
One Bit Is Enough: a Framework for
Deploying Explicit Feedback Congestion

Control Protocols
Nedeljko Vasíc∗, Srinidhi Kuntimaddi† and Dejan Kostíc∗

∗EPFL, Lausanne, Switzerland, first.last@epfl.ch
†IIT, Guwahati, India, kuntimaddi@iitg.ernet.in (work done during an Internship at EPFL)

Abstract—
In this paper we describe UNO, a framework for fine-

grain explicit feedback congestion control protocols that
uses only 1 or 2 existing ECN bits, thus making algorithms
that use more than 2 bits for encoding the load factor
and the RTT immediately deployable. UNO accomplishes
this task by changing the way load and RTT information
is encoded in packets in a way that is similar to some
existing schemes for encoding bottleneck link load. UNO
leverages the values present in the IP identification field
and trades-off a small amount of time (to send several
packets) for space to emulate the existence of several extra
bits within the IP header. The results from extensive ns2
simulations over various bandwidth and delay scenarios
are encouraging. By using only one ECN bit we achieve
substantially lower convergence times and better link
utilization than the existing deployable protocols, with
similar low queue size and negligible packet loss. With
2 ECN bits, we achieve very good fairness for flows with
different RTTs, while keeping all the good characteristics
of the 1-bit protocol and providing functionality that did
not previously exist.

I. I NTRODUCTION

As the bandwidth-delay products (BDP) of Inter-
net links keep increasing, issues with TCP’s AIMD
controller in these environments are becoming more
pressing. For example, TCP’s additive increase phase
increases the congestion window by only one packet
per RTT. This behavior leads to poor convergence times
and low link utilization as the flow takes a long time to
ramp up to available bandwidth after a packet loss. In
addition, TCP’s throughput is inversely proportional to
the RTT, resulting in fairness issues. In an attempt to
solve these and other problems, recent research efforts
have pushed in two different directions. Strict end-to-
end schemes [8], [19] bring significant benefits, but
do not solve the problem in the long run as there are
limits to using strictly packet loss [8] and/or delay [5]
as congestion signals. The second direction includes
using feedback from the network. The simplest form
which has progressed the furthest (and is deployed in
some routers) is TCP+AQM/ECN. ECN-enabled routers
signal congestion sooner than loss-based schemes by

setting an appropriate bit in the IP header. This approach
reduces loss rate and queue sizes in the network, but
does not ensure good link utilization in high BDP
environments [11].

Recent efforts in this field can be classified into two
groups based on the granularity of congestion feedback
they use: i) algorithms with explicit-feedback infor-
mation and ii) algorithms with approximate-feedback
information. The best representative of the first group is
eXplicit Congestion Control (XCP) [11]. XCP augments
the IP header to enable the sender to transmit its current
congestion window size and estimated RTT. XCP router
then estimates the fair rate for each flow and sends it
back to the sender as explicit feedback. XCP performs
very well, regardless of link capacity, round trip time
(RTT), and number of flows. However, its deployment
is hampered mostly by the need to change the IP header.
Variable-structure congestion Control Protocol (VCP)
authors [20] recognized this problem and proposed an
approximate feedback scheme that uses the existing 2
ECN bits to transmit a few levels of load information
to senders. However, VCP does not propagate per flow
RTT information. This constraint, as well as the course-
grained load information, is responsible for relatively
long VCP convergence times. In addition, VCP suffers
from fairness issues for flows that have very different
RTTs. Most recent work in this space, MLCP [14], alle-
viates most of VCP’s performance issues by i) encoding
more load levels by using 4 bits, ii) transmitting the per-
flow RTTs, and iii) redesigning the controller for faster
convergence. However, this scheme again requires use
of the entire TOS field in the IP header which reduces its
deployment potential. Existing proposals for reducing
the number of header bits that are required for new
congestion control protocols [3], [18] do not collect
and transmit RTT-related information.

As we move toward the next-generation Internet, it is
important to start experimenting with congestion control
protocols for high BDP networks as soon as possible.
Even if one has an opportunity to design a completely
new IP header (and include arbitrary information), it is

important to gain experience in large-scale deployments
across today’s Internet. We believe this is most likely to
occur if the changes that are required to the IP header
and the router implementations are minimal.

In this paper we describe UNO, a framework for fine-
grain load-factor based (explicit feedback) congestion
control protocols that uses only of 1 or 2 existing ECN
bits [15]. UNO accomplishes this task by changing the
way load and RTT information is encoded in packets.
UNO takes advantage of the values present in the IP
identification field and trades-off a small amount of
time (to send several packets) for space to emulate the
existence of several extra bits (up to 16) within the IP
header.

