
A High Throughput Atomic Storage Algorithm

Rachid Guerraoui
EPFL, Lausanne

Switzerland

Dejan Kostić
EPFL, Lausanne

Switzerland

Ron R. Levy
EPFL, Lausanne

Switzerland

Vivien Quéma
CNRS, Grenoble

France

Abstract

This paper presents an algorithm to ensure the atomic-
ity of a distributed storage that can be read and written by
any number of clients. In failure-free and synchronous situ-
ations, and even if there is contention, our algorithm has a
high write throughput and a read throughput that grows lin-
early with the number of available servers. The algorithm
is devised with a homogeneous cluster of servers in mind. It
organizes servers around a ring and assumes point-to-point
communication. It is resilient to the crash failure of any
number of readers and writers as well as to the crash failure
of all but one server. We evaluated our algorithm on a clus-
ter of 24 nodes with dual fast ethernet network interfaces
(100 Mbps). We achieve 81 Mbps of write throughput and
8×90 Mbps of read throughput (with up to 8 servers) which
conveys the linear scalability with the number of servers.

1 Introduction

Distributed storage systems [1, 7, 20, 26] are gaining
in popularity as appealing alternatives to their expensive
controller-based counterparts. A distributed storage sys-
tem relies on a cluster of cheap distributed commodity ma-
chines. The goal of this distribution is to ensure resilience
on the one hand and, on the other hand, to boost perfor-
mance by adjusting the number of servers to the number of
clients to be served concurrently. At the heart of such sys-
tems lies a storage algorithm. In short, such algorithms al-
low concurrent clients to share information through shared
read/write objects (register abstractions [21]) implemented
over a set of failure-prone servers. Distributed storage sys-
tems combine multiple of these read/write objects, each
storing its share of data, as building blocks for a single large
storage systems. Not surprisingly, the performance of such
a storage system depends on the performance of the under-
lying algorithm implementing the read/write objects.

We consider in this paper an atomic and resilient stor-
age that can be read or written by an unbounded number
of clients. An atomic storage guarantees that, despite con-

current invocations, every read or write operation appears
to execute instantaneously at some point between its invo-
cation and completion instants [18, 21]. It was recently ar-
gued [20, 26] that atomicity is a desired property for dis-
tributed storage systems. In our context, resilience means
that every non-faulty client eventually gets a reply to ev-
ery (read or write) invocation despite the failures of other
clients or (a subset of the) servers. We focus on crash fail-
ures and we consider a homogeneous cluster of server ma-
chines. Such clusters usually have low inter-server com-
munication latency and fine tuned TCP channels that make
failure detection reliable. However, one might expect that
such clusters also deliver low latency client operations, es-
pecially in failure-free and synchronous situations for these
are considered the most frequent in practice.

Studying lower bounds on the latency of distributed stor-
age algorithms has been a very active area of research in the
last decade [2, 12, 16]. In general, such studies focus on the
isolated latency of a read or a write operation, assuming in
particular that every server is ready to perform this opera-
tion. In practice, when a high number of clients are served
concurrently, low overall latency can only be provided with
high throughput. In short, under high load, the latency per-
ceived by clients is the sum of the time spent waiting for the
operation to be served plus the actual service time. Clearly,
when a lot of clients access the storage concurrently, the
higher the throughput, the smaller the waiting time. Ideally,
one would aim at scalability, meaning that increasing the
number of machines should improve the throughput of the
storage system.

To motivate the design of our algorithm and illustrate
why studying isolated latency might be misleading, we
compare in Figure 1 two algorithms. A quorum-based tra-
ditional one [4, 24] and a less traditional one without inter-
server communication. The example involves three servers
and clients performing read operations on the storage (Fig-
ure 1). Clients always first contact a single server and
communication between servers proceeds in a round-based
manner. For simplicity, we assume that sending and re-
ceiving a message always takes the same time: one round.
Therefore in each round, a server can receive a single mes-



sage and send a single message. Algorithm A is a majority
based algorithm: 2 out of 3 servers are needed to complete
each operation. Upon receiving a request, server s1 con-
tacts s2, and upon receiving a reply from s2, replies to the
client. Likewise, s2 contacts s3 and s3 contacts s1. The
servers need 3 rounds before they can receive a new client
request. Under full load, the servers can complete 3 requests
every 3 rounds, inducing a throughput of 1 read operation
per round. In algorithm B the servers do not communi-
cate in order to complete a read request. The latency is the
same as that of algorithm A: 4 rounds. However, after an
initial period of 4 rounds, the servers can complete 3 read
operations each round, achieving a throughput of 3 read op-
erations per round.

