
Opus: an Overlay Peer Utility Service

Rebecca Braynard, Dejan Kostić, Adolfo Rodriguez, Jeff Chase and Amin Vahdat�

Department of Computer Science
Duke University

frebecca,dkostic,razor,chase,vahdatg@cs.duke.edu

Abstract

Today, an increasing number of important network services,
such as content distribution, replicated services, and storage sys-
tems, are deploying overlays across multiple Internet sites to de-
liver better performance, reliability and adaptability. Currently
however, such network services must individually reimplement
substantially similar functionality. For example, applications
must configure the overlay to meet their specific demands for
scale, service quality and reliability. Further, they must dynami-
cally map data and functions onto network resources—including
servers, storage, and network paths—to adapt to changes in load
or network conditions.

In this paper, we present Opus, a large-scale overlay util-
ity service that provides a common platform and the necessary
abstractions for simultaneously hosting multiple distributed ap-
plications. In our utility model, wide-area resource mapping
is guided by an application’s specification of performance and
availability targets. Opus then allocates available nodes to meet
the requirements of competing applications based on dynami-
cally changing system characteristics. Specifically, we describe
issues and initial results associated with: i) developing a general
architecture that enables a broad range of applications to push
their functionality across the network, ii) constructing overlays
that match both the performance and reliability characteristics
of individual applications and scale to thousands of participat-
ing nodes, iii) using Service Level Agreements to dynamically
allocate utility resources among competing applications, and iv)
developing decentralized techniques for tracking global system
characteristics through the use of hierarchy, aggregation, and ap-
proximation.

1 Introduction

A key insight from the Active Networking approach is that
distributed services can benefit tremendously from pushing
their functionality to intermediate points in the network.

�This research is supported in part by the National Science Founda-
tion (EIA-9972879, ITR-0082912), Hewlett-Packard, IBM, Intel, and
Microsoft. Braynard is supported by an NSF graduate fellowship and
Vahdat is also supported by an NSF CAREER award (CCR-9984328).

The extreme stance of associating code with every packet
that travels across the network has not seen wide deploy-
ment. However, instances of Active Networking abound
in the current Internet architecture in the form of L4/L7
switches, overlay networks, transparent proxy caches, fire-
walls, and network address translation. Most of these net-
work services provide point solutions to point problems.
Overlay networks [3, 18, 20], however, are emerging as
a fundamental technique for enhancing wide-area service
scalability, performance, and availability. Consider the fol-
lowing applications:

� Replicated Services: To deliver target levels of per-
formance and availability, application developers are
increasingly replicating their service at multiple wide-
area sites. Of course, replication is not a panacea. Im-
portant questions here include where to place replicas,
how many replicas are required, how to route client
requests to the proper replica, and how to propagate
updates to maintain consistency across replicas.

� Application Layer Multicast (ALM): Despite over a
decade of research, native IP multicast has not en-
joyed wide-spread deployment. However, multicast-
style applications, such as stock quotes, event noti-
fication, audio, and video, are continuing to grow in
popularity. Thus, many industrial and research efforts
are investigating and deploying ALM, where nodes
across the Internet act as intermediate routers to ef-
ficiently distribute data along a pre-defined mesh or
tree. Initial evaluations [18, 20] indicate that ALM
can perform within a small factor of the cost and la-
tency of native IP multicast by routing through strate-
gic intermediate points in the network and by building
an overlay that matches the characteristics of the un-
derlying network.

� QoS Guarantees: Finally, more traditional unicast
applications are also using distributed network re-
sources to achieve better performance and reliability
than would be delivered by the underlying IP network.
One initial study [31] used network traces to deter-
mine that, in many cases, default IP routing results
in paths with inferior reliability and performance rel-
ative to indirect routing through one of a set of in-
termediate nodes. Recent work on Resilient Overlay
Networks [3] quantifies such improvements in a 13-
node testbed running across the Internet. Another re-
cent study [32] advocates using multiple intermediate
points in an overlay to redundantly transmit the same
data from source to destination, reducing end-to-end
loss rates and performance variability.

Today, all of these services must redundantly acquire
and administer nodes across the Internet to provide the req-
uisite functionality. This approach forces services to reim-
plement substantially similar functionality, such as track-
ing changing network characteristics, building appropri-
ate topologies, failure detection, or IP topology matching.
Further, given the highly bursty nature of Internet traffic
and service access patterns, individual services must over-
provision for peak levels of demand that are often a factor
of 3-10 higher than the average case.

We believe that a common system infrastructure to sup-
port the requirements of a broad range of applications will
improve the performance of existing applications by ex-
porting common best practices and will also effect a qual-
itative shift in the ease with which novel distributed appli-
cations can be deployed. Thus, we propose Opus, an Over-
lay Peer Utility Service, to automatically configure server
network overlays with the goal of dynamically meeting
the performance and availability requirements of a broad
range of competing applications. By observing changing
network conditions and application access patterns, Opus
will: i) allocate a portion of global resources to each appli-
cation, ii) place these replicas at appropriate points in the
network, and iii) create overlays that satisfy the require-
ments of individual distributed applications. Key to our
approach is building scalable structures to track changing
system characteristics and developing a common abstrac-
tion for prioritizing among competing applications.

The rest of this paper is organized as follows. Section 2
describes the Opus system architecture. Next, Section 3
presents individual challenges we are addressing to realize
this model and some initial results. Section 4 compares our
work to related efforts and Section 5 presents our conclu-
sions.

2 Architecture

The Opus service allocates overlays of server and net-
work resources from a shared pool, as needed to meet
service quality goals efficiently in the face of dynami-
cally changing global characteristics. Service workloads
are streams of requests originating from clients throughout
the network, and requiring varying amounts of computa-
tion, shared data access, and data transfer to and from each
client. We assume that service applications show stable
average per-request behavior; loads are defined by offered
request rates that may vary continuously through time.