Specifically, we leverage the fact that the IP iden-
tification field (IPID) in packets originating from ev-
ery host is: i) monotonically increasing, or ii) chosen
uniformly at random. For example, to transmit load
information using UNO, every router examines the few
least significant IPID bits in packets it is forwarding.
When the load matches those bits, the router sets the
ECN bit. As in the previous schemes, the receiver
reflects the load back to the sender in ACK packets.
After several packets, the sender is aware of the load at
the bottleneck router in the end-to-end path, and it feeds
this information to its controller to determine the new
congestion window. The design of the controller can
vary. In this paper, we have used simple modifications
to the VCP’s congestion controller with considerable
success. In high BDP environments that are the target
environment of this protocol, there will be several con-
secutive packets in flight. It is therefore highly probable
that our encoding scheme introduces a minimal delay
to transmit the extra load and RTT information to the
routers and all the way back to the sender.

The benefit of using UNO is twofold: i) it makes
all algorithms that use more than 2 bits for encoding
the load factor and the RTT immediately deployable
(in conjunction with necessary router forwarding logic
changes), and ii) it enables network protocol designers
and operators to choose how many existing ECN bits
(one or two) they want to use for congestion control.
The 1-bit scheme is potentially preferable to 2-bit
schemes as it is interoperable with the existing ECN
implementations in routers.

Benefits of this framework are not only limited to
congestion control protocols. It can also be useful in
traffic management tasks which span congestion control,
routing protocols and traffic engineering. Recently, a
class of distributed algorithms that shape traffic across
multiple paths (e.g., TRUMP [10]) has been proposed.
Here, link prices are incrementally computed and each
iteration step is equal to the longest round trip time
(RTT) in the network. Since UNO can be used to convey

000 001 010 011 100 101 110 111

80% 100%0

Low load High load Overload

Fig. 1: Using 3 bits to encode load factor at a link

the RTT-related information, this class of algorithms can
significantly benefit from our framework.

We evaluate UCP’s performance by running exten-
sive ns2 simulations over various bandwidth and delay
scenarios. Our results are encouraging, as by using only
one ECN bit we achieve substantially lower convergence
times and better link utilization than VCP, with similar
low queue size and negligible packet loss. In addition,
the performance is comparable to that of a protocol
that uses 3 bits to transfer exact link utilization in each
packet. With 2 ECN bits, we achieve better fairness for
flows with different RTTs than VCP, while keeping all
the good characteristics of the 1-bit protocol.

The rest of the paper is organized as follows. In
section II, we describe our encoding scheme in more
details. We provide more information about protocol im-
plementation across the participants within the network
(senders, routers and receivers) in section III. In section
IV, we evaluate the performance of the framework using
extensive simulations. We review related work in section
V, and summarize and discuss our work in section VI.

II. T HE UNO FRAMEWORK

We assume that the sender, intermediate routers, and
the receiver collaborate to achieve high link utilization,
low convergence time and small queue sizes. The sender
typically does most of the work, and runs a congestion
controller that takes load, RTT and other information
into account. Routers encode load (and other) infor-
mation into IP packets using N bits by performing
lightweight packet inspection and potentially stamping
outgoing packets with the UNO bit(s). The receiver
reflects the information that is being collected back to
the sender via ACK packets.

The exact way of encoding load information is
protocol-dependent. To demonstrate the benefits of us-
ing UNO however, in this paper we use a modified
version of the scheme used by VCP [20]; Figure 1
shows that we encode load in the low-load region (0-
80% link utilization) in 6 fine-grain levels.

In this section we first describe our approach for
transmitting load information using only one UNO bit,
thereby making algorithms with approximate-feedback
information immediately deployable, in conjunction
with the necessary router forwarding logic changes. We

Fig. 2: Using 1 UNO bit to transmit link load informa-
tion to the receiver

then describe how an additional bit can be used to
transmit RTT-related information for protocols that wish
to achieve better convergence and fairness.

A. Using one bit to transmit load factor

The primary goal of our framework is to improve the
precision of load information that is collected by the
routers on an end-to-end path. The technique we use
leverages the temporal proximity of several packets that
are in flight from sender to the receiver in high BDP
environments. We observe that there exist 16-bit fields
within the packet that are changing over time; one such
field is the IP identification field (IPID). Our framework
could use other fields, but we concentrate on the IPID
as it is already in the IP header. This choice allows
packet processing to remain on the fast path and avoids
the need to perform deep packet inspection. Depending
on a particular protocol stack, IPID in packets that
are originating from every host are: i) monotonically
increasing (e.g., on Windows Vista [12]), or ii) random
(e.g., Solaris). Due to various security reasons, the over-
arching trend in modern protocol stacks is to generate
IPID uniformly at random for each outgoing packet.

