Methodology, Measurement and Analysis of Flow Table Update
Characteristics in Hardware OpenFlow Switches

Maciej Kuzniar**, Peter Peresini®”, Dejan Kosti¢!'**, and Marco Caninit

* Google, ° Unaffiliated, ' KTH Royal Institute of Technology, tKAUST

Abstract

Software-Defined Networking (SDN) and OpenFlow are actively being standardized and deployed. These
deployments rely on switches that come from various vendors and differ in terms of performance and available
features. Understanding these differences and performance characteristics is essential for ensuring successful
and safe deployments.

We propose a systematic methodology for SDN switch performance analysis and devise a series of ex-
periments based on this methodology. The methodology relies on sending a stream of rule updates, while
relying on both observing the control plane view as reported by the switch and probing the data plane
state to determine switch characteristics by comparing these views. We measure, report and explain the
performance characteristics of flow table updates in six hardware OpenFlow switches. Our results describing
rule update rates can help SDN designers make their controllers efficient. Further, we also highlight differ-
ences between the OpenFlow specification and its implementations, that if ignored, pose a serious threat to
network security and correctness.

Keywords: Software-Defined Networking, switch, flow table updates, measurements

1. Introduction

Software-Defined Networking (SDN), and OpenFlow in particular are increasingly being standardized
and deployed by many including the hyperscale companies like Google, Microsoft, Facebook, etc. that
consider SDN to be the future of computer networks [II 2 B, [4]. This means that the number of SDN
developers creating exciting new frameworks [0 [6l [7] as well as network administrators that are using a
variety of SDN controllers is rapidly growing.

In OpenFlow, the control plane involves a controller communicating with OpenFlow agents running (as
pat of the firmware) on the switch-local control plane to instruct them how to configure the data plane by
sending flow modification commands that place rules in the forwarding tables. A single deployment can use
one or more type of OpenFlow switches, and the developer typically assumes that if the switch conforms to
a specification, it will perform as a well-behaved black box. SDN’s transition from research to production
means that real deployments are demanding new levels of reliability and performance requirements that are
necessary for production environments. For example, consistent network update schemes [8, [0, [10] are trying
to ensure that packets do not get lost while new forwarding rules are being installed. Schemes also exist for
ensuring congestion-free updates [I1] and for scheduling rule installations to minimize rule installation time
[0, 12} [13] [14]. All of these assume quick rule installation latency, and many rely on update confirmations
from the switch-local control plane before proceeding to the next step.

*Work done at EPFL, Switzerland
**Corresponding author: Dejan Kostic, address: Kistagangen 16, 16440 Kista, Sweden, email: dmk@kth.se

Preprint submitted to Computer Networks February 14, 2018

Section | Key finding

4.1 Barriers should not be trusted! Updates are often applied in hardware hundreds of milliseconds
after a barrier that confirms them. One of the tested switches reorders updates despite the barriers.

4.2 In the worst case, rules were installed minutes after a switch confirmed the installation.

4.3 Firmware is often responsible for switch faulty behavior and low performance.

4.4 Rule modification operation is non-atomic and switch may even flood packets for a transient period
of time!

4.5 Rule updates get reordered even if there is a barrier between them and they affect the same flows.
Some switches ignore priorities.

5.1 Few outstanding requests are enough to saturate the switch.

5.2 Rule updates get slower as the flow table occupation gets higher.

5.3 Using rule priorities may degrade update performance by orders of magnitude. Rule update patterns
matter and switches can take advantage of an update locality.

5.4 Barriers are costly at some switches.

Table 1: Summary of key findings presented in this paper.

Initially, sporadic OpenFlow switch performance measurements were reported [I5], 16 [I7]. A structured
set of measurements was reported in the pioneering work on OFLOPS [I8], a generic framework for OpenFlow
switch evaluation. For example, it was shown that there are issues with the implementation of the barrier
command and it is important to understand and optimize SDN control in the presence of switch diversity [19].
This article extends our previous reports on switch performance [20] with new findings, deeper explanations
and measurement results for double the number of switches (six instead of three), which include both low-
and high-end devices.

While measuring switch performance might appear to be a simple task, it nevertheless has its own
challenges. The biggest issue is that each switch under test has a lot of “quirks” that result in unexplained
performance deviations from its usual behavior. Therefore, thoroughly evaluating and explaining these
phenomena takes a substantial effort. For example, finding the absolute rule installation count or rate that
takes the switch across the performance threshold can require a large number of experiments. Moreover,
there is a very large number of combinations of rule modification commands to test with.

In this paper, we set out to advance the general understanding of OpenFlow switch performance. Specifi-
cally, the focus of this paper is on analyzing control plane performance and flow table update rate in hardware
OpenFlow switches that support version 1.0 or 1.3 of this protocol. We note that data plane forwarding per-
formance is not in the scope of this paper. Our contributions are as follows: (i) we advance the state-of-the-
art in measuring OpenFlow switch control plane performance and its interaction with the data plane (for ex-
ample, we dissect rule installation latency in a number of scenarios that bring the switch to the limit), (i) we
devise a more systematic way of switch testing, i.e., along many different dimensions, than the existing work,
and (%), to be best of our knowledge, this is the first study to report several new types of anomalous behavior
in OpenFlow switches. To further foster OpenFlow switch measurements and improvements to our work, we
have made our tool publicly available at https://bitbucket.org/bitnsg/switch-benchmark/wiki/Home.
Our tool was already adopted at a large European IXP while in the process of testing and deploying SDN.

Our key findings are as follows: (i) control plane performance is widely variable, and it depends on flow
table occupancy, priorities, size of batches and even rule update patterns. In particular, priorities can cripple
performance; (i¢) switches might periodically or randomly stop processing control plane commands for up
to 500 ms; (i44) data plane state might not reflect the control plane—it might fall behind by several minutes
and it might also manifest rule installations in a different order than issued; (iv) seemingly atomic data
plane updates might not be atomic at all. We summarize all findings and reference the section describing
each of them in Table By including new experiments and three new switches, this manuscript extends
our previous findings by: (i) showing a new inconsistency pattern where data plane and control plane state
divergence is unbounded; (i7) showing the variable characteristics of this divergence; (iii) showing that
firmware is responsible for some issues by reporting our findings to a vendor and testing a fixed version;
(iv) measuring that correct barrier handling is time consuming and affects switch update performance; (v)

2

https://bitbucket.org/bitnsg/switch-benchmark/wiki/Home

confirming that different rule priorities slow down even a high-end switch.

The impact of our findings is multifold and profound. The non-atomicity of seemingly atomic data plane
updates means that there are periods when the network configuration is incorrect despite looking correct from
the control plane perspective. Existing tools that check if the controlplane is correctly configured [21] 22} 23]
are unable to detect these problems. Moreover, the data plane can fall behind and unfortunately barriers
cannot be trusted. This means that approaches for performing consistent updates need to devise a different
way of defining when a rule is installed; otherwise they are not providing any firm guarantee. Finally, because
the performance of a single switch depends on previously applied updates, developers need to account for
this variable performance when designing their controllers.

The benefits of our work are numerous. First, we hope that SDN controller and framework developers
will find our findings useful when trying to ensure consistent performance and reliability despite the variety
of switches they might encounter. Thus, we report most of our findings with these developers in mind. For
example, the existence of performance anomalies underlies the difficulty of computing an offline schedule
for installing a large number of rules. Second, our study should serve as a starting point to measurement
researchers to develop more systematic switch performance testing frameworks (e.g., that have the ability to
examine a large number of possible scenarios and pinpoint anomalies). Reporting findings presented in this
paper to switch vendors has already helped them to detect bugs and improve the switch firmware. Third,
efforts that are modeling switch behavior [I5], should consult our study to become aware of the difficulty of
precisely modeling switch performance.

Finally, we do not want to blame anyone and we know that OpenFlow support is sometimes provided
as an experimental feature in the switches. The limitations we highlight should be treated as a hint where
interesting research problems lay. If these problems still exist after several years of development, they may
be caused by limitations that are hard or impossible to overcome, and could be present in the future switch
generations as well. An example of such a well known limitation, unrelated to performance, is the flow table
size. Researchers and switch developers understand that big TCAMs are expensive and thus try to save
space in various ways [24], 25] 26, [27].

The remainder of the paper is organized as follows. Section 2] presents background and related work. We
describe our measurement methodology in Section [3] We discuss in detail our findings about the data and
control planes in Section [and show additional update rate measurements in Section

2. Background and related work

SDN is relatively young, and therefore we first introduce the domain and explain the terminology used
in this paper. We present SDN as realized by the OpenFlow protocol — currently the most popular
implementation of SDN. The main idea behind SDN is to separate the switch data plane, that forwards
packets, from the control plane, that is responsible for configuring the data plane. The control plane is
further physically distributed between a switch and a controller running on a general-purpose computer (or
cluster for reliability). The controller communicates with the switch to instruct it how to configure the data
plane by sending flow modification commands that place rules in the switch’s flow table. The switch-local
control plane is realized by an OpenFlow agent — firmware responsible for the communication with the
controller and for applying the updates to the data plane.

