ = eAh, Γ =
∫ h
0
eAsdsB and ρ ∈ {0, 1} is

a stochastic independent and identically distributed (i.i.d.)
binary variable with

Prob
{
ρ = 1

}
= E

[
ρ
]

:= ρ̄ ,

Prob
{
ρ = 0

}
= 1− E

[
ρ
]

:= 1− ρ̄ .

Additionally, v(kh) and w(kh) are discrete-time Gaussian
white-noise processes with zero-mean and covariances:

E{v(kh)vT (kh)} = Rv =

∫ h

0

eAτRcve
AT τdτ ,

E{w(kh)wT (kh)} = Rw ,

E{v(kh)wT (kh)} = 0 .

We define the following information set

Ik ,
{
Yk , Uk−1 , Rk

}
,

where Yk =
(
yk, . . . , y1

)
, and Uk−1 =

(
uk−1, . . . , u1

)
are

the output and input sets up to k and k − 1, while Rk =(
ρk, . . . , ρ1

)
is the set of realizations of ρ until time k.

The loss function for the networked control system is

J = E
{∫ Nh

0

[
x(t)
u(t)

]T [
Qcxx Qcxu
QcTxu Qcuu

] [
x(t)
u(t)

]
dt

+ xT (Nh)Qc0x(Nh)

}
(7)

where the matrix Qcxx is symmetric and positive semi-definite
while Qcuu is symmetric and positive definite. When we use
piecewise constant control signal, (7) can be transformed into
an equivalent discrete-time loss

J = E
{N−1∑
k=0

[
xk
uk

]T [
Qxx Qxu
QTxu Quu

] [
xk
uk

]
+xTNQ

c
0xN

}

where

Qxx =

∫ kh+h

kh

ΦT (s)QcxxΦ(s)ds ,

Qxu =

∫ kh+h

kh

ΦT (s)
(
QcxxΓ(s) +Qcxu

)
ds ,

Quu =

∫ kh+h

kh

(
ΓT (s)QcxxΓ(s) + 2ΓT (s)Qcxu +Qcuu

)
ds .

Minimizing the loss function of (7) when u(t) is constant
over the sampling period is thus the same as minimizing
the discrete-time loss function. However, it is important to
note that the discrete-time loss has cross-terms also when the
continuous-time loss function has not. The authors in [15]
studied a similar problem omitting the cross-terms in the loss
function. In what follow, we extend the framework of [15]
to include the cross-coupling terms in the loss function and
derive the optimal controller and bound its performance for
the case of reliable controller-actuator communication.

1) Estimator Design: Similar to [15], we use a Kalman
filter to design the optimal estimator. The minimum mean
square error (MMSE) estimate x̂k|k of xk given by x̂k|k =
E[xk| Ik] can be computed recursively in two steps starting
from the initial conditions x̂0|−1 = 0 and P0|−1 = P0. The
innovation step is

x̂k+1|k , E
[
xk+1|Ik

]
= Φx̂k|k + Γuk (8)

ek+1|k , xk+1 − x̂k+1|k = Φek|k + vk (9)

Pk+1|k , E
[
ek+1|ke

T
k+1|k|Ik

]
= ΦPk|kΦT +Rv (10)

with independent vk and Ik. The subsequent correc-
tion step is

x̂k+1|k+1 = x̂k+1|k + ρk+1Kk+1(yk+1 − Cx̂k+1|k) (11)
ek+1|k+1 = xk+1 − x̂k+1|k+1

= ek+1|k − ρk+1Kk+1(Cxk+1 + wk+1 − Cx̂k+1|k)

Pk+1|k+1 = Pk+1|k − ρk+1Kk+1CPk+1|k (12)

Kk+1 , Pk+1|kC
T (CPk+1|kC

T +Rw)−1 . (13)

2) Controller Design: We next develop the optimal feed-
back control law and the corresponding value of the loss
function for both finite and infinite horizon cases.