Figure 1 depicts the high-level Opus system model. We
envision a collection of server sites (e.g., small clusters or
data centers) colocated with switching centers at the inte-
rior of the Internet “cloud.” Opus manages these Points-of-
Presence (PoPs) in a coordinated fashion as a shared phys-
ical infrastructure for distributed Internet applications. Ap-
plications consist of components running on selected Opus
nodes. Opus configures these nodes to run application soft-
ware and organizes them as an application-specific overlay
network.

Opus resource allocators cooperate to assign resources
to each overlay application. These resources include
“slices” of the server and network capacity on some subset
of the Opus PoPs—the pie charts in Figure 1 represent per-
region application demand levels that ideally correspond to
resource allocation levels in nearby Opus PoPs—together
with an overlay topology configured for that application.
Our approach is to describe applications abstractly in terms
of their service quality goals, then generate candidate al-
lotments and overlay topologies that balance service qual-
ity with network performance and cost. A request routing
infrastructure directs external traffic (e.g., client requests)
destined for each application service to selected nodes as-
signed to that application. Request routing may leverage
DNS redirection [10], anycast [5, 21, 38], or an Opus nam-
ing interface.

The service overlay. Each Opus PoP runs an instance
of the Opus site manager, which coordinates resource us-
age at that site and exchanges status summaries with other
Opus sites. Opus uses its own overlay services inter-
nally to disseminate status information and related meta-
data through a service overlay that interconnects all active
nodes. The service overlay forms the “backbone” for co-
ordinated, decentralized resource allocation and resource
control, as described below. Thus the service overlay must
be dynamic and self-healing: if a network path is lost or de-
graded, then the service overlay must reconfigure to reroute
traffic through a different path.

Application demand
(per network region)

Overlay node

Application Overlays

Figure 1: Opus system model.

Scalability is a key concern in the design of the service
overlay, as we expect Opus to scale to 10,000 or more
nodes across the wide area. We take a decentralized ap-
proach in which local site managers “think globally but act
locally,” making local resource allocation choices to con-
verge on desirable global outcomes based on information
disseminated through the service overlay. This status in-
formation includes summaries of resource availability, net-
work conditions, load, and delivered performance at each
site. The schemes for configuring overlays also require es-
timates of link capacities, delays, and failure probabilities
for the physical network interconnecting the Opus sites.
A key premise of the Opus architecture is that effective
resource allocation and control requires only approximate
information about global conditions. Section 3.3 presents
some results from our initial approach to scalable dissem-
ination of system metadata through the service overlay,
called dicast.

Adaptive per-application overlays. A primary task
of the service overlay is to assist in the construction and
maintenance of application overlays. Individual applica-
tions use these overlays to route internal application traf-
fic, disseminate content, and/or synchronize their state in-
formation efficiently. For example, a video delivery sys-
tem would use its overlay to disseminate its content to
participating sites, which in turn transmit the data to end
clients. A replicated database system would use its over-
lay to maintain replica consistency by propagating updates
among active replica sites.

At the core of the Opus architecture are algorithms to
select the number and placement of site locations for each
application, allocate global resource shares, and configure
overlays to link the selected sites. These inter-related as-
pects of the overlay construction problem interact in a com-
plex way to determine end-to-end application behavior. As
an example, consider an Internet service using dynamic

replication for scalability and availability. For a replicated
service, the need to propagate updates across replicas im-
poses new network load and may compromise availabil-
ity. Previous work in the TACT project has shown that
the availability of a replica configuration depends on the
application’s consistency demands, as well as the number
and placement of replicas and the reliability of their inter-
connections [39]. While adding server sites can improve
performance and availability, more is not necessarily bet-
ter: we find that in some cases additional sites can actu-
ally reduce overall performance and availability depending
on application consistency requirements. In fact, a small
set of well-placed and well-provisioned replica sites gen-
erally outperforms a larger set of poorly-placed replicas.
The techniques developed for TACT allow the Opus allo-
cators to predict performance and quantify availability as
a function of the candidate overlay characteristics and the
application’s consistency targets.

After instantiating an overlay for an application, the
Opus resource allocators dynamically adapt the overlay
topology and site allotments to respond to observed load
and network conditions. For example, if many accesses are
observed for an application in a given network region, the
system may reallocate additional resources at a PoP close
to that location, possibly adding a new site presence to the
application overlay. The system continuously monitors lo-
cal and global conditions through the service overlay, and
uses feedback control as a basis for incremental, adaptive
resource provisioning. In addition to enabling dynamic
adaptation, the feedback loop enables the system to con-
tinuously refine resource allotments so that the quality of
an initial solution is less critical.

Resource allocation and service quality. Opus strives
for resource allotments that are both effective and efficient.
An effective allotment meets service quality goals; an ef-
ficient allotment conserves resources. One approach is to

strive for least-cost allotments that satisfy fixed application
service quality bounds under existing traffic conditions.
We take a more general approach to enable the system to
prioritize applications under resource constraint. Although
we expect that the utility is adequately provisioned and
employs admission control to avoid overcommitting its re-
sources, the Internet environment is adversarial, and large-
scale services should design in “fallback” positions for ex-
treme scenarios involving site or link failures, flash crowds,
or attacks on the system or its physical infrastructure. For
this reason, our approach emphasizes dynamic tradeoffs of
service quality and cost. This can enable the system to
match resource demand with dynamically varying levels of
resource supply, in order to maximize the global good un-
der the full range of conditions and constraints that it might
encounter in operation. Indeed, a key benefit of the util-
ity approach is that it can reallocate shared infrastructure
to respond to adverse conditions. Such reallocation may
take place based on economic considerations (e.g., who is
willing to pay the most?) or based on relative application
priority (e.g., which services must absolutely stay up and
running during a denial of service attack?).