Figure 1 also illustrates why quorum-based algorithms
do not scale: a majority of servers need to receive all mes-
sages and adding more servers does not help. The prob-
lem is exacerbated by the fact that quorum-based algorithms
typically use one-to-many communication patterns (multi-
casts) to disseminate the information quickly. The rationale
is mainly that the cost of receiving one message is equal to
that of receiving multiple messages, especially when com-
pared to the message propagation time. While this might be
true in widely distributed environments (e.g., Internet), this
assumption does not hold in a cluster environment subject
to a heavy load, which we consider in this work. Clearly,
techniques that aim at optimizing latency of isolated oper-
ations are not necessarily the best when high throughput is
desired.1

In this work, we exploit the availability of reliable failure
detection in a homogeneous cluster environment to alleviate
the need for quorum-based strategies. In fact, it might ap-
pear trivial to devise a storage algorithm with high through-
put if failure detection is reliable. This is not however the
case as we discuss below. First, atomicity and resilience in-
duce an inherent trade-off between the throughput of reads
and that of writes. Basically, the more servers are updated
by a write, the less servers need to be consulted by a read
in order to fetch the last written value (and vice-versa). It
is typical to favor reads at the expense of writes, following
the argument that reads should be expedited for they occur
more frequently than writes. Since in our case maximum
resilience (tolerating the failure of all but one server) is re-
quired, the writer should update all servers. In this case, a
simple read-one write-all-available algorithm might appear
to do the job. To ensure atomicity however, one needs to
solve the read-inversion problem and prevent any read from
returning an old value after an earlier read returned a new

1Certain techniques can be used to improve the throughput of quorum-
based algorithms. In [26] for instance, reads that are issued during con-
tention free periods are handled more efficiently than reads that are concur-
rent with write operations. Yet reads still need to contact at least a majority
of servers, which means that under high loads, there is no improvement of
the throughput.

value. One way to address this issue is to add a write phase
to every read. However, this clearly decreases the through-
put. Besides, if write messages are simply broadcast to all
servers, the throughput would suffer even more drastically
under high load. Modern full-duplex network interfaces can
indeed receive and send messages at the same time. How-
ever, when receiving several messages at the same time, col-
lisions occur at the network layer [8]. A retransmission is
thus necessary, in turn causing even more collisions, ulti-
mately harming the throughput of write operations.

We present in this paper an atomic storage algorithm that
is resilient to the crash failure of any number of readers and
writers as well as to the crash failure of all but one server.
In failure-free and synchronous periods, our algorithm has a
high write throughput and a read throughput that grows lin-
early with the number of available servers. This is ensured
even in the face of contention. Our algorithm is based on
two key ideas. First, we ensure atomicity and prevent the
read-inversion problem by adding a pre-write phase to the
write (instead of a write-phase to the read). This idea is, we
believe, interesting in its own right because reads are local
and immediate when there is no contention. Second, we or-
ganize the servers following a ring to ensure constant write
throughput and avoid collisions during concurrent writes.
This second idea was also used in implementing a total or-
der broadcast primitive [3, 10, 15], and one might actually
wonder here whether it would not have been interesting to
consider a modular approach in devising an atomic storage
algorithm using such a primitive. Ensuring the atomicity of
the storage would however have required to also totally or-
der the reads, hampering its scalability. In [28], servers are
organized in a chain to ensure high throughput for replica
updates. This replication scheme can then be used to ob-
tain a distributed atomic storage with high write through-
put. However, the reads (also called queries) are always
directed to the same single server and are therefore not scal-
able. We ensure liveness by imposing a fairness strategy on
the servers.

