
The Nearest Replica Can Be Farther Than You Think

Kirill Bogdanov
KTH Royal Institute of Technology

kirillb@kth.se

Miguel Peón-Quirós ∗

University Complutense of Madrid
mikepeon@gmail.com

Gerald Q. Maguire Jr.
Dejan Kostić

KTH Royal Institute of Technology
maguire@kth.se dmk@kth.se

Abstract
Modern distributed systems are geo-distributed for reasons
of increased performance, reliability, and survivability. At
the heart of many such systems, e.g., the widely used
Cassandra and MongoDB data stores, is an algorithm for
choosing a closest set of replicas to service a client request.
Suboptimal replica choices due to dynamically changing
network conditions result in reduced performance as a result
of increased response latency. We present GeoPerf, a tool
that tries to automate the process of systematically testing
the performance of replica selection algorithms for geo-
distributed storage systems. Our key idea is to combine sym-
bolic execution and lightweight modeling to generate a set
of inputs that can expose weaknesses in replica selection. As
part of our evaluation, we analyzed network round trip times
between geographically distributed Amazon EC2 regions,
and showed a significant number of daily changes in nearest-
K replica orders. We tested Cassandra and MongoDB using
our tool, and found bugs in each of these systems. Finally,
we use our collected Amazon EC2 latency traces to quantify
the time lost due to these bugs. For example due to the bug in
Cassandra, the median wasted time for 10% of all requests
is above 50 ms.

Categories and Subject Descriptors C.2.4 [Computer-
Communication Networks]: Distributed Systems; D.2.5
[Software]: Software Engineering—Symbolic execution

Keywords Geo-Distributed Systems, Replica Selection Al-
gorithms, Symbolic Execution

∗ Work done while the author was at IMDEA Networks Institute.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SoCC ’15, August 27 - 29, 2015, Kohala Coast, HI, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3651-2/15/08. . . $15.00.
http://dx.doi.org/10.1145/2806777.2806939

1. Introduction
Cloud services implemented on top of third party cloud
environments, such as Amazon EC2[1], Microsoft Azure[4],
and Google Cloud[2], comprise many useful services and
serve hundreds of millions of users spread across the globe.
Ensuring low latency when serving user requests is highly
important, as it has become one of the differentiating fea-
tures of the most popular services [20, 21]. Having a reliable
service is important, and the service should even survive fail-
ures of entire datacenters. Therefore, popular cloud services
are typically replicated across geo-distributed datacenters
for reasons of performance, reliability, and survivability.

Achieving high throughput and low latency of responses
to client requests is a difficult problem for cloud services.
Depending on replication policies, the consistency model
of a service and the current network state, clients have to
choose which replica or set of replicas they will access, using
so-called replica selection algorithms. These algorithms are
expected to consistently make excellent choices in the un-
stable environment of geo-distributed systems spread across
the wide-area.

One of the first questions that we wanted to explore is
whether services that are implemented on top of a dedicated
cloud infrastructure exhibit the same level of latency vari-
ability that is observed across the public Internet (in other
words, could we statically configure the replicas once and
for all?). To answer this question, we conducted a thorough
study of application-level and system-level round-trip laten-
cies across all the Amazon EC2 regions. We find that there
is significant variability in network latencies over the course
of a day, as well as over several weeks. Next, we evaluated
how often a replica selection algorithm would experience a
different order of replicas. We find that depending on the
number of replicas that are being queried, there could be
several tens of reorderings during the course of any given
day (even when conservatively removing reorderings shorter
than 5 minutes). Thus, static replica selection would be
suboptimal even over a dedicated infrastructure.

The replica selection process is inherently hard. The
service’s clients conduct passive and active measurements of
the latency for the served requests, and use this past history

to drive future choices of the replicas to use. Unfortunately,
Internet traffic is bursty, and routing (that often does not take
network performance into account) frequently changes as
well. As a result, end-to-end network bandwidth, latency,
and loss rate change dramatically across the wide-area
network. To try to compensate for these issues, a replica
selection process needs to include mechanisms for filtering
and estimating the latency when processing requests. These
mechanisms need to answer a number of difficult questions,
for example: i) for how long should the past latency samples
be kept?; ii) what should be the adaptation rate (new samples
preference)?; iii) how to deal with highly variable samples,
e.g., outliers (discard some or pay attention to them)?