Given our initial focus on the 16-bit IPID field, our
framework could be used to transfer load information
that is encoded in several bits. Since recent work [14]
shows that 3 bits are sufficient for achieving good
convergence (and adding more bits brings only marginal
benefits), we use 3 bits for the remainder of this paper
to describe load information.

Figure 2 depicts how a protocol that uses only 1 UNO
bit collects load information from the bottleneck router.
Here, several packets are in flight across two routers
that wish to mark outgoing packets with their utilization
levels of (011)2 and (001)2, respectively. Toward this
end, they each examine the 3 least significant IPID bits
in the incoming packets. When the load on its outgoing
interface matches those bits, the router simply sets the
UNO bit. Receivers reflect the load (when the UNO bit
is set) back to the sender in the ACK packet.

Given that our protocol disperses load information
across several packets, they could be carrying different
load that corresponds to the varying load information
across the routers on the path. In our example, the left

router sets the UNO bit in the packet marked as(011)2
while the right router sets the UNO bit for the packet
labeled with(001)2. It is important that our framework
handles this and other cases, including packet loss, and
correctly conveys the highest load encountered on the
path.

Having two or more routers with the same maximum
load does not represent the problem. If routers have
different load, as is the case in Figure 2, the sender
would not know the correct maximum load until the
ACK packet with the specific IPID contents arrives.
Therefore, UNO controller waits until it receives 8 suc-
cessive packets (23, for all possible 3-bit combinations)
and picks the maximum reported load. Our protocol
trivially handles packet loss - in this case the controller
reacts exactly as it should to the packet loss event (there
is no need to use “weaker” congestion information in
the form of the router load).

One might be concerned that spreading the load
information across 8 packets might unnecessarily delay
the load information. In a high BDP environment that
is precisely the target of our framework, there will be a
considerable number of packets in flight. It is therefore
highly likely that our encoding scheme introduces a
small delay in transmitting the load information. Our
experimental results confirm this intuition (the average
observed delay is 0.07 ms on a 1-Gbps link with 1000-
byte packets, which is typically a small fraction of the
RTT).

When IPID is generated uniformly at random, 8
successive packets might not capture all possible 3-bit
values. In this case, the sender checks the outbound
packets and determines how many of them are carrying
different 3-bit fields. It then waits to receive the ACKs
for those packets before passing along the load infor-
mation to the congestion controller. In expectation, 22
packets will capture all possible 3-bit load encodings
(this is an instance of the coupon collector problem).
Again, we do not expect this requirement to be an issue,
and our experimental results confirm our intuition.

An astute reader might wonder about pathological
cases in which, for example, a given host has exactly
8 synchronized flows, and the packets are being sent
one at a time in round-robin fashion (so that the low-
order 3 bits are not changing in the flows). With the
modern protocol implementations moving to random
IPID fields, we believe this is less of an issue. Further,
per-host traffic is typically bursty. Finally, the corner
cases can be further mitigated by using a slightly
different technique for setting UNO bits. For example,
the router would not wait for perfect match, but would
set the UNO bit if its load is higher from the one
encoded in the IPID. We leave this alternative encoding
implementation as future work.

Fig. 3: Transmitting per-flow RTT to the routers using
the second UNO bit

The receiver in some protocols might use delayed
ACKs, e.g., it might send an acknowledgment after
every other packet it receives. UNO handles this case
easily by having the receiver report the maximum load
seen in the last two packets.

B. Using the second bit to transmit RTTs

Although using just one UNO bit is sufficient for
transmitting fine-grained load information, protocols
that do not calculate and transmit average RTT time
for flows passing through routers (e.g., VCP), have two
drawbacks: i) they become unfair in the presence of
flows that exhibit a large difference in their RTTs and
ii) and they have to be conservative which negatively
affects low latency flows. Therefore, there is an obvious
need for transmitting RTT-related information [14]. To
accomplish this task, our framework lets end hosts
transmit their RTTs to routers, thus enabling routers to
calculate fair shares. In addition, UNO enables routers
to communicate the average RTT of flows passing
through them back to end hosts, allowing their con-
trollers to determine how to change their rates.