Theorem 4.2: Consider the aforementioned finite horizon
LQG control problem. The optimal control law

uk = − (ΓTSk+1Γ +Quu)−1(ΓTSk+1Φ +QTxu)︸ ︷︷ ︸
Lk

x̂k|k

is a linear function of the estimated state. The matrix Sk
evolves according to the backward Riccati recursion

Sk = Qxx + ΦTSk+1Φ− (ΦTSk+1Γ +Qxu)(ΓTSk+1Γ

+Quu)−1(ΓTSk+1Φ +QTxu)

where x̂k|k is the MMSE estimate of the state xk based on the
information set Ik computed with the Kalman filter above.

Proof: To derive the optimal feedback control law and
the corresponding value for the objective function, we apply



dynamic programming. Define the optimal value function
Vk(xk) as follows:

Vk(xk) ,min
uk

E{xTkQxxxk + 2xTkQxuuk + uTkQuuuk

+ Vk+1|Ik} (14)

VN (xN ) ,E{xTNQ0xN |IN} (15)

where k = {N − 1, . . . , 1}. We show that J?N = V0(x0).
The solution of the Bellman equation (14) with the initial
condition (15) is given by

Vk(xk) = E{xTk Skxk| Ik}+ ck , (16)

where the nonnegative matrix Sk and the scaler ck are
independent of the information set Ik. The aforementioned
solution is apparently true for k = N . Proceeding by
induction, we assume that (16) holds for k + 1 and then
we show it holds for k, as well. Hence, we have

Vk(xk) = min
uk

E
[
xTkQxxxk + 2xTkQxuuk + uTkQuuuk

+ Vk+1(xk+1)|Ik
]

= min
uk

E
[
xTkQxxxk + 2xTkQxuuk + uTkQuuuk

+ E
[
xTk+1Sk+1xk+1 + ck+1|Ik+1] |Ik

]
= min

uk

E
[
xTkQxxxk + 2xTkQxuuk + uTkQuuuk

+ xTk+1Sk+1xk+1 + ck+1|Ik
]

=E
[
xTkQxxxk + xTk ΦTSk+1Φxk|Ik

]
+ tr(Sk+1Rv)

+ min
uk

(
uTk (Quu + ΓTSk+1Γ)uk + 2uTk (ΓTSk+1Φ

+QTxu)x̂k|k
)

+ E
[
ck+1|Ik

]
(17)

Hence, Vk(xk) is a quadratic function with respect to uk and
its minimizer can be computed by solving ∂Vk

∂uk
= 0 as

uk = −(ΓTSk+1Γ +Quu)−1(ΓTSk+1Φ +QTxu)x̂k|k (18)

The optimal control law is a linear function of the state
estimate. Substituting the minimizer into (17) we find

Vk(xk) =E
[
xTkQxxxk + xTk ΦTSk+1Φxk|Ik

]
+ tr(Sk+1Rv)

− x̂Tk|k(ΦTSk+1Γ +Qxu)(ΓTSk+1Γ +Quu)−1

× (ΓTSk+1Φ +QTxu)x̂k|k + E
[
ck+1|Ik

]
Hence, (16) yields

E
[
xTk Skxk|Ik

]
+ ck = E

[
xTkQxxxk + xTk ΦTSk+1Φxk

− xTk|k(ΦTSk+1Γ +Qxu)(Quu + ΓTSk+1Γ)−1

× (ΓTSk+1Φ +QTxu)xk|k|Ik
]

+ tr(Sk+1Rv)

+ E
[
ck+1|Ik

]
+ tr

(
(ΦTSk+1Γ +Qxu)(Quu

+ ΓTSk+1Γ)−1(ΓTSk+1Φ +QTxu)Pk|k
)

Since this equation holds for all xk, we have

Sk =ΦTSk+1Φ +Qxx − (ΦTSk+1Γ +Qxu)(Quu

+ ΓTSk+1Γ)−1(ΓTSk+1Φ +QTxu)

ck =tr
(
(ΦTSk+1Γ +Qxu)(Quu + ΓTSk+1Γ)−1

× (ΓTSk+1Φ +QTxu)Pk|k
)

+ tr
(
Sk+1Rv

)
+ E

[
ck+1|Ik

]

The loss function of the finite horizon LQG for the
networked control system can be written as

