
Metron: NFV Service Chains at the True Speed of the Underlying Hardware

Georgios P. Katsikas1,3, Tom Barbette2, Dejan Kostić3, Rebecca Steinert1, Gerald Q. Maguire Jr.3

1RISE SICS, 2University of Liege, 3KTH Royal Institute of Technology

Abstract
In this paper we present Metron, a Network
Functions Virtualization (NFV) platform that achieves
high resource utilization by jointly exploiting the
underlying network and commodity servers’ resources.
This synergy allows Metron to: (i) offload part of
the packet processing logic to the network, (ii) use
smart tagging to setup and exploit the affinity of traffic
classes, and (iii) use tag-based hardware dispatching
to carry out the remaining packet processing at the
speed of the servers’ fastest cache(s), with zero inter-
core communication. Metron also introduces a novel
resource allocation scheme that minimizes the resource
allocation overhead for large-scale NFV deployments.
With commodity hardware assistance, Metron deeply
inspects traffic at 40 Gbps and realizes stateful network
functions at the speed of a 100 GbE network card on a
single server. Metron has 2.75-6.5x better efficiency than
OpenBox, a state of the art NFV system, while ensuring
key requirements such as elasticity, fine-grained load
balancing, and flexible traffic steering.

1 Introduction
Following the success of Software-Defined Networking
(SDN), Network Functions Virtualization (NFV) is
poised to dramatically change the way network services
are deployed. NFV advocates running chains of network
functions (NFs) implemented as software on top of
commodity hardware. This is in contrast with chaining
expensive, physical middleboxes, and brings numerous
benefits: (i) decreased capital expenditure and operating
costs for network service providers and (ii) facilitates the
deployment of exciting new services.

Achieving high performance (high throughput and low
latency with low variance) using commodity hardware
is a hard problem. As 100 Gbps switches and network
interface cards (NICs) are starting to be standardized
and deployed, maintaining high performance at the ever-
increasing data rates is vital for the success of NFV.

In an NFV service chain, packets move from one
physical or virtual server (hereafter simply called server)
to another to realize a programmable data plane.
The servers themselves are predominantly multi-core
machines. Different ways of structuring the NFs exist,
e.g., one per physical core or using multiple threads

 0

 1

 2

 3

OpenBox
11 Cores

Metron
4 Cores

Metron
11 Cores

La
te

nc
y

(m
s)

(a) Latency (ms).

 0
 10
 20
 30
 40

OpenBox
11 Cores

Metron
4 Cores

Metron
11 CoresTh

ro
ug

hp
ut

 (G
bp

s)

(b) Throughput (Gbps).

Figure 1: Thanks to zero inter-core transfers, Metron has
almost 3x better efficiency than the state of the art when
deeply inspecting (Firewall→DPI) traffic at 40 Gbps.

to leverage multiple cores within each NF. Network
functions range from simple stateless ones to complex,
such as deep packet inspection (DPI), and potentially
stateful (e.g., proxy) ones. Regardless of the deployment
model and NF types, every time a packet enters a server,
a fundamental problem occurs: how to locate the core
within the multi-core machine that is responsible for
handling this packet? This problem reoccurs every step
of the chain and can cause costly inter-core transfers.

Our work, Metron, eliminates unnecessary inter-core
transfers and in a 40-Gbps setup (Figure 1) achieves:
(i) about a factor of 3 better efficiency, (ii) lower,
predictable latency, and (iii) 2x higher throughput than
OpenBox [13], a state of the art NFV system.

1.1 NFV Processing Challenges
To identify the core that will process an incoming packet,
the NFV framework can typically only examine the
header fields. Here, there is a big mismatch between the
way modern servers are structured and the desired packet
dispatching functionality. Figure 2 shows three widely
used categories of packet processing models in NFV.

The first category (see Figure 2a), augments the weak
programmability of current NICs with a software layer
that acts as a programmable traffic dispatcher between
the hardware and the overlay NFs. E2 [59], with its
software component called SoftNIC [25], falls into this
category. SoftNIC requires at least one dedicated CPU
core for traffic dispatching and steering (see Figure 2a),
while the NFs run on other CPU cores. Earlier works,
such as ClickOS [49] and NetVM [29], also used
software switches on dedicated cores to dispatch packets
to virtual machines, but without the flexibility of E2.

NF2
+ Tx

Rx +
NF1 Idle IdleNF1+

NF2+Rx Rx TxNF2Sw NF1 Idle

RSS

BypassBypass
NIC

User
space
Kernel Bypass

RSS

(a) Software switch
dispatching

(b) Pipeline dispatching
(with or without RSS)

(c) Rule or hash-based
hardware dispatching

Flow Director

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

Out
In

Out
In

Out
InOr

2 inter-core transfers 1 inter-core transfer4 inter-core transfers

Hardware-assisted approachesSoftware-based approach

Figure 2: State of the art packet processing models either have too many inter-core packet transfers or load balancing
problems due to load imbalance and/or idle CPU cores. RSS stands for Receive Side Scaling.

Rather than having a shim layer between the NFs
and the NICs to select the next hop in a service chain,
the second category of packet processing models (see
Figure 2b) involves a pipeline of reception, processing,
and transmission threads, each on a different (set of)
core(s). If more than one reception core is required,
this model uses RSS [30] as described below. For
example, OpenNetVM [71], Flurries [70], and NFP [63]
(a parallel version of OpenNetVM) fall into this category.
Similar to E2, these works introduce programmability
by augmenting the reception and processing parts of the
pipeline with traffic steering abilities.

The last category of packet processing models relies
on two hardware features provided by a large fraction
of NIC vendors today. First, RSS uses a static function
to dispatch traffic to a set of CPU cores by hashing
the values of specific header fields. Second, NICs
can be programmed via a vendor specific “match-
action” API to dispatch traffic to specific cores (e.g.,
Intel’s Flow Director [31]). Unlike all previous models,
these approaches do not require dedicated dispatchers,
hence they offer higher performance. OpenBox 1 [13],
FastClick [6], SNF [36], and RouteBricks [18] use RSS,
while CoMb [62] uses Flow Director.

None of these schemes guarantee that the core that
receives the incoming packet will be the one processing
it. Flow hashing as in RSS can introduce serious load
imbalances under skewed (e.g., heavy flows with the
same hashes) workloads. Flow Director permits explicit
flow affinity, but suffers from the limited classification
capabilities of today’s commodity NICs. When there
is a mismatch, the packet is handed off to the correct
core. However, this requires transferring the packet via
DRAM or last level cache (LLC) to the target processing
core. This is a slow operation, as the LLC takes
several tens of cycles even for a cache hit! Our earlier
work [37] demonstrates that dramatic slowdowns occur

1Originally, OpenBox was built on top of Mininet and Click [42]
using Linux-based I/O. To fairly compare it against our work, we
accelerated OpenBox using FastClick’s DPDK engine and RSS [4].

due to this effect. In particular, an order of magnitude
better performance (both higher throughput and lower
latency variance) is possible if the correct core receives
the packet straight from the NIC, and the packet remains
in the core-specific L1 or L2 cache.

1.2 Metron Research Contributions
We present Metron, a system for NFV service chain
placement and request dispatching. To the best of our
knowledge, Metron is the first system that automatically
and dynamically leverages the joint features of the
network and server hardware to achieve high
performance. Metron eliminates inter-core transfers
(unlike recent work with 4 [59], 2 [70], or 1 [13]
inter-core transfers as shown in Figure 2), making it
possible to process packets potentially at L1 cache
speeds. Also, we overcome the load balancing issues
of “run-to-completion” approaches [18, 6, 13, 36], by
combining smart identification, tagging, and dispatching
techniques. We had to address a number of challenging
problems to realize our vision. First, making efficient
use of all the available hardware is hard because of the
in-machine request dispatching overheads (described
earlier). Second, discovering and dealing with the
heterogeneous network (switches, NICs) and server
hardware, in a generic way, is non-trivial from a
management perspective. Third, detecting and dealing
with load imbalances that reduce the performance of the
initially placed service chains requires rapid and stable
adaptation. We state our research contributions, while
dealing with the aforementioned challenges:
Contribution 1: We orchestrate programmable
network’s hardware to perform stateless processing
and packet classification. We deal with hardware
heterogeneity by building upon the unified management
abstractions of an industrial-grade SDN controller
(ONOS [7]). This allows Metron to leverage popular
management protocols, such as OpenFlow [50] and
P4 [11], and easily integrate future ones. We contributed
a new driver for programmable NICs and servers [35].

Contribution 2: We overcome the network/server
architecture mismatch by instructing Metron to tag
packets as early as possible, enabling them to be quickly
and efficiently switched and dispatched throughout the
entire chain. To do so, Metron first uses SNF [36] to
identify the traffic classes of a service chain and produce
a synthesized NF that performs the equivalent work of
the entire chain (see §2.3.1). Then, Metron divides
the synthesized NF into stateless and stateful operations
(see §2.3.3) and instructs all available programmable
hardware (i.e., switches and NICs) to implement the
stateless operations, while dispatching incoming packets
to those CPU cores that execute their stateful operations.
Metron runs stateful NFs on general purpose servers,
while fully leveraging their generic processing power.
Contribution 3: We propose a way to efficiently
and quickly obtain the network state in order to
make fast placement decisions at low cost with high
accuracy (see §2.3.3). We devised a mechanism to
coordinate load balancing among servers and their CPU
cores, demonstrating that Metron provides comparable
elasticity with purely software-based approaches, but at
the true speed of the hardware (see §2.3.4).

Our evaluation shows that Metron realizes deep packet
inspection at 40 Gbps (§3.1.1) and stateful service chains
at the speed of a 100 GbE NIC on a single server (§3.1.2).
This results in up to 4.7x lower latency, up to 7.8x higher
throughput, and 2.75-6.5x better efficiency than the state
of the art. It is difficult to improve on this performance
unless we completely offload stateful chains to hardware,
which is impossible with today’s commodity hardware.

2 System Architecture
This section describes Metron’s system design, starting
with a high-level overview via an illustrative example
in §2.1. In §2.2 we describe the Metron data plane,
which is configured by the Metron controller (see §2.3).

2.1 Overview
To understand how Metron works, consider a simple
network consisting of two OpenFlow switches connected
to a server as shown at the bottom of Figure 3. Assume
that an operator wants to deploy a Firewall→DPI service
chain, as shown in Step 1 of Figure 3.