A major technical challenge for flexible resource allo-
cation in an overlay utility service is to generate candidate
overlay configurations with varying tradeoffs of cost and
service quality (benefit). Section 3.1 presents two over-
lay structures we are investigating to support this objec-
tive. Dynamic cost/benefit tradeoffs also depend on mod-
els to predict and quantify the benefit of each candidate
configuration along multiple dimensions of service qual-
ity. The models must consider non-traditional quality mea-
sures such as availability or consistency, as well as more
traditional performance measures such as response time,
fairness, or throughput. The units to quantify different di-
mensions of service quality and cost are arbitrary: the sys-
tem may scale these measures arbitrarily before comparing
or combining them to balance competing objectives.

Given measures for service quality and cost for candi-
date overlay configurations, the system needs flexible cri-
teria to establish customer priority. Our initial approach is
to present service quality goals to the resource allocators as
value-based Service Level Agreements (SLAs) represent-
ing a continuum of service quality tradeoffs. The utility
functions may represent arbitrary criteria for establishing
customer priority. Opus SLAs specify service quality goals
as continuous utility functions specifying values associated
with various levels of service volume and quality for each
customer. In our previous work on server provisioning in
individual data centers, we found that generalized utility
functions are a flexible means to guide dynamic tradeoffs

of service quality and cost [8]. Modest constraints on the
form of the utility functions enable the resource allocators
to identify utility-maximizing allocations efficiently, and
refine them incrementally in a feedback loop. Section 3.2
outlines our approach in more detail.

Security and isolation. Security is an important con-
sideration for any general-purpose utility. Opus allocates
resources to applications at the granularity of individual
nodes, eliminating a subset of the security and isolation
issues associated with simultaneously hosting multiple ap-
plications. In the future, we plan to investigate the use of
virtual machine technology to isolate services running on
the same physical host [37]. On the network side, we must
still isolate traffic on the wire from different applications
running at the same Opus site. VLANs, supported in most
modern switches, support such functionality and it should
be straightforward to automate the requisite isolation in re-
sponse to dynamic reallocation of local site resources. Fi-
nally, policy-based sharing of physical resources depends
on accurate measures of application resource demand. In
some cases it may be useful for the customer itself to pro-
vide the load and QoS measures. If so, Opus relies on sim-
ple economics to encourage customers to deploy efficient
software and accurately represent their resource needs for
a given demand level: customers conserve resources when
they are asked to pay for their usage.

3 System Components

This section describes four of the principal challenges
that we must address to deploy a general-purpose and
large-scale service utility: constructing overlays, allocat-
ing resources, propagating status, and improving reliabil-
ity through multi-path routing. A common theme running
across all system components is that local decisions must
be made to approximate the global good based on partial
and uncertain information.

3.1 Overlay Topology Construction

As discussed above, Opus must build and maintain two
separate types of overlays. The service overlay maintains
and distributes overall service metadata among participat-
ing sites. The service overlay also facilitates the construc-
tion of smaller-scale application overlays designed to meet
the performance and reliability requirements of a broad
range of network services. A number of efforts have inves-
tigated techniques for building proper overlay topologies
to match a particular application’s requirements [3, 18, 20].
Further, the scalability of current techniques require global

knowledge and do not scale beyond a few tens of nodes..
We must devise solutions that scale to thousands of nodes
for application overlays and tens of thousands of nodes for
the service overlay.

Our initial work focuses on developing a general over-
lay topology that enables dynamic tradeoffs between net-
work performance/reliability and cost. Note that a cost of
an overlay link can be assigned arbitrarily, but is likely to
depend upon the cost of the individual physical links that
compose an overlay link. This cost may reflect current con-
gestion levels on a link, the price paid to an ISP to use a
link, etc. The actual assignment of cost to individual links
is beyond the scope of this paper, though we do assume
that no individual Opus nodes are aware of this global cost
metric and that the metric changes dynamically over time.

One of the key initial goals in our work is to build ap-
plication overlays to enable flexible and dynamic tradeoffs
between overlay cost—logically a measure of total net-
work resources consumed in transmitting data across the
overlay—and the associated performance and reliability
characteristics of the overlay. To quantify the benefits of
competing structures, we need a set of metrics to compare
the quality of candidate overlay topologies. Initially, we
focus on network cost and relative delay penalty (RDP) to
characterize overlay topologies. RDP measures the relative
increase of delay incurred from using a particular overlay
relative to direct transmission in the underlying IP network.
Network cost is the sum of all the link weights associated
with a given overlay topology.

We have identified two candidate overlay topologies that
enable such flexible tradeoffs [23]. A k-spanner [7] en-
sures that all paths in an overlay have an RDP no worse
than k. Lower values of k result in higher cost for building
the overlay. Because k-spanners attempt to guarantee low-
latency paths between all pairs of hosts, it is more appro-
priate for multi-sender applications. A second structure,
LAST [22] (lightweight approximate shortest-path tree),
enables similar tradeoffs for single-sender applications.
With a LAST, a configuration parameter, �, bounds the
RDP of all paths from a designated source to all destina-
tions have an RDP no worse than �. For instance, a LAST
with � = 1:5 ensures that all destinations receive data with
delay at most 50% higher than transmission through IP.

We now present the results of some initial experiments to
quantify the benefits of k-spanners and LASTs. The prin-
cipal goal here is to enable Opus to use overlay-specific
tuning parameters to match application requirements. For
example Opus can adapt to changing conditions by turn-
ing a knob (such as the k or the � value) to reallocate re-
sources to adjust the balance of cost and performance. To

quantify the benefits of dynamically trading network cost
for performance in overlays, we ran some simulations of
both k-spanners and LASTs. For our experiments, we con-
structed a 200-node overlay randomly distributed among a
600-node GT-ITM generated topology [6]. Edge delay was
assigned based on default GT-ITM parameters. For these
experiments, we equate edge cost with delay though we
are currently investigating techniques to allow simultane-
ous, bi-criteria network optimization [25]. In the case of a
LAST, Figure 2(a) shows how the � parameter affects the
cost of the resulting overlay, relative to both a shortest path
tree (RDP=1.0) and a minimum cost spanning tree (with an
unbounded RDP). At � = 1, the overlay cost is high, com-
parable to a shortest path tree. However, as demonstrated
in Figure 2(b), this same point corresponds to the best per-
formance (comparable to shortest path routing packets in
the underlying network). As � increases, the network cost
of the LAST overlay decreases, eventually matching the
cost of a minimum cost spanning tree at � = 3. Of course,
Figure 2(b) also shows that such a low-cost overlay also
results in relatively poor performance. One nice quality of
the tradeoffs expressed above is that it is possible to build
distribution structures that balance cost and RDP. For ex-
ample, with � = 1:5, we are able to obtain a cost within
15% of an MST and an RDP within 15% of an SPT for
our target topology and edge weights. This result shows
promise for our ability to build overlays that match appli-
cation requirements with relatively low cost overhead (for
all but the most demanding applications).

