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1 State-Space Representation in Canonical Forms

We here consider a system defined by

y(n) + a1y
(n−1) + · · · + an−1ẏ + any = b0u

(n) + b1u
(n−1) + · · · + bn−1u̇ + bnu , (1)

where u is the control input and y is the output. We can write this equation as

Y (s)

U(s)
=

b0s
n + b1s

n−1 + · · · + bn−1s + bn
sn + a1sn−1 + · · · + an−1s + an

. (2)

Later, we shall present state-space representation of the system defined by (1) and (2)
in controllable canonical form, observable canonical form, and diagonal canonical form.

1.1 Controllable Canonical Form

We consider the following state-space representation, being called a controllable canon-
ical form, as

ẋ1
ẋ2
...

ẋn−1

ẋn

 =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−an −an−1 −an−2 . . . −a1




x1
x2
...

xn−1

xn

+


0
0
...
0
1

u (3)

y =
[
(bn − anb0) (bn−1 − an−1b0) . . . (b1 − a1b0)

]

x1
x2
...
xn

+ b0u (4)

Note that the controllable canonical form is important in dicsussing the pole-placement
approach to the control system design.
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1.2 Observable Canonical Form

We consider the following state-space representation, being called an observable canon-
ical form, as 

ẋ1
ẋ2
ẋ3
...
ẋn

 =


0 0 . . . 0 −an
1 0 . . . 0 −an−1

0 1 . . . 0 −an−2
...

...
. . .

...
...

0 0 . . . 1 −a1




x1
x2
x3
...
xn

+


bn − anb0

bn−1 − an−1b0
bn−2 − an−2b0

. . .
b1 − a1b0

u (5)

y =
[
0 0 0 . . . 1

]

x1
x2
x3
...
xn

+ b0u (6)

1.3 Diagonal Canonical Form

We here consider the transfer function system given by (2). We have the case where the
dominator polynomial involves only distinct roots. For the distinct root case, we can
write (2) in the form of

Y (s)

U(s)
=

b0s
n + b1s

n−1 + · · · + bn−1s + bn
(s + p1)(s + p2) · · · (s + pn)

(7)

= b0 +
c1

s + p1
+

c2
s + p2

+ · · · +
cn

s + pn
. (8)

The diagonal canonical form of the state-space representation of this system is given by
ẋ1
ẋ2
...

ẋn−1

ẋn

 =


−p1 0

−p2
. . .

−pn−1

0 −pn




x1
x2
...

xn−1

xn

+


1
1
...
1
1

u (9)

y =
[
c1 c2 . . . cn−1 cn

]


x1
x2
...

xn−1

xn

+ b0u (10)
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2 Numerical Examples

Example 1: Obtain the transfer function of the system defined by the following state-
space equations: ẋ1ẋ2

ẋ3

 =

 0 1 0
0 0 1
−6 −11 −6

x1x2
x3

+

0
0
1

u , (11)

y =
[
1 0 0

] x1x2
x3

 . (12)

Solution: From (11) and (12), we determine the following parameters: b0 = 0, b1 = 0,
b2 = 0, b3 = 1, a1 = 6, a2 = 11, a3 = 6. Thus, the resulting transfer function is

G(s) =
Y (s)

U(s)
=

1

s3 + 6s2 + 11s + 6
.

Example 2: Find the state-space representation of the following transfer function sys-
tem (13) in the diagonal canonical form.

G(s) =
2s + 3

s2 + 5s + 6
. (13)

Solution: Partial fraction expansion of (13) is

2s + 3

s2 + 5s + 6
=

A

s + 2
+

B

s + 3
.

Hence, we get A = −1 and B = 3. We now have two distinct poles. For this, we can
write the transfer function (13) in the following form:[

ẋ1
ẋ2

]
=

[
−2 0
0 −3

] [
x1
x2

]
+

[
1
1

]
u (14)

y =
[
−1 3

] [x1
x2

]
(15)

Example 3: Obtain the state-space representation of the transfer function system (16)
in the controllable canonical form.

G(s) =
s2 + 3s + 3

s2 + 2s + 1
(16)
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Solution: From the transfer function (16), we obtain the following parameters: b0 = 1,
b1 = 3, b2 = 3, a1 = 2, and a2 = 1. The resulting state-space model in controllable
canonical form is obtained as

[
ẋ1
ẋ2

]
=

[
0 1
−1 −2

] [
x1
x2

]
+

[
0
1

]
u , (17)

y =
[
2 1

] [x1
x2

]
+ u . (18)

Example 4: Consider the following state equations:

ẋ1 = x2(t) , (19)

ẋ2 = x3(t) , (20)

ẋ3 = − 6x1(t) − 11x2(t) − 6x3(t) + 6u(t) , (21)

y = x1(t) , (22)

and determine the controllable canonical form.

Solution: Using the state equations (19), (20), (21), and (22), we write the following
high order differential equation:

d3

dt3
y(t) + 6

d2

dt2
y(t) + 11

d

dt
y(t) + 6y(t) = 6u(t) .

The state variables x(t) = y, x2(t) = ẏ, and x3 = ÿ. Hence, we get

ẋ1 =x2(t) ,

ẋ2 =x3(t) ,

ẋ3 =
d3

dt3
y(t) = −6ÿ(t) − 11ẏ(t) − 6y(t) + 6u(t)

= − 6x3(t) − 11x2(t) − 6x1(t) + 6u(t) .

In matrix form, we have

ẋ(t) =

 0 1 0
0 0 1
−6 −11 −6

x(t) +

0
0
6

u(t) ,

y(t) =
[
1 0 0

]
x(t) .

Example 5: Consider the following state equations

ẋ1(t) = − x1(t) + x3(t) + 4u(t) , (23)

ẋ2(t) = − 3x1(t) + 2u(t) , (24)

ẋ3(t) = − 5x1(t) + x2(t) + u(t) , (25)

y(t) =x1(t) , (26)
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and determine the observable canonical form.

Solution: Using the state equations (23), (24), (25), and (26), we write the following
high order differential equation:

d3

dt3
y(t) +

d2

dt2
y(t) + 5

d

dt
y(t) + 3y(t) = 4

d2

dt2
u(t) +

d

dt
u(t) + 2u(t) .

We introduce x1(t) = y(t) in the equation, and collect all terms without differentiation
on the right hand side, we get

d3

dt3
x1(t) +

d2

dt2
x1(t) +

d

dt
x1(t) −

d2

dt2
u(t) − d

dt
u(t) = −3x1(t) + 2u(t) ,

i.e.,

d

dt

[
d2

dt2
x1(t) +

d

dt
x1(t) + x1(t) −

d

dt
u(t) − u(t)

]
= −3x1(t) + 2u(t) .

Now introduce the expression within the paranthesis as a new state variable

x2(t) =
d2

dt2
x1(t) +

d

dt
x1(t) + 5x1(t) − 4

d

dt
u(t) − u(t) ,

i.e.,

ẋ2(t) = −3x1(t) + 2u(t) . (27)

Repeating this precedure yields

d

dt

[
d

dt
x1(t) + x1(t) − 4u(t)

]
= x2(t) − 5x1(t) + u(t) , (28)

and we introduce

x3(t) =
d

dt
x1(t) + x1(t) − 4u(t) ,

i.e.,

ẋ1(t) = x3(t) − x1(t) + 4u(t) . (29)

From (27), (28), and (29), we define the state-space form of

ẋ(t) =

−1 0 1
−3 0 0
−5 1 0

x(t) +

4
2
1

u(t) ,

y(t) =
[
1 0 0

]
x(t) .
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