In Step 2, the Metron controller identifies the traffic
classes 2 of the service chain, by parsing the packet
processing graphs (each graph has a set of packet
processing elements as in [42, 59, 13]) of the input
NFs. In Step 3, Metron composes a single service
chain-level graph by synthesizing the read and write
operations of the individual graphs (see §2.3.1). Because
Metron detects the availability of resources (i.e., the

2Traffic class is a (set of) flow(s) treated identically by an NF chain.

(4.2, 8.2) Install software
operations

Metron Controller

Metron Agent

Firewall DPI

(2) Identify
traffic classes

(3) Synthesize HW read/write
operations and stateful SW
operations to run on servers

(1) Service chain description
from the application

Source
(5) Dispatch to
the correct core

(4.1, 8.1)
Install

OpenFlow rules
Core 1
Core 2

NFV Server
OpenFlow
Switches

(4) Install rules/software

(7) Split/merge
traffic classes to
rebalance load

(6) Collect
run-time load
statistics

Figure 3: Metron overview using an example NF chain.

OpenFlow switches) along the path to the server, it
associates stateless read and write operations with these
components and automatically translates these opera-
tions into OpenFlow rules (Step 4.1). The remaining,
potentially stateful, operations are translated into soft-
ware instructions targeting the Metron agent at the server
(Step 4.2). The key to Metron’s high performance
is exploiting hardware-based dispatching (Step 5) that
annotates the traffic classes matched by the OpenFlow
rules with tags that are subsequently matched by the
server’s NIC to identify the CPU core to execute the
stateful operations. In this way, Metron guarantees that
each traffic class will be processed by a single core,
thus eliminating costly inter-core communications. This
guarantee is maintained even when a CPU core becomes
overloaded (see §2.3.4) as the Metron agent reports run-
time statistics (Step 6) that allow the Metron controller
to rebalance the load (Step 7) by splitting traffic classes
into multiple groups that are dispatched to different cores
using different tags (Steps 8.1 and 8.2). We conclude this
overview with a survey of popular NFs; noting that in
Table 1 a substantial portion of these NFs can be (fully
or partially) offloaded to commodity hardware.

Table 1: Survey of popular NFs. The offloadability of
“Hybrid” NFs depends on the use case.

Network Function Offloadable
to Hardware

L2/L3 Switch, Router Yes
Firewall/Access Control List (ACL) Hybrid
Carrier Grade NA(P)T, IPv4 to IPv6 No

Broadband Remote Access Server Partially [17]
Evolved Packet Core Partially

Intrusion Detection/Prevention Partially [32]
Load Balancer Hybrid
Flow Monitor Yes

DDoS Detection/Prevention Yes [43]
Congestion Control (RED, ECN) Yes

Deep Packet Inspection (DPI) No
IP Security, Virtual Private Network Yes [61]

2.2 Metron Data Plane
The Metron data plane follows the master/slave approach
depicted in Figure 4. The master process is an
agent that interacts with (i) the underlying hardware
by establishing bindings with key components, such as
NICs, memory, and CPU cores and (ii) the Metron
controller through a dedicated channel.

Metron
Data Plane

Agent
Slaves

S2S1

Master Processing Blocks

Metron Controller

Monitor

C1 C2 ... CN

SK...

Tagging
Module

CPU NIC

Figure 4: The Metron data plane.

The key differentiator between Metron and earlier
NFV works is the tagging module shown in Figure 4.
This module exposes a map with tag types and values
that each NIC uses to interact with each CPU core of
a server; this map is advertised to the Metron controller.
The controller dynamically associates traffic classes with
specific tags in order to enforce a specific flow affinity,
thus controlling the distribution of the load. Most
importantly, this traffic steering mechanism is applied by
the hardware (i.e., NICs), hence Metron does not require
additional CPU cores (as E2 does) to perform this task,
thus packets are directly dispatched to the CPU core that
executes their specific packet processing graph. In §3,
we use a tagging scheme for trillions of service chains.

When the master boots, it configures the hardware and
registers with the controller by advertising the server’s
available resources and tags. Then, the master waits for
controller instructions. For example, the master executes
a deployment instruction by spawning a slave process
that is pinned to the requested core(s) and by passing the
processing graph to the slave. In the context of service
chaining, a Metron slave needs to execute multiple
processing graphs, each corresponding to a different
NF in the chain. Such graphs can be implemented
either in hardware or software. Earlier works implement
these graphs in software and use metadata to share
information among NFs and to define the next hop
in a chain. Although Metron supports this type of
software-based chaining, as shown in §1.1, this approach
introduces unnecessary overhead due to excessive inter-
core communication and potentially under-utilizes the
available hardware. Next, §2.3 explains how we
approach and solve this problem.

2.3 Metron Control Plane
Here, we describe the key design choices and properties
of the Metron controller.

2.3.1 Synthesis of Packet Processing Graphs
Given a set of input packet processing graphs, one
per NF, Metron combines them into a single service
chain graph. To ensure low latency, the Metron
controller adopts SNF [36]; a more aggressive variant of
OpenBox for merging packet processing graphs, which
provides a heuristic for solving the graph embedding
problem (see [68, 27, 15]) in the context of NFV.
Metron uses SNF to eliminate processing redundancy by
synthesizing those read and write operations that appear
in a service chain as an optimized equivalent packet
processing graph. SNF guarantees that each header field
is read/written only once, as a packet traverses the graph.

Another benefit of SNF’s integration into Metron is
the ability to encode all the individual traffic classes of
a service chain using a map of disjoint packet filters
(Φ) to a set of operations (Ω). In §2.3.4 we use this
feature to automatically scale packet processing in and
out, providing greater elasticity than available today.

2.3.2 Initial Resource Allocation
To allocate resources for the synthesized graph, we allow
application developers to input the CPU and network
load requirements of their service chains. Alternatively,
this information can be obtained by running a systematic
NFV profiler, such as SCC [37], or by using more generic
profilers, such as DProf [60]. Even in the absence
of accurate resource requirements, Metron dynamically
adapts to the input load as discussed in §2.3.4.

2.3.3 Placement
Metron needs to decide where to place the synthesized
packet processing graph. Such a decision is not simple,
because Metron not only considers servers but also the
network elements along the path to these servers.

Table 1 showed that a large fraction of NFs cannot
be implemented in commodity hardware today, mainly
because they require maintaining state. This means, that
the synthesized graph of such NFs cannot be completely
offloaded. To solve this, we designed a graph separation
module to traverse and split the synthesized graph into
two subgraphs. The first subgraph contains the packet
filters and operations that can be completely offloaded to
the network (we call this a stateless subgraph), while the
second (stateful) subgraph will be deployed on a server.
The average complexity of this task is O(logm), where
m is the number of vertices of the synthesized graph.

Given these two subgraphs, Metron needs to find a pair
of nodes (a server and a network element) that satisfy
two requirements: (i) the server has enough processing
capacity to accommodate the stateful subgraph and
(ii) the network element has enough capacity to store
the hardware instructions (e.g., rules) that encode the
stateless subgraph.

Scalable Placement with Minimal Overhead
In large networks with a large number of servers and
switches, it is both expensive and risky to obtain load
information from all the nodes. This is expensive
because a large number of requests need to be sent
frequently and this would occupy bandwidth to each
node, generate costly interrupts to fetch the data, and
occupy additional bandwidth to return responses to the
controller. This is risky because the round-trip time
required to obtain the monitoring data is likely to
render this data stale, leading to herd behaviors and
suboptimal decisions. To make a placement decision
with minimal overhead, we use the simple, yet powerful,
opportunistic scheme of “the power of two random
choices” [52]. According to Mitzenmacher, this number
offers exponentially better load balancing than a single
random choice, while the additional gain of three random
choices only corresponds to a constant factor.

Metron queries the load of two randomly selected
servers and selects the least loaded of them, provided
that the necessary resource requirements (i.e., number
of NICs and CPU cores) can be met. If the first two
choices fail, then these two servers are removed from
the list and the process is repeated until a server is
found. Note that this scheme prioritizes deployments that
exhibit spatial correlation with respect to the processing
location because spreading this processing results in
lower performance, which is undesirable.

This server selection procedure also greatly simpli-
fies the second placement decision (i.e., the network
element(s) to offload processing to). Well designed
networks, such as datacenters, provision several fixed
shortest paths between ingress nodes (e.g., core switches)
and servers, where each server might be associated with
a single core switch [1, 2]. Given this, we find the most
suitable network element to offload the stateless graph,
using the following inputs: (i) the topology graph, (ii)
the server where the stateful subgraph will be deployed
(chosen by the server selection scheme), and (iii) the rule
capacity required to offload the stateless subgraph.
Handling Partial Offloading and Rule Priorities
Metron carefully treats the cases when (i) a stateless
subgraph contains rules with different priorities and
(ii) one or more rules of such a subgraph cannot be
offloaded to hardware. The latter can occur, e.g., due to
the hardware’s inability to match specific header fields.
In such a case, Metron will selectively offload only the
supported rules, while respecting rule priorities. To
exemplify these two cases, assume a service chain that
needs to be deployed on the topology shown in Figure 3.
Assume that this service chain implements four rules that
can be offloaded to the first programmable switch, while
the remaining part of the service chain will be deployed
on the server. If rule 3 cannot be offloaded and all of

the rules have the same priority, then Metron will offload
rules 1, 2, and 4. However, if these rules have, e.g.,
decreasing priorities (i.e., rule 3 has a higher priority than
rule 4), then Metron will offload only the first two rules,
to guarantee that the server applies rule 4 after rule 3.

2.3.4 Dynamic Scaling
In §2.3.1 we explained how Metron encodes a service
chain as a set of individual traffic classes, where each
traffic class is a set of packet filters mapped to write
operations. This abstraction gives great flexibility when
scaling a service chain in/out. As an example, when E2
detects an overloaded NF, it scales this NF by introducing
an additional (duplicate) instance of the entire NF and
then evenly splitting the flows across the two instances.
In contrast, Metron splits the traffic classes of this NF
across the two instances, such that each instance executes
the code responsible for each of its traffic classes (rather
than the code of the entire NF).