We evaluated the implementation of our algorithm on a
cluster of 24 machines (dual Intel 900MHz Itanium-2 pro-
cessors, 3GB of RAM) with dual fast ethernet network in-
terfaces (100 Mbps). We achieve 81 Mbps of write through-
put and 8 × 90 Mbps of read throughput (with up to 8
servers). To our knowledge, our algorithm is the first atomic
storage algorithm to achieve a read throughput that grows
linearly with the number of available servers.

The paper is organized as follows. Section 2 describes
our system model. Section 3 presents the algorithm. The
performance is discussed in Section 4 and 5. A correctness
proof of our algorithm can be found in the full version of
our paper [14].



client request latency client request latency

Algorithm A Algorithm B

s1

s2

s3

Figure 1. Throughput comparison between two algorithms: A and B. Both have the same latency but
the throughput of B outperforms that of A. Client server communication messages are represented
by the dotted lines.

2 Model

We consider a cluster environment where n homoge-
neous servers are connected via a local area network. We
do not bound the number of client processes nor the con-
currency among these. Any client can read or write in the
storage. Every pair of processes communicate by message-
passing using a bi-directional reliable communication chan-
nel (we do not assume FIFO channels here).2

We focus on process crash failures: when a process
crashes, it stops performing any further computation steps.
A process that crashes is said to be faulty. A process that
is not faulty is said to be correct. We make no assumption
on the number of possible crashes except that at least one
server should be correct in every computation.

We use a ring communication pattern, meaning that
servers are organized in a ring and communicate only with
their neighbors. Each server creates a TCP connection to
its successor in the ring and maintains this connection dur-
ing the entire execution of the algorithm (unless the suc-
cessor fails). Because of the simple communication pat-
tern, the homogeneous environment and low local area net-
work latency, it is reasonable to assume that when a TCP
connection fails, the server on the other side of the con-
nection failed [11]. Using this mechanism we implement
a Perfect failure detector (P ) [6]. Although our algorithm
tolerates asynchrony, its performance is optimized for syn-
chronous periods during which message transmission de-
lays are bounded by some known value. The throughput is
measured during such periods.

Evaluating the performance of message-passing proto-
cols requires an adequate performance model. Some mod-
els only address point-to-point networks, where no native
broadcast primitive is available [5, 9]. Our algorithm does

2Even if we did assume FIFO channels, our fairness mechanism would
make this assumption useless.

not use any broadcast primitive, but we do not wish to
exclude it from our performance model for the sake of
comparison with other algorithms. A recently proposed
model [27] is useful for reasoning about throughput, al-
though it assumes that processes do not simultaneously send
and receive messages. We would like to better capture the
behavior of modern network cards which provide full du-
plex connectivity. The round-based model [13, 19, 23] is
in that sense more convenient as it assumes that a process
can send a message to one or more processes at the start
of each round, and can receive the messages sent by other
processes at the end of the round. It is however not realis-
tic in our cluster context to consider that several messages
can be simultaneously received by the same process. In-
deed, receiving two messages at the same time might result
in a collision at the network level, requiring a retransmis-
sion. Whereas, this model is well-suited for proving lower
bounds on the latency of protocols, it is illsuited for predict-
ing the throughput of these protocols.

We propose to evaluate message-passing protocols con-
sidering a synchronous round-based model but assuming
the following: in each round k, every process pi can exe-
cute the following steps: (1) pi computes the message for
round k, m(i, k), (2) pi broadcasts m(i, k) to all or a subset
of processes and (3) pi receives at most one message sent
at round k. The synchrony assumption implies that, at any
time, all processes are in the same round. The broadcast
primitive we assume corresponds to the multicast primitive
provided at the ethernet level. There are no reliability guar-
antees, except in the absence of failures or collisions. The
analytical analysis of the performance of our algorithm will
be based on this model. Interestingly, the experimental eval-
uation confirms these numbers, conveying in some sense the
validity of this model in our context of a homogeneous clus-
ter.



3 The Storage Algorithm

Our storage algorithm was designed with the three fol-
lowing properties in mind: resilience, atomicity and high
throughput. Our algorithm satisfies these properties us-
ing two key mechanisms: a read-one pre-write/write-all-
available strategy and a fairness rule orchestrating the
servers in a ring. In this section, we explain these key mech-
anisms and how they ensure the desired properties.