A key next challenge is to develop scalable distributed
algorithms for building and maintaining k-spanners or
LASTs. To support our goal of scalability, we must
avoid the necessity of global knowledge, excessive net-
work probing, and distributed locking to build and main-
tain such topologies. Our approach is to use probabilis-
tic techniques and hierarchy to selectively probe the char-
acteristics of various network regions. Key to our ap-
proach is having each node gradually migrate to its (ap-
proximately) “proper” location in the overlay. This is rel-
atively straightforward assuming the presence of global
group membership and pairwise probing. However, this
requires unscalable O(n2) memory and network overhead
respectively). Recent proposals in peer-to-peer networking
address scalability concerns by building randomized over-
lays [28, 30, 33] requiring only O(lgn) per-node state. In
contrast, our goal is to investigate the practicality of con-
structing overlays with specific performance characteris-
tics using partial, approximate and probabilistic knowledge
of network information.

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

1 1.5 2 2.5 3
LAST Alpha (tunable property)

N
et

w
or

k
co

st

SPT

LAST

MST

0.8

1

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3

LAST Alpha (tunable property)

R
oo

t R
D

P

MST

LAST

SPT

(a) (b)

Figure 2: Dynamically trading network cost for relative delay product using a lightweight approximate shortest path tree
(LAST).

3.2 Resource Allocation

One of the key components of Opus is resource allocation
among competing applications. This principally requires
determining the relative priority for competing applications
and the proportion of global resources that should be al-
located based on current system conditions. We will use
SLAs as the basis for economic prioritization, building on
our initial success with using an economic model for pri-
oritization and resource allocation in a cluster setting [8].

The basic resource mapping challenge is to establish
a matrix of allotments from j system resources across i

customers (applications). The system resources include
servers in the Opus PoPs and network links interconnect-
ing them. The system strives to balance the service quality
of the selected allotments with their costs. In Opus, our
challenge is to allocate these resources in a decentralized
manner, based on partial information about resource sup-
ply and demand collected through the service overlay.

Opus uses a generalized measure of benefit or utility as
a basis for flexible SLAs representing dynamic tradeoffs
between service quality and value. Customers are associ-
ated with utility functions specifying the value of any given
level of service volume and service quality predicted to re-
sult from a candidate allotment. Opus makes resource al-
location decisions by comparing the expected utility of a
set of candidate configurations, with the goal of maximiz-
ing global utility. The system uses models to predict the
effects of candidate resource allotments on service quality,
then evaluates the SLA functions to determine the expected

value of the predicted behavior. Informally, the domains
of these composite functions are continuous measures of
the cost of resources assigned, e.g., the aggregate amount
of server resources assigned to the application at the Opus
PoPs, or the network cost of a LAST tree with a given �

parameter. The units of value are arbitrary, as long as the
system can combine values assigned to multiple measures
of service quality, and compare the total values of candi-
date configurations to determine which of the alternatives
is preferable.

The resulting optimization problems fall into a classi-
cal economic framework for resource allocation. Com-
puting optimal resource allocations from sets of utility
functions and service quality estimates is a linearly con-
strained non-linear optimization problem. To make the
problem tractable, we constrain the composite utility func-
tions to be concave. This means that the marginal benefit
of assigning additional resources, e.g., servers or network
links, to a configuration declines steadily and approaches
zero: adding resources beyond some point does not re-
sult in meaningful improvement of service quality. More
formally, the utility gradient (the derivative if the func-
tion is differentiable over a real-valued domain) is non-
negative and monotonically non-increasing. This reduces
the optimization problem to a simple convex program-
ming problem with an efficient solution based on gradi-
ent climbing[19]. If there are sufficient resources to avoid
starving any customer, then there exists a unique optimal
solution with the property that the marginal utility of an
additional resource unit is in equilibrium across all cus-

Allocated Resources

T
hr

ou
gh

pu
t

App 1

App 2Gradient 2

Grad
ien

t 1

Figure 3: Example of gradient climbing to determine re-
source allocation.

tomers. This equilibrium marginal utility is equivalent to
the equilibrium price that matches resource demand with
available supply in an economic market for allocating re-
sources.

A simple example helps to illustrate this point. Sup-
pose that an Opus system hosts two application services
with a constant level of offered load. Figure 3 shows con-
cave curves that qualitatively represent the throughput of
the two hypothetical applications as a function of the re-
sources allocated to each. If the SLA functions for these
customers define value as linear with delivered through-
put, and they have equal priority (their utility functions
have the same slope), then Opus will seek a resource al-
lotment that maximizes global throughput. Note that while
we use throughput in this simple example, the y-axis could
just as easily represent availability, reliability, latency, or
some other service quality metric, e.g., a composite metric
representing expected customer revenue.