We require another UNO bit for this task. Relative
to transmitting link load, this use case is more complex
as information needs to be transmitted in two rounds.
First, senders provide routers with their estimated per-
flow RTTs. Second, routers convey the average observed
RTTs to receivers.

Figure 3 shows the first round in which a sender
provides routers along the path with its estimated RTT,
using a 3-bit encoding scheme. In a general, N-bit
encoding scheme, the sender looks into (N+1)st right-
most bit. If it is zero it then checks the N right-most bits
in the IP identification field. If there is a match with its
estimated RTT, the sender sets the second (RTT) UNO
bit. Routers recognize this information and update the
average RTTs for flows passing through them.

Routers transmit average observed RTT to senders
by checking the (N+1)st bit from right. If it is 1, they
compare their N-bit representation of the average RTT
with the N rightmost bits from the identification IP field.
If the condition is satisfied, they set the second UNO bit.

Receivers propagate this information back to senders via
ACK packets as they do for the load.

C. Deployment and interoperability with existing ECN
implementations

For deployment of an 1-bit protocol, UNO sender
would stamp outgoing packets with the ECT(1) [15]
code symbol ((10)2 value of the ECN bits). A router
with a matching load would set the bit using ECT(0)
((01)2). Using just one bit enables the sender and
the receiver to detect UNO-enabled routers as they
would flip the leftmost ECN bit from 1 to 0 when
inserting the link load. Further, this mechanism allows
for interoperability with existing ECN-enabled routers;
these routers expect the senders to be using either
the ECT(0) or ECT(1) combination to announce their
willingness to use ECN, and they mark the onset of
congestion by using the(11)2 ECN bit combination.
UNO-enabled receivers would then realize that there is
a legacy ECN router in the path by observing the(11)2.
Finally, this scheme lets the senders probe the path for
“old” routers without ECN or UNO that do not make
any changes to the ECN bits. Some of the additional
protocols developed on top of ECN, e.g., ECN Nonces
[17], might require modification to work with UNO.

Two-bit UNO protocols would likely require
widespread deployment as they are not directly inter-
operable with existing ECN implementations. In this
scheme, UNO uses the existing ECN bits for its pur-
poses (“leftmost” ECN bit for encoding load informa-
tion, the other one for RTT-related data). UNO would
still function in the presence of the routers that are not
ECN/UNO-enabled.

III. I MPLEMENTATION

To take advantage of the additional fine-grain load
and RTT-related information, we need an appropriate
controller (at the sender) and router support. We start
with the VCP [20] logic, and first modify it to work
with 8 instead of 3 load levels (Figure 1). We refer
to this protocol as UCP1. To incorporate RTT-related
information, we borrow some features from the MLCP
[14] controller and router design. We use the 2-bit UNO
framework to encode and transmit RTT information
with 3 bits. The resulting protocol is called UCP2. In the
remainder of this section, we explain UCP1 and UCP2
by discussing the logic at the sender, the router, and the
receiver.

A. Sender

The sender applies either MI, AI or MD, based on
the load factor reported by the most congested router.
Transition points are chosen as in VCP [20]:

Low load (Load factor [0%,80%)). In this regime,
senders apply the MI factor according to the load value
encoded over 6 uniformly-sized levels.

MI: cwnd (t + rtt) = cwnd (t) ∗ (1 + ξs (σ)) where
ξs (σ) = (1 + ξ (σ))

rtt
tρ

−1, ξ (σ) = k ∗ 1−σ
σ

,
σ – load factor andk = 0.15

To address the problem of RTT heterogeneity, senders
estimate RTT and normalize it with the common factor
tρ. Scaling parameters in this way emulates the behavior
where all flows have the same RTT, which is equal to
tρ. We discusstρ in more details in the next section.

High load (Load factor >80%.) Once a system
achieves a desirable utilization level, senders use the
AIMD algorithm to converge to fair share. Within
the [80%,100%) interval, the senders apply AI. If the
system moves into overload, senders apply MD. The
following equations describe these steps:

AI: cwnd (t + rtt) = cwnd (t) + αs, where
αs = α ∗ rtt

tρ
andα = 3.0

MD: cwnd (t + δt) = cwnd (t)∗β, whereβ = 0.875

We note that the AI parameter is scaled in the same
fashion as MI parameter. However, since MD is an
impulse-like operation that is not affected by the length
of the RTT, it is not scaled. Since we have only one
MD level, theβ parameter does not depend on the load
factor. We are aware that the presence of multiple MD
levels enables the protocol to be more responsive to
congestion according to the degree of utilization on the
most congested link [14]. Nevertheless, we leave this
to the future work and in this paper use the VCP-like
controller to illustrate the main points of our framework.