This is the pseudo-code of our algorithm:

At the client c:
1: procedure write (v)
2: send 〈write,v〉 to any pi ∈ S
3: wait until receive 〈write ack〉 from pi

4: return ok
5: end

6: procedure read ()
7: send 〈read〉 to any pi ∈ S
8: wait until receive 〈read ack,v〉 from pi

9: return v
10: end

At the server process pi:
11: procedure initialization:
12: v ← ⊥, ts← 0, id← ⊥
13: pending write set← ∅
14: forward queue← ∅
15: write queue← ∅
16: nb msg[pj ]← 0 ∀pj ∈ S
17: end

18: upon receive 〈write, v′〉 from c do
19: write queue.last← [v′, c]
20: end upon

21: procedure write(v′, c)
22: highest = maxlex(pending write set)
23: tag ← [max(highest.ts, ts) + 1, i]
24: pending write set← pending write set ∪ tag
25: send 〈pre write, c, v′, tag〉 to pnext

26: nb msg[pi]← nb msg[pi] + 1
27: write queue← write queue− [v′, c]
28: end

29: upon receive 〈pre write, v′, [ts′, id′]〉 do
30: if id 6= i then
31: forward queue.last← 〈pre write, v′, [ts′, id′]〉
32: else
33: if [ts′, id′] >lex [ts, id] then
34: [ts, id]← [ts′, id′]
35: v ← v′

36: end if
37: pending write set← pending write set− [ts′, id′]
38: send 〈write, v, [ts′, id′]〉 to pnext

39: end if
40: end upon

41: upon receive 〈write, v′, [ts′, id′]〉 do
42: if id′ 6= i then
43: if [ts′, id′] >lex [ts, id] then
44: [ts, id]← [ts′, id′]
45: v ← v′

46: end if
47: pending write set← pending write set− [ts′, id′]
48: forward queue.last← 〈write, v′, [ts′, id′]〉
49: else
50: send 〈write ack〉 to c
51: end if
52: end upon

53: task queue handler
54: if forward queue = ∅ then
55: nb msg[pj ]← 0 ∀pj ∈ S

56: if write queue 6= ∅ then
57: write(write queue.first)
58: end if
59: else
60: if write queue 6= ∅ then
61: select pj s.t. nb msg[pj ] is minimal
62: else
63: select pj 6= pi s.t. nb msg[pj ] is minimal
64: end if
65: if pj = pi then
66: write(write queue.first)
67: else
68: msg ← select first in forward queue sent by pj

69: send msg to pnext

70: forward queue← forward queue−msg
71: pending write set← pending write set ∪msg.tag
72: nb msg[pj ]← nb msg[pj ] + 1
73: end if
74: end if
75: end

76: upon receive 〈read〉 from c do
77: if pending write set = ∅ then
78: send 〈read ack, v〉 to c
79: else
80: highest = maxlex(pending write set)
81: wait until receive 〈write, v′, [ts′, id′]〉 ∧ ([ts′, id′] ≥lex highest)

82: send 〈read, v′〉 to c
83: end if
84: end upon

85: upon pj crashed do
86: if pj = pnext then
87: pnext = pj+1
88: send 〈write, v, [ts, id]〉 to pnext

89: for each v′, [ts′, id′] ∈ pending write set do
90: send 〈pre write, v′, [ts′, id′]〉 to pnext

91: end for
92: end if
93: end upon

Clients send Read and Write requests to any server in
S. If the server contacted by the client crashes, the client re-
issues the request to another server. Clients do not directly
detect the failure of a server, but when their request times-
out, they simply re-send it to another server.

As we pointed out, our algorithm is resilient in the sense
that it tolerates the failure of n−1 out of n server processes
and the failure of any number of clients. Atomicity [18, 22]
dictates that every read or write operation appears to execute
at an individual moment of time, between its invocation and
responses. In particular, a read always returns the last writ-
ten value, even if there is only one server that did not crash.
We ensure this using a write-all-available scheme. Newly
written values are sent to all processes before the write op-
eration returns and each process keeps a local copy of the
latest value.

Values are ordered using a timestamp which is stored
together with the value. Processes only replace their lo-
cally stored values with values that have a higher timestamp.
Since a write contacts all processes, a process wishing to
perform a write does not need to contact any other process
to get the highest timestamp. Before each write, the locally
stored timestamp can simply be incremented, thus ensuring
that timestamps increase monotonically. (Ties are broken
using process ids).