The curves show that adding resources significantly im-
proves throughput when allotments are low and the cus-
tomers are starved. However, as more resources are added,
the marginal gain in throughput declines and approaches
zero (trivially, for an offered load of 100 small file re-
quests per second, changing allocation from 10 to 11 ma-
chines is not likely to measurably improve throughput).
The marginal benefit of an additional resource unit can be
measured by the first derivative or gradient of each appli-
cation’s “utility curve.” In this example, the gradients at
particular points on the x-axis represent the current allo-
cation of resources to each application and the expected
benefit of allocating an additional unit of resource to ap-
plication 1 versus application 2. Here, application 1 would
enjoy a greater estimated boost in throughput from an addi-
tional unit of resource because it has a larger gradient than
application 2. Opus gives preference to application 1 until

its marginal gain equalizes.

Thus, the Opus resource allocators strive to maximize
global value across all applications. In the general case,
the SLA functions may specify utility as a combination of
service quality metrics in a “common currency” of value.
The utility functions may also incorporate priority by valu-
ing service quality for some applications higher than oth-
ers. For example, the value metrics would prioritize, say,
dissemination of tactical information over distribution of
training videos, enabling the system to provision resources
rationally if faced with an unexpected crisis and resource
shortage. The value of the allotments changes dynami-
cally with changing conditions and offered load. Our chal-
lenge then is to estimate the changing shape and gradient
for these curves to respond to dynamic changes, based on
partial knowledge propagated through the service overlay.

Overall, the concavity constraint allows the system to
adjust equilibrium allotments incrementally to adapt to
changing conditions. The system continuously monitors
load and resource status, and propagates status informa-
tion through the service overlay. This status information
constitutes a feedback signal to trigger adaptive resource
reallocation. Rather than computing a new allocation from
scratch, the system responds to changes by incrementally
adapting an existing configuration to restore equilibrium.
This can be done using an efficient greedy algorithm whose
cost scales with the magnitude of shifts in load or resource
availability from one interval to the next [8].

Economic resource allocation scales naturally using a
decentralized federation of autonomous local “markets”
exchanging information to converge toward a global equi-
librium. Our initial design centers around a hierarchical
structure to aggregate related resources into cells capable
of planning their internal allocations locally. A cell might
be an entire Opus PoP or a portion of a large PoP, e.g., an
array of generic servers sharing a redirecting switch node
in close proximity. Cells cooperate to trade load or re-
sources in order to balance resource usage across the sys-
tems. To derive the magnitude of resource shifts, cells ex-
change information about the supply and demand for re-
sources in each cell. This can be captured compactly as the
marginal utility gained by adding resources to that cell or
shifting load away from that cell to free up resources for
some other use; this marginal utility is equivalent to the
“price” for resources in that cell. We believe that this cel-
lular structure is the key to scalable resource provisioning
in large data centers and networks of server sites.

A key tenet of this work is that service quality must
be measured in an application-specific manner. Thus, one
important question involves incorporating multiple dimen-

D E

B CA

F GD

A

Cluster Agent

Cluster

Overlay Network

Figure 4: Hierarchical data dissemination in dicast.

sions of service quality, including reliability, performance,
and data consistency, into a single utility function. One
option is to define a unified performability measure incor-
porating all aspects of service quality, with a single utility
function for each customer. An alternative is to define each
dimension of service quality as a separate utility function,
and represent tradeoffs optimizing the sum of the individ-
ual value measures.

3.3 Scalable Tracking of System Characteristics

As discussed above, a primary challenge to building and
maintaining large scale utilities involves maintaining dis-
tributed state about global system characteristics. Con-
sider the requirements of the following Opus tasks. First,
for request routing, clients spread across the network must
choose the replica most likely to deliver the best perfor-
mance, reliability, security, etc. To achieve such func-
tionality, the request routing infrastructure must track dy-
namically changing replica characteristics, for instance,
available bandwidth and load information. Second, build-
ing and maintaining overlays requires probing the network
characteristics among all participating replicas. In gen-
eral, nodes “near” one another in the underlying topology
(i.e., displaying strong pair-wise performance and reliabil-
ity characteristics) should peer together in the overlay. Fi-
nally, the system must track dynamic group membership
information to retire nodes that fail or fall behind long-
lasting network partitions. Thus, an Opus node requires
an abstraction to communicate its local state and local ob-
servations (e.g., network probes) to other system nodes.
Similarly, Opus nodes must receive updates about global
system characteristics from remote sites. In a large-scale
utility, it is impractical to maintain accurate global system
characteristics. Our challenge then is to balance communi-
cation costs with data accuracy as a function of system size
and global characteristics.

To develop a communication abstraction able to scale to
large numbers of nodes, we draw inspiration from Internet
routing protocols [16, 26, 29], perhaps the best example
of distributed protocols that scale to global proportions.
The fundamental lesson we draw is that aggregation, hi-
erarchy and approximation are fundamental to wide-area
scalability. We apply these design ideas to a generic com-
munication library within Opus, called dicast, designed to
distribute approximate data in a scalable fashion. Thus,
not all updates originating at a given node will be (or even
need be) delivered to all participants. Further, individual
updates may be aggregated together to increasing degrees
as data moves through the network.

The use of aggregation in dicast naturally leads to the
construction of a tree-based structure, as depicted in Fig-
ure 4. Nodes are partitioned into clusters of size d, where
d determines the height of the tree (for n nodes, a clus-
ter size of d implies a tree height of approximately lgd n).
Each cluster elects an agent, a speaker responsible for dis-
seminating local cluster information to the rest of the di-
cast tree. Agents from d adjacent clusters form second-
level clusters. This process is repeated until an h-th level
cluster is formed, where h is the height of tree. Note that
all physical nodes in the dicast tree are at the leaves (first-
level clusters) and intermediate nodes in the tree are elected
members from the leaf set who serve multiple responsibil-
ities. Deriving good performance from such an approach
requires assigning nodes to clusters with other topologi-
cally “nearby” nodes. We plan to leverage existing work
on clustering [24] to aid in this process where possible.