To trigger a scaling decision, Metron gathers port
statistics from key locations in the network in order to
detect load changes. Such a change results in Metron
asking for instantaneous CPU load and network statistics
from the affected service chains. Given this information,
Metron applies the following, globally orchestrated,
scaling strategy to react to load imbalances.
Traffic Class-level Scaling
We leverage a grouping technique when creating a
service chain’s traffic classes. A set of T traffic
classes {TC j

i | j ∈ [1,T]} that belong to service chain
i can be grouped together, if and only if their packet
filters {Φ

j
i | j ∈ [1,T]} are mapped to the same write

operations: ∀k, l ∈ [1,T],Ωk
i = Ωl

i
For example, an HTTP and an FTP traffic classes

heading to a NAT will both exhibit the same stateful
write operations from this NF, thus they can be grouped
together. The Metron controller has this information
available once the traffic classes of a service chain are
created (see §2.3.1). To dynamically scale out a group
of traffic classes, Metron needs to split this group into
two or more subgroups, where the first subgroup remains
on the same CPU core as the original group, while
the other subgroup(s) are deployed and scheduled on a
different (set of) CPU core(s). These new traffic classes
are annotated with different tags, such that the NIC at
the server can dispatch them to the appropriate CPU
cores. We call this mechanism “traffic class deflation” to
differentiate it from the opposite “traffic class inflation”
process, where two or more groups of traffic classes that
exhibit the same write operations are merged together,
when Metron detects low CPU utilization.

To simplify load balancing, while keeping a reason-
able degree of flexibility, the split and merge processes
always use a static factor of 2 (i.e., one group is split into

two, or two groups are merged into one). This decision
also minimizes the amount of state that Metron needs
to transfer across CPUs. A fully dynamic solution with
additional visibility into the load of each traffic class
would achieve better load distribution; however, such a
solution is considered impractical in the case of large
networks with potentially millions of traffic classes. Split
and merge operations may repeat until Metron can no
longer split/merge a traffic class. A single flow is an
example of non-splittable traffic class. The reaction time
of this strategy is mainly affected by the time required for
the controller to monitor and reconfigure the data plane.
In §3.2 we show how this strategy performs in practice.

Once an inflation/deflation decision has been made,
Metron needs to guarantee that the state of the affected
traffic classes (e.g., those being redirected to a different
CPU core in the case of inflation) will remain consistent.
To do so we adopt a scheme that quickly duplicates the
stateful tables of a group of traffic classes across the
involved CPU cores, when inflation occurs. Similarly,
we merge the stateful tables of two groups during the
deflation process. Although this scheme introduces
some redundancy (entries of migrated traffic classes
will still occupy space in the memory of the previous
CPU core until they expire), it offers a quick solution
to a problem that is beyond the scope of this work.
StateAlyzr [39], OpenNF [23], or the work by Olteanu
and Raiciu [54] could be integrated into Metron to
provide more efficient state management solutions.
Alternatively, state management could be delegated to a
remote distributed store as per Kablan, et al. [33].

2.3.5 Integrating Blackbox NFs
Some NF providers might not wish to disclose the source
code of their NFs. In this case we offer two integration
strategies: (i) partially synthesize a service chain, while
using DPDK ring buffers to interconnect synthesized
NFs with blackbox NFs and (ii) input only an NF
configuration (e.g., DPI rules, omitting DPI logic) using
Metron’s high-level API and let Metron use its own data
plane elements to realize this NF (see §3.1).

2.4 Routing (Updates) and Failures
To explain how Metron’s routing and dispatching works
and how Metron reacts to routing updates and failures,
we use the example shown in Figure 5. We assume
a software-defined 3 network on which the network
operator has deployed a routing application that routes
HTTP traffic 4 between source and destination (through
the path s1→s3). The routing is done using the
information shown within green dashed-dotted outlines.

3Metron can also operate in legacy networks by adding one or more
programmable switches before the NFV servers.

4We assume only HTTP traffic to keep the example simple.

Global Controller

NFV Server (srv1)

Advertised OF Rules on s1 and s3
Rs1: match HTTP_RULE action outPort 1
Rs3: match HTTP_RULE action outPort 2

Source

Core2:
Core1:

Metron NFV Controller Routing App

s1

s2

s3

Initial HTTP Path (Routing):

0

1

2

0 1

0 2

Metron Updates OF Rules on s1
R1’s1: match HTTP_RULE && ipSrcNet 10.0.0.0/8
 action tag X, outPort 1
R2’s1: match HTTP_RULE action tag Y, outPort 1

Metron HTTP Service Chain
 IP src in 10.0.0.0/8 → Monitor
 Remaining HTTP Traffic→IDS

Metron Updates OF Rules on s3
R1’s3: match tags X,Y && inPort 0 action outPort 3
R2’s3: match inPort 3 action untag, outPort 2

Metron Installs NIC Rules on srv1
R1’NIC: match tag X action Core 1
R2’NIC: match tag Y action Core 2

NIC

Advertised Paths to srv1
P1: s1→s3-----,,-1, (primary)
P2: s1→s2→s3 (secondary)

 HTTP_RULE: ethType IPv4 &&
 proto TCP &&

 src/dstPort 80

Metron Signaling:

1
Destination

3

Updated HTTP Path--(Metron):

Updated Metron Operations:
Initial Routing Operations:

Metron HTTP Policy:

Figure 5: Metron’s routing & CPU dispatching scheme.

A policy change forces the network operator to further
process the HTTP traffic before it reaches its destination.
Thus, she deploys an HTTP service chain (described by
the top box with dotted outline in Figure 5) using Metron.
When Metron boots it obtains the current routing
policy and paths for the HTTP traffic, as advertised by
the routing application. Next, the Metron controller
performs a set of updates (see the left-side boxes with
solid outlines, where OF stands for OpenFlow). The
updates focus on two aspects: (i) to extend the existing
HTTP rules (i.e., Rs1 and Rs3 at the bottom right box
with dashed-dotted outline) with rules that also perform
part of the service chain’s operations (i.e., R1′s1 and R2′s1)
and (ii) to tag the HTTP traffic classes to allow the NFV
server to dispatch them to different CPU cores.

In this example, Metron identifies two traffic classes
and tags them with tags X and Y. The tagging is applied
by the first switch (i.e., s1 as explained in §2.3.3) using
the rules R1′s1 and R2′s1 (top left box with solid outline).
The next switch (s3) uses the tags (i.e., rule R1′s3) to
redirect the HTTP traffic classes to the NFV server,
where Metron has installed NIC rules (i.e., R1′NIC and
R2′NIC) to dispatch packets with tags X and Y to CPU
cores 1 and 2 respectively. The first core executes a
monitoring NF, while the second core runs an intrusion
detection system (IDS) NF. After traversing the service
chain, the packets return to s3, where another Metron
rule (i.e., R2′s3) redirects them to their destination.

If not carefully addressed, a routing change or failure
might introduce inconsistencies. Metron avoids these
problems by using the paths to the NFV server (i.e.,
P1 and P2), as advertised by the routing application, to
precompute: (i) alternative switches that can be used
to offload part of a service chain’s packet processing
operations (see §2.3.3) and (ii) the actual rules to be
installed in these switches. In this example, a routing
change from path P1 to P2 (due to a routing update or

a link failure between s1 and s3) will result in Metron
installing 2 additional rules in s2 (these rules follow same
logic with the rules in s3). Metron also updates the first
rule of s3 by changing the inPort value to 1 rather than 0.

Backup configurations are kept in Metron’s distributed
store and are replicated across all the Metron controller
instances in order to maintain a global network view.
When a routing change or failure occurs, Metron applies
the appropriate backup configuration. In §3.3 we show
that Metron can install 1000 rules in less than 200 ms,
hence quickly adapting to routing changes and failures,
even those requiring a large number of rule updates.

3 Evaluation
Implementation: We built the Metron controller on
top of ONOS [7, 56], an open source, industrial-grade
network operating system that is designed to scale well.
Key to our decision was the fact that ONOS exposes
unified abstractions for a large variety of network drivers
that cover popular network configuration protocols, such
as OpenFlow [50], P4 [11], NETCONF/YANG [20, 10],
SNMP [14], and REST. We extended ONOS with a
new driver that remotely monitors and configures NFV
servers and their NICs. This driver is available at [35].

Metron’s data plane extends FastClick [6]. We use the
Virtual Machine Device Queues (VMDq) of DPDK [19]
17.08 to implement the hardware dispatching based on
the values of the destination MAC address or VLAN ID
fields. Our prototype (available at [5]) uses the former
header field as a filter, because the large address space
of a MAC address provides unique tags for trillions 5 of
service chains. To scale to 100 Gbps, Metron instructs
the hardware classifier of a Mellanox NIC (§3.1.2).
Testbed: Our testbed consists of 3 identical servers,
each with a dual socket 16-core IntelrXeonr CPU E5-
2667 v3 clocked at 3.20 GHz. The cache sizes are: 2x32
KB L1 (instruction and data caches), 256 KB L2, and
20 MB L3. Hyper-threading is disabled and the OS is
the Ubuntu 16.04.2 distribution with Linux kernel v.4.4.
Each server has 2 dual-port 10 GbE Intel 82599 NICs.

We deploy a testbed with a NoviFlow 1132 OpenFlow
switch [53] with firmware version NW400.2.2 and we
attach 2 servers to this switch. The 4 ports of the first
server are connected to the first 4 ports of the switch
to inject traffic at 40 Gbps. Then, ports 5-8 of the
switch are connected to the 4 ports of the second server,
where traffic is processed by the NFV service chains
being tested and sent back to the origin server through
the switch. The last server is used to run the Metron
controller. In §3.3, we study how switch diversity
might affect Metron, by comparing the performance and
capacity of a NoviFlow 1132 switch with an HP 5130 EI

5A few thousands of tags were enough to conduct the study in §3.

Switch [28] with software version S5130-3106, and the
popular Open vSwitch [57] (OVS) software switch.

Each experiment was conducted 10 times and we
report the 10th, 50th (i.e., median), and 90th percentiles.

3.1 Metron Large-Scale Deployment
In this section we test Metron’s performance at scale,
focusing on two aspects: First, we stress Metron’s data
plane performance using complex service chains with a
large number of deeply-inspected (§3.1.1) and stateful
(§3.1.2) traffic classes at 40 and 100 Gbps respectively.
In §3.1.3 we test Metron’s placement on a set of
topologies with a large number of nodes, on which we
deploy hundreds to thousands of service chains.