J?N =V0(x0) = x̄T0 S0x̄0 + tr
(
S0P0

)
+

N−1∑
k=0

tr
(
Sk+1Rv

)
+

N−1∑
k=0

tr
(
(ΦTSk+1Φ +Qxx − Sk)Eρ

[
Pk|k

])
(19)

Lemma 4.3: The expected error covariance matrix
Eρ[Pk|k] satisfies the following bounds

P k|k ≤ Eρ[Pk|k] ≤ P k|k, ∀k > 0 .

where the matrices P k|k and P k|k can be computed as

P k+1|k =ΦP k|k−1ΦT +Rv

− ρ̄ΦP k|k−1C
T (CP k|k−1C

T +Rw)−1CP k|k−1ΦT

P k|k =P k|k−1

− ρ̄P k|k−1CT (CP k|k−1C
T +Rw)−1CP k|k−1

P k+1|k =(1− ρ̄)ΦP k|k−1ΦT +Rv

P k|k =(1− ρ̄)P k|k−1

starting from the initial conditions P 0|−1 = P 0|−1 = P0.
Using Lemma 4.3, the LQG loss function for finite horizon

J?N in (19) can be bounded as follows

Jmin
N ≤ J?N ≤ Jmax

N (20)

where the lower and upper bound are

Jmin
N = x̄T0 S0x̄0 + tr

(
S0P0

)
+

N−1∑
k=0

tr
(
Sk+1Rv

)
+

N−1∑
k=0

tr
(
(ΦTSk+1Φ +Qxx − Sk)P k|k

)
(21)

Jmax
N = x̄T0 S0x̄0 + tr

(
S0P0

)
+

N−1∑
k=0

tr
(
Sk+1Rv

)
+

N−1∑
k=0

tr
(
(ΦTSk+1Φ +Qxx − Sk)P k|k

)
(22)

For infinite horizon, the bounds in (20) become

Jmin
∞ , lim

N→∞

1

N
Jmin
N = tr(S∞Rv)

+ (1− ρ̄)tr
(
(ΦTS∞Φ +Qxx − S∞)P∞

)
Jmax
∞ , lim

N→∞

1

N
Jmax
N = tr

(
(ΦTS∞Φ +Qxx − S∞)

× (P∞ − ρ̄P∞CT (CP∞C
T +Rw)−1CP∞)

)
+ tr(S∞Rv)

where the matrices S∞, P∞ and P∞ satisfy

S∞ =ΦTS∞Φ +Qxx − (ΦTS∞Γ +Qxu)(ΓTS∞Γ

+Quu)−1(ΓTS∞Φ +QTxu)

P∞ =ΦP∞ΦT +Rv − ρ̄ΦP∞C
T (CP∞C

T

+Rw)−1CP∞ΦT

P∞ =(1− ρ̄)ΦP∞ΦT +Rv



Additionally, the infinite horizon optimal controller gain
converges to a constant value that is calculated as

L∞ = lim
k→∞

Lk = −(ΓTS∞Γ +Quu)−1(ΓTS∞Φ +QTxu) .

However, the estimator cannot converge to any steady state
value as distinct from the standard LQG control design.

The optimal control laws developed in this section are
valid for any linear system with quadratic loss and piece-
wise constant controls. The one-step delay present in our
control architecture can be dealt with by first sampling the
continuous time system and its loss function disregarding
the delay (to obtain Φ, Γ, C, etc.) and then introducing
an augmented state vector (xk, xk−1) and an augmented
system description and solving the optimal control problem
for this augmented system. The procedure is standard, see
e.g. Åström and Wittenmark [16] for details.

To sum up, the optimal estimator is a time-varying Kalman
filter given by (10), (12) and (13), while the control law is
a static linear feedback (18). The combined performance, in
the sense of the continuous-time loss function (7), can be
bounded as in (21) and (22). It is this controller and these
performance bounds that we will use in the optimal control
design part of the co-design procedure.

V. CASE STUDY

We are now ready to demonstrate our co-design procedure
on a numerical example. Consider an inverted pendulum
described by the following model

dx =

[
2 −1
1 0

]
xdt+

[
1
0

]
udt+ dvc

y(kh) =
[

0 1
]
x(kh) + w(kh),

where vc and w have incremental covariances Rcv = 0.5I2
and Rw = 10−4, respectively. Our joint design should
minimize (7) for

Qcxx =

[
1 0
0 2

]
and Qcuu = 1 .