In dicast, data travels up the tree, potentially being ag-
gregated with data from other dicast nodes. At each level
of the tree, an overlay (as discussed in Section 3.1 above)
propagates the data among all participating cluster mem-
bers. Associated with each level of the tree is a target
(application-specific) level of accuracy for either aggre-
gated or individual node information. Once a particular
update reaches a level of the tree where aggregate accuracy
requirements are not violated, it will be buffered awaiting
the arrival of further updates that will eventually force the
propagation of an aggregate update to nodes higher up the
tree. As data spreads to higher-level clusters, it is in turn
transmitted back toward the leaves because each agent is a
member of at least two adjacent levels in the tree.

One example use of dicast is to propagate per-region
resource consumption information to influence local re-
source allocation decisions. Thus, a local node may have
exact information about per-application resource consump-
tion for “nearby” nodes (in the same cluster). However, it
may only have aggregate (and somewhat inaccurate) in-

formation about resource consumption in remote clusters.
However, such approximate and aggregate data is likely to
be sufficient to set local allocation levels to meet global al-
location targets. Similarly, information on per-cluster load
imbalances may be used to make a decision to reallocate a
given replica from one application to another to better meet
target SLAs or to maximize global system throughput.

3.4 Reliability QoS Guarantees

For many emerging Internet services, reliability and avail-
ability are more important metrics than raw service per-
formance. There are a number of potential definitions for
service availability; we define availability to be the per-
centage of requests that can be satisfied within individual
client performance requirements. Many existing metrics
for availability consider a service “available” if it is cur-
rently satisfying client requests with availability reducing
to a simple measure of uptime, or the amount of time with-
out hardware/software failures. For our approach, avail-
ability is measured by integrating across all client requests,
with those requests that return too slowly (e.g., based on an
expected distribution or even on per-client performance ex-
pectations) marked as “unavailable.”

In the context of a replicated utility, an individual hosted
service may be considered unavailable for a number of rea-
sons, including failures in the request routing infrastruc-
ture, in network links, or, in our more general model, be-
cause insufficient resources were allocated to meet target
performance characteristics. One approach we are pur-
suing for addressing failures at the network level, called
restricted flooding, is to build overlay topologies that re-
dundantly transmit the same data over multiple logical
paths [32]. However, we use a variant of anti-entropy [34]
to minimize the overhead associated with redundant trans-
mission for certain application classes. Here particular
overlay nodes may choose to forward an application-layer
frame redundantly along multiple paths to a single destina-
tion, especially if any given path does not meet aggregate
reliability requirements. As the data travels toward its des-
tination, certain downstream nodes may receive multiple
copies of the same frame (as identified by a unique iden-
tifier). In this case, the downstream node will re-evaluate
the estimated reliability of the remainder of the path and
suppress duplicate frames if reliability targets are likely to
be achieved with the propagation of a single frame. This
manner of restricted flooding provides two principal ad-
vantages. First, restricted flooding means that the overlay
does not have to necessarily prevent “loops,” simplifying
overlay construction. Next, multiple independent paths to

S DJ

.96 .98

.97 .97

.99

Target Reliability = .98

A

B

Figure 5: Using Restricted Flooding to control cost versus
reliability tradeoffs.

the destinations mean that individual delays, failures, or
packet drops will not necessarily prevent the timely deliv-
ery of data given available redundancy in the distribution
graph.

A primary challenge to developing such an approach is
ensuring that the overlay topology matches the failure char-
acteristics of the underlying network. For instance, if sepa-
rate logical links in an overlay correspond to a common
failure-prone link in the underlying physical network, a
failed physical link can result in failures in multiple logical
overlay links. Thus, it is important to construct overlays
with disjoint paths, where the failure correlation among
logical overlay links is low. We determine the loss correla-
tion among multiple potential links by collecting statistical
information about loss correlations and by using network
topology information where available. Our use of multiple
redundant paths enables immediate failover rather than re-
lying on the underlying network to converge to new routes
in the face of failure. Further, we hope that the combina-
tion of restricted flooding and careful construction of over-
lay topologies will result in only minimal traffic overhead
relative to single-path routing.

Consider the simple example depicted in Figure 5 where
a source S wishes to transmit data to a destination, D, with
an end-to-end reliability of 98% and where all links are
disjoint. Omitting the details of the simple calculations,
transmitting the data through either A or B toward D re-
sults in reliability of 93.1%. However, by transmitting data
through both A and B means that at least one copy of the
data arrives at the join point, J , 99.6% of the time, with
two copies of the data arriving with an 88.5% probability.
When node J forwards one copy of the data (suppressing
the second should it arrive later), resulting end-to-end reli-
ability is 98.7%, which meets the target yield. Forwarding
both copies results in 99.8% reliability.

The goal of our work in restricted flooding is to pro-
vide each node with enough information to determine how

many simultaneous routes to maintain for a given commu-
nication stream to achieve a given level of reliability. In-
termediate nodes must then determine if it is feasible to
suppress subsequent transmission of the same data and still
maintain target reliability. In this example, restricted flood-
ing must determine if an approximately 88% increase in the
utilization of the overlay edge JD for this particular com-
munication stream is worth the potential 1.1% improve-
ment in end-to-end reliability. Of course, this evaluation
must be made in response to changing network conditions
and application demands.

Finally, in Section 3.1, we discussed techniques for al-
lowing application developers to dynamically trade “cost”
for performance. Our approach to providing high reliabil-
ity through redundant transmission and disjoint paths adds
another dimension to this tradeoff: it allows applications to
specify both performance and reliability targets. Opus then
strives to build the lowest cost (or lowest overhead) overlay
to meet the specified goals.

4 Related Work

Our work on Opus is inspired by related efforts in a
number of different fields. Research into Active Net-
works [1, 17, 27, 36] proposes moving computation into
the network on a per-packet level. We view our utility
model as a logical culmination of the Active Network phi-
losophy. That is, overlays push application-level function-
ality to specific intermediate nodes in the network. How-
ever, the granularity of computation in overlays is coarser
grained than in Active Networks, operating on application-
layer frames [9] rather than individual network packets. In
designing the abstractions for our utility environment, we
will build on the work already performed in the context of
Active Networks.