Unfortunately, errors (suboptimal choices) in replica se-
lection algorithms are extremely hard to find. Such errors
usually do not result in critical system failures, and it is hard
to determine the optimal behavior in the absence of up-to-
date, full global knowledge (needed to detect the presence of
an error). Suboptimal replica choices can result in increased
latency, and can drive a significant fraction of the customers
away. For example, Amazon reports that it loses 1% of sales
if response latency increases by 100 ms [27]. Perhaps for
similar reasons, Google [20] explicitly tries to eliminate the
slowest 1% of request responses in their data centers because
even this small fraction of slow responses can cause a large
fraction overall of service responses to be delayed when they
are composed of hundreds of individual subrequests. While
there is a lot of effort to reduce the response latency within
a datacenter, this potential advantage can easily be lost by
poor (erroneous) replica selection. Thus, it is important that
requests are served by replicas that are closer to a client,
and the better the selection algorithm the greater reduction
in latency.

Debugging replica selection algorithms is difficult for
a number of reasons. Bugs can occur due to sampling
problems, problems in math calculations, selection logic
problems, etc. To thoroughly test the selection algorithms
we would need to cover all possible network topologies
and their bandwidth, latency, and loss rate characteristics.
In addition, we would need to anticipate the exact intensity,
duration, and frequency of changes in traffic and routing,
which is impossible. 1 Thus, it is unlikely that unit tests and
simple (no matter how long) simulations can identify all the
bugs. Instead, a systematic testing tool is needed.

In this paper we describe GeoPerf, our tool for automat-
ing the process of testing replica selection algorithms. We
choose to apply symbolic execution [13, 15], because it
systematically uses the code itself to identify test inputs that
can cause the code under test to examine all branches in
the code and ultimately traverse all possible code paths. In
our case the inputs are the changing latencies presented to
the replica selection mechanisms. As a result, we use the

1 If it were possible to do that then we would have the perfect replica
selection algorithm!

symbolic execution engine to answer the difficult aforemen-
tioned questions (e.g., latency change intensity, duration,
and frequency) and systematically look for bugs. Using
symbolic execution comes with its own set of challenges,
however. First, detecting errors using symbolic execution
requires an application to violate certain invariants, such as
an assertion in the code. Specifying these assertions is trivial
in the case of memory bugs. Unfortunately, in our case we
are dealing with performance deviations and we need the
ground truth to define the violation. Second, if the symbolic
execution engine were to propose inserting latencies that go
significantly beyond the observable ones, one could question
the relevance of the bugs found. Thus we need a way of using
realistic latencies. Third, it is easy to run into a path explo-
sion problem due to the large number of possible branches
in the code. A large number of symbolic inputs can similarly
cause an exponential explosion in state space. Unfortunately,
most of the replica selection algorithms contain filtering
mechanisms that would require several symbolic variables
should symbolic execution be applied blindly.

To provide the ground truth, we use lightweight modeling
to approximate what an optimal choice of a replica should
be. Our ground truth is a straightforward selection of closest
replica(s) based on latencies smoothed-out the same way as
in the system under test.2 This means that the code under
test and our model are fed the same latencies in a discrete
event simulator, and symbolic execution then tries to find the
inputs for the next iteration that would cause a divergence in
the choice of replica(s). Any such case is a potential bug. To
address the second challenge, we simply reuse the latencies
we collected across the wide-area network when running
over Amazon EC2 geo-distributed datacenters, and use them
to limit the input ranges that the symbolic execution engine
is allowed to propose. Finally, to address the third challenge
we apply domain-specific knowledge regarding the way the
various latency filtering mechanisms work, enabling the
symbolic execution engine to work across several iterations.
In particular, we make it possible to use only a few symbolic
inputs to drive execution along different code paths and
produce results in a matter of hours.