B. Router

In a scheme with one UNO bit (UCP1), routers only
compute the load factor and set the scaling factortρ to
200 ms, as in VCP. In a 2-bit scheme, they also compute
the average RTT for flows passing through them in a
way similar to MLCP. We encode RTTs using 3 bits, so
the tρ value is chosen from a set S of 8 elements (23 =
8), where: S ={80,200,400,600,800,1000,1200,1400}.

S is constructed according to the following observa-
tions: i) previous work shows that if a flow is within
2 − 2.5 ∗ tρ, there is hardly any queue buildup, and ii)
having this many RTT levels avoids any fluctuations in
tρ due to minor variations in flows’ RTT.

We estimate the load factor over time intervaltρ,
which needs to satisfy two conflicting conditions. First,
it has to be larger than the RTT of most flows in order
to avoid burstiness caused by flows’s responses. Second,
it should be small enough for good responsiveness and

small queue size. Internet measurements shows that
majority of flows has RTT less than 200 ms [20]. Thus,
due to the lack of explicit latency information when
only one UNO bit is used, we settρ = 200ms, as VCP.
During this time interval, each router estimates a load
factor σ for each its output link l as:

σ = (λl+kq∗ql)
(γl∗Cl∗tρ)

whereλl is the amount of traffic during the period,
ql is the persistent queue length during this time. Co-
efficient k controls how fast the persistent queue length
drains (0.25), andCl is link capacity. Techniques that
we used for measuring the input traffic and the persistent
queue length are “borrowed” from VCP and MLCP.

However, using fixedtq value leads to high sensitivity
on very low (e.g. 1ms) or very large (higher than 800
ms) values of RTT in scaling AI and MD parameters.
Protocols willing/able to use two UNO bits may obtain
the average RTT of flows and avoid this problem. In
that case, packets that carry information about sender’s
estimated RTT are used to update average RTT for flows
as:m = a ∗RTT + (1 − a) ∗m, wherea = 0.02, as in
MLCP.

C. Receiver

The receiver just copies the identification field and
the UNO bits to the ACK packet. If it is necessary
for deployment, the receiver could send the load and
the RTT back to the sender similar to the forward
propagation mechanism.

IV. EVALUATION

We use extensive ns2 simulations to show the benefits
of our framework using UCP1 and UCP2, protocols that
use 1 and 2 ECN bits, respectively. We compare them
with a 1-bit scheme such as VCP across a wide range of
network scenarios, including varying the link capacities
in the range [100Kbps, 1Gbps], round trip times in the
range [1 ms, 1.5 s], numbers of long-lived FTP-like
flows in the range [1, 1000]. The bottleneck buffer size
is set to the bandwidth-delay product, or two packets
per-flow, whichever is larger. The data packet size is
1000 bytes, while the ACK packet size is 40 bytes. Due
to space reasons, we only present the most important
results.

To demonstrate that spreading the load and RTTs
across several packets does not jeopardize performance,
we include a protocol we call VCP3 in the comparison.
VCP3 uses 3 bits to represent load information (as do
UCP1 and UCP2), but includes link load in every packet
by using 3 bits in the IP header.

We have implemented our protocols with both mono-
tonically increasing and random IPIDs. As the results

 0

 20

 40

 60

 80

 100

 120

 0 250 500 750 1000F
lo

w
 th

ro
ug

hp
ut

 in
 th

e
fir

st
 1

5
se

co
nd

s
(M

bp
s)

Bottleneck Bandwidth (Mbps)

UCP1
VCP

VCP3

Fig. 4: Additional load levels help UCP1 converge quickly.

 0

 20

 40

 60

 80

 100

 120

 0 250 500 750 1000 1250 1500

F
lo

w
 th

ro
ug

hp
ut

 in
 th

e
fir

st
 3

0
se

co
nd

s
(M

bp
s)

Round trip propogation delay (ms)

UCP1
VCP

VCP3

Fig. 5: Throughput after 30 sec while varying RTTs.

are very similar, we show the graphs obtained with the
monotonically increasing IPIDs.

A. Convergence to High Utilization

Figure 4 shows the bottleneck utilization at time =
15 s for UCP1, VCP and VCP3. Due to finer-grain
load information, UCP1 achieves slightly below 80%
utilization across link capacities ranging from 1 Mbps
to 1 Gbps, whereas, VCP utilization falls significantly
as link capacity is increased. In addition, UCP1’s uti-
lization is similar to a protocol that always transmits 3
bits of link load.