Work into Active Services [2] investigates a similar in-
termediate point of pushing application functionality into
the network. Relative to this effort, we focus on the wide-
area issues associated with simultaneously deploying and
allocating resources among competing applications in a
scalable utility. Where possible, we intend to leverage the
set of abstractions developed for active services running
within a cluster environment (analogous to our individual
Opus sites).

A number of efforts are investigating a utility model for
wide-area computing. Akamai [10] hosts a large number
of servers across the Internet. Globus [13] and Legion [14]
investigate resource allocation in the context of a wide-
area computational grid. WebOS [35] investigates system
support for wide-area services. Within a single machine

room, Cluster Reserves enforces a global allocation of re-
sources among multiple “resource principals” [4]. Relative
to these efforts, our goal is to simultaneously investigate
issues of resource allocation, replica placement, and over-
lay construction based on an economic model to determine
per-application priority levels. We believe that our work in
Opus will be complementary to these existing efforts.

Our utility model investigates techniques for allocating
network resources to competing applications. We lever-
age overlay networks both to track the characteristics of the
utility as a whole, as well as to propagate updates among
individual application nodes. The idea of an overlay net-
work is not new, having been leveraged to ease the de-
ployment of both multicast in the Mbone [12] and IPv6 in
the 6bone [15]. Until recently, overlays were viewed as a
transition technology. However, recent academic and com-
mercial efforts are advocating the use of overlays as a fun-
damental approach for both deploying new network func-
tionality (e.g., multicast [18, 20]) and for improving the
performance and availability of existing applications (e.g.,
improved application-layer routing [3, 31, 32]). Relative
to existing approaches, our work is a general utility infras-
tructure to allocate nodes among competing applications.
Further, we investigate fundamental techniques for scaling
overlay networks to thousands of nodes and for design-
ing, implementing, and evaluating distributed algorithms
for building and maintaining overlays capable of matching
application performance and availability requirements.

Recently, there has been tremendous interest in scalable
peer-to-peer lookup services [11, 28, 30]. At a high level,
these systems hash an object name to a key within some
address space and randomly assign cooperating peers to be
responsible for some region of this address space. An end
client wishing to lookup a particular object performs the
hash and uses the lookup infrastructure to route its request
to the appropriate peer in O(lg n) application-level hops.
The system is scalable in that peers maintain no more than
O(lgn) state in facilitating this lookup. These elegant de-
signs provide significant scalability benefits at the cost of
loss of control over exactly how nodes are interconnected,
the cost of resulting overlays, etc. Our work on resource al-
location and managing inexact information across the wide
area is orthogonal to these efforts. However, one explicit
goal of this work is to determine the relative performance
benefits and computational/communication of explicit ver-
sus implicit overlay construction and maintenance in large
scale distributed systems.

5 Conclusions

This paper presents a novel model for wide-area comput-
ing where a collection of server sites distributed across
the Internet simultaneously support the requirements of a
broad range of decentralized Internet applications. Rather
than forcing individual applications to reimplement sig-
nificant functionality and to redundantly administer dis-
tributed service resources, an overlay peer utility service,
Opus, dynamically allocates resources among competing
applications. This paper describes our approach to re-
alizing this vision and some of the specific research is-
sues we are addressing. In particular, we present: i) the
system architecture and abstractions necessary for diverse
applications to push functionality to intermediate nodes,
ii) models for resource allocation and replica placement
for competing applications based on dynamically chang-
ing system characteristics, iii) constructing dynamic per-
application scalable overlays that both match application
performance/availability requirements and that make effi-
cient use of underlying network resources, and iv) decen-
tralized and scalable techniques for tracking global system
characteristics through aggressive use of hierarchy, aggre-
gation, and approximation.

References

[1] D. Scott Alexander, William A. Arbaugh, Michael W.
Hicks, Pankaj Kakkar, Angelos D. Keromytis, Jonathan T.
Moore, Carl A. Gunter, Scott M. Nettles, and Jonathan M.
Smith. The SwitchWare Active Network Architecture.
IEEE Network, 12(3):29–36, May/June 1998.

[2] Elan Amir, Steven McCanne, and Randy Katz. An Ac-
tive Service Framework and its Application to Real-Time
Multimedia Transcoding. In Proceedings of SIGCOMM,
September 1998.

[3] David G. Andersen, Hari Balakrishnan, M. Frans
Kaashoek, and Robert Morris. Resilient Overlay Net-
works. In Proceedings of SOSP 2001, October 2001.

[4] Mohit Aron, Peter Druschel, and Willy Zwaenepoel. Clus-
ter Reserves: A Mechanism for Resource Management
in Cluster-based Network Servers. In Proceedings of the
ACM Sigmetrics 2000 International Conference on Mea-
surement and Modeling of Computer Systems, June 2000.

[5] S. Bhattarcharjee, M. Ammar, E. Zegura, V. Sha, and
Z. Fei. Application-Layer Anycasting. In Proceedings of
IEEE Infocom, April 1997.

[6] Ken Calvert, Matt Doar, and Ellen W. Zegura. Modeling
Internet Topology. IEEE Communications Magazine, June
1997.

[7] Barun Chandra, Gautam Das, Giri Narasimhan, and Jose
Soares. New Sparseness Results on Graph Spanners. In
Symposium on Computational Geometry, pages 192–201,
1992.

[8] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar,
Amin M. Vahdat, and Ronald P. Doyle. Managing energy
and server resources in hosting centers. In Proceedings of
the 18th ACM Symposium on Operating System Principles
(SOSP), October 2001.

[9] David D. Clark and David L. Tennenhouse. Architectural
Considerations for a New Generation Protocols. In Pro-
ceedings of SIGCOMM, September 1990.

[10] Akamai Corporation, 1999. www.akamai.com.

[11] Frank Dabek, M. Frans Kaashoek, David Karger, Robert
Morris, and Ion Stoica. Wide-area Cooperative Storage
with CFS. In Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP’01), October 2001.