The controller generally needs to keep track of what rules the switch has installed in the data plane.
Any divergence between the view seen by the controller and the reality may lead to incorrect decisions and,
ultimately, wrong network configuration. However, the protocol does not specify any positive acknowledg-
ment that an update was performed [28]. The only way to infer this information is to rely on the barrier
command. As specified in the OpenFlow protocol [29], after receiving a barrier request, the switch has to
finish processing all previously-received messages before executing any messages after the barrier request.
When the processing is complete, the switch must send a barrier reply message.

Both data and control plane performance is essential for successful OpenFlow deployments, therefore it
was a subject of measurements in the past. During their work on the FlowVisor network slicing mechanism,
Sherwood et al. [I7] report CPU-limited switch performance of about a few hundreds of OpenFlow port

status requests per second. Similarly, as part of their work on the DevoFlow modifications of the OpenFlow
model, Curtis et al. [I6] identify and explain the reasons for relatively slow rule installation rate on an HP
OpenFlow switch. OFLOPS [I§] is perhaps the first framework for structured OpenFlow switch evaluation.
It combines a generic and open software framework with high-precision hardware instrumentation. OFLOPS
performs fine-grained measurements of packet modification times, flow table update rate, and flow monitoring
capabilities. This work was the first to make a number of important observations, for example that some
OpenFlow agents did not support the barrier command. It was also the first work to report on the delay
between the control plane’s rule installation time and the data plane’s ability to forward packets according
to newly installed rules. OFLOPS-Turbo [30] is a continuation of this work that integrates with the Open
Source Network Tester [31], which is built upon the NetFPGA platform to improve measurement precision
even more. Huang et al. [T5] perform switch measurements to construct high-fidelity switch models that may
be used during emulation with the software-based Open vSwitch tool. Their work quantifies the variations
in control path delays and the impact of flow table design (hardware, software, combinations thereof) at
a coarse-grained level (average behavior). They also report surprisingly slow flow setup rates. Relative to
these works, we dissect switch performance over longer time periods, and more systematically in terms of
rule combinations, set of parameters, batch sizes, in-flight batch numbers, presence of barrier messages, and
switch firmware versions. In addition, we identify thresholds that reveal previously unreported anomalous
behaviors.

Several works have considered various issues that arise with diverse SDN switch hardware capabilities
and ways to account for this diversity. A recent measurement study [32] focuses on data plane update
rates. We observe both data and control planes and compare states in both. We also reveal performance
variability present only in longer experiments. Jive [33] was perhaps the first proposal to build a proactive
OpenFlow switch probing engine. Jive measures performance using predetermined patterns, e.g., inserting
a sequence of rules in order of increasing/decreasing priority, and reports large differences in installation
times in an hardware switch. The observed switch behavior can be stored in a database, and later used
to increase network performance. We show that the switch performance depends on so many factors that
such a database would be difficult to create. Tango [I9] proposed a proactive probing engine that infers
key switch capabilities and behaviors according to well-structured patterns. It uses the probing results to
perform automatic switch control optimization. Our study contributes a methodology that can be used to
enrich the types of inferences used in this approach. NOSIX [34] notices the diversity of OpenFlow switches
and creates a layer of abstraction between the controller and the switches. The idea is to be able to offer
a portable API whose implementation makes use of commands optimized for a particular switch based on
its capabilities and performance. However, the authors do not analyze dynamic switch properties as we do.
We believe our work would be useful for NOSIX to improve the optimization process.

Finally, this paper adds many new results and insights to our previous work on the same topic [20] as
we have elaborated earlier.

3. Measurement methodology

This section describes the methodology we follow to design the benchmarks that assess control and data
plane update performance of switches under test.

3.1. Tools and experimental setup

In this study we focus on two metrics describing switch behavior: flow table rule update rate and
correspondence between control plane and data plane views. The second metric is quantified by the time
gap between when the switch confirms a rule modification and when the modified rule starts affecting
packets. We designed a general methodology that allows for systematic exploration of switch behaviors
under various conditions. At the beginning of each experiment, we prepopulate the switch flow table with
R rules. Unless otherwise specified, the rules are non overlapping and have the default priority. Each rule
matches a flow based on a pair of IP source-destination addresses, and forwards packets to switch port a.
For clarity, we identify flows using contiguous integer numbers starting from —R + 1. According to this

4

Measurement physical Tested switch

Input host links
Generator |:> 08
(Python) NOX C;)c:g:]rgl
tcpreplay,
tcpdump Data plane

Analysis <":|
(Python)

Figure 1: Overview of our measurement tools and testbed setup.

notation, the prepopulated rules match flows in the range —R + 1 to 0, inclusive. The initial setup rules
have negative numbers so that the main experiment rules start from 1.

After initializing the switch’s hardware flow table, we perform flow table updates and measure their
behaviors. In particular, we send B batches of rule updates, each batch consisting of: Bp rule deletions,
B rule modifications and B4 rule insertions. Each batch is followed by a barrier request. Depending on
the experiment, we adjust the number of in-flight batches. The controller sends a new batch only if the
switch did not send a reply for at most a given number of previously sent barriers. In the default setup, we
set Bp = By =1 and By, = 0. If Bp is greater than 0, batch ¢ deletes rules matching flows with numbers
between —R+ 1+ (i — 1) * Bp and —R + i * Bp. If B4 is greater than 0, batch 4 installs rules that match
flows with numbers in range between (i — 1)« B4 + 1 and i B4 and forwards packets to port a. As a result,
each batch removes the oldest rules. Note that the total number of rules in the table remains stable during
most experiments (in contrast to previous work such as [33] and [I8] that measure only the time needed to
fill an empty table).

To measure data plane state, in some experiments, we inject and capture data plane traffic. We send
packets that belong to flows Fyiapt to Fepng (inclusive) at a rate of about 100,000 packets per second (which
translates to about 1000 packets per flow per second).

In our study, we have explored a wide range of possible parameters for our methodology. For brevity,

in the next sections, we highlight results where we instantiate the methodology with specific parameters
that led to interesting observations. In the experiment descriptions we call the setup described above with
Bp = B4 =1, By = 0 and all rules with equal priority as a general experimental setup. Finally, unless
an experiment shows variance greater than 5% across runs, we repeat it three times and report the average.
Because the results have a small deviation across runs, unless otherwise specified, we do not show confidence
intervals.
Measurement tool: Based on our initial investigation, as well as previously reported results [15], we
identify three main requirements for a measurement tool: (i) flexibility, (i4) portability, and (ii7) sufficient
precision. Our previous experience suggests that switches behave unexpectedly, and thus we need to tailor
the experiments to locate and dissect problems. Moreover, as the tested switches can modify at most a few
thousands of rules per second, we assume that a millisecond measurement precision is sufficient.

To achieve the aforementioned goals, we built a tool that consists of three major components that
correspond to the three benchmarking phases: input generation, measurement and data analysis (Figure [1).

First, an input generator creates control plane rule modification lists and data plane packet traces used
for the measurements. Unless otherwise specified, the forwarding rules used for the experiments match traffic
based on IP source/destination pairs and forward packets to a single switch port. Moreover, we notice that
some switches can optimize rule updates affecting the same rule; we therefore make sure that modifications
affect different rules. To ensure this, by default, we use consecutive IPs for matches. Furthermore, we
cross-check our results using random matches and update patterns.

We refer to the control plane measurement engine as the controller as it emulates the behavior of an
OpenFlow controller. We implement it using NOX [35] and ROFL [36] libraries that can issue rule updates
at a much higher rate than what the hardware switches can handleﬂ The engine records time of various
interactions with the switch (e.g., flow modification sent, barrier reply received) and saves all its outputs
into files. We additionally record all control plane traffic using tcpdump. We rely on existing tcpreplay and
tcpdump tools to both send packets based on a pcap file and record them. This way we ensure that packets
flow only in one direction and have a single interaction with a switch. To remove time synchronization
issues, we follow a simple testbed setup with the switch connected to a single host on multiple interfaces
— the host handles the control plane as well as generates and receives traffic for the data plane. Note that
we do not need to fully saturate the switch data plane, and thus a conventional 48-core host is capable of
handling all of these tasks at the same time.

Finally, a modular analysis engine reads the output files and computes the metrics of interest. Modularity

means that we can add a new module to analyze a different aspect of the measured data. We implement
the analysis engine as a collection of modules code in Python.
Switches under test: We benchmark three ASIC-based switches capable of OpenFlow 1.0 and two ASIC-
based switches capable of OpenFlow 1.3 support: HP ProCurve 5406z1 with K.15.10.0009 firmware, Pica8
P-3290 with PicOS 2.0.4, Dell PowerConnect 8132F with betaﬂ OpenFlow support, Switch X and Switch Y.
They use ProVision, Broadcom Firebolt, Broadcom Trident+, Switch X and Switch Y ASICs, respectively.
We additionally compare how Switch X behaves with two firmware versions: V1 and V2. We anonymize
two of the switches since we did not get a permission to use their names from their respective vendors. We
note that Switch Y is a high-end switch. These switches have two types of forwarding tables: hardware
and software. The switches have various hardware flow table sizes: about 1500, 2000, 750, 4500, and 2000
rules, respectively. While hardware table sizes and levels of OpenFlow support vary, we make sure that
all test rules ultimately end up in hardware tables. Moreover, some switches implement a combined mode
where packet forwarding is done by both hardware and software, but this imposes high load on the switch’s
CPU and provides lower forwarding performance. Thus, we avoid studying this operating mode. Further,
as mentioned before, analyzing the data plane forwarding performance is also out of scope of this paper.
We also benchmark NoviSwitch 1132— a high-end network-processor based, OpenFlow 1.3 switch running
firmware version 300.0.1F] Each of its 64 flow tables fits over 4000 rules. We caution that the results for
this switch may not directly compare to those of the other measured devices due to the different switch
architecture. In particular, our methodology correctly characterizes the update rates of flow tables but does
not establish a relation between flow table occupancy and maximum forwarding speed, for which ASICs and
network processor might exhibit different behaviors.