3.1.1 Deep Packet Inspection at 40 Gbps
To test the overall system performance at scale, we
deploy a service chain of a campus firewall, followed by
a DPI. The firewall implements access control using a list
of 1000 rules, derived from an actual campus trace. The
output of the firewall is sent to a DPI NF that uses a set
of regular expressions similar to Snort (see [13]).

We compare Metron against two state of the art
systems: (i) an accelerated version of OpenBox based
on RSS and (ii) an emulated version of E2. In the
latter case, called “Pipeline Dispatcher”, we emulate
E2’s SoftNIC by using a dedicated CPU core (i.e., core
1) that dispatches packets to the remaining CPU cores of
the server (i.e., 2-16), where the NFs of the service chain
are executed. This is the reason that the graphs of the
emulated E2 in Figures 6 and 7 start from core two.

We injected a campus trace, obtained from University
of Liège, that exercises all the rules of the firewall at
40 Gbps and measured the performance of the three
approaches. Figure 6 visualizes the results. First, we
deploy only the firewall NF of this service chain to
quantify the overhead of running this NF in software,
as compared to an offloaded firewall (i.e., Metron). To
fairly compare Metron against the other two approaches,
we start a simple forwarding NF in the server, such that
all packets follow the exact same path (generator, switch,
server, switch, and sink) in all three experiments.

Figure 6a shows that OpenBox and the emulated E2
can realize this large firewall at line-rate. However, this is
only possible if more than half of the server’s CPU cores
are utilized. Specifically, OpenBox requires 9 cores,
while the emulated E2 requires 11 cores. In contrast,
Metron completely offloads the firewall to the switch,
hence easily realizing its ACL at line-rate; thus one core
of the server is enough to achieve maximum throughput.

Looking at the latency of the three approaches in
Figure 6b, it is evident that software-based dispatching
(yellow solid line with triangles) incurs a large
amount of unnecessary latency. Hardware dispatching

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Th
ro

ug
hp

ut
 (G

bp
s)

Number of CPU Cores

 FW - Metron
 FW - OpenBox RSS
 FW - Pipeline Dispatcher

 FW + DPI - Metron
 FW + DPI - OpenBox RSS
 FW + DPI - Pipeline Dispatcher

(a) Throughput (Gbps) versus number of cores.

 1

 4

 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

La
te

nc
y

(m
s)

Number of CPU Cores

 FW - Metron
 FW - OpenBox RSS
 FW - Pipeline Dispatcher
 FW + DPI - Metron
 FW + DPI - OpenBox RSS
 FW + DPI - Pipeline Dispatcher

(b) Latency (ms) on a logarithmic scale versus number of cores.

Figure 6: Performance of a campus firewall with 1000 rules followed by a DPI at 40 Gbps, using: (i) Metron, (ii) an
accelerated version of OpenBox using RSS, and (iii) a software-based dispatcher emulating E2.

using RSS (green solid line with circles) achieves
substantially lower latency because it involves less
inter-core communication. However, since the firewall
executes heavy classification computations in software,
OpenBox still exhibits high latency that cannot be
decreased by simply increasing the number of cores.
Specifically, using 16 cores has comparable latency to 4
cores. In contrast, Metron achieves nearly constant low
latency (red solid line with squares) by exploiting the
switch’s ability to match a large number of rules at line-
rate. This latency is 2.9-4.7x lower than the latency of
the OpenBox and emulated E2 respectively, when each
system uses one core for processing the NF (emulated
E2 requires 2 cores in this case). At the full capacity
of the server, the latency among the three systems is
comparable; but Metron outperforms the emulated E2
and OpenBox by 30% and 19% respectively.

Next, we chain this firewall with a DPI NF in
order to realize the entire service chain. This
chaining further pushes the performance limits of the
three approaches as shown by the dashed lines in
Figure 6. In this case, Metron implements the DPI
in software. First, we observe that even at the full
capacity of the server, OpenBox and the emulated E2
can only achieve at most 25 Gbps. This performance
is more than sufficient for a 10 Gbps deployment,
hence some operators might not need the complex
machinery of Metron. However, several studies indicate
that large networks have already migrated from 10 to
40 Gbps deployments [16], while 100 Gbps networks
are increasingly gaining traction [67]. In these higher
data rate environments, these alternatives would require
more than 16 CPU cores (and potentially more than
one machine) to have sufficient throughput, and are not
guaranteed to scale because of the heavy processing
requirements of large service chains.

Metron exploits the joint network and server capacity
to scale even complex NFs, such as DPI, at line-rate (red

dashed line with squares in Figure 6a). Most importantly,
Metron requires only 10 CPU cores in a single machine
to achieve this result, thus substantially shifting the
scaling point for large service chains. The latency results
further highlight Metron’s abilities. With 16 CPU cores,
the Metron server deeply inspects all packets for this
service chain at the cost of only 15.5% higher latency
than the latency required to realize only the firewall. At
the same time, OpenBox and the emulated E2 incur 35-
97% more latency than Metron, while achieving almost
half of Metron’s throughput. This difference increases
rapidly when fewer CPU cores are utilized. For example,
when each system uses one CPU core Metron achieves
75% lower latency than OpenBox and 358% lower
latency than the emulated E2 respectively.

3.1.2 Stateful Service Chaining at 100 Gbps
In this section we further stress the performance of
Metron, OpenBox, and the emulated E2 systems by
conducting an experiment at 100 Gbps. To achieve this
new performance target we use a different testbed. We
equipped two of our servers with a 100 GbE Mellanox
ConnectX-4 MT27700 card and connected them back-
to-back. The first server acts as a traffic generator and
receiver, while the second server is the device under test.

We analyzed 4 million packets from the campus
trace used in §3.1.1 and found 3117 distinct destination
IP addresses. Then, we implemented a standards-
compliant router and populated its routing table with
these addresses. The router was chained with two
stateful NFs: a NAPT and a load balancer (LB) that
implements a flow-based round robin policy. In this
scenario, Metron can only offload the routing table of
the router to the Mellanox NIC using DPDK’s flow
director. The remaining functions of the router (e.g.,
ARP handling, IP fragmentation, TTL decrement, etc.)
together with the stateful NFs (i.e., NAPT and LB) are
executed in software.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Th
ro

ug
hp

ut
 (G

bp
s)

Number of CPU Cores

Forwarding RSS
Metron

OpenBox RSS
Pipeline Dispatcher

(a) Comparison of: (i) Metron, (ii) OpenBox with RSS, and (iii) a
software-based dispatcher emulating E2. “Forwarding RSS” shows the
forwarding speed of the server (i.e., no service chain).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Th
ro

ug
hp

ut
 (G

bp
s)

Number of CPU Cores

Metron
Metron w/o HW Offl. (O)
Metron w/o HW Disp. (D)
Metron w/o O and w/o D

(b) Metron’s hardware offloading (O) and hardware dispatching (D)
contributions to the overall system’s performance. The word "without"
is abbreviated as "w/o".

Figure 7: Throughput (Gbps) of a stateful service chain (Router→NAPT→LB) at 100 Gbps.

Metron vs. State of the art: The throughput achieved
by the three systems is shown in Figure 7a. For
comparison, we also show the throughput of the server
when a simple RSS-assisted forwarding NF is used to
send traffic back to its origin. These results show
a slow but linear increase of the throughput with an
increasing number of CPU cores for both OpenBox and
the emulated E2 approaches. Using linear regression on
the medians between 1 and 12 cores (the emulated E2
starts from 2 cores), we found that the throughput of
OpenBox increases by 5.37 Gbps with each additional
core, while the emulated E2 increased by 4.91 Gbps
per core. However, in both cases using more than 12
CPU cores does not bring further performance gains.
Specifically, the throughput of OpenBox plateaus around
67 Gbps, while the performance of the emulated E2
drops (from 53 to 41 Gbps). Moreover, with 13-16 cores,
the latency of the two systems increases (up to 56% for
OpenBox and up to 25% for the emulated E2); we omit
the latency graph due to space limitations.

In contrast, Metron achieves 75 Gbps throughput using
only a small fraction of the server’s CPU cores. Key
to this performance is Metron’s hardware dispatcher in
the NIC, which offers two advantages: (i) it saves CPU
cycles by performing the lookup operations of the router
and (ii) it load balances the traffic classes matched by
the hardware classifier across the available CPU cores.
Exploiting these advantages allows Metron (i.e., red
squares in Figure 7) to quickly match the performance
of the “Forwarding RSS” case (i.e., black points in
Figure 7a) using only two cores, despite running several
stateful operations (i.e., NAPT and LB). Moreover,
according to a performance report by Mellanox [51], our
NIC achieves line-rate throughput with frames greater
than 512 bytes. Therefore, the 75 Gbps limit reached in
this experiment with the campus trace is mainly due to
the large number of small frames (26.9% of the frames
are smaller than 100 bytes, while 11.8% of them are in

(100, 500]). Finally, Metron’s latency plateaus at a sub-
millisecond level, which is 21-38% lower than the lowest
latency achieved by the other two systems.
Dissecting Metron’s Performance: To quantify the
factors that contribute to Metron’s high performance,
we conducted an additional experiment using the same
testbed, input trace, and service chain. The results
are depicted in Figure 7b. Note that the red curves
(i.e., Metron’s throughput) in Figures 7a and 7b are
identical. The purpose of Figure 7b is to showcase
what performance penalties are expected when one starts
removing our key contributions from Metron, as follows:

1. Metron without hardware offloading (i.e., blue
triangles in Figure 7b). Hardware offloading
corresponds to Contribution 1 in §1.2;

2. Metron without hardware dispatching to the correct
core (purple rhombs in Figure 7b). Accurate
dispatching corresponds to Contribution 2 in §1.2;

3. Metron without both of the two contributions (gray
stars in Figure 7b).

Comparing “Metron” vs. “Metron w/o HW Offl.”
quantifies the benefits of Metron’s hardware offloading
feature. In the “Metron w/o HW Offl.” case input
packets are still dispatched to the correct core (using
the Flow Director component of the Mellanox NIC),
but each core executes the entire service chain logic in
software. The throughput achieved in this case (i.e., blue
triangles in Figure 7b) is comparable with the throughput
of the “OpenBox RSS” case shown in Figure 7a. A
key difference between these cases is that “Metron w/o
HW Offl.” performs the routing table lookup twice;
once in the NIC for traffic dispatching and the second in
software (to disable hardware offloading), after packets
are dispatched to the correct core. In contrast, OpenBox
uses RSS for dispatching and implements the routing
table only once in software. Neither of these cases
exploits the available capacity of the NIC to offload the
routing operations, thus costing CPU cycles.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Fat-tree k=4
16 Servers
200 Chains

Fat-tree k=8
128 Servers
1000 Chains

Fat-tree k=16
1024 Servers
10000 Chains

%
 r

el
at

iv
e

to
 U

ni
fo

rm
 P

la
ce

m
en

t

Uniform Metron Placements
Nearly-Uniform Metron Placements

Remaining Metron Placements

(a) Metron’s placement relative to the uniform placement policy.
Metron makes uniform or nearly uniform (with the least distance from
uniform) placement decisions with ∼90% median probability.