We then fix the bottleneck capacity to 45 Mbps and
vary the round-trip propagation delay from 1 ms to 1.5
s. Figure 5 shows the results obtained in this setup after
30 seconds. We see that UCP1 again achieves better
throughput than VCP, and is practically identical to
VCP3.

Having demonstrated UCP1’s good convergence, for
the remainder of the experiments we run for at least
100 s to ensure that all protocols reach stable state
where they achieve high utilization, low persistent queue
length, low packet drop rate and fairness.

B. Dynamics

To obtain more insight into convergence behavior of
UCP1 we run an experiment where 5 flows with RTTs in
range [40 ms,80 ms] compete for the single bottleneck
link with a bandwidth of 45 Mbps. The flows are intro-
duced into the system with start times separated by 100
seconds. Figure 6 shows that UCP1 converges quicker
than VCP to fair bandwidth allocation. There are two
reasons for that. First, our controller uses a greater AI
coefficient which slightly increases the queue length but
significantly improves the convergence time. Second,
we do not have to limit AI parameters. Moreover, we
observe UCP1’s performance in the presence of UDP
flows. Namely, after 20 s from the beginning of the
experiment, we introduced a UDP flow with a streaming
rate of 40 Mbps. Figure 7 proves that UCP1 performs
well in the presence of UDP flows, and quickly adjusts
its congestion window. Once the UDP flow is gone,
the MI phase rapidly brings the UCP1 flow to high
utilization, with a low queue size.

C. Fairness

Next, we look at the RTT-induced fairness. Figure 8
presents the results of an experiment with 30 FTP flows
with RTTs ranging from 40 ms to 156 ms. Since UCP2
collects and transmits mean RTT, there is no need for
parameter limiting for very high or very small RTT.
Thus, this protocol achieves a near-optimal distribution
of bottleneck capacity among the flows. On the other
hand, VCP limits parameters for flows with small RTT
(less than 200 ms) and with large RTT (higher than
500 ms). Therefore, it cannot achieve sufficient fairness
even in the case of flows with small RTT variation.
UCP2 achieves better fairness than VCP3 (and UCP1
that behaves similarly), because the latter protocol does
not collect average RTTs. This experiment highlights the
need for using RTTs in congestion protocols for high
BDP networks.

V. RELATED WORK

There has been a large body of work on congestion
control protocols. Here we highlight four categories that
are most relevant to UNO.

Pure end-to-end schemes. TCP Vegas [4] and
FastTCP [19] attempt to improve TCP performance in
steady state by using latency-related information. The
Probe Control Protocol (PCP) [2] emulates network-
based control by relying on probe packets to estimate
the available bandwidth on the bottleneck link. Never-
theless, pure end-to-end schemes cannot achieve good
fairness and high utilization while achieving low queues
and low loss rate in high BDP networks [11].

Congestion notification schemes. In these schemes
routers try to predict when congestion is about to happen

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 100 200 300 400 500 600

F
lo

w
 T

h
ro

u
g

h
p

u
t

(M
b

p
s)

Time (sec)

UCP1 Flow 1
UCP1 Flow 2
UCP1 Flow 3
UCP1 Flow 4
UCP1 Flow 5

VCP Flow 1
VCP Flow 2
VCP Flow 3
VCP Flow 4
VCP Flow 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600

B
o

tt
le

n
e

ck
 u

til
iz

a
tio

n

Time (sec)

UCP1
VCP

VCP3

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

B
o

tt
le

n
e

ck
 Q

u
e

u
e

 (
%

b
u

f)

Time (sec)

UCP1
VCP

VCP3

Fig. 6: Convergence with staggered flows

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

F
lo

w
 T

h
ro

u
g

h
p

u
t

(M
b

p
s)

Time (sec)

UCP1
UDP flow

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80 90 100

B
o

tt
le

n
e

ck
 U

til
iz

a
tio

n

Time (sec)

Bottleneck utilization

 0

 50

 100

 150

 200

 0 10 20 30 40 50 60 70 80 90 100

Q
u

e
u

e
 le

n
g

th
 (

P
a

ck
e

ts
)

Time (sec)

UCP1

Fig. 7: Competing with a UDP flow

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30

F
lo

w
 T

h
ro

u
g

h
p

u
t

(M
b

p
s)

Flow ID

UCP2 different RTT
VCP different RTT

VCP3 different RTT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 30 60 90 120

B
o

tt
le

n
e

ck
 u

til
iz

a
tio

n

Time (sec)