Finally, since the switches we tested are located in different institutions, there are small differences
between the testing machines and the network performance. However, the setups are comparable. A testing
computer is always a server-class machine and the network RTT varies between 0.1 and 0.5ms.

4. Flow table consistency

While the only view the controller has of the switch is through the control plane, the real traffic for-
warding happens in the data plane. In this section we present the results of experiments where we monitor
rule updates in the control plane and at the same time send traffic to exercise the updated rules. The unex-
pected behavior we report in this section may have negative implications for network security and controller
correctness.

4.1. Synchronicity of control and data planes

Many solutions essential for correct and reliable OpenFlow deployments (e.g., [0, [I1]) rely on knowing
when the switch applied a given command in the data plane. The natural method to get such information is

LOur benchmark with software OpenVSwitch handles ~ 42,000 updates/s.
2There are plans to optimize and productize this software.
3We repeated our tests with firmware 300.0.5 but observed similar results.

6

g 05 T T T T 1 D l! T T T 3 D l! T T T
& 0.45 |-Dataplane x = 0.9 {-Dataplane x - ataplane x
§ 0.4 -Controlplane - ij 0.8 {-Controlplane - - 2.5 [Controlplane - xfxxxi;
= 035 - 0.7 |- L R s |
kel S 2 E
53 0.3 |+ B 0.6 - Rt - XXX%X,__M
8 025 - 0.5 |- 1.5 | KT X -
[0} X
3 o02f 4 oarf . o
2 015t 03 - T s R 1
S 01} T . 0.2 T . 05 FR |
© 0.05 JEI oo - 0.1 F et E e
£ 0 kg L I I 0 1 I | L o == L I | L
[
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Flow ID Flow ID Flow ID
(a) Switch X, firmware version V1 (b) HP 540621 (c) Pica8 P-3290
g 0.5 T T T T 0.2 T T T T 0.03 T T T
& 0.45 (-Dataplane X i 0.18 -Dataplane X Dataplane x
§ 0.4 ~Controlplane = o o 0.16 ~Controlplane = oo g 0.025 [Controlplane
o 035 it o 014 foonndnnnniG i 0.02 i i
S 03 F e 02 A
B 025 Fonbindo @b 0.1 e 0.015 E
02 0.08 -
£ 045 proeni @i dinl 4 0,06 . 0.01 7
S 0.1 poregd@® i tnnninnn b 0.04 B 0.005 i
@ 0.05 e 0.02 : : ; S L : : :
i: 0 1 | L | 0 1 L 1 1 0 1 1 1 1
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Flow ID Flow ID Flow ID
(d) Dell 8132F (e) Switch Y (f) NoviSwitch 1132

Figure 2: Control plane confirmation times and data plane probe results for the same flows. Switch data plane installation
time may fall behind the control plane acknowledgments and may be even reordered.

the barrier messageﬂ Therefore, it is crucial that this message works correctly. However, as authors of [18]
already hinted, the state of the data plane may be different than the one advertised by the control plane.
Thus we set out to measure how these two views correspond to each other at a fine granularity.

We use the default setup extended with one match-all low priority rule that drops all packeteEI and we
inject data plane flows number Fy 4+ to Fenq. For each update batch ¢ we measure the time when the
controller receives a barrier reply for this batch and when the first packet of flow i reaches the destination.

Figure [2] shows the results for R = 300, B = 300, Fstqt = 1 and F.,q = 100. There are three types of
behavior that we observe: desynchronizing data and control plane states, reordering rules despite barriers
and correct implementation of the specification.

Switch X: The data plane configuration of Switch X is slowly falling behind the control plane acknowl-
edgments — packets start reaching the destination long after the switch confirms the rule installation with a
barrier reply. The divergence increases linearly and, in this experiment reaches 300 ms after only 100 rules.
The second observation is that Switch X installs rules in the order of their control plane arrival. After
reporting the problem of desynchronized data and control plane views to the switch vendor, we received a
new firmware version that fixed observed issues to some extent. We report the improvements in Section [£.3]

HP 5406zl: Similarly to Switch X, the data plane configuration of HP 54062l is slowly falling behind the
control plane acknowledgments. However, unlike for Switch X, after about 50 batches, which corresponds
to 100 rule updates (we observed that adding or deleting a rule counts as one update, and modifying an
existing rule as two), the switch stops responding with barrier replies for 300 ms, which allows the flow tables

4 As specified, after receiving a barrier request, the switch has to finish processing all previously-received messages before
executing any messages after the barrier request. When the processing is complete, the switch must send a barrier reply
message [29].

5We need to use such a rule to prevent flooding the control channel with the PacketIn messages caused by data plane probes
or flooding the probes to all ports.

Switch Data plane
Switch X, firmware V1 | falls behind indefinitely. Up to 4 minutes in our experiments.
Switch X, firmware V2 | in sync with control plane
HP 540621 often falls behind up to 250 ms. Indefinitely in corner cases (up
to 22s in our tests).
Pica8 P-3290 reorders + behind up to 400 ms
Dell 8132F in sync with control plane
Switch Y in sync with control plane
NoviSwitch 1132 in sync with control plane

Table 2: Data plane synchronicity key findings summary.

S

T T T T
Dataplane 40 |-Dataplane | Dataplane Dataplane

o
2 4
g 12 q 120
§ Controlplane 35 |-Controlplane }_ Controlplane 250 IControlplane 7
2 10 100 | L i
3 200
> 8 80 |-
3 150 B
s 6 60 |-
§ 4 40 100 - b
[*]
© - .
S 2 20 - 50
E 0 0 0 I L 0 T
0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000
Flow ID Flow ID Flow ID Flow ID
(a) 7% (300 rules) (b) 25% (1125 rules) () 50% (2250 rules) (d) 75% (3375 rules)

Figure 3: Control plane confirmation times and data plane probe results for the same flows in Switch X (firmware version V1)
depending on flow table occupancy. The rate suddenly slows down after about 4600 flow installations (including initial rules
installed before the experiment starts).

to catch up. After this time the process of diverging starts again. In this experiment the divergence reaches
up to 82 ms, but can be as high as 250 ms depending on the number of rules in the flow table. Moreover, the
frequency and the duration of this period does not depend on the rate at which the controller sends updates,
as long as there is at least one update every 300 ms. The final observation is that HP 54062l installs rules
in the order of their control plane arrival.

Pica8 P-3290: Similarly to HP 5406z1, Pica8 P-3290 stops responding to barriers in regular intervals.
However, unlike HP 540621 and Switch X, Pica8 P-3290 is either processing control plane (handling update
commands and responding to barriers), or installing rules in TCAM and never does both at the same time.
Moreover, despite the barriers, the rules are mot installed in hardware in the order of arrival. The delay
between data and control plane reaches up to 400 ms in this experiment. When all remaining rules get
pushed into hardware, the switch starts accepting new commands in the control plane again. We confirmed
with a vendor that because the synchronization between the software and hardware table is expensive, it
is performed in batches and the order of updates in a batch is not guaranteed. When the switch pushes
updates to hardware, its CPU is busy and it stops dealing with the control planeﬂ

Dell 8132F, Switch Y and NoviSwitch 1132: All three switches make sure that no control plane
confirmation is issued before a rule becomes active in hardware. In this experiment we do not see any
periods of idleness as the switch pushes rules to hardware all the time and waits for completion if necessary.
Additionally, because NoviSwitch 1132 is very fast, we increased the frequency of sending data plane packets
in order to guarantee required measurement precision.

Summary: To reduce the cost of placing rules in a hardware flow table, vendors allow for different
types (e.g., falling behind or reordering) and amounts (up to 400 ms in this short experiment) of temporary
divergence between the hardware and software flow tables. Therefore, the barrier command does not guar-
antee flow installation. Ignoring this problem leads to an incorrect network state that may drop
packets, or even worse, send them to an undesired destination!

6The Vendor claims that this limitation occurs only in firmware prior to PicOS 2.2.