We believe this is the first tool for systematically testing
geo-distributed replica selection algorithms. We make the
following contributions:
1. We conduct thorough round-trip time measurements
across all geo-distributed datacenters belonging to one
cloud provider (Amazon EC2), for several weeks. To the
best of our knowledge, no such measurements are publicly
available. Using this data, we show that the replica orderings
would change up to several tens of times per day, from any
given datacenter’s viewpoint. Also, we explore the stability
of replica positions in the nearest-K order from any given
datacenter and find a surprising amount of variability.

2 Unless that module is suspected to be buggy, in which case we change the
smoothing mechanism that we use for ground truth.

2. We propose, design, and implement techniques that over-
come challenges in applying symbolic execution to testing
replica selection algorithms.
3. GeoPerf found bugs in the replica selection of two popular
geo-distributed data stores, Cassandra[7] and MongoDB[5].
Interestingly, these bugs belong to different modules. In
Cassandra the bug is in the code choosing the replica after all
the latencies have been examined. We found this bug using
an earlier version of our tool, reported it, and it was fixed. In
contrast, MongoDB’s Java client never clears the buffer that
is used to average the latencies. This bug had previously not
been reported.
4. We go a step further than the typical bug-finding tools in
that we quantify the impact of the bugs that GeoPerf can find.
Specifically, we replay the trace of the latencies we collected
across Amazon EC2, and compute the cumulative time that
is wasted due to the bugs. In the case of Cassandra, the
median wasted time for 10% of all requests is above 50 ms.

2. Systems That Use Replica Selection
Cassandra is a highly configurable NoSQL distributed
database, designed to work with large datasets in local and
geo-distributed environments. Unlike many other distributed
databases, Cassandra can perform read operations with a
per request variable consistency level, depending on the
client’s requirements. The client communicates with one of
the replicas (presumably the one closest to the client). This
node selects a subset of closest replicas (including itself),
forwards the client’s request to them and waits for their
replies. Once enough replicas have replied, a single reply is
sent back to the client. The consistency level can vary from
LOCAL - i.e., reads from a single node, QUORUM (i.e.,
N/2+ 1 replicas), to ALL where all nodes have to respond
prior to returning an answer to the client.

Generally, a configurable number of nodes will be used
to produce an answer, thus allowing a tradeoff between
consistency, availability, and performance – as acceptable
to the client. While performing a quorum read is well
understood, being able to choose a specific subset of nodes
opens a number of possibilities, especially if these nodes
(replicas) are geo-distributed.

MongoDB is a popular distributed document manage-
ment database. It supports atomic, strongly consistent write
operations on a per document basis and either strong or even-
tually consistent read operations depending on the client’s
preferences. MongoDB implements a master-slave replica-
tion strategy, with one primary and a number of secondary
nodes. All write operations are directed towards the primary
node and eventually propagated to the secondary replicas.
Replication increases redundancy, data availability, and read
throughput for clients that accept eventual consistency se-
mantics. By default, a client’s read operations are directed
to the primary machine and return strongly consistent data,
although the client has an option to use secondary replicas,

or to choose the closest node regardless of its current status.
We concentrate on the case of choosing the closest node.

2.1 Replica Selection Algorithms
Replica selection systems usually contain two elements: a
smoothing algorithm (filter) to get rid of high variability, and
the actual replica selection algorithm that acts based on the
latencies computed by the filter.
Latency Smoothing In data streaming systems it is com-
mon to reduce the weights of older data samples. This is
done to smooth out short term high variance in sampled
data and gives higher weight to the most recent samples. A
well-known example from statistics is a group of Weighted
Moving Average (WMA) and Exponentially Weighted Mov-
ing Averages (EWMA) functions. This class of functions
is commonly used during distance estimation in replica
selection algorithms and applied to sampled data, such as
RTT or system load.

For latency smoothing, Cassandra uses the off-the-shelf
Java Metrics library v2.2.0 [3]. This library implements a
special type of a time-decaying function called Forward
Decay Sample (FDS) [18] (via the library class Exponen-
tiallyDecayingSample). Similarly to EWMA it gives greater
weight to recent samples.