UCP2 different RTT
VCP different RTT

VCP3 different RTT

 0

 500

 1000

 1500

 2000

 0 30 60 90 120

B
o

tt
le

n
e

ck
 Q

u
e

u
e

 (
P

a
ck

e
ts

)

Time (sec)

UCP2 different RTT
VCP different RTT

VCP3 different RTT

Fig. 8: Computing and transmitting average RTT improves fairness among flows with different RTTs.

and then signal senders to reduce their sending rates
by marking packets (ECN) or implicitly, by dropping
packets. In Randomly Early Detection (RED) [9], a
router monitors its own queue length, and when it
detects impending congestion it notifies the senders.
However, it has been shown that congestion notification
schemes such as TCP + AQM/ECN cannot achieve high
utilization in high BDP networks.

Explicit feedback (load factor based) schemes.
This group is best represented by XCP [11]. XCP
senders transmit their current congestion window size
and estimated RTT. The XCP router then estimates
the fair rate for each flow and sends it back to the
senders as explicit feedback. XCP performs very well,
regardless of link capacity, round trip time (RTT),
and number of flows. Like XCP, RCP [7] also uses
explicit feedback from routers, but does not calculate
a rate for each flow passing the router. Namely, RCP

maintains only one common rate for all flows and
aggressively gives bandwidth to new flows. Variable-
structure congestion Control Protocol (VCP) [20] uses
load factor (relative ratio of demand and capacity) as a
signal of congestion in routers and sends 2-bit explicit
feedback to a sender. VCP leverages the existing two
ECN bits, whereas XCP uses multiple bits to encode
the congestion-related information which can hinder its
adoption. However, 2-bit information is not sufficient to
ensure good convergence and avoid high-variance RTT
issues. MLCP [14] can be considered as a compromise
between the previous two schemes (XCP and VCP),
as it uses 4-bit feedback and achieves near-optimal
performance. In addition, it propagates the mean RTT
of flows passing through routers (by using additional
3 bits in the IP header), thus enabling its controller
to achieve better fairness. Finally, MLCP’s controller
employs an additional Inversely-proportional Increase

(II) phase to enable smooth rate variation. As the MLCP
code is not yet available, we used a modified VCP
controller to demonstrate the benefits of our framework,
including the importance of collecting and transmitting
the mean RTT at the routers. Our work is mostly
orthogonal to these efforts, as UNO makes protocols in
this category immediately deployable, with negligible
impact on performance. UNO can also be leveraged
by protocols such as MCP [13] for communicating
load factor on the bottleneck link to improve VCP’s
performance. Additionally, MCP requires 2 more bits
for enabling senders to urge all flows to operate in the
fairing mode, which can be easily conveyed by UNO
framework.

It has recently come to our attention that there have
been proposals forreducing the number of header
bits that are required for new protocols and services.
For example, in [1] authors address the IP traceback
problem using a probabilistic packet marking (PPM)
approach that requires only 1 bit in the header. More
recently, deterministic packet marking for congestion
price estimation [18] makes use of the identification
IP field along with the TTL field in order to calculate
a partial sum of the path price. However, the authors
are mainly concerned with estimating the error in de-
termining price and never quantify the effect of such
an error. Moreover, having only the sum of link prices
along the path is not sufficient to enforce fairness among
multiple flows. To address the problem of fairness, each
source needs to know the maximum link price along a
path which is not supported by the previous proposal.
Adaptive Deterministic Packet Marking (ADPM) [3]
paper shows how the identification IP field might be
used to assist in conveying the binary representation
of the price and allow the maximum price on a flow’s
path to be estimated. Unlike UNO, this work hashes the
IP identification field. Deterministic Packet Marking for
Max-Min Flow Control [16] also leverage the ECN bits
and IPID field to convey the load factor information.
In contrast to our framework, it uses both ECN bits to
encode the load factor, thus it is not able to convey
RTT-related information, and, it does not explore the
impact of waiting for block of K IP packets. Here, the
authors are only concerned with the error introduced
by quantization techniques and packet loss. Relative
to these efforts, our work makes several contributions.
Most importantly, our framework provides a way to
collect and transmit the RTT-related information to the
controller, which has been shown to be necessary for
enforcing fairness among flows with varying RTTs [14].
Further, we have implemented the framework and a
sample controller in the ns2 simulator. Finally, we show
the benefits of using our framework using extensive
simulations.

The 16-bit identification field (IPID) has been used
for purposes other than congestion control. For instance,
Chen et al. [6] have successfully used it for inferring
network path and end-system characteristics such as:
i) the internal traffic generated by a server, ii) the
number of servers in a large scale system used for
load balancing, and iii) the difference between one-way
delays of two machines from a client machine.