8

4000

g T T T T T 3 T T T T T 7 T T T T T 2 7 T T T T T
H Dataplane Dataplane 6 | Dataplane - 6 | Dataplane i
§ 2.5 Controlplane ’ 2.5 Controlplane 7 Controlplane - - Controlplane
— 5 - - 5 - -
3 2 i 9 - f
o} 4 ‘n’ e 4 + B
3 15 - 1 8 3 e 3
> L _ - i
] 1 > B B =
£ 2 - I 2 b
§ 0.5 »‘¢ B - 1 ’J_ 4 1k 4
E 0 1 I I I I | 0 il i i I i 0 | i | | |

0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250

Flow ID Flow ID Flow ID Flow ID

(a) 300 rules

(b) 750 rules

(c) 770 rules

(d) 1300 rules

Figure 4: Control plane confirmation times and data plane probe results for the same flows in HP 5406zl depending on flow
table occupancy. The rate slows down and the pattern changes for over 760 rules in the flow table.

4.2. Variability in control and data plane behavior

The short experiment described in the previous section reveals three approaches to data and control
plane synchronization. In this section we report more detailed unexpected switch behavior types observed
when varying parameters in that experiment. The overall setup stays the same, but we modify the number
of rules in the flow tables, length of the experiments and range of monitored rules.

Switch X: The short experiment revealed that Switch X never gives the data plane state a chance to
synchronize with control plane acknowledgments. In this extended experiment we issue 4000 batches of rule
deletion and rule installation and monitor every 10th rule. Figure [3]shows the results for various flow table
occupancy (7%, 25%, 50% and 75%). There are three main observations. First, the switch indeed does not
manage to synchronize the control and data plane states. Second, the update rate increases when the switch
is no longer busy with receiving and sending control plane messages. This is visible as a change of slope of
the data plane line in Fig. [3a] and We confirmed this observation by sending additional echo or barrier
messages. If the switch control plane stays busy, the data plane line grows at a constant rate. We believe
a low power CPU used in this switch can easily become a bottleneck and cause the described behavior.
Finally, after installing about 4600 rules since the last full table clear, the switch becomes significantly
slower and the gap between what it reports in the control plane and its actual state quickly diverges. We
kept monitoring the data plane for 4 minutes after the switch reported all rule modifications completed, and
still not all rules were in place yet. We run additional tests and it seems that even performing updates at
a lower rate (2 updates every 100 ms) or waiting for a long time (wait for 8s after every 200 updates) does
not solve the problem. The risk is that the switch performance may degrade in any deployment where the
whole flow table is rarely cleared. We reported aforementioned issues to the switch vendor and received a
confirmation and an improved firmware version.

HP 5406zl: The pattern observed in the previous experiment does not change when parameters vary
except for two details depending on the flow table occupancy. We show them in Figure [d] First, the 300
ms inactivity time is constant across all the experiments, but happens three times more often (every 33
updates) if there are over 760 rules in the flow table (Figure . Second, when the number of rules in
the flow table increases, the maximum delay between control and data plane update increases as well. It
reaches 250 ms when there are 750 rules in the table (Figure . For over 760 rules, the switch synchronizes
more frequently, so the maximum delay is smaller again (Figure but goes back to 150 ms for 1300 rules
(Figure . We conclude that the real flow table update speed in HP 54062zl depends on the number of rules
in the table, and the switch accounts for a possible delay by letting the data plane to catch up in regular
intervals.

However, we found cases when the switch does not wait long enough, which may lead to unlimited
divergence between the data and control planes. First, in Figure |5| we show that when different priorities
are used (each rule has a different priority in this experiment), the switch becomes very slow in applying
the changes in hardware without notifying the control plane. This behavior is especially counter-intuitive
since the switch does not support priorities in hardware. Second, our experiments show that rule deletions
are much faster than installations. Figure [6] shows what happens when we install 500 rules starting from

9

2 25 1 1 1 % a5 ‘ :
s Dataplane x 5 4 -Dataplane
[&] (&
3 20 +Contr:olplan(? 3 35 AContro:IpIane :
8 15 — B3 S :
> B 7 > 25
g g 0
5 10 1 3 o
S I N
© © B - -
o ; o o 0.5 +/~
= 0 ! ! ! = 0 I I I i
0 50 100 150 200 250 300 0 100 200 300 400 500
Flow ID Flow ID

Figure 5: Control plane confirmation times fall behind the Figure 6: Control plane confirmation times fall behind the
data plane probe results in HP 5406z]1 when using rules with ~ data plane probe results in HP 5406z] when filling the flow

different priorities. The scale of divergence is unlimited. table.
—_— 3.5 T T T T T % 12 T i
B8 Dataplane x : : 5 Dataplane X
& 3 Controlplane S 10
8 p : : o Controlplane
0, D5 i i S gl —_ N -
- - - - - O 8
B ool g
B 1.5 E ° A
S oS = ., |
c - - - - c
{) 1 e T T T . ~
5}
© © 2]
"E’ 0.5 i i i & o :
= . : : : : E) ;
0 I i i i i =
0 50 100 150 200 250 300 0 1000 2000 ~ 3000 4000

Flow ID Flow ID

Figure 7: Control plane confirmation times and data plane Figure 8: Control plane confirmation times and data plane
probe results in Dell 8132F are synchronized, but the up- probe results in Switch Y with 95% table occupancy are syn-
date rate suddenly slows down after about 210 newly installed chronized, but the switch stops processing new updates for
rules. 600 ms after every 2s.

an empty flow table with only a single drop-all rule. Until there are 300 rules in the table, the 300 ms long
periods every 100 updates are sufficient to synchronize the views. Later, the data plane modifications are
unable to keep up with the control plane.

Pica8 P-3290: There are no additional observations related to Pica8 P-3290. The pattern from Fig-
ure [2c| occurs during the whole experiment.

Dell 8132F: As depicted in Figure[7] the switch starts updating rules quickly, but suddenly slows down
after 210 new rules installed and maintains this slower speed (verified up to 2000 batches). However, even
after the slowdown, the control plane reliably reflects the state of the data plane configuration. Additionally,
we observe periods when the switch does not install rules or respond to the controller, but these periods are
rare, non reproducible and do not seem to be related to the experiments.

Switch Y: Although in the original experiment we observe no periods of idleness, when the flow table
occupancy and the experiment running time increase, the switch stops processing requests for hundreds of
milliseconds (about 600 ms with 95% occupancy — Figure [§]) every 2 seconds. Unlike HP 5406z, here the
idleness frequency depends on time, not the number of updates. Decreasing the rate at which the controller
issues updates does not affect the idleness duration or frequency. During the period when the switch does

10

@ 25 T T T 120 T T T
s Dataplane x Dataplane x
§ 20 |-Controlplane 100 | Controlplane
o 80 [.
g 15 5
3 60 .
= 10 -
2 40 |- i
S
& 5 h 20 - .
[0
E 0 1 I I 0 I L I

0 1000 2000 3000 4000 0 1000 2000 3000 4000

Flow ID Flow ID

(a) 7% (300 rules)

(b) 50% (2250 rules)

Figure 9: Control plane confirmation times and data plane probe results for the same flows in Switch X (firmware version V2).
Data and control plane views are synchronized, but the rate still slows down after about 4600 flow installations.

not update its rules, it still responds to control plane messages (e.g., barriers), but does it slightly slower,
as if it was busy. We believe, this behavior allows the switch to reoptimize its flow tables or perform other
periodic computations. We are in the process of explaining the root cause with the vendor.

NoviSwitch 1132: Behavior reported in Figure 2 repeats in longer experiments as well.

Summary: Flow table update rate often depends on the number of installed rules, but the control plane
acknowledgments sometimes do not reflect this variability. A switch flow table state may be minutes behind
what it reported to the control plane.

4.8. Firmware updates can improve switch performance

We reported our findings to switch vendors and some of them provided us with new, improved firmware
versions.

Switch X: Most notably, Switch X with firmware version V2, no longer allows for data and control plane
desynchronization. As we show in Figure[d] both views are synchronized and the rate does not increase when
all control plane messages get processed, since they are no longer processed before the data plane update ends.
On the other hand, the switch still significantly slows down after about 4600 rule installations without full
table cleaning. We repeat the experiment where we perform single rule installations and deletions, keeping
flow table occupancy stable. Then, we stop an experiment and resume it after 10 minutes. Figure [0b]shows
the results for occupancy of 50% (2250 rules). Behavior with the new firmware is the same as with the old
version (Figure . Finally, at the beginning, the updates are slightly slower than in the previous version
and slightly faster when the switch slows down (compare to Figure (3]).

NoviSwitch 1132: When we started our measurements of NoviSwitch 1132, the switch was running
firmware version 250.3.2. The update rate was initially stable at about 60-70 rules/s, but after longer
experiments started dropping to single digits and the switch required reboots. An investigation revealed
that excessive logging was causing the disk space to run out in our longer and update-intensive experiments.
We reported this fact to the vendor who provided us with a new firmware version: 250.4.4. A simple software
upgrade allowed the switch to reach stable update rate of about 6000 rules/s — two orders of magnitude
higher than before. Another upgrade (to version 300.0.1 used to get all measurements reported in this
paper) increased the update rate by another 10-15% and fixed a bug that was causing the switch to crash
when using long sequences of upgrades of rules with changing priorities.

Summary: Firmware is often responsible for switch faulty behavior and an upgrade can fix bugs or
significantly improve performance without replacing hardware.

11

Switch Pica8 P-3290 | Dell 8132F | HP 5406zl
avg/max gap in packets [ms] 2.9/7.7 2.2/12.4 10/190

Table 3: Time required to observe a change after a rule modification. The maximum time when packets do not reach either
destination can be very long.