Latency estimation in MongoDB is responsibility of the
client’s driver, which chooses the closest server to connect
to. MongoDB has multiple clients for compatibility with
many programming languages, and currently there are more
than a dozen different client’s drivers (including open source
community drivers). Naturally many of them have been
implemented by different developers, thus their implemen-
tations have significant differences in peer selection. In
our work, we concentrate on comparing the C++ and Java
drivers, as these are considered to be the most widely used
and also represent the most distinct implementations in
terms of latency smoothing. Note that the C++ driver uses
EWMA with a coefficient of 0.25 applied to new samples,
while the Java driver is using a Cumulative Moving Average
(CMA) (arithmetic average across all collected values).
Replica selection algorithm Cassandra implements a mod-
ule called Snitch to help each node to choose the best set of
replicas to which to direct read operations. There are several
types of Snitches [8] that allow administrators to tailor the
logic to the deployment environment. In particular, Dynamic
Snitch automatically chooses the closest node(s), and can
be summarized as follows: (1) Asynchronously, each replica
contacts every other replica with request messages. The time
it took from the request until the reply is received is passed
through the Forward Decay Sample smoothing function.
This time contains both the RTT network component and
the retrieval (service) time at the remote node (the later is an
indirect indicator of the load at that node). (2) Periodically,
current values from the smoothing filters are collected and
normalized, providing a list of scores assigned to each
replica. By default, this process is executed every 100 ms. (3)

These scores are used when the local node needs to forward
client requests to other replicas. The selection process itself
is executed in two stages. First, all replicas are sorted based
on their physical location, so that all replicas in the same
rack and then in the same datacenter as the source are at the
top of the list. Second, the delta of a score is computed from
the local node (originator of the query) to all other nodes. If
the delta is greater than a threshold (default configuration is
10%) of the difference to the closest node, then all nodes are
sorted based on their score. Finally, the top K elements from
the list are chosen3.

Unlike Cassandra, MongoDB drivers (both C++ and
Java) rely only on the network RTT to compute network
distance to replicas: (1) The collected latency samples are
passed through EWMA with the filter coefficient 0.25 and
CMA in C++ and Java drivers, respectively. The sampling
occurs at a hard-coded heartbeat frequency of 5 s in both
drivers. (2) Upon the client’s request, the smoothed latencies
are used to sort all relevant replicas (i.e. generating a replica
set that can answer a query). All replicas that are farther than
the default threshold of 15 ms from the closest are filtered
out of the list. (3) Finally, one replica is selected at random
from the remaining list.

3. GeoPerf
In this section, we describe our approach to systematically
test replica selection algorithms. First, we isolate the core
logic of the replica selection algorithm. We can use our
implementation of the ground truth, which uses light weight
modelling, or a different algorithm as a reference. Then, we
systematically examine code paths in the original algorithm
in an effort to find a case in which the algorithm under
test performs worse than the reference one. For path ex-
ploration, we use symbolic execution, a common technique
for software testing. It incorporates systematic code path
exploration with an automatic constraint solver to derive
concrete input values that will cause a particular code path
within a program to be executed. In our case, the inputs are
the latencies that could be observed by the replica selection
algorithm under test.

3.1 Symbolic Execution Background
The main concept behind symbolic execution is to re-
place concrete input values of an application with symbolic
variables. A symbolic execution engine is used to control
the execution process and operates on symbolic variables.
Symbolic variables can be seen as placeholders that can
change value along an execution path. An execution path is
a sequence of choices taken at each branch point in the code.
An example of a branching point in C++ is an if statement
or a case switch. The main purpose of symbolic execution is
to test and validate applications, by exploring all reachable

3 Based on Cassandra V2.0.5.

code paths and automatically generating test cases for all
encountered errors.

For each code path within an application, symbolic exe-
cution acquires a set of Path Constraints (PC). This empty
set is populated with additional constraints at each branch
point in the code. The constraint takes the form of a Boolean
equation which is expressed in terms of both symbolic and
concrete variables. Automated constraint solvers are used
to determine satisfiability of a given PC. The symbolic
execution engine maintains a list of all explored code paths
and their associated states. The engine iteratively picks a
code path to explore. The duration of the exploration can
be time bounded or stop when the end of the program is
reached or an error is encountered. The choice of the next
state to explore can be randomized or driven by heuristics
(for example a depth first search would give priority to code
paths with a greater depth).