Read operations do not involve any communication be-
tween server processes. Clients directly access the value
stored locally at a server process. The difficulty here lies in
ensuring atomicity using these local reads and in particular
in preventing the read inversion problem. Consider an exe-
cution where a value is written and stored at all processes.
Due to asynchrony, not all processes might learn about the
new value at the same time. Before the write completes, a
reader contacts a process that has the new value and thus
returns the new value. Afterwards a second reader contacts
a process which does not know of the new value (since the
write is not yet completed) and thus returns the old value,
violating atomicity.

Our algorithm handles this issue using a pre-write mech-
anism. The write involves two consecutive phases: a
pre write phase and a write phase. In the pre write
phase, all processes are informed of the new value that is
going to be written. Only when all processes acknowledge
the pre write, does the write phase actually start.

During a read, if a process knows of a pre write value
that has not yet been written, it waits until the value has
been written before returning it. This ensures that when the
new value is returned, all processes know of the new value
through the pre write phase and any subsequent read will
also return the new value. Consequently, when there are
no unwritten pre write values, processes can immediately
return the latest written value. In the case of concurrent
writes, processes might see several unwritten pre write
values, in which case they wait for the value with the highest
timestamp to be written. As will be explained in Section 4,
waiting increases the latency for a single request, but does
not influence the throughput of a loaded system. An illus-
tration of an algorithm execution is provided in Figure 2.

So far, no mention was made about the communication
pattern that is used for contacting all processes during the
actual writes. The choice of the communication pattern
has no influence on the correctness of the algorithm, but
it does influence the throughput. Our algorithm organizes
all servers in a ring and messages are forwarded from each
server to its neighbor. This simple communication pattern
avoids any unpredictability causing message collisions, es-
pecially under high loads. Also, there is no need for explicit
acknowledgment messages, since knowing that a message
has been forwarded around the ring once implies that all
processes have seen the message.

In the case of a crash of a server process pj , the crash
will eventually be detected by the crashed process’ prede-
cessor in the ring pj−1 using the perfect failure detector.
The crashed process pj will be removed from the ring. Any
pending messages that were not forwarded due to the crash
are forwarded to the new successor by pj , ensuring that
all pre-write and write messages are eventually forwarded
around the ring. This however is not enough to ensure re-

silience. Under high loads, processes must decide to either
forward messages received from their neighbor or initiate a
new write upon receiving a request from a client. If each
process would prioritize requests received from clients, no
message would ever be forwarded on the ring.

Our algorithm handles this issue using a fairness mech-
anism which ensures that each process can complete its
fair share of writes and that all write operations eventually
complete. Each process keeps two queues: a write queue
which contains write requests received from clients and a
forward queue which contains messages received from
the predecessor which are to be forwarded to the successor.
A table nb msg keeps track of how many messages have
been forwarded for each process: there is an entry for each
process pj , counting the number of messages originating at
pj that were forwarded. Messages in the forward queue
are not forwarded in FIFO order, but the first message from
the processes that has the smallest number of forwarded
messages will be sent to the successor.

4 Analytical Evaluation

We consider two performance metrics: Latency, defined
here as the number of rounds required for a client to com-
plete a read or write invocation and Throughput, defined
here as the number of invocations (read or write) that can
be completed per round. Note that our throughput defini-
tion is similar to the one proposed in [17].

4.1 Latency

The read latency of our algorithm is equal to 2 rounds,
since a read operation only requires 1 round-trip from the
client to the server. The latency of a write operation is equal
to 2N +2 rounds. A write operation first requires the client
to send a write message to the server (1 round). Then,
the server sends a pre write message along the ring (N
rounds). Once it receives its own pre write message, the
server sends a write message along the ring (N rounds).
Finally, upon the reception of its own write message, the
server replies to the client with a write ack message (1
round). The write latency is thus linear with respect to the
number of servers.