Periodic samples of the output y(kh) are transmitted over
the multi-hop wireless network in Figure 3. We assume
that communication links are unreliable with erasure events
following a Bernoulli process. We consider the three loss
probability settings described in Section IV-A in which the
network becomes increasingly unreliable. For a fixed h,
Algorithm 1 yields the optimal deadline-constrained schedule
and the associated probability ρ(h) of on-time delivery
within D = dh/10mse time slots. After discretizing the
loss function J , we bound the performance of the optimal
controller using the bounds for the associated discrete-time
loss and the computed ρ(h). Repeating the procedure for a
range of sampling intervals yields the performance curves
in Figure 4. Since the open-loop system is unstable and the
minimum hop-count from sensor to gateway is six hops, the
minimum feasible sampling interval is h = 6 · 10 ms. The
optimal sampling interval h? that minimizes the control cost
ranges from 90ms for the most reliable network scenario to
250ms for the least reliable case, corresponding to a required
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Fig. 4. Comparison of the upper bounds Jmax
∞ for three different cases.

Fig. 5. The upper bounds Jmax
∞ for the minimum control cost with respect

to the different sampling periods and packet loss rates.

reliability of 65% and 82%, respectively. As the network
becomes less reliable, more retransmissions (a longer h?) are
required to guarantee a sufficiently high reliability with an
associated significant increase of control cost. Specifically,
the optimal control cost (marked with a square in Figure 4)
increases of about a factor ten from the most to the least
reliable network scenarios.

Figure 4 also shows that the network must provide a min-
imum reliability to stabilize the open-loop unstable process.
To gain more insight into this aspect, Figure 5 exhibits the
upper bound of the control cost Jmax

∞ for different sampling
periods and packet loss probabilities ploss = 1 − ρ, and
the instability region with respect to the necessary stability
condition plossλmax(Φ) < 1 (green area). One can observe
that Jmax

∞ increases rapidly with respect to both sampling
period and packet loss rate.

Figure 6 validates the bounds of J?N in (20) by computing
the average value of J?N in (19) for the finite horizon
LQG control through Monte Carlo simulations. Although the
results are similar for the other scenarios, we only show
the results for the least reliable networking scenario. For
each pair (h, ρ(h)), we compute J?N from (19) generating
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Fig. 6. The experimental J?
N , upper bound Jmax

N and lower bound Jmin
N

for the minimum control cost with respect to sampling period. The curves
are obtained by averaging 1000 Monte Carlo simulations for N = 2500,
with the arrival sequence ρ(k) generated randomly.

a synthetic data trace with average success probability ρ(h).
We repeat the computation for 103 trials and average the cost
value for the given (h, ρ(h)). Figure 6 shows that the upper
bound Jmax

N becomes quite accurate for sampling intervals
h ≥ 250ms. Moreover, one can notice a good match between
the minimum sampling interval and the associated control
cost.

VI. CONCLUSIONS

We considered the joint design of transmission schedules
and controllers for networked control loops that use Wire-
lessHART communication for sensor and actuator data. By
parameterizing the design problem in terms of the sampling
rate of the control loop, the co-design problem separates into
two well-defined networking and control design subprob-
lems, both of which admit optimal solutions. Transmission
scheduling should be done to maximize the delay-constrained
reliability, and the control design should optimize closed-
loop performance under packet loss. We illustrate how these
problems can be solved, and demonstrate our co-design
framework for the case of linear-quadratic control.

Although our framework significantly improves upon the
state-of-art solutions for co-design of communication and
control, several natural extensions can be considered. One is
the multi-loop control problem, where multiple sensors take
measurements with different sampling time and deadline,
eventually different plants for different (parallel) control
loops. The corresponding networking task, however, be-
comes a real-time deadline-constrained multi-flow schedul-
ing, which was recently proved to be NP-complete [17].
Another extension is the optimal co-design of a system when
the actuation loop is also closed through a wireless network.
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