At the start of execution all PCs are initialized with empty
sets. At the first branch, the constraint solver evaluates the
condition. When the execution of a single code path reaches
its termination point such as error, assertions, or end of
program, the PC is used to generate a concrete input for
every symbolic variable used along that code path. Using the
same input will result in the application following the same
code path (given that the code is deterministic). Certain PCs
may not be satisfiable or not possible to determine due to
time limitations or functional limitations of the solver.

3.2 Systematically Exploring Replica Sel. Algorithms
We use the popular open-source symbolic execution engine
KLEE[13] with the STP[24] constraint solver. While KLEE
(and symbolic execution tools in general) is primarily de-
signed as a test generation tool, it can also be applied to
a great variety of other problems. Its ability to generate
test cases that satisfy all the constraints can be seen as a
solution to a problem defined through code. For example, by
symbolically executing code that has a branching point of
the form if ((X+5)*(X-2) == 0){assert(0);} where
X is a symbolic variable, the equation will be passed on and
solved by an automatic constraint solver. The generated test
case will be a solution to the quadratic equation.

Felipe Andres Manzano, in his tutorial[29], demonstrates
how KLEE can find an exit out of a classical maze problem
by exploring a set of inputs that lead to distinct code paths,
and eventually the exit, out of the maze. Thus if program
already contains a code path that would solve a particular
problem, our task is to define the problem in a clear way so
that the symbolic execution tool can isolate a code path (or a
set of code paths) that leads to the desired state.

The choice made by the replica selection algorithm is
dependent on the system state (i.e., past and current set of
network RTTs, time, random numbers) and the algorithm
itself as implemented via code. Each potential replica choice
is defined by a set of possible code paths that can lead to it.
In the compiled programs only a single code path will be

executed, as determined by the system state at each branch
point. However, by symbolically executing this code we can
explore alternative code paths that would lead to different
choices given the symbolic state of the system. Therefore,
for each alternative code path we can determine a set of
constraints, and the automated theorem solver will derive a
state that would result in the alternative execution path. In
other words, we can say what would be the latency over the
network paths to cause a replica selection algorithm to pick
up one or another subset of nodes.

Forcing a replica selection algorithm to make different
choices is not enough to reason about the correctness of that
algorithm. To do that, we need to know the ground truth.
Alternatively another algorithm can take this role, allowing
us to compare two choices in a design exploration.

GeoPerf compares a pair of replica selection algorithms
by using symbolic execution and lightweight modeling. It
symbolically executes them in a controlled environment,
while both algorithms share one view of the network. We
use symbolic latencies to check if one of the two algorithms
makes a different choice under exactly the same conditions.

However, there are several limitations that need to be
addressed. First, symbolically executing an entire distributed
system is still difficult and requires inside knowledge of
the systems, code modifications and significant computation
resources. Unfortunately, this would introduce a lot of code
paths that are irrelevant to the replica selection logic. Sec-
ond, symbolic execution does not have a notion of continu-
ous time, which makes it hard to evaluate replica selection
choices. Finally, we want to develop a general purpose tool
(a common platform), independent of a single distributed
system and suitable for quick prototyping and testing of
various algorithms, potentially from different versions of a
system or even completely independent solutions.

For all of the above reasons, we isolate the replica
selection algorithm from the systems under test, and develop
a controlled environment where we can deterministically
generate, monitor, and replay events as needed.

The core of the tool is based on our own discrete event-
based simulator developed as part of GeoPerf. The setup
simulates: i) a set of geo-distributed nodes connected via
wide-area network paths, ii) arrival of incoming client re-
quests and iii) a replica selection module that periodically
chooses a subset of nodes to serve these requests.