VI. CONCLUSIONS ANDFUTURE WORK

We present UNO, a framework for immediate deploy-
ment of explicit feedback congestion control schemes
that are highly suitable for high BDP networks. In
particular, we show that “a single ECN bit can be
enough” to transmit fine-grain link load information and
achieve good convergence in these environments. This
protocol has a distinct advantage of being interoper-
able with existing ECN implementations. In addition,
we demonstrate how RTT-related information can be
transferred using the remaining allocated ECN bit for
improved fairness.

As part of our future work, we intend to integrate
UNO with MLCP and XCP to evaluate its performance
with these controllers. Further, we intend to investigate
the performance of UNO-enabled protocols in the pres-
ence of unmodified and existing ECN-enabled routers.

REFERENCES

[1] M. Adler. Tradeoffs in probabilistic packet marking forip
traceback. InIn Proceedings of 34th ACM Symposium on Theory
of Computing (STOC, pages 407–418, 2002.

[2] T. Anderson, A. Collins, A. Krishnamurthy, and J. Zahorjan.
Pcp: efficient endpoint congestion control. InNSDI, 2006.

[3] L. L. H. Andrew, S. V. Hanly, S. Chan, and T. Cui. Adaptive
Deterministic Packet Marking.IEEE Communication letters,
2006.

[4] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. Tcp
vegas: new techniques for congestion detection and avoidance.
SIGCOMM Comput. Commun. Rev., 24(4):24–35, 1994.

[5] H. Bullot and R. L. Cottrell. Evaluation of Ad-
vanced TCP Stacks on Fast Long-Distance Production Net-
works. http://www.slac.stanford.edu/grp/csc/net/talk03/tcp-slac-
nov03.pdf, 2003.

[6] W. Chen, Y. Huang, B. F. Ribeiro, K. Suh, H. Zhang,
E. de Souza e Silva, J. Kurose, and D. Towsley. Exploiting the
IPID field to infer network path and end-system characteristics.
In Proceeding of the 2005 Passive and Active Measurement
(PAM’05) Workshop, March 2005.

[7] I. Dukkipati and N. Mckeown. RCP-AC: Congestion control
to make flows complete quickly in any environment (Extended
Abstract). InIEEE INFOCOM, 2006.

[8] S. Floyd. Highspeed tcp for large congestion windows, internet-
draft draft-floyd-tcp-highspeed-00.txt. 2002.

[9] S. Floyd and V. Jacobson. Random early detection gateways for
congestion avoidance.IEEE/ACM Transactions on Networking,
1(4):397–413, 1993.

[10] J. He, M. Suchara, M. Bresler, J. Rexford, and M. Chiang.
Rethinking internet traffic management: from multiple decom-
positions to a practical protocol. InCoNEXT ’07: Proceedings
of the 2007 ACM CoNEXT conference, pages 1–12, New York,
NY, USA, 2007. ACM.

[11] D. Katabi, M. Handley, and C. Rohrs. Internet congestion con-
trol for high bandwidth-delay product networks. InProceedings
of ACM SIGCOMM, August 2002.

[12] T. Newsham and J. Hoaglan. Windows Vista Network Attack
Surface Analysis: A Broad Overview.CanSecWest, 2007.

[13] M. Podlesny and S. Gorinsky. Mcp: Few bits for fairing and
small queues in the stable state. InISCC, pages 1079–1084.
IEEE, 2007.

[14] I. Qazi and T. Znati. On the design of load factor based conges-
tion control protocols for next-generation networks.INFOCOM,
April 2008.

[15] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of
Explicit Congestion Notification (ECN) to IP. IETF RFC 3168.
2001.

[16] H.-K. Ryu and S. Chong. Deterministic packet marking for
max-min flow control.IEEE Communication letters, 2005.

[17] N. Spring, D. Wetherall, and D. Ely. Robust Explicit Congestion
Notification (ECN) Signaling with Nonces. IETF RFC 3540.
2003.

[18] R. W. Thommes and M. J. Coates. Deterministic packet marking
for congestion price estimation. InIEEE INFOCOM, 2004.

[19] D. X. Wei, C. Jin, S. H. Low, and S. Hegde. Fast tcp: motivation,
architecture, algorithms, performance.IEEE/ACM Trans. Netw.,
14(6):1246–1259, 2006.

[20] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman.One
more bit is enough. SIGCOMM Comput. Commun. Rev.,
35(4):37–48, 2005.