[12] H. Eriksson. Mbone: The Multicast Backbone. Communi-
cations of the ACM, 37(8):54–60, 1994.

[13] Ian Foster and Carl Kesselman. Globus: A Metacomput-
ing Infrastructure Toolkit. In International Journal of Su-
percomputer Applications, volume 11(2), pages 115–128,
1997.

[14] Andrew S. Grimshaw, William A. Wulf, and the Le-
gion team. The Legion Vision of a Worldwide Virtual
Computer. Communications of the ACM, 40(1), January
1997.

[15] I. Guardini, P. Fasano, and G. Girardi. IPv6 Operational
Experience within the 6bone. In Proceedings of the Inter-
net Society Conference, July 2000.

[16] Roch Guerin and Ariel Orda. QoS-based Routing in Net-
works with Inaccurate Information. In Proceedings of
IEEE INFOCOM, 1997.

[17] Michael Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A.
Gunter, and Scott Nettles. PLAN: A Packet Language for
Active Networks. In Proceedings of the Third ACM SIG-
PLAN International Conference on Functional Program-
ming Languages, pages 86–93, 1998.

[18] Yang hua Chu, Sanjay Rao, and Hui Zhang. A Case For
End System Multicast. In Proceedings of ACM Sigmetrics,
June 2000.

[19] Toshihide Ibaraki and Naoki Katoh, editors. Resource Al-
location Problems: Algorithmic Approaches. MIT Press,
Cambridge, MA, 1988.

[20] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans
Kaashoek, and Jr. James W. O’Toole. Overcast: Reliable
Multicasting with an Overlay Network. In Proceedings
of Operating Systems Design and Implementation (OSDI),
October 2000.

[21] Dina Katabi and John Wroclawski. A Framework for Scal-
able Global IP-Anycast. In Proceedings of Sigcomm, Au-
gust 2000.

[22] S. Khuller, B. Raghavachari, and N. Young. Balancing
Minimum Spanning and Shortest Path Trees. In Proc.
ACM/SIAM Symp. on Discrete Algorithms, January 1993.

[23] Dejan Kostić and Amin Vahdat. Latency versus Cost Op-
timizations in Hierarchical Overlay Networks. Technical
Report CS-2001-04, Duke University, January 2002.

[24] Balachander Krishnamurthy and Jia Wang. On Network-
Aware Clustering of Web Clients. In Proceedings of ACM
SIGCOMM 2000, August 2000.

[25] Adam Meyerson, Kamesh Munagala, and Serge Plotkin.
Cost-Distance: Two Metric Network Design. In Proceed-
ings of the Symposium on the Foundations of Computer
Science (FOCS), November 2000.

[26] J. Moy. OSPF Version 2. Technical Report RFC 2178,
Internet Engineering Task Force, Network Working Group,
July 1997.

[27] Erik L. Nygren, Stephen Garland, and M. Frans Kaashoek.
PAN: A High-Performance Active Network Node Support-
ing Multiple Mobile Code Systems. In Proceedings IEEE
OpenArch 1999, March 1999.

[28] Sylvia Ratnasamy, Paul Francis Mark Handley, Richard
Karp, and Scott Shenker. A Content Addressable Network.
In Proceedings of SIGCOMM 2001, August 2001.

[29] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-
4). Technical Report RFC 1771, Internet Engineering Task
Force, Network Working Group, March 1995.

[30] Antony Rowstron and Peter Druschel. Storage Manage-
ment and Caching in PAST, a Large-Scale, Persistent Peer-
to-Peer Storage Utility. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP’01),
October 2001.

[31] Stefan Savage, Thomas Anderson, Amit Aggarwal, David
Becker, Neal Cardwell, Andy Collins, Eric Hoffman, John
Snell, Amin Vahdat, Geoff Voelker, and John Zahorjan.
Detour: A Case for Informed Internet Routing and Trans-
port. IEEE Micro, 19(1), January 1999.

[32] Alex C. Snoeren, Kenneth Conley, and David K. Gifford.
Mesh-Based Content Routing Using XML. In Proceedings
of the 18th ACM Symposium on Operating Systems Princi-
ples (SOSP ’01), October 2001.

[33] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek,
and Hari Balakrishnan. Chord: A Scalable Peer to Peer
Lookup Service for Internet Applications. In Proceedings
of the 2001 SIGCOMM, August 2001.

[34] Douglas B. Terry, Marvin M. Theimer, Karin Petersen,
Alan J. Demers, Mike J. Spreitzer, and Carl H. Hauser.
Managing Update Conflicts in Bayou, a Weakly Connected
Replicated Storage System. In Proceedings of the Fifteenth

ACM Symposium on Operating Systems Principles, De-
cember 1995.

[35] Amin Vahdat, Thomas Anderson, Michael Dahlin, Eshwar
Belani, David Culler, Paul Eastham, and Chad Yoshikawa.
WebOS: Operating System Services for Wide-Area Appli-
cations. In Proceedings of the Seventh IEEE Symposium on
High Performance Distributed Systems, Chicago, Illinois,
July 1998.

[36] David Wetherall. Active Network Vision and Reality:
Lessons From a Capsule-based System. In Proceedings
of the 17th Symposium on Operating Systems Principles
(SOSP), December 1999.

[37] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble.
Denali: Lightweight Virtual Machines for Distributed and
Networked Applications. Technical Report 02-02-01, Uni-
versity of Washington, 2002.

[38] Chad Yoshikawa, Brent Chun, Paul Eastham, Amin Vah-
dat, Thomas Anderson, and David Culler. Using Smart
Clients to Build Scalable Services. In Proceedings of the
USENIX Technical Conference, January 1997.

[39] Haifeng Yu and Amin Vahdat. Design and Evaluation of a
Continuous Consistency Model for Replicated Services. In
Proceedings of Operating Systems Design and Implemen-
tation (OSDI), October 2000.