4.4. Rule modifications are not atomic

Previously, we observed unexpected delays for rule insertions and deletions. A natural next step is to
verify if modifying an existing rule exhibits a similar unexpected behavior.

A gap during a FlowMod: As before, we prepopulate the flow table with one low priority match-all
rule dropping all packets and R = 300 flow specific rules forwarding packets to port a. Then, we modify
these 300 rules to forward to port 5. At the same time, we send data plane packets matching rules 101 — 200
at a rate of about 1000 packets/s per flow. For each flow, we record a gap between when the last packet
arrives at the interface connected to port o and when the first packet reaches an interface connected to .
Expected time difference is 1 ms because of our measurement precision, however, we observe gaps lasting
up to 7.7, 12.4 and 190 ms on Pica8 P-3290, Dell 8132F and HP 5406zl respectively (Table . At HP
540671 the longest gaps correspond to the switch inactivity times described earlier (flow 150, 200). A similar
experiment with Switch X, Switch Y and NoviSwitch 1132 shows that average and maximum gaps are within
our measurement precision.

Drops: To investigate the forwarding gap issue further, we upgrade our experiment. First, we add a
unique identifier to each packet, so that we can see if packets are being lost or reordered. Moreover, to get
higher precision, we probe only a single rule (number 151 — a rule with an average gap, and number 150 —
a rule with a long gap on HP 5406z1) and increase our probing rate to 5000 packets/s.

We observe that Pica8 P-3290 does not drop any packets. A continuous range of packets arrive at port
«a and the remaining packets at 5. On the other hand, both Dell 8132F and HP 540621 drop packets at
the transition period for flow 150 (3 and 17 packets respectively). For flow number 150, HP 5406zl drops
an unacceptable number of 782 packets. This suggests that the update is not atomic—a rule modification
deactivates the old version and inserts the new one, with none of them forwarding packets during the
transition.

Unexpected action: To validate the non-atomic modification hypothesis we propose two additional
experiments. The setup is the same but in variant I the low priority rule forwards all traffic to port v and
in variant II, there is no low priority rule at all. Incorrectly, but as expected, in variant I both Dell 8132F
and HP 5406z] forward packets in the transition period to port . The number and identifiers of packets
captured on port v fit exactly between the series captured at port o and . Also unsurprisingly, in variant
IT, Dell 8132F floods the traffic during the transition to all ports (default behavior for this switch when
there is no matching rule). What is unexpected is that HP 5406zl in variant II, instead of sending PacketIn
messages to the controller (default when there is no matching rule), floods packets to all ports. We reported
this finding to the HP 5406z vendor and still wait for a response with a possible explanation of the root
cause.

The only imperfection we observed at Pica8 P-3290 in this test is that if the modification changes the
output port of the same rule between « and § frequently, some packets may arrive at the destination out of
order. We did not record any issues with rule modifications in Switch Y and Switch X.

Finally we observed that NoviSwitch 1132 reorders packets belonging to different flows, but the timescale
of this reordering (microseconds) is much below our probing frequency. That suggests, that the reordering
is unrelated to an incorrect order of rule modifications. Indeed, we confirmed that packets in different flows
get reordered even if there are no rule modifications. We also checked, that packets in the same flow do not
get reordered. The switch vendor confirmed that packets belonging to different flows may be processed by
different cores of the network processor. They also ensured us, that assuming not too complicated actions,
the processing power should be sufficient even for small packets.

Summary: Two out of siz tested switches have a transition period during a rule modification when
the network configuration is neither in the initial nor the final state. The observed action of forward-

12

. Rp; Ry,
Variant 5o T TP dst | 1P st | P dst
I exact | exact | exact | exact
II exact * * exact
111 * exact | exact *
v exact | exact | exact *
A% * exact | exact | exact

Table 4: Combinations of overlapping low and high-priority rules.

Switch Observed/inferred behavior
Switch X OK
HP 540621 Ignores priority, last updated rule permanently wins

Pica8 P-3290 OK for the same match. For overlapping match may temporarily
reorder (depending on wildcard combinations)

Dell 8132F OK (Reorders within a batch)

Switch Y OK
NoviSwitch 1132 | OK

Table 5: Priority handling of overlapping rules. Both HP 5406zl and Pica8 P-3290 violate the OpenFlow specification.

ing packets to undesired ports is a security concern. Non-atomic flow modification contradicts the
assumption made by controller developers and network update solutions. QOur results suggest that either
switches should be redesigned or the assumptions made by the controllers have to be revisited to guarantee
network correctness.

4.5. Priorities and overlapping rules

The OpenFlow specification clarifies that, if rules overlap (i.e., two rules match the same packet), packets
should always be processed only by the highest priority matching rule. Since our default setup with IP src/dst
matches prevents rule overlapping, we run an additional experiment to verify the behavior of switches when
rules overlap.

The idea of the experiment is to install (in the specified order) two different priority rules Ry; and Ry,
that can match the same packet. Rj; has a higher priority and forwards traffic to port «, R, forwards
traffic to port 3. We test five variants of matches presented in Table [Rp,; is always installed before
and removed after R, to prevent packets from matching R;,. Initially, there is one low priority drop-all
rule and 150 pairs of Ry; and Rj,. Then we send 500 update batches, each removing and adding one rule:
(7R1071, +RM7151), (7Rhi717 +R107151), (*Rlo,27 +Rhi,152)a ... We send data plane traffic for 100 flows. If a
switch works correctly, no packets should reach port 3.

Table [5| summarizes the results. First, as we already noted, Dell 8132F, Switch Y, Switch X and No-
viSwitch 1132 do not reorder updates between batches and therefore, there are no packets captured at port
B in any variant. The only way to allow some packets on port 8 in Dell 8132F is to increase the batch size —
the switch freely reorders updates inside a batch and seems to push them to hardware in order of priorities.
On the other hand, Pica8 P-3290 applies updates in the correct order only if the high priority rule has the
IP source specified. Otherwise, for a short period of time—210 ms on average, 410 ms maximum in the
described experiment—packets follow the low priority rule. Our hypothesis is that the data structure used
to store the software flow table sorts the rules such that when they are pushed to hardware the ones with
IP source specified are pushed first. Finally, in HP 5406z1 only the first few packets of each flow (for 80
ms on average, 103 ms max in this experiment) are forwarded to « and all the rest to 5. We believe that
the switch ignores the priorities in hardware (as hinted in documentation of the older firmware version)
and treats rules installed later as more important. We confirm this hypothesis with additional experiments

13

. In-flight Batch size e
Experiment batches (del+add) Initial rules R
In-flight batches 1-20 1+1 300
Flow table occupancy 2 1+1 50 to max for switch
Priorities as in Flow table occupancy + a single low priority rule in the
flow table
Access patterns 2 1+1 50 to max f9r. switch
~+priorities
. as in Flow table occupancy, vary the number of rules that are
Working set not updated during the experiment
Batch size 2 [1+1t020+20 | 300

Table 6: Dimensions of experimental parameters we report in this section. Note, that we also run experiments for other
combinations of parameters to verify the conclusions.

not reported here. Further, because the priorities are trimmed in hardware, when installing two rules with
exactly the same match but different priorities and actions the switch returns an error.

Summary: Results (Table @ suggest that switches may permanently or temporarily forward according
to incorrect, low priority rules.

5. Flow Table Update Speed

The goal of the next set of experiments is to pinpoint the most important aspects that affect rule update
speed. We first pick various performance-related parameters: the number of in-flight commands, current
flow table occupancy, size of request batches, used priorities, rule access patterns. Then we sample the
whole space of these parameters to identify the ones that cause some variation. From the previous section
we know that although the control plane information is imprecise, in a long run the error becomes negligible,
because all switches except for Switch X synchronize the data and control plane views regularly. Therefore,
we rely on barriers to measure update rates in long running experiments used in this section. Based on the
results, we select a few experimental configurations which highlight most of our findings and present them
in Table

5.1. Two in-flight batches keep the switch busy

Setting the number of commands a controller should send to the switch before receiving any acknowl-
edgments is an important decision when building a controller [I2]. Underutilizing or overloading the switch
with commands is undesired. Here, we explore whether there is a tradeoff between rule update rate and the
servicing delay (time between sending a command and the switch applying it).

We use the default setup with R = 300 and B = 2000 batches of rule updates. The controller sends
batch i + k only when it receives a barrier reply for batch number i. We vary k and report the average rule
update rate, which we compute as 2x B/T where T is the time between sending the first batch and receiving
a barrier reply for the last and 2 comes from the fact that each batch contains one add and one delete.

Figure shows the average update rate. The rule update rate with one outstanding batch is low as
the switch is idle for at least a network RTT. However, even two in-flight batches are usually sufficient
to saturate tested switches given our network latencies. Thus, we use 2 in-flight batches in all following
experiments. Since the update rate for NoviSwitch 1132 is often an order of magnitude higher than other
switches, we use plots with a split y axis.