We create two instantiations of the simulator, one using
the reference replica selection algorithm and the other the al-
gorithm under test. Both instances run in parallel in identical
environments (using synchronized clocks and deterministic
synchronized pseudo-random number generators). KLEE is
used to drive the exploration of the code paths generating
a set of symbolic latencies (i.e., inputs) that characterize
the network paths among the nodes. The target of the
exploration is to find a sequence of network states that
exposes potential weaknesses (bugs) of one of the algorithms

1 void main () {
2 Sim A = Sim (” a l g o r i t h m A ”) ;
3 Sim B = Sim (” a l g o r i t h m B ”) ;
4
5 A. run (”RTTs . d a t a ”) ; / / p r e l o a d i n i t i a l
6 B . run (”RTTs . d a t a ”) ; / / s t a t e
7
8 / / d e c l a r e new s y m b o l i c v a r i a b l e s
9 i n t s y m l a t = s y m bo l i c [nodes] [d e p t h] ;

10
11 timeA = A. run (s y m l a t) ;
12 timeB = B . run (s y m l a t) ;
13
14 a s s e r t (timeA < t imeB) ;}

Figure 1: Event based simulation pseudocode

by repeatedly demonstrating inferior performance (choices)
in the simulated environment.

3.3 Comparing the Selection Algorithms
Consider the code example in Figure 1. At lines 2-3 we
create two simulation instances that differ only in the algo-
rithm used for replica selection. On lines 5-6 we preload
initial states into both of these simulations by replaying
identical sets of latency inputs that we collected earlier. Line
9 declares a set of symbolic variables to be used as an
input to future iterations of these two simulations. Lines 11-
12 run both simulations with the new symbolic input and
collect accumulated request times. Finally, on line 14 we
have an assertion that will be triggered when the estimated
performance of the simulation guided by the algorithm B is
slower than its counterpart A. At this point KLEE will have
the set of PCs that led to this state, obtained after exploring
the code paths of both simulations.

Next, an automated theorem prover will determine if it
is possible to trigger the assertion given the current set of
path conditions. If this is the case and the assertion can be
triggered, then we can generate a concrete test case that will
cause this difference in performance. The concrete values
calculated for the symbolic variables are appended to the file
“RTTs.data” and will be used during the set-up of the next
iteration of the tool.

The pair of algorithms (A and B) are the models of
the algorithms from the systems that we test or model. In
the process of modeling, we isolate the logic behind the
algorithm’s implementation and replicate it line by line for
our tool. The actual size of such modules is quite small, less
than 200 lines of code in both Cassandra’s dynamic snitch
and MongoDB’s drivers.
Ground truth To provide the ground truth when the
counterpart algorithm B is not available, we have generated
a simplified replica selection mechanism that always selects
the node with the lowest delay, without randomization or
optimization thresholds. Ground truth is an approximation
of the optimal performance and it represents the minimum
bound in the achievable latency, provided that there is
no caching of requests. We expect that algorithms under

Figure 2: Discrete Event Based Simulation: (1) latencies as-
signed to inter replica paths and passed through the smoothing
filter, (2) client’s request generated, (3) the replica selection
algorithm is used to chose a closest replica(s) to forward the
request, (4) request forwarded to the replica(s) (5) replica
processing the request (6) the reply sent to the originating node.

test will demonstrate lower performance than the ground
truth in certain cases, but will asymptotically produce com-
parable results. By default, ground truth uses the same
latency smoothing function as the algorithm under test. If
the smoothing function itself is suspected to be buggy, it can
be replaced.

3.4 Discrete Event Simulation
As a platform for our evaluation we created a discrete
event simulator. This simulation models a set of three in-
terconnected geo-distributed replicas and one additional
primary node that serves requests (Figure 2). We feed to the
simulation the client requests generated at a constant rate,
and these are forwarded to the primary node in the set. The
primary runs a replica selection algorithm to choose to which
replicas it should forward each request. The other nodes
in the set are potential replica candidates; they receive the
forwarded requests from the primary node, serve them, and
send replies back. We also input the set of network latencies
that describe RTTs on each path from the primary node to all
the replicas. These latencies represent the time it takes for
requests to reach the replicas and for the replies to return.
As the simulation time progresses, new latency values are
introduced to reflect the changing network conditions.