100

102

104

106

108

Fat-tree k=4
16 Servers
200 Chains

Fat-tree k=8
128 Servers
1000 Chains

Fat-tree k=16
1024 Servers
10000 ChainsB

an
dw

id
th

 R
eq

ui
re

m
en

ts
 (M

es
sa

ge
s) Metron Placement

Uniform Placement

(b) Bandwidth requirements on a logarithmic scale with increasing
number of servers and service chains. Metron requires orders of
magnitude less bandwidth than the uniform placement policy.

Figure 8: Placement performance and bandwidth requirements on three fat-tree topologies of increasing number of
servers (i.e., 16, 128, and 1024), when using (i) Metron or (ii) the uniform (equal number of CPU cores per server)
placement scheme to deploy a large number of service chains.

Next, the comparison between “Metron” and “Metron
w/o HW Disp.” cases highlights the cost of inter-core
communication. “Metron w/o HW Disp.” implements
the routing lookup in hardware (i.e., hardware offloading
is enabled), hence reducing the processing requirements
of the software part of the service chain. However, this
case exhibits a serious bottleneck compared to Metron,
as it requires a software component to (re-)classify input
packets to decide which CPU core processes them (i.e.,
software dispatching similar to the emulated E2 case in
Figure 7a). As shown in Figure 7, both “Metron w/o
HW Disp.” and the emulated E2 cases exhibit similar
performance degradation as their software dispatcher
communicates with an increasing number of CPU cores.
This degradation appears earlier for “Metron w/o HW
Disp.” (i.e., after 5 cores versus 12 cores for the emulated
E2 case). This is because “Metron w/o HW Disp.”
offloads part of the service chain’s processing to the NIC,
hence the inter-core communication bottleneck appears
sooner. In contrast, Metron exploits the ability of the
NIC to directly dispatch traffic to the correct core, thus
avoiding the need for a software dispatcher and the
concomitant inter-core communication.

Finally, the “Metron w/o O and w/o D” case in
Figure 7b shows the throughput attainable when both
hardware offloading and accurate dispatching features
are disabled. In this case, input packets are always
sent to an “incorrect” core (specifically the core where
the software dispatcher runs) and the entire service
chain runs in software. The inter-core communication
bottleneck manifests itself once again, this time after
using 9 or more cores.
Key Outcome: As explained in §2, Metron’s ability to
scale complex (i.e., DPI) and stateful (i.e., NAPT and
LB) NFs is due to the way that the incoming traffic
classes are identified, tagged, and dispatched to the CPU
cores in a load balanced fashion. Metron’s ability to

realize these service chains at the NIC’s hardware limit
with a single server is an important achievement.

3.1.3 Metron’s Placement in Large Networks
To verify that the performance of our placement scheme
(see §2.3.3) can be generalized to real and potentially
large networks, we conducted experiments that emulate
Metron’s service chain placement in datacenters, using
fat-tree topologies of increasing sizes (see Figure 8).
Our analytic study shows how close Metron’s placement
decisions are compared to uniform placement and what
bandwidth requirements each approach demands for a
large number of service chains. Note that the uniform
placement allocates equal number of CPUs from the
available servers, while a nearly uniform placement
exhibits the least distance from the uniform. Note
also that our approach is not restricted to datacenter
topologies; Metron’s placement is topology-agnostic.

Figure 8a compares Metron’s placement with the
uniform placement policies with increasing number of
servers (i.e., 16, 128, and 1024) and service chains (i.e.,
200, 1000, and 10000). The first of each set of bars
indicate that Metron’s placement decisions match the
uniform ones with ∼40% median probability, regardless
of the network’s size and number of service chains to be
placed. For 16 servers, the upper percentile indicates that
Metron makes a uniform decision with 70% probability.
According to the other two sets of bars, most of the
remaining decisions made by Metron fall very close to
uniform (i.e., middle set of bars), confirming that our
placement policy makes reasonably balanced decisions,
despite its “limited” randomness.

Figure 8b shows the bandwidth savings of our
placement policy, compared to the uniform one. To make
a uniform placement decision, a controller has to query
the CPU availability from all the available servers, thus,
incurring a communication overhead proportional to the

network size (which quickly becomes infeasible for large
networks). This overhead is shown by the second of
each set of bars in Figure 8b. To reduce this overhead,
we trade-off some accuracy in placement to minimize
Metron’s bandwidth requirements. The first of each set
of bars in Figure 8b shows that Metron requires orders
of magnitude less bandwidth than the uniform policy to
place a large number of service chains on these networks.
An indirect (but important) benefit of our low overhead
placement is that, by querying only 2 servers at a time,
we generate a minimal number of events at the servers,
hence preserving processing cycles for other tasks.

3.2 Metron’s Dynamic Scaling
Next, we evaluate Metron’s dynamic scaling strategy
(introduced in §2.3.4) using a scenario with a service
chain configuration taken from an Internet Service
Provider (ISP) [65], targeting a 10 Gbps network. The
service chain consists of an ACL with 725 rules,
followed by a NAPT gateway that interconnects the
ISP with the Internet while performing source and
destination address and port translation & routing.

We deployed this service chain on a single server
connected to our switch, to which a real trace was
injected at variable bitrates. The solid curve in Figure 9
shows the throughput corresponding to the rate at which
the trace was injected, while the dashed curve depicts the
throughput achieved by Metron. To highlight Metron’s
ability to provision resources on demand, we plot the
number of cores allocated by Metron over the course of
the experiment (yellow circles and right-hand scale).

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100 110 120 130
 0

 2

 4

 6

 8

 10

Th
ro

ug
hp

ut
 (G

bp
s)

A
llocated N

um
ber of C

P
U

 C
ores

Time (seconds)

Input Traffic
Metron Throughput

Metron CPU Allocation

Figure 9: Metron under dynamic workload. Blue arrows
indicate load spikes throughout the experiment.

The experiment begins with an allocation of 4 CPU
cores (precalculated based upon the initial injection rate).
Following this, the Metron controller makes dynamic
decisions based on monitoring data gathered from the
data plane and dynamically modifies the mapping of
traffic classes to tags (thus affecting load distribution). In
this experiment Metron requires between 1 and 6 CPU
cores to accommodate the input traffic. In some cases,
Metron fails to immediately adapt to sudden spikes,
thus we observe a slight lag in Metron’s reactions (e.g.,

as shown in the interval between 84 and 90 seconds).
This is because our scaling approach involves interaction
between the controller and the involved nodes (i.e., the
server and the switch) in order to establish the CPU
affinity of the traffic classes. To avoid overloading the
controller, this interaction occurs every 500 ms, which
contributes to the observed lag. However, Metron’s
throughput is not substantially affected by this lag (the
blue arrows indicate the upward spikes in load at 10,
17, 42, 70, and 97 seconds). As we confirm in §3.3.2,
Metron is able to quickly install the necessary rules to
enforce the traffic class affinity.

3.3 Deployment Micro-benchmarks
We benchmark how quickly Metron carries out important
control and data plane tasks, such as hardware and
software configuration, in a fully automated fashion.

3.3.1 Impact of Increasing # of Traffic Classes
To study the impact of increasingly complex service
chains on Metron’s deployment latency, we use a firewall
with an increasing number of rules (up to 4000, derived
from actual ISP firewalls [65]). We measure the time
between when a request to deploy this NF is issued by
an application and the actual NF deployment either in
hardware or in software.

In either case, the first task of Metron is to construct
and synthesize the packet processing graph of the service
chain (as per §2.3.1), as depicted in the first of each
group of bars (in black) in Figures 10a and 10b. This
latency is the dominant latency in both hardware and
software-based deployments (see the last set of bars in
each figure). Fortunately, this is a one time overhead for
each unique service chain; considering the importance of
generating such an optimized processing graph, Metron
precomputes and stores the synthesized graph for a given
input in its distributed database.

Apart from this fixed latency operation, a purely
hardware-based deployment, requires two additional
operations, as shown in Figure 10a. The first operation
is the automatic translation of the firewall’s synthesized
packet processing graph into hardware instructions
targeting our OpenFlow switch (the second bar in
each set of bars). This operation involves building a
classification tree that encodes all the conditions of the
firewall rules, therefore it has logarithmic complexity
with the number of traffic classes. For example, under
the specified experimental conditions, the median time
to encode a large firewall with 4000 traffic classes is
around 500 ms. The last operation in the hardware-based
deployment is the rule installation in the OpenFlow
switch (the third bar in each set of bars in Figure 10a).
Note that even entry-level OpenFlow switches, such as
the one used, can install thousands of rules per second;

 0.1

 1

 10

 100

 1000

 10000

5 10 100 500 1000 2000 3000 4000

La
te

nc
y

(m
s)

Number of Traffic Classes

Graph Construction + Synthesis
Rule Translation

 Rule Installation - NoviFlow 1132
Total Hardware Deployment

(a) Hardware-based deployment on a NoviFlow 1132 switch.

 0.1

 1

 10

 100

 1000

 10000

5 10 100 500 1000 2000 3000 4000

La
te

nc
y

(m
s)

Number of Traffic Classes

Graph Construction + Synthesis
Server Configuration

Total Software Deployment

(b) Software-based deployment on a 16-core Intel Xeon E5-2667.

Figure 10: Latency (ms) on a logarithmic scale for different Metron deployments with increasing complexity.

a more thorough study is provided in §3.3.2, where we
discuss the effects of hardware diversity on Metron.

For a purely software-based deployment of this same
service chain, we consider the time following graph
construction and synthesis until the chain is deployed
at a designated server. This latency is labeled “Server
Configuration” in Figure 10b. Note that it takes longer
per rule than for the corresponding hardware-based case
for a small number of traffic classes because there is a
fixed overhead to start a secondary DPDK process (i.e., a
Metron slave) at the server. This overhead is ∼180 ms as
can be seen from the case of 5 traffic classes. However,
the (median) deployment time is 0.471 ms/rule (versus
0.411 ms/rule for the hardware case shown in Table 2),
hence a large firewall deployment takes a comparable
amount of time either in software or hardware.