4.2 Throughput

For simplicity of presentation, this analysis only con-
siders messages exchanged between servers. Note that in
our experimental setup, client messages do indeed tran-
sit on their own dedicated network. Our evaluation also
shows however, that when clients and servers use the same
network, they both share the available bandwith evenly.
Assuming that there exists at least 1 server that receives



W(v2)

R…

R

R: v2

v1

pre_write(v2) write(v2)

R…
R: v2

W(v2): ok

1 2 3

: v1

: v1 , pre_write v2 : v2

s1

s2

s3s4

s5

s1

s2

s3s4

s5

s1

s2

s3s4

s5

Figure 2. Illustration run of the storage algorithm. (1) After receiving the write request W (v2), s1

sends a pre write(v2) message to its successor. A read request is received by s3, which must wait
before replying because of the pre-write, whereas s5 can reply directly to the client’s read request.
(2) Upon receiving its own pre write(v2) message, s1 sends a write(v2) message. Upon receiving this
message s3 can reply to its client’s read request. Now s5 must wait until it receives the write(v2)
message before replying to a new read request. (3) Upon receiving its own write(v2) message, s1

replies to the client and s5 can also reply to its client.

1 new write request per round, our storage algorithm al-
lows completing 1 write operation per round on average.
This is due to the fact that (1) messages are disseminated
along a ring once, (2) write messages are piggybacked on
pending write messages without the need for explicit ac-
knowledgements, and (3) the fairness mechanism guaran-
tees that write requests eventually complete. This ensures
that each server can forward a new write message at the end
of each round, and thus the algorithm allows 1 write request
per round to complete on average.

Assuming that there are only read requests, the read
throughput is equal to n. This is due to the fact that each
of the n servers can reply to a different read invocation at
each round. Thus, increasing the number of machines does
not impact the write throughput, and favorably impacts the
read throughput.

We now analyze the impact that concurrent writes have
on reads. The fairness mechanism that is integrated into
our algorithm guarantees that 1 write can be completed per
round on average, and that the maximum latency of a write
request is bounded (let lmax be this maximum latency).
Consider a server si which receives an infinite number of
read requests. Before replying to the client, si must wait
for the latest pre-write to complete, i.e. lmax rounds in the
worst case. After an initial period of lmax rounds, si can
fulfill 1 read request each round. The read throughput for si

is therefore 1. Since reads do not involve additional com-
munication between servers, each server can serve clients
independently at a throughput of 1, bringing the total read
throughput during Rhl to n.

Algorithms based on underlying total order broadcast

primitives have the same throughput as the underlying
atomic broadcast algorithm for both read and write oper-
ations. The highest throughput we know of for such algo-
rithms is 1 [15]. Determining the throughput of a quorum-
based algorithm is complicated in the general case and de-
pends on the exact quorum configuration [25]. However,
in [25] it is mathematically proven that the throughput of
a quorum system cannot scale linearly as is the case in our
algorithm.

5 Experimental Evaluation

Our algorithm was implemented in C (approximately
1500 lines). The implementation consists of separate code
for a client (reader or writer) and a server. In order to
stress the servers without needing an enormous number of
client machines, the client application can emulate multiple
clients, i.e. it can send multiple read and write requests in
parallel. Thus, a single writing node can saturate the storage
implementation (the servers and the network links) and so
the maximum throughput, under high load, can be captured.

We performed the experiments using up to 24 homoge-
neous nodes (Linux 2.6, dual Intel 900MHz Itanium-2 pro-
cessors, 3GB of RAM, 100Mbit/s switched ethernet). Sim-
ilarly to the assumption made in Section 4.2, servers and
clients are interconnected by two separate networks: server
nodes are connected to each other on one network and com-
municate with clients on the other. The load is generated by
two dedicated client machines for each server, either per-
forming reads or writes depending on the experiment. Ev-
ery measurement has been performed at least 3 times and



the average over all measurements has been recorded.
Figure 3 depicts the results of the experiments. In the

first chart, each server is connected to two client machines
which generate read requests. There are no concurrent
writes. The read throughput is measured at each client and
the total is reported on the chart. It can easily be seen that
the total read throughput increases linearly and is equal to
90 MBit/s per server. In the second chart, the clients gen-
erate only write requests. The write throughput when the
number of servers is between 2 and 8 remains almost con-
stant and is about 80 Mbit/s. It is also interesting to note
that during the experiment, each client machine roughly ob-
served the same write throughput, i.e. 80 Mbit/s divided by
the number of servers.