Looking deeper into the results, we notice that with a changing number of in-flight batches HP 5406zl
responds in an unexpected way. In Figure |11 we plot the barrier reply arrival times normalized to the time
when the first batch was sent for R = 300, B = 50 and a number of in-flight batches varying between 1
and 50. We show the results for only 4 values to improve readability. If there are requests in the queue, the
switch batches the responses and sends them together in bigger groups. If the constant stream of requests
is shorter than 30, the switch waits to process all, otherwise, the first response comes after 29 requests.

14

NoviSwitch 1132

Update rate [rules/sec]

--A- Pica P-3290 ©- HP 5406z —%

Switch Y Dell 8132F - -X-
8000 4 I pepererEP
soa0 [TARER A T
4000 FAK jjjgor o o
1200
1000
800
600
400
200 '

0 R SN U O | i i

12345 10 20

In-flight requests

Figure 10: Switch performance increases with the number of in-flight requests. However, the improvements beyond the case
where the controller waits for confirmation of the previous request before sending the next one (k = 1) are negligible.

Time acknowledged [ms]

In-flight requests:

0.2
0.16
0.12
0.08
0.04

0

50 =

b sconnlh

éuaaéuaaé’r’. KX ny

- : - : - - 00000NNIER
. EE S U R S N
- - - - 00000WNY -
| oo idROOWRmen" .
- - CO00OMNNSY -
: - 30000 : :
Lecooommmn®” . SERRREERRERR N AR SR AR RURRYEANRY —
i i 1 i i i i i {

0 5 10 15 20 25 30 35 40 45 50

Batch ID

Figure 11: HP 5406z] barrier reply arrival times. HP 5406zl postpones sending barrier replies until there are no more pending
requests or there are 29 pending responses.

15

NoviSwitch 1132 --A-: Pica P-3290 -©- HP 5406zl —% NoviSwitch 1132 --A- Pica P-3290 --©- HP 5406z —¥

Switch Y Dell 8132F - -x- Switch Y Dell 8132F - -x-
7500 T T T T T T — 7500
T 7000 AR A s m A @ 7000
2 6500 | & 6500
© o
S 1400 2 1400
S 1200 o 1200
w 1000 © 1000
o 800 o 800
w 600 T 600
S 400 | S 400
S 200 = 200
0 0
0 250 500 750 1000 1250 1500 1750 2000
Flow table occupancy [rules] Flow table occupancy [rules]

Figure 12: For most switches the performance decreases when Figure 13: Priorities cripple performance — Experiment from

the number of rules in the flow table is higher. Figure [[2] repeated with a single additional low-priority rule
installed reveals a massive fall in performance for two of the
tested switches.

Moreover, the total processing time when the switch receives all updates at once is significantly shorter than
for updates arriving in a closed loop. This can be due to the increased efficiency of batch processing and
fewer context switches between message receiving and processing logic on the switch. The effect is visible,
but much less pronounced for medium numbers of in-flight batches. This observation makes it difficult to
build a controller that keeps the switch command queue short but full. The controller has to either let the
queue get empty, or maintain the length longer than 30 batches. But based on the previous observation,
even letting the queue to get empty has minimal impact on the throughput.

Summary: We demonstrate that with LAN latencies two or three in-flight batches suffice to achieve full
switch performance. Since, many in-flight requests increase the service time, controllers should send only a
handful of requests at a time.

5.2. Current flow table occupancy matters

The number of rules stored in a flow table is a very important parameter for a switch. Bigger tables
allow for a fine grained traffic control. However, there is a well known tradeoff—TCAM space is expensive,
so tables that allow complex matches usually have limited size.

We discover another, hidden cost of full flow tables. Namely, we analyze how the rule update rate is
affected by the current number of rules installed in the flow table. We use the default setup fixing B = 2000
and changing the value of R.

In Figure [12| we report the average rule update rate when varying switch flow table occupancy. There
are three distinct patterns visible. Pica8 P-3290, Dell 8132F and Switch Y express similar behavior. The
rule update rate is high when the flow table contains a small number of entries but quickly deteriorates as
the number of entries increases. As we confirmed with one of the vendors and deduced based on statistics
of another switch, there are two reasons why the performance drops when the number of rules in the
table increases. First, even if a switch ultimately installs all rules in hardware, it keeps a software flow
table as well. The flows are first updated in the software data structure which takes more time when the
structure is bigger. Second, the rules need to be pushed into hardware (the switch ASIC), which may require
rearranging the existing entries. Unlike other ASIC-based switches, HP 5406z]1 maintains a lower, but stable
rate following a step function with a breaking point around 760 rules in the flow table. This stability is
caused by periods of inactivity explained in Section [4] An update rate for NoviSwitch 1132 is an order of
magnitude higher than for other switches. Additionally, the fast update rate (about 7000 updates/s) and
its stability that is independent of the flow table occupancy for this device contrasts with all other switches.

Since Switch X update rate changes during an experiment and in older firmware version it does not
offer a reliable way to measure its performance based on the control plane only, we manually computed

16

Occupancy phase 1 phase IT | phase III
7% (300 rules) | 415 rules/s | 860 rules/s —
25% (1125 rules) | 374 rules/s | 790 rules/s | 34 rules/s
50% (2250 rules) | 340 rules/s — 28 rules/s
75% (3375 rules) | 320 rules/s — 20 rules/s
95% (4275 rules) | 302 rules/s — 8 rules/s

Table 7: Flow table update rate in Switch X depending on switch state and flow table occupancy. The rate gradually decreases
with increasing number of rules in the flow table. After installing a total number of about 4600 rules, the switch update rate
drastically decreases.

1400 T T T

1400

7500

T T T T T T T T
Single low prio. —%— | Single low prio. —%— |

@

g 1200 Increasing prio. @ g 1200 1= Increasing prio. & E 7000
2 1000 |9 Decreasing prio. - % - | £ 1000 - Decreasing prio. - % - | 2 6500
5 800 ¢ e s 800 - . § 500 — T T T
© 600 | © 600] o 400 Single low prio. F%— |
o o 8 300 p Increasing prio. @ _|
-§ 400 B -§ 400 - B S o200 & Decreasing prio.- - ¥« _|
S 200 : - S 200 . 100 -y .

- o 2 0 o PO e S N

0 250 500 750 1000 1250 1500 1750 2000 0 100 200 300 400 500 600 700 800 0 500 1000 1500 2000 2500 3000 3500 4000

Flow table occupancy [rules]

(c¢) NoviSwitch 1132

Flow table occupancy [rules]

(a) Pica8 P-3290

Flow table occupancy [rules]

(b) Dell 8132F

Figure 14: Switch rule update performance for different rule priority patterns.

update rates from the data plane experiments. As previously explained, there are three phases in this
switch operation: slow rate when the switch is busy with control plane, fast rate when the switch does not
deal with the control plane, and a very slow phase after the switch has installed about 4600 rules. Table [7]
contains update rates in these three phases depending on the flow table occupancy (phase II is missing when
the transition to phase III happens before all control plane messages are processed, phase III is missing for
7% occupancy, because the experiment is too short to reveal it). The results show that the switch performs
similarly to other tested devices (Figure until it installs 4600 rules during the experiment. After that
point the performance drops significantly (phase III). It is also visible that the switch can modify rules two
times quicker when it does not need to process control plane messages (phase II).

Summary: The performance of most tested switches drops with a number of installed rules, but the
absolute values and the slope of this drop vary. Therefore, controller developers should not only take into
account the total flow table size, but also what is the performance cost of filling the table with additional
rules.

5.8. Priorities decrease the update rate

OpenFlow allows to assign a priority to each rule, but all our previous experiments considered only
rules with equal, default priorities. A packet is always processed according to the highest priority rule that
matches its header. Furthermore, in OpenFlow 1.0, the default behavior for a packet not matching any rule
is to encapsulate it in a PacketIn message and send to the controller. To avoid overloading the controller, it
is often desirable to install a lowest priority all-matching rule that drops packets. We conduct an experiment
that mimics such a situation. The experiment setup is exactly the same as the one described in Section [5.2
with one additional lowest priority drop-all rule installed before all flow-specific rules.

Figure [[3] shows that for a low flow table occupancy, all switches perform the same as without the low
priority rule. However, Pica8 P-3290 and Dell 8132F suffer from a significant drop in performance at about
130 and 255 installed rules respectively. After this massive drop, the performance gradually decreases until
it reaches 12 updates/s for 2000 rules in the flow table for Pica8 P-3290 and 30 updates/s for 750 rules in
the flow table for Dell 8132F where both switches have their tables almost full. Interestingly, HP 5406zl’s
update rate does not decrease, possibly because it ignores the priorities. Switch Y and NoviSwitch 1132

17

No priorities —&— With low prio. - No priorities —&— With low prio. - — T T T
@
600 P T T s - | 300 gz - 2 -
@ 500 - . % 250 | . 2] i i .
° H ° >
2 400 Y — 2 200 - $ n ® 1 I |
% H ° No priorities —8—
i) L : . 2 L H _ o
g %00 w 150 5 Al different prio -3¢~
2 200 - - 2 100 - i . 1
k| 3 8 Kevrss oo, >
5 100 - "xx ,,,,,,,,,,,,,,,,,,,,,,,,,,, n S50 [B . i S
0 1 1 1 1 1 1 1 fr | . 0 L . L L . Il L L
0 100 200 300 400 500 600 700 800 9001000 50 100 150 200 250 300 350 400 450 500 500 1000 1500 2000

Working set size [rules]

(¢) NoviSwitch 1132

Working set size [rules]

(a) Pica8 P-3290

Working set size [rules]

(b) Dell 8132F

Figure 15: Size of the rule working set size affects the performance. For both Pica8 P-3290 and Dell 8132F when the low
priority rule is installed, the performance depends mostly on the count of the rules being constantly changed and not on the
total number of rules installed (1000 for Pica8 P-3290 and 500 for Dell 8132F in the plots). The same can be said about
NoviSwitch 1132 with various rule priorities (2000 installed rules in the plot).