Overall, apart from the one-time precomputation
overhead for constructing and synthesizing a service
chain, the worst case deployment time of a firewall with
4000 traffic classes is less than 1200 ms, whereas only
100-200 ms is required for hundreds of traffic classes.

3.3.2 Diversity of Network Elements’ Capabilities
Network elements from different vendors and of different
price levels might offer different possibilities for NFV
offloading. In this section we repeat the hardware-based
deployment shown in Figure 10a, where we replace
the NoviFlow switch with either a hybrid HP 5130 El
hardware switch or the software-based OVS. Table 2
summarizes the results along with key characteristics
of these switches, as they affect Metron’s deployment
choices and performance.

The NoviFlow switch contains 55 OpenFlow tables,
each with a capacity of 4096 entries (i.e., 225280 rules
in total), while the HP switch offers a single OpenFlow
table with either 512/256 entries for IPv4/IPv6-based
rules or 16384 entries for L2 rules. The capacity of OVS
depends on the amount of memory that the host machine
provides; modern servers provide ample DRAM capacity
to store millions of rules.

The median rule installation speed of the NoviFlow
switch is substantially higher than HP (0.411 vs.
50.25 ms/rule), with the difference being more than two
orders of magnitude. However, this difference is partially
reflected in the price difference between the two switches
(approximately US$ 15000 vs. US$ 2000). OVS is open
source, achieves lower data plane performance, but
outperforms both hardware-based switches in terms of
median rule installation speed (0.263 ms/rule), when
running on the processor described for the testbed in §3.
This finding is confirmed by earlier studies [45, 46],
where the rule installation speed varied especially when
priorities are involved. In our test, Metron installed rules
of the same priority and we observed low variance.

In summary, today’s OpenFlow switches provide
Metron with fast median rule installation speed and
sufficient capacity at different price/performance levels.

Table 2: Comparison of 3 switches used by Metron. The
last column states their median rule installation speed.

Switch Capacity
(Rules)

Speed
(ms/rule)Model Type

NoviFlow
1132 [53]

HW 225280 0.411

HP 5130
El [28]

HW
256/512
/16384

50.250

OVS [57]
v2.5.2

SW
Memory
-bound

0.263

4 Related Work
Here, we discuss related efforts beyond the work
mentioned inline throughout this paper.
NFV Management: E2 [59] and Metron manage
service chains mapped to clusters of servers
interconnected via programmable switches. E2 only
partially exploits OpenFlow switches to perform traffic
steering. In contrast, Metron fully exploits the network
(i.e., OpenFlow switches and NICs) to both steer traffic

and to offload and load balance NFV service chains,
while deliberately avoiding E2’s inter-core transfers.
NFV Consolidation: OpenBox [13] merges similar
packet processing elements into one, thus reducing
redundancy. SNF [36] eliminates processing redundancy
by synthesizing multiple NFs as an optimized equivalent
NF. Slick [3] and CoMb [62] propose NF consolidation
schemes, although these schemes reside higher in the
network stack. We integrated SNF into Metron, since
this is the most extensive consolidation scheme to date.
Metron effectively coordinates these optimized pipelines
at a large-scale, while exploiting the hardware.
Hardware Programmability: During the last decade,
there has been a large effort to increase hardware
programmability. OpenFlow [50] paved the way by
enriching the programmability of switches using simple
match-action rules. Increasingly, NICs are equipped with
hardware components, such as RSS and Flow Director,
for dispatching packets from NIC to CPU core.

In an attempt to overcome the static nature of the
above solutions, more flexible programmability models
have emerged. RMT [12] and its successor P4 [11]
are prime examples of protocol-independent packet
processors, while OpenState [8] and OPP [9] showed
how OpenFlow can become stateful with minimal but
essential modifications. FlexNIC [38] proposed a model
for additional programmability in future NICs.

All these works have made phenomenal progress
towards exposing hardware configuration knobs. Metron
acts as an umbrella to foster the integration of this
diverse set of programmable devices into a common
management plane. In fact, our prototype integrates
OpenFlow switches, DPDK-compatible NICs, and
servers. Thanks to ONOS’s abstractions, additional
network drivers can be easily integrated.
Hardware Offloading: Raumer et al. [61] offloaded
the cryptographic function of a virtual private network
(VPN) gateway into commodity NICs, for increased
performance. SwitchKV [48] offloads key-value
stores into OpenFlow switches. PacketShader [26],
Kargus [32], NBA [41], and APUNet [24] take advantage
of inexpensive but powerful graphical processing units
to offload and accelerate packet processing. We envision
these works as future components of Metron to extend its
offloading abilities.

ClickNP [47] showed how to achieve high
performance packet processing by completely migrating
NFV into reconfigurable, but specialized hardware. In
contrast, our philosophy is to explore the boundaries
of commodity hardware. Therefore, Metron performs
stateful processing in software but combines it with
smart offloading using commodity hardware.
Server-level Solutions: Flurries [70] builds atop
OpenNetVM [71] to provide software-based service

chains on a per-flow basis, while ClickOS [49] and
NetVM [29] offer NFs running in VMs. NFP [63]
extends OpenNetVM to allow NFs in a service chain
to be executed in parallel. Dysco [69] proposes a
distributed protocol for steering traffic across the NFs
of a service chain. NFVnice [44] and SCC [37,
34] are efficient NFV schedulers. Click-based [42]
approaches have proposed techniques to exploit multi-
core architectures [6, 64, 40]. None of these works
have explored the possibility of using hardware to
offload parts of a service chain, nor do they support our
optimized flow affinity approach.
Industrial Efforts: European Telecommunications
Standards Institute (ETSI) has been driving NFV
standardization during the last 5 years [21]. ETSI’s
specialized group [22] uses OpenStack [58] as an open
implementation of the current NFV standards, based on
a generic framework for managing compute, storage,
and network resources. CORD [55] and OPNFV [66]
also use OpenStack. The former re-architects the
central office as a datacenter, while the latter facilitates
the interoperability of NFV components across various
open source ecosystems. Metron and CORD share
common controller abstractions (i.e., ONOS); however,
we avoid OpenStack’s virtualization by integrating
native, DPDK-based solutions. Unlike CORD, our
controller leverages placement techniques with minimal
overhead (see §2.3.3 and §3.3) and sophisticated NF
consolidation (see §2.3.1) to achieve high performance.

5 Conclusion

We have presented Metron, an NFV platform that
fundamentally changes how service chains are
realized. Metron eliminates the need for costly inter-core
communication at the servers by delegating packet
processing and CPU core dispatching operations to
programmable hardware devices. Doing so offers
dramatic hardware efficiency and performance increases
over the state of the art. With commodity hardware
assistance, Metron fully exploits the processing capacity
of a single server, to deeply inspect traffic at 40 Gbps
and execute stateful service chains at the speed of a
100 GbE NIC.

6 Acknowledgments

We would like to thank our shepherd Vyas Sekar and
the anonymous reviewers for their insightful comments
on this paper. This work is financially supported by the
Swedish Foundation for Strategic Research. In addition,
this work was partially supported by the Wallenberg
Autonomous Systems Program (WASP).

References
[1] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A

Scalable, Commodity Data Center Network Architecture. In
Proceedings of the ACM SIGCOMM 2008 Conference on Data
Communication (2008), pp. 63–74.

[2] AL-FARES, M., RADHAKRISHNAN, S., RAGHAVAN, B.,
HUANG, N., AND VAHDAT, A. Hedera: Dynamic Flow
Scheduling for Data Center Networks. In Proceedings of the
7th USENIX Conference on Networked Systems Design and
Implementation (2010), NSDI’10.

[3] ANWER, B., BENSON, T., FEAMSTER, N., AND LEVIN, D.
Programming Slick Network Functions. In Proceedings of the 1st
ACM SIGCOMM Symposium on Software Defined Networking
Research (2015), SOSR ’15, pp. 14:1–14:13.

[4] BARBETTE, T. Repository with DPDK extensions for OpenBox,
2018. https://github.com/tbarbette/fastclick/tree/
openbox.

[5] BARBETTE, T., AND KATSIKAS, G. P. Metron data plane,
2018. https://github.com/tbarbette/fastclick/tree/
metron.

[6] BARBETTE, T., SOLDANI, C., AND MATHY, L. Fast
Userspace Packet Processing. In Proceedings of the 11th
ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (2015), ANCS ’15, IEEE
Computer Society. http://dl.acm.org/citation.cfm?id=
2772722.2772727.

[7] BERDE, P., GEROLA, M., HART, J., HIGUCHI, Y.,
KOBAYASHI, M., KOIDE, T., LANTZ, B., O’CONNOR, B.,
RADOSLAVOV, P., SNOW, W., AND PARULKAR, G. ONOS:
Towards an Open, Distributed SDN OS. In Proceedings of the
3rd Workshop on Hot Topics in Software Defined Networking
(2014), HotSDN ’14, pp. 1–6.

[8] BIANCHI, G., BONOLA, M., CAPONE, A., AND CASCONE,
C. OpenState: Programming Platform-independent Stateful
Openflow Applications Inside the Switch. SIGCOMM Comput.
Commun. Rev. (2014).

[9] BIANCHI, G., BONOLA, M., PONTARELLI, S., SANVITO, D.,
CAPONE, A., AND CASCONE, C. Open Packet Processor: a
programmable architecture for wire speed platform-independent
stateful in-network processing. arXiv preprint arXiv:1605.01977
(2016).

[10] BJORKLUND, M. YANG - A Data Modeling Language for the
Network Configuration Protocol (NETCONF). Internet Request
for Comments (RFC) 6020 (Proposed Standard), Oct. 2010.
https://www.rfc-editor.org/rfc/rfc6020.txt.

[11] BOSSHART, P., DALY, D., GIBB, G., IZZARD, M., MCKEOWN,
N., REXFORD, J., SCHLESINGER, C., TALAYCO, D., VAHDAT,
A., VARGHESE, G., AND WALKER, D. P4: Programming
Protocol-independent Packet Processors. SIGCOMM Comput.
Commun. Rev. 44, 3 (July 2014), 87–95.

[12] BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE, G.,
MCKEOWN, N., IZZARD, M., MUJICA, F., AND HOROWITZ,
M. Forwarding Metamorphosis: Fast Programmable Match-
action Processing in Hardware for SDN. In Proceedings of the
ACM SIGCOMM 2013 Conference on (2013), pp. 99–110.

[13] BREMLER-BARR, A., HARCHOL, Y., AND HAY, D. OpenBox:
A Software-Defined Framework for Developing, Deploying,
and Managing Network Functions. In Proceedings of the
2016 Conference on ACM SIGCOMM 2016 Conference (2016),
SIGCOMM ’16, pp. 511–524.

[14] CASE, J., FEDOR, M., SCHOFFSTALL, M. L., AND DAVIN,
J. Simple Network Management Protocol (SNMP). Internet
Request for Comments (RFC) 1157, May 1990. http://
www.ietf.org/rfc/rfc1157.txt.

[15] CHOWDHURY, M., RAHMAN, M. R., AND BOUTABA, R.
ViNEYard: Virtual Network Embedding Algorithms with
Coordinated Node and Link Mapping. IEEE/ACM Trans. Netw.
20, 1 (Feb. 2012), 206–219.

[16] CISCO. Migrate to a 40-Gbps Data Center with Cisco QSFP
BiDi Technology, 2013. http://www.cisco.com/c/en/us/
products/collateral/switches/nexus-9000-series-
switches/white-paper-c11-729493.html.

[17] DIETZ, T., BIFULCO, R., MANCO, F., MARTINS, J., KOLBE,
H., AND HUICI, F. Enhancing the BRAS through virtualization.
In Proceedings of the 1st IEEE Conference on Network
Softwarization, NetSoft 2015 (2015), pp. 1–5.

[18] DOBRESCU, M., EGI, N., ARGYRAKI, K., CHUN, B.-G.,
FALL, K., IANNACCONE, G., KNIES, A., MANESH, M., AND
RATNASAMY, S. RouteBricks: Exploiting Parallelism to Scale
Software Routers. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles (2009), SOSP ’09,
pp. 15–28.

[19] DPDK. Data Plane Development Kit, 2018. http://dpdk.org.

[20] ENNS, R., BJORKLUND, M., SCHOENWAELDER, J., AND
BIERMAN, A. Network Configuration Protocol (NETCONF).
Internet Request for Comments (RFC) 6241 (Proposed Standard),
June 2011. Updated by RFC 7803, https://www.rfc-
editor.org/rfc/rfc6241.txt.

[21] EUROPEAN TELECOMMUNICATIONS STANDARDS INSTITUTE.
Network Functions Virtualisation, 2017. http://
www.etsi.org/technologies-clusters/technologies/
689-network-functions-virtualisation.

[22] EUROPEAN TELECOMMUNICATIONS STANDARDS INSTITUTE
(ETSI). Open Source NFV Management and Orchestration
(MANO) , 2018. https://osm.etsi.org/.

[23] GEMBER-JACOBSON, A., VISWANATHAN, R., PRAKASH, C.,
GRANDL, R., KHALID, J., DAS, S., AND AKELLA, A.
OpenNF: Enabling Innovation in Network Function Control.
In Proceedings of the 2014 ACM Conference on SIGCOMM
(2014), SIGCOMM ’14, pp. 163–174.

[24] GO, Y., ASIM JAMSHED, M., MOON, Y., HWANG, C., AND
PARK, K. APUNet: Revitalizing GPU as Packet Processing
Accelerator. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17) (2017), USENIX
Association, pp. 83–96.

[25] HAN, S., JANG, K., PANDA, A., PALKAR, S., HAN, D.,
AND RATNASAMY, S. SoftNIC: A Software NIC to Augment
Hardware. Tech. Rep. UCB/EECS-2015-155, EECS Department,
University of California, Berkeley, May 2015.

[26] HAN, S., JANG, K., PARK, K., AND MOON, S. PacketShader:
A GPU-accelerated Software Router. In Proceedings of the ACM
SIGCOMM 2010 Conference (2010), SIGCOMM ’10, pp. 195–
206.

[27] HE, J., ZHANG-SHEN, R., LI, Y., LEE, C.-Y., REXFORD,
J., AND CHIANG, M. DaVinci: Dynamically Adaptive Virtual
Networks for a Customized Internet. In Proceedings of the
2008 ACM CoNEXT Conference (New York, NY, USA, 2008),
CoNEXT ’08, ACM, pp. 15:1–15:12.

[28] HEWLETT PACKARD. HPE FlexNetwork 5130
EI Switch Series, Jan. 2017. https://
h50146.www5.hpe.com/products/networking/datasheet/
HP_5130EI_Switch_Series_J.pdf.

[29] HWANG, J., RAMAKRISHNAN, K. K., AND WOOD, T. NetVM:
High Performance and Flexible Networking Using Virtualization
on Commodity Platforms. In Proceedings of the 11th USENIX
Conference on Networked Systems Design and Implementation
(2014), NSDI’14, pp. 445–458.

https://github.com/tbarbette/fastclick/tree/openbox
https://github.com/tbarbette/fastclick/tree/openbox
https://github.com/tbarbette/fastclick/tree/metron
https://github.com/tbarbette/fastclick/tree/metron
http://dl.acm.org/citation.cfm?id=2772722.2772727
http://dl.acm.org/citation.cfm?id=2772722.2772727
https://www.rfc-editor.org/rfc/rfc6020.txt
http://www.ietf.org/rfc/rfc1157.txt
http://www.ietf.org/rfc/rfc1157.txt
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-729493.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-729493.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-729493.html
http://dpdk.org
https://www.rfc-editor.org/rfc/rfc6241.txt
https://www.rfc-editor.org/rfc/rfc6241.txt
http://www.etsi.org/technologies-clusters/technologies/689-network-functions-virtualisation
http://www.etsi.org/technologies-clusters/technologies/689-network-functions-virtualisation
http://www.etsi.org/technologies-clusters/technologies/689-network-functions-virtualisation
https://osm.etsi.org/
https://h50146.www5.hpe.com/products/networking/datasheet/HP_5130EI_Switch_Series_J.pdf
https://h50146.www5.hpe.com/products/networking/datasheet/HP_5130EI_Switch_Series_J.pdf
https://h50146.www5.hpe.com/products/networking/datasheet/HP_5130EI_Switch_Series_J.pdf

[30] INTEL. Receive-Side Scaling (RSS), 2007. http:
//www.intel.com/content/dam/support/us/en/
documents/network/sb/318483001us2.pdf.

[31] INTEL. Ethernet Flow Director, 2018. http://www.intel.com/
content/www/us/en/ethernet-controllers/ethernet-
flow-director-video.html.

[32] JAMSHED, M. A., LEE, J., MOON, S., YUN, I., KIM, D., LEE,
S., YI, Y., AND PARK, K. Kargus: A Highly-scalable Software-
based Intrusion Detection System. In Proceedings of the 2012
ACM Conference on Computer and Communications Security
(2012), CCS ’12.

[33] KABLAN, M., ALSUDAIS, A., KELLER, E., AND LE, F.
Stateless Network Functions: Breaking the Tight Coupling
of State and Processing. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17)
(2017), pp. 97–112.

[34] KATSIKAS, G. P. Realizing High Performance NFV Service
Chains. Licentiate Thesis (Nov. 2016). TRITA-ICT 2016:35,
http://kth.diva-portal.org/smash/record.jsf?pid=
diva2%3A1044355&dswid=-1520.

[35] KATSIKAS, G. P. Metron controller’s southbound driver for
managing commodity servers, 2018. https://github.com/
gkatsikas/onos/tree/metron-driver.

[36] KATSIKAS, G. P., ENGUEHARD, M., KUŹNIAR, M.,
MAGUIRE JR., G. Q., AND KOSTIĆ, D. SNF: Synthesizing
high performance NFV service chains. PeerJ Computer Science
2 (Nov. 2016), e98. http://dx.doi.org/10.7717/peerj-
cs.98.

[37] KATSIKAS, G. P., MAGUIRE JR., G. Q., AND KOSTIĆ, D.
Profiling and accelerating commodity NFV service chains with
SCC. Journal of Systems and Software 127C (Feb. 2017), 12–27.
https://doi.org/10.1016/j.jss.2017.01.005.

[38] KAUFMANN, A., PETER, S., SHARMA, N. K., ANDER-
SON, T., AND KRISHNAMURTHY, A. High Performance
Packet Processing with FlexNIC. In Proceedings of the
21st International Conference on Architectural Support for
Programming Languages and Operating Systems (2016),
ASPLOS ’16, pp. 67–81.

[39] KHALID, J., GEMBER-JACOBSON, A., MICHAEL, R.,
ABHASHKUMAR, A., AND AKELLA, A. Paving the Way for
NFV: Simplifying Middlebox Modifications Using StateAlyzr.
In Proceedings of the 13th USENIX Conference on Networked
Systems Design and Implementation (2016), NSDI’16, USENIX
Association, pp. 239–253.

[40] KIM, J., HUH, S., JANG, K., PARK, K., AND MOON, S. The
Power of Batching in the Click Modular Router. In Proceedings
of the Asia-Pacific Workshop on Systems (2012), APSYS ’12,
pp. 14:1–14:6.

[41] KIM, J., JANG, K., LEE, K., MA, S., SHIM, J., AND
MOON, S. NBA (Network Balancing Act): A High-performance
Packet Processing Framework for Heterogeneous Processors.
In Proceedings of the 10th European Conference on Computer
Systems (2015), EuroSys ’15.

[42] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND
KAASHOEK, M. F. The Click Modular Router. ACM Trans.
Comput. Syst. 18, 3 (Aug. 2000), 263–297.

[43] KRISHNAN, R., DURRANI, M., AND PHAAL, P. Real-time SDN
Analytics for DDoS mitigation, 2014.

[44] KULKARNI, S. G., ZHANG, W., HWANG, J., RAJAGOPALAN,
S., RAMAKRISHNAN, K. K., WOOD, T., ARUMAITHURAI, M.,
AND FU, X. NFVnice: Dynamic Backpressure and Scheduling
for NFV Service Chains. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication (New
York, NY, USA, 2017), SIGCOMM ’17, ACM, pp. 71–84.

[45] KUŹNIAR, M., PEREŠÍNI, P., AND KOSTIĆ, D. What You
Need to Know About SDN Flow Tables. In Passive and Active
Measurement (PAM) (2015), vol. 8995 of Lecture Notes in
Computer Science, pp. 347–359. https://doi.org/10.1007/
978-3-319-15509-8_26.

[46] KUŹNIAR, M., PEREŠÍNI, P., KOSTIĆ, D., AND CANINI,
M. Methodology, Measurement and Analysis of Flow
Table Update Characteristics in Hardware OpenFlow Switches.
Computer Networks: The International Journal of Computer
and Telecommunications Networking, Elsevier, vol. 26 (2018).
https://doi.org/10.1016/j.comnet.2018.02.014.

[47] LI, B., TAN, K., LUO, L. L., PENG, Y., LUO, R., XU,
N., XIONG, Y., CHENG, P., AND CHEN, E. ClickNP:
Highly Flexible and High Performance Network Processing with
Reconfigurable Hardware. In Proceedings of the 2016 ACM
SIGCOMM Conference (2016), SIGCOMM ’16, pp. 1–14.

[48] LI, X., SETHI, R., KAMINSKY, M., ANDERSEN, D. G.,
AND FREEDMAN, M. J. Be Fast, Cheap and in Control with
SwitchKV. In Proceedings of the 13th USENIX Conference
on Networked Systems Design and Implementation (2016),
NSDI’16, USENIX Association, pp. 31–44.

[49] MARTINS, J., AHMED, M., RAICIU, C., OLTEANU, V.,
HONDA, M., BIFULCO, R., AND HUICI, F. ClickOS and the
Art of Network Function Virtualization. In Proceedings of the
11th USENIX Conference on Networked Systems Design and
Implementation (2014), NSDI’14, pp. 459–473.

[50] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H.,
PARULKAR, G., PETERSON, L., REXFORD, J., SHENKER, S.,
AND TURNER, J. OpenFlow: Enabling Innovation in Campus
Networks. SIGCOMM Comput. Commun. Rev. 38, 2 (Mar.
2008), 69–74.

[51] MELLANOX TECHNOLOGIES. Mellanox NIC’s
Performance Report with DPDK 17.05, 2017.
Document number MLNX-15-52365, Revision
1.0, 2017, http://fast.dpdk.org/doc/perf/
DPDK_17_05_Mellanox_NIC_performance_report.pdf.

[52] MITZENMACHER, M. The Power of Two Choices in
Randomized Load Balancing. IEEE Trans. Parallel Distrib. Syst.
12, 10 (Oct. 2001), 1094–1104.

[53] NOVIFLOW. NoviSwitch 1132 High Performance Open-
Flow Switch, 2013. https://noviflow.com/wp-content/
uploads/NoviSwitch-1132-Datasheet-V2_1.pdf.

[54] OLTEANU, V. A., AND RAICIU, C. Efficiently Migrating
Stateful Middleboxes. In Proceedings of the ACM SIGCOMM
2012 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (2012), SIGCOMM
’12, ACM, pp. 93–94.

[55] ON.LAB. Central Office Re-architected as a Datacenter (CORD),
2018. http://opencord.org/.

[56] ON.LAB. Open Network Operating System (ONOS), 2018.
http://onosproject.org/.

[57] OPEN VSWITCH. An Open Virtual Switch, 2018. http://
openvswitch.org.

[58] OPENSTACK. Open Source Cloud Computing Software, 2018.
https://www.openstack.org/.

[59] PALKAR, S., LAN, C., HAN, S., JANG, K., PANDA, A.,
RATNASAMY, S., RIZZO, L., AND SHENKER, S. E2: A
Framework for NFV Applications. In Proceedings of the 25th
Symposium on Operating Systems Principles (2015), SOSP ’15,
pp. 121–136.

[60] PESTEREV, A., ZELDOVICH, N., AND MORRIS, R. T. Locating
Cache Performance Bottlenecks Using Data Profiling. In
Proceedings of the 5th European Conference on Computer
Systems (2010), EuroSys ’10, pp. 335–348.

http://www.intel.com/content/dam/support/us/en/documents/network/sb/318483001us2.pdf
http://www.intel.com/content/dam/support/us/en/documents/network/sb/318483001us2.pdf
http://www.intel.com/content/dam/support/us/en/documents/network/sb/318483001us2.pdf
http://www.intel.com/content/www/us/en/ethernet-controllers/ethernet-flow-director-video.html
http://www.intel.com/content/www/us/en/ethernet-controllers/ethernet-flow-director-video.html
http://www.intel.com/content/www/us/en/ethernet-controllers/ethernet-flow-director-video.html
http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1044355&dswid=-1520
http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1044355&dswid=-1520
https://github.com/gkatsikas/onos/tree/metron-driver
https://github.com/gkatsikas/onos/tree/metron-driver
http://dx.doi.org/10.7717/peerj-cs.98
http://dx.doi.org/10.7717/peerj-cs.98
https://doi.org/10.1016/j.jss.2017.01.005
https://doi.org/10.1007/978-3-319-15509-8_26
https://doi.org/10.1007/978-3-319-15509-8_26
https://doi.org/10.1016/j.comnet.2018.02.014
http://fast.dpdk.org/doc/perf/DPDK_17_05_Mellanox_NIC_performance_report.pdf
http://fast.dpdk.org/doc/perf/DPDK_17_05_Mellanox_NIC_performance_report.pdf
https://noviflow.com/wp-content/uploads/NoviSwitch-1132-Datasheet-V2_1.pdf
https://noviflow.com/wp-content/uploads/NoviSwitch-1132-Datasheet-V2_1.pdf
http://opencord.org/
http://onosproject.org/
http://openvswitch.org
http://openvswitch.org
https://www.openstack.org/

[61] RAUMER, D., GALLENMÜLLER, S., EMMERICH, P., MÄR-
DIAN, L., WOHLFART, F., AND CARLE, G. Efficient serving
of VPN endpoints on COTS server hardware. In 2016 IEEE 5th
International Conference on Cloud Networking (CloudNet’16)
(Pisa, Italy, Oct. 2016).

[62] SEKAR, V., EGI, N., RATNASAMY, S., REITER, M. K.,
AND SHI, G. Design and Implementation of a Consolidated
Middlebox Architecture. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation
(2012), NSDI’12.

[63] SUN, C., BI, J., ZHENG, Z., YU, H., AND HU, H. NFP:
Enabling Network Function Parallelism in NFV. In Proceedings
of the Conference of the ACM Special Interest Group on Data
Communication (New York, NY, USA, 2017), SIGCOMM ’17,
ACM, pp. 43–56.

[64] SUN, W., AND RICCI, R. Fast and Flexible: Parallel Packet
Processing with GPUs and Click. In Proceedings of the 9th
ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (Piscataway, NJ, USA, 2013), ANCS
’13, IEEE Press, pp. 25–36.

[65] TAYLOR, D. E., AND TURNER, J. S. ClassBench: A Packet
Classification Benchmark. IEEE/ACM Trans. Netw. 15, 3 (June
2007), 499–511.

[66] THE LINUX FOUNDATION. Open Platform for NFV (OPNFV),
2018. https://www.opnfv.org/.

[67] VIEJO, A. QLogic and Broadcom First to Demonstrate End-
to-End Interoperability for 25Gb and 100Gb Ethernet, 2015.
https://globenewswire.com/news-release/2015/01/
27/700249/10116850/en/QLogic-and-Broadcom-First-
to-Demonstrate-End-to-End-Interoperability-for-
25Gb-and-100Gb-Ethernet.html.

[68] YU, M., YI, Y., REXFORD, J., AND CHIANG, M. Rethinking
Virtual Network Embedding: Substrate Support for Path Splitting
and Migration. SIGCOMM Comput. Commun. Rev. 38, 2 (Mar.
2008), 17–29.

[69] ZAVE, P., FERREIRA, R. A., ZOU, X. K., MORIMOTO, M.,
AND REXFORD, J. Dynamic Service Chaining with Dysco.
In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication (New York, NY, USA, 2017),
SIGCOMM ’17, ACM, pp. 57–70.

[70] ZHANG, W., HWANG, J., RAJAGOPALAN, S., RAMAKRISH-
NAN, K., AND WOOD, T. Flurries: Countless Fine-Grained
NFs for Flexible Per-Flow Customization. In Proceedings of the
12th ACM International Conference on Emerging Networking
Experiments and Technologies (2016), CoNEXT ’16, pp. 3–17.

[71] ZHANG, W., LIU, G., ZHANG, W., SHAH, N., LOPREIATO,
P., TODESCHI, G., RAMAKRISHNAN, K., AND WOOD,
T. OpenNetVM: A Platform for High Performance Network
Service Chains. In Proceedings of the 2016 ACM SIGCOMM
Workshop on Hot Topics in Middleboxes and Network Function
Virtualization (August 2016), ACM.

https://www.opnfv.org/
https://globenewswire.com/news-release/2015/01/27/700249/10116850/en/QLogic-and-Broadcom-First-to-Demonstrate-End-to-End-Interoperability-for-25Gb-and-100Gb-Ethernet.html
https://globenewswire.com/news-release/2015/01/27/700249/10116850/en/QLogic-and-Broadcom-First-to-Demonstrate-End-to-End-Interoperability-for-25Gb-and-100Gb-Ethernet.html
https://globenewswire.com/news-release/2015/01/27/700249/10116850/en/QLogic-and-Broadcom-First-to-Demonstrate-End-to-End-Interoperability-for-25Gb-and-100Gb-Ethernet.html
https://globenewswire.com/news-release/2015/01/27/700249/10116850/en/QLogic-and-Broadcom-First-to-Demonstrate-End-to-End-Interoperability-for-25Gb-and-100Gb-Ethernet.html

	Introduction
	NFV Processing Challenges
	Metron Research Contributions

	System Architecture
	Overview
	Metron Data Plane
	Metron Control Plane
	Synthesis of Packet Processing Graphs
	Initial Resource Allocation
	Placement
	Dynamic Scaling
	Integrating Blackbox NFs

	Routing (Updates) and Failures

	Evaluation
	Metron Large-Scale Deployment
	Deep Packet Inspection at 40 Gbps
	Stateful Service Chaining at 100 Gbps
	Metron's Placement in Large Networks

	Metron's Dynamic Scaling
	Deployment Micro-benchmarks
	Impact of Increasing # of Traffic Classes
	Diversity of Network Elements' Capabilities

	Related Work
	Conclusion
	Acknowledgments