The following experiment examines the total through-
put of the system with write contention. The load on each
server is generated by a dedicated reader and a dedicated
writer. This represents a more realistic case in which read
and write requests are issued concurrently by many clients.
The results are shown on the third chart. The implemen-
tation behaves as predicted by our analytical analysis: the
write throughput remains constant at around 80 Mbit/s and
the read throughput scales linearly and is almost as high as
in the contention free case (a performance penalty of about
15% is incurred). The decrease in performance is, we be-
lieve, due to the additional overhead of queuing client read
requests while at the same time running the fairness mech-
anism for write requests.

The next experiment examines the total throughput of the
system during contention when clients and servers share a
single network connection. The results are shown in bot-
tom most chart. Obviously, read and write throughput suf-
fer, but the write throughput remains constant at around 45
Mbit/s whereas the read throughput scales linearly at about
31 Mbit/s per additional server. This means that each server
uses about 76 Mbit/s of its incoming and outgoing network
bandwith despite concurrency.

The latency measurements are presented in Figure 4. Be-
cause of the ring topology, the write latency grows linearly
with the number of servers. The read latency stays constant
since it involves only a single round-trip between the client
and a server.

References

[1] M. Abd-El-Malek, W. V. Courtright, C. Cranor, G. R.
Ganger, J. Hendricks, A. J. Klosterman, M. Mesnier,
M. Prasad, B. Salmon, R. R. Sambasivan, S. Sinnamo-
hideen, J. D. Strunk, E. Thereska, M. Wachs, and J. J. Wylie.
Ursa minor: Versatile cluster-based storage. In Proceedings
of the FAST ’05 Conference on File and Storage Technolo-
gies. USENIX, 2005.

Read throughput without contention:

0

100

200

300

400

500

600

700

800

2 3 4 5 6 7 8

Number of servers

To
ta

l r
ea

d 
th

ro
ug

hp
ut

 (M
B

it/
s)

Write throughput without contention:

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8

Number of Servers

To
ta

l w
rit

e 
th

ro
ug

hp
ut

 (M
B

it/
s)

Read & write throughput contention on separate networks:

0

100

200

300

400

500

600

700

2 3 4 5 6 7 8

Number of servers

To
ta

l t
hr

ou
gh

pu
t (

M
B

it/
s)

Total Read Throughput
Total Write Throughput

Read & write throughput contention on shared network:

0

50

100

150

200

250

300

2 3 4 5 6 7 8

Number of servers

To
ta

l t
hr

ou
gh

pu
t (

M
bi

t/s
) Total Write Throughput

Total Read Throughput

Figure 3. Read and write throughput.



0

10

20

30

40

50

60

70

2 3 4 5 6 7 8

Number of servers

La
te

nc
y 

(m
s)

Write latency
Read latency

Figure 4. Read and write latency.

[2] I. Abraham, G. Chockler, I. Keidar, and D. Malkhi. Byzan-
tine disk paxos: optimal resilience with byzantine shared
memory. Distributed Computing, 18(5):387–408, 2005.

[3] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal,
and P. Ciarfella. The Totem single-ring ordering and mem-
bership protocol. ACM Transactions on Computer Systems,
13(4):311–342, 1995.

[4] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory ro-
bustly in message-passing systems. Journal of the ACM,
42(1):124–142, 1995.

[5] A. Bar-Noy and S. Kipnis. Designing broadcasting algo-
rithms in the postal model for message-passing systems.
Mathematical Systems Theory, 27(5):431–452, 1994.

[6] T. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43(2):225–
267, 1996.

[7] B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weather-
spoon, F. Kaashoek, J. Kubiatowicz, and R. Morris. Effi-
cient replica maintenance for distributed storage systems. In
Proceedings of the 3rd USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’06), San Jose,
CA, May 2006.

[8] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser,
E. Santos, R. Subramonian, and T. von Eicken. LogP: To-
wards a realistic model of parallel computation. In Proceed-
ings of the fourth ACM SIGPLAN symposium on Principles
and practice of parallel programming, pages 1–12, 1993.