The raw latencies are fed into a smoothing function, such
as FDS, EWMA, or CMA according to the specific system
being simulated. The output of these functions produces the
perceived latency that is used within the replica selection
algorithms. Each algorithm makes choices periodically (100
ms for Cassandra and 5 s for MongoDB as per their default
configuration). All requests received in that time interval are
directed towards the replica set selected at the last decision
time. The time it takes to process individual requests is
determined by Ttotal =

RT Trequest
2 +Tprocessing +

RT Treply
2

We do not consider request queuing and use a fixed delay
of 0.5 ms to generate a response at the replica, i.e., a fixed
service time. We obtained this service delay experimentally
by running a real system on our hardware, without any
load. Such a choice is further motivated by the fact that the
processing time is already incorporated into the Cassandra
logic, and is completely ignored by the MongoDB logic (in
the drivers for replica selection we tested).

3.5 Iterative Search
Ideally, we want to ask the symbolic execution engine to
compute the behavior of the system hours ahead of time,
and to tell us what sequence of the events and inputs could
result in undesired behavior. However, one of the biggest
challenges in symbolic execution is the path explosion
problem. The number of possible paths grows exponentially
and the exploration eventually faces a bottleneck, such as
memory or CPU time bounds. The number of possible code
paths is exponential in the number of symbolic variables
used in the exploration. This becomes the predominant
factor that limits the maximum number of symbolic latency
variables that we could practically use in our exploration
to 9 (3 triplets - 3 latency inputs for 3 replicas in the
simulation). The number of triplets defines the depth of
the exploration, as each consecutive latency input describes
network conditions within the simulation. It is important to
note that the number of code paths is also dependent upon
the complexity of the algorithm under test. FDS, used in
Cassandra’s logic, has many more code paths than a simple
CMA or EWMA. A single latency triplet input (or a single
iteration) corresponds to 100 ms and 5 s of simulated time
for Cassandra and MongoDB respectively, as configured in
these systems by default.

However, it is not sufficient to show that two algorithms
make different choices at a single point in time. It is
important to show that this choice exhibits a pathological
behavior that can last long enough to cause significant
performance degradation for many requests. Thus, we apply
an iterative approach by repeating individual explorations.

There are two distinct states to consider. First is the state
of the events in the simulation, which describes the queue
of the discrete events (e.g., the messages in transition). This
state is used to evaluate the performance of the system.
Second, the state of the history buffer in the latency smoother
is used in the algorithm, for example Cassandra’s FDS is
configured to remember 100 previous samples. These states
may differ from the start of the simulation due to different
smoothing filter.

Figure 3 outlines the high level idea behind iterative
search. (1) We configure two simulations with a pair of
distinct replica selection algorithms, and warm up the system
by inserting a set of previously measured latencies to pre-
populate the history buffers used by the latency smoothing
functions. At this stage, both simulations are in the same
state, as replica selection algorithms make identical choices.

Figure 3: GeoPerf Overview

However since the smoothing techniques can be different
(i.e., CMA and EWMA), their states differ as well. Warming
up the simulation with the concrete values does not lead
to performance penalties, due to the Execution-Generated
Testing (EGT) [14] technique implemented in KLEE. EGT
allows us to distinguish between concrete and symbolic
variables, and avoids creating path constraints if no symbolic
variables are involved. (2) As input we introduce a set of
symbolic latency triplets, and initiate symbolic exploration.
GeoPerf continues the simulation and starts to acquire PCs
for all explored paths. After inserting the last symbolic input
and finishing all outstanding queries, the performance of
both simulations is evaluated. As the scoring function we
consider the accumulated time to generate requests initiated
during the insertion of symbolic inputs.

At stage (3) we compare the scores. Consequently in
the code, we have an assertion checking that the total
accumulated time of simulation-1 should be more than
accumulated time of simulation-2. The PC is sent to the
constraint solver and checked for satisfiability given the
current code path. If the PC is not satisfiable then we
continue searching until we reach the assertion point through
an alternative code path or until we run out of possible code
paths, meaning that regardless of the state of the network
latencies it is not possible to manipulate the two replica
selection algorithms into making different decisions. The
continuation uses a different configuration of the search
as described in the optimization section. Finally, in the

successful case when we reach an assertion, KLEE uses the
constraint solver and the obtained PC to generate a concrete
test case (i.e., convert symbolic triplets into a concrete set of
latencies