Priorities | 1000 rules | 2000 rules
D — | 5] 216 rules/s | 110 rules/s
D — |5 374 rules/s | 215 rules/s

D — (i%10) | 5222 rules/s | 5588 rules/s

D — (i%20) | 6468 rules/s | 6142 rules/s

Table 8: Flow table update rate in NoviSwitch 1132 depending on priority patterns and flow table occupancy. The rate depends
on the number of priorities in use and number of newly added priorities.

update their flow tables at the same rate with and without the low priority rule. Again, for plot readability
we do not show the rate for NoviSwitch 1132, which is an order of magnitude higher than other switches.
We confirm that the results are not affected by the fully wildcarded match or the drop action in the low
priority rule by replacing it with a specific IP src/dst match and a forwarding action.

Finally, we rerun the experiments from Section with a low priority rule. The rates for Pica8 P-3290
and Dell 8132F are lower, but the characteristics and the conclusions hold.

More priorities: Next, we check the effect of using different priorities for each rule. We modify the
default set-up such that each rule has a different priority assigned and install them in an increasing (rule ¢
has a priority D + 4, where D is the default priority value) or decreasing (rule ¢ has a priority D — ¢) order.

Switches react differently. As it is visible in Figure both Pica8 P-3290’s and Dell 8132F’s performance
follows a similar curve as in the previous experiment. There is no breaking point though. In both cases the
performance is higher with only a single different priority rule until the breaking point, after which they
become equal. Further, Pica8 P-3290 updates rules quicker in the increasing priority scenario

Figure [[4] shows that also NoviSwitch 1132 becomes significantly slower when there are additional prior-
ities used as the update rate depends on the number of rules in the flow table. Even with just 50 installed
rules, the rate drops from original 7000 updates/s to about 420. When the table occupancy increases the
rate is as low as 5 updates/s. Update patterns does not matter — in the decreasing priority scenario the rate
is minimally higher (up to 3%). In both cases, the update rate is inversely proportional to the occupancy.
A deeper analysis shows, that the rate depends more on the number of priorities used than a total number
of rules (Table . For example, the rate with 1000 rules in the table when rule i has a priority D — Llij
is almost equal to the rate with 100 initial rules in Figure Further, it also seems that adding a rule
with a new priority to the table takes a lot of time. When we run the experiment with rules using the
same priorities as rules installed in the table before the experiment started, the rate is much higher. The
vendor confirms that handling many priorities requires the switch to move some rules in TCAM, which

7 This is consistent with the observation made in [33], but the difference is smaller as for each addition we also delete the
lowest priority rule.

18

makes updates slower. They use optimizations to reduce the impact of move operations when the number
of priorities is small.

HP 5406zl control plane measurement is not affected by the priorities, but as our data plane study
shows there is a serious divergence between the control plane reports and the reality for this switch in this
experiment (see Section @ Finally, using different priorities does not affect Switch Y performance.

Working set size: Finally, we check what happens if only a small subset of rules in the table (henceforth
referred to as “working set”) is frequently updated. We modify the default experiment setup such that batch
1 deletes the rule matching flow number ¢ — W and installs a rule matching flow i. We vary the value of W.
In other words, assuming there are R rules initially in the flow table, the first R — W rules never change
and we update only the last W rules.

The results show that HP 5406zl performance is unaffected and remains the same as presented in Figures
and [13| both below and above the threshold of 760 rules in the flow table. Further, for both Pica8 P-3290
and Dell 8132F a small working set for updates makes no difference if there is no low priority rule. For a
given R (1000 for Pica8 P-3290 and 500 for Dell 8132F in Fig. , the performance is constant regardless
of W. However, when the low priority rule is installed, the update rate characteristic changes as shown in
Figure For both switches, as long as the update working set is smaller than their breaking point revealed
in Section the performance stays as if there was no drop rule. After the breaking point, it degrades and
is only marginally worse compared to the results in Section for table occupancy W.

A working set size affects NoviSwitch 1132 as well. In this case, we analyze its performance when using
multiple priorities (Figure with R = 2000. The rate depends on the working set size and is almost the
same as the rate with the same total number of rules in the flow table.

Summary: The switch performance is difficult to predict—a single rule can degrade the update rate
of a switch by an order of magnitude. Controller developers should be aware of such behavior and avoid
potential sources of inefficiencies.

5.4. Barrier synchronization penalty varies

A barrier request-reply pair of messages is very useful, as according to the specification, it is the only
way for the controller to (i) force an order of operations on the switch, and (i¢) make sure that the switch
control plane processed all previous commands. The latter becomes important if the controller needs to know
about any errors before continuing on with the switch reconfiguration. Because barriers might be needed
frequently, in this experiment we measure the overhead given a frequency with which we use barriers.

We repeat our general experiment setup with R = 300 preinstalled rules, this time varying the number of
rule deletions and insertions in a single batch. To keep flow table size from diverging during the experiment,
we use an equal number of deletions and insertions.

As visible in Figure for both Pica8 P-3290 and HP 5406zl the rate slowly increases with growing
batch size, but the difference is marginal: up to 14% for Pica8 P-3290 and up to 8% for HP 5406zl for a
batch size growing 20 times. On the other hand, Dell 8132F speeds up 3 times in the same range if no
priorities are involved. The same observation can be made for Switch Y.

While further investigating these results, we verified that the barrier overhead for each particular switch
recalculated in terms of milliseconds is constant across a wide range of parameters — a barrier takes roughly
0.1-0.3ms for Pica8 P-3290, 3.1-3.4ms for Dell 8132F, 1ms for Switch Y, 0.6-0.7ms for HP 5406zl and 0.04ms
for NoviSwitch 1132. This explains the high overhead of Switch Y and Dell 8132F for fast rule installations
in Figure [I6] - barriers just take time comparable to rule installations. Taking into account that Switch Y
and Dell 8132F are the only tested ASIC-based switches that provide correct barriers, our conclusion is that
a working barrier implementation is costly.

Summary: Overall, we see that barrier cost varies across devices. The controller, therefore, should be
aware of the potential impact and balance between the switch performance and potential notification staleness.
Moreover, there is a tradeoff between correct barrier implementation and performance.

19

Overhead of frequent barriers

S -
Y .
+ :
o N
9 N - . R -
S < S o' B
o2 06 e, HP 5406zl low prio .
5o Y " HP 5406zl —_
53 ¥ E - Pica P-3290 low prio - -
og 04 oo ~"Pica P-3290 §
s C - Dell 8132F low prio -0 -
% 02 F -.....NoviSwitch 1132 - - |
£ o - Switch Y -0-
Dell 8132F -
0 it { {
2+2 545 10+10 20+20
1+1

Batch size [del+add]

Figure 16: Cost of frequent barriers is modest except for the case of Dell 8132F with no priorities (i.e., with high baseline
speed) and Switch Y where the cost is significant.

6. Open questions and future work

In the process of running the experiments and gaining an understanding of the root causes of various
unexpected behaviors, we made additional observations. We briefly report them in this section as this
information may be useful or inspiring to investigate certain open issues further.

Rule insertion may act as a modification. In our experiments, we observed that two out of six
switches are unable to perform an atomic rule modification. However, when receiving a rule insertion
command for a rule that has the same match and priority as an already installed one, but a different set
of actions, all the tested switches modify the existing rule. Moreover, this operation does not lead to any
packet drops on HP 5406zl, which is better than the behavior obtained by using a rule modification command
(Section . The behavior of Dell 8132F remains unchanged. We note that the OpenFlow specifications
describe the behavior when a rule insertion command references an existing rule with identical match fields
and priority. However, the behavior is to clear the existing rule and insert the new one. The fact that for
HP 5406z this operation works better than a modify command is surprising.

Data plane traffic can increase the update rate of Pica8 P-3290. We noticed that in some cases,
sending data plane traffic that matches currently installed rules at Pica8 P-3290 can speed up the general
update rate and even future updates. Our experiments show that barrier inter-arrival times (time between
barrier replies for two consecutive barriers) shorten after the switch starts processing packets belonging to
already installed flows. We confirmed that the behavior is consistent across varying flow ranges and long
data series, however, we are unable to provide an explanation of this phenomenon at this time nor confirm
it with full certainty. We find this completely counter-intuitive and leave it as an open question for future
work.

Dell 8132F performs well with a full flow table. In Section[5.3] we reported that the performance
of Dell 8132F with a low priority rule installed decreases with the growing table occupancy and drops down
to about 30 updates per second when the flow table contains 751 rules. We showed the update rate measured
for all possible flow table occupancies in an experiment with 2000 update batches in Figure We observed
that this trend continues until the table is full or there is one slot left. Surprisingly, the switch performs
updates that remove a rule and install a new one with a full table at a rate comparable to that observed
without the low priority rule. There is also an unexpected sudden performance improvement at 510 and
511 rules. Measurements in both these points have a very high standard deviation, but the results for a

20

Dell 8132F ———

1200
1000
800 : . : : : : :
o0 |- S
ool T

0 i i t i g f t
0 100 200 300 400 500 600 700 800

Flow table occupancy [rules]

Update rate [rules/sec]

Figure 17: An update rate in Dell 8132F suddenly increases for 4 specific flow table occupancy values.

full table are stable. Dell 8132F is a conventional switch adapted to support OpenFlow. According to its
documentation, the switch contains two separate tables with space for 256 and 512 rules respectively. These
numbers align well with performance changes we observe.

7. Conclusions

In this paper we try to shed light on the state of OpenFlow switches — an essential component of relatively
new, but quickly developing Software Defined Networks. While we do our best to make the study as broad
and as thorough as possible, we observe that the switch performance is so unpredictable and depends on so
many parameters that we expect to reveal just the tip of the iceberg. However, even the observations made
here should be an inspiration to revisit many assumptions about OpenFlow and SDN in general. The main
takeaway is that despite a common interface, the switches are more diverse than one would expect, and this
diversity has to be taken into account when building controllers.

Because of the limited resources, we managed to obtain sufficiently long access only to six switches over
the years. In the future, we plan to keep extending this study with additional devices, as well as switches
that are using alternative technologies (NetFPGA, network processors, etc.), to obtain the full picture.
Measuring the precise data plane forwarding performance is another unexplored direction.
Acknowledgments We would like to thank Dan Levin and Miguel Peén for helping us get remote access
to some of the tested switches. We also thank the representatives of the Pica8 P-3290, NoviSwitch 1132 and
Switch X vendors for their quick and extensive responses that helped us understand some observations we
made.

The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP7/ 2007-2013) / ERC grant agreement 259110.
This research is (in part) supported by European Union’s Horizon 2020 research and innovation programme
under the ENDEAVOUR project (grant agreement 644960). This work is in part financially supported by
the Swedish Foundation for Strategic Research.

References

[1] Ethernet Switch Market: Who’s Winning?, http://www.networkcomputing.com/networking/ ethernet-switch-market-
whos-winning/d/d-id /1234913 (2014).

[2] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla,
U. Holzle, S. Stuart, A. Vahdat, B4: Experience with a Globally-Deployed Software Defined WAN, in: SIGCOMM, 2013.

21

3

[4]

EXC

TechTarget, Carriers bet big on open SDN, http://searchsdn.techtarget.com/news/4500248423/
Carriers-bet-big-on-open-SDN, last visited on Oct 5, 2015.

A. Greenberg, Microsoft Showcases Software Defined Networking Innovation at SIGCOMM, https://azure.microsoft.
com/en-us/blog/microsoft-showcases-software-defined-networking-innovation-at-sigcomm-v2/ (August 2015).
OpenDaylight, http://www.opendaylight.org/ (2014).

P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O’Connor, P. Radoslavov, W. i. Snow,
G. Parulkar, ONOS: Towards an Open, Distributed SDN OS, in: Proceedings of the Third Workshop on Hot Topics in
Software Defined Networking, HotSDN ’14, 2014.

S. H. Yeganeh, Y. Ganjali, Beehive: Simple Distributed Programming in Software-Defined Networks, in: Proceedings of
the Symposium on SDN Research, SOSR ’16, 2016.

N. P. Katta, J. Rexford, D. Walker, Incremental Consistent Updates, in: HotSDN, 2013.

R. Mahajan, R. Wattenhofer, On Consistent Updates in Software Defined Networks, in: HotNets, 2013.

M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, D. Walker, Abstractions for Network Update, in: SIGCOMM, 2012.
H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, D. A. Maltz, zUpdate : Updating Data Center Networks with
Zero Loss, in: SIGCOMM, 2013.

P. Peresini, M. Kuzniar, M. Canini, D. Kosti¢, ESPRES: Transparent SDN Update Scheduling, in: HotSDN, 2014.

X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang, J. Rexford, R. Wattenhofer, Dynamic scheduling of
network updates, in: SIGCOMM, 2014.

T. D. Nguyen, M. Chiesa, M. Canini, Decentralized Consistent Updates in SDN, in: Proceedings of the Symposium on
SDN Research, SOSR ’17, 2017.

D. Y. Huang, K. Yocum, A. C. Snoeren, High-fidelity switch models for software-defined network emulation, in: HotSDN,
2013.

A. Curtis, J. Mogul, J. Tourrilhes, P. Yalagandula, DevoFlow: Scaling Flow Management for High-Performance Networks,
in: SIGCOMM, 2011.

R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown, G. Parulkar, Can the Production Network
Be the Testbed?, in: OSDI, 2010.

C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, A. W. Moore, Oflops: An open framework for openflow switch evaluation,
in: PAM, 2012.

A. Lazaris, D. Tahara, X. Huang, E. Li, A. Voellmy, Y. R. Yang, M. Yu, Tango: Simplifying SDN Control with Automatic
Switch Property Inference, Abstraction, and Optimization, in: CoNEXT, 2014.

M. KuzZniar, P. Peresini, D. Kosti¢, What You Need to Know About SDN Flow Tables, in: PAM, 2015.

A. Khurshid, X. Zou, W. Zhou, M. Caesar, P. B. Godfrey, VeriFlow: Verifying Network-Wide Invariants in Real Time,
in: NSDI, 2013.

P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, S. Whyte, Real Time Network Policy Checking using Header
Space Analysis, in: NSDI, 2013.

P. Kazemian, G. Varghese, N. McKeown, Header Space Analysis: Static Checking for Networks, in: NSDI, 2012.

N. Kang, Z. Liu, J. Rexford, D. Walker, Optimizing the “One Big Switch” Abstraction in Software-Defined Networks, in:
CoNEXT, 2013.

N. Katta, O. Alipourfard, J. Rexford, D. Walker, CacheFlow: Dependency-Aware Rule-Caching for Software-Defined
Networks, in: SOSR, 2016.

X. Wen, B. Yang, Y. Chen, L. E. Li, K. Bu, P. Zheng, Y. Yang, C. Hu, RuleTris: Minimizing Rule Update Latency for
TCAM-Based SDN Switches, in: ICDCS, 2016, pp. 179-188.

H. Chen, T. Benson, The Case for Making Tight Control Plane Latency Guarantees in SDN Switches, in: SOSR, 2017.
P. Peresini, M. Kuzniar, D. Kosti¢, OpenFlow Needs You! A Call for a Discussion about a Cleaner OpenFlow API, in:
EWSDN, IEEE, 2013.

OpenFlow Switch Specification, http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf.

C. Rotsos, G. Antichi, M. Bruyere, P. Owezarski, A. W. Moore, OFLOPS-Turbo: Testing the next-generation OpenFlow
switch, in: IEEE ICC, 2015.

G. Antichi, M. Shahbaz, Y. Geng, N. Zilberman, A. Covington, M. Bruyere, N. McKeown, N. Feamster, B. Felderman,
M. Blott, A. W. Moore, P. Owezarski, OSNT: Open Source Network Tester, IEEE Network 28 (5) (2014) 6-12.

K. He, J. Khalid, A. Gember-Jacobson, S. Das, C. Prakash, A. Akella, L. E. Li, M. Thottan, Measuring control plane
latency in SDN-enabled switches, in: SOSR, 2015.

A. Lazaris, D. Tahara, X. Huang, L. E. Li, A. Voellmy, Y. R. Yang, M. Yu, Jive: Performance Driven Abstraction and
Optimization for SDN, in: ONS, 2014.

M. Yu, A. Wundsam, M. Raju, NOSIX: A Lightweight Portability Layer for the SDN OS, ACM SIGCOMM Computer
Communication Review 44 (2).

NOX Controller, http://github.com/noxrepo/nox.

ROFL Library, http://roflibs.org.

22

http://searchsdn.techtarget.com/news/4500248423/Carriers-bet-big-on-open-SDN
http://searchsdn.techtarget.com/news/4500248423/Carriers-bet-big-on-open-SDN
https://azure.microsoft.com/en-us/blog/microsoft-showcases-software-defined-networking-innovation-at-sigcomm-v2/
https://azure.microsoft.com/en-us/blog/microsoft-showcases-software-defined-networking-innovation-at-sigcomm-v2/
http://www.opendaylight.org/
http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf
http://github.com/noxrepo/nox
http://roflibs.org

	Introduction
	Background and related work
	Measurement methodology
	Tools and experimental setup

	Flow table consistency
	Synchronicity of control and data planes
	Variability in control and data plane behavior
	Firmware updates can improve switch performance
	Rule modifications are not atomic
	Priorities and overlapping rules

	Flow Table Update Speed
	Two in-flight batches keep the switch busy
	Current flow table occupancy matters
	Priorities decrease the update rate
	Barrier synchronization penalty varies

	Open questions and future work
	Conclusions