[9] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser,
E. Santos, R. Subramonian, and T. von Eicken. LogP: To-
wards a realistic model of parallel computation. In Proceed-
ings of the fourth ACM SIGPLAN symposium on Principles
and practice of parallel programming, pages 1–12, 1993.

[10] X. Défago, A. Schiper, and P. Urbán. Total order broad-
cast and multicast algorithms: Taxonomy and survey. ACM
Computer Survey, 36(4):372–421, 2004.

[11] J. Dunagan, N. J. A. Harvey, M. B. Jones, D. Kostic,
M. Theimer, and A. Wolman. Fuse: Lightweight guaran-
teed distributed failure notification. In Proceedings of 6th
Symposium on Operating Systems Design and Implementa-
tion (OSDI ’04), 2004.

[12] P. Dutta, R. Guerraoui, R. R. Levy, and A. Chakraborty. How
fast can a distributed atomic read be? In Proceedings of the

23rd ACM Symposium on Principles of Distributed Comput-
ing (PODC’04), pages 236 – 245, 2004.

[13] E. Gafni. Round-by-round fault detectors (extended ab-
stract): unifying synchrony and asynchrony. In Proceedings
of the seventeenth annual ACM symposium on Principles of
distributed computing (PODC’98), pages 143–152, 1998.

[14] R. Guerraoui, R. R. Levy, D. Kostić, and V. Quéma.
A high throughput atomic storage algorithm. In
http://lpd.epfl.ch/site/Publications, 2007.

[15] R. Guerraoui, R. R. Levy, B. Pochon, and V. Quéma.
High Throughput Total Order Broadcast for Cluster Envi-
ronments. In Proceedings of the IEEE International Con-
ference on Dependable Systems and Networks (DSN 2006),
2006.

[16] R. Guerraoui and M. Vukolic. How Fast Can a Very Robust
Read Be? In Proceedings of the 25th ACM Symposium on
Principles of Distributed Computing (PODC’06), 2006.

[17] D. Hendler and S. Kutten. Constructing shared objects that
are both robust and high-throughput. In Proceedings of 20th
international symposium on distributed computing (DISC
’06), pages 428–442, 2006.

[18] M. Herlihy and J. Wing. Linearizability: A correctness con-
dition for concurrent objects. ACM Transactions on Pro-
gramming Languages and Systems, 12(3):463–492, 1990.

[19] I. Keidar and A. Shraer. Timeliness, failure-detectors, and
consensus performance. In Proceedings of the twenty-fifth
annual ACM symposium on Principles of distributed com-
puting (PODC’06), pages 169–178, 2006.

[20] D. R. Kenchammana-Hosekote, R. A. Golding, C. Fleiner,
and O. A. Zaki. The design and evaluation of network raid
protocols. Research report RJ 10316, IBM Almaden Re-
search Center, 2004.

[21] L. Lamport. Time, clocks and the ordering of events in a dis-
tributed system. Communications of the ACM, 21(7):558–
565, 1978.

[22] L. Lamport. The part-time parliament. DEC SRC 1989.
(Also in ACM Transactions on Computer Systems), 1998.

[23] N. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers, San Mateo, CA, 1996.

[24] N. Lynch and A. Shvartsman. Robust emulation of shared
memory using dynamic quorum-acknowledged broadcasts.
Proceedings of the 27th International Symposium on Fault-
Tolerant Computing Systems (FTCS’97), 1997.

[25] M. Naor and A. Wool. The load, capacity, and availability of
quorum systems. SIAM Journal on Computing, 27(2):423–
447, 1998.

[26] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and S. Spence.
Fab: building distributed enterprise disk arrays from com-
modity components. SIGOPS Operating Systems Review,
38(5):48–58, 2004.

[27] P. Urbán, X. Défago, and A. Schiper. Contention-aware
metrics for distributed algorithms: Comparison of atomic
broadcast algorithms. In Proceedings of 9th IEEE Interna-
tional Conference on Computer Communications and Net-
works (IC3N 2000), pages 582–589, 2000.

[28] R. van Renesse and F. B. Schneider. Chain replication for
supporting high throughput and availability. In Proc. of the
6th Symposium on Operationg Systems Design and Imple-
mentation, December 2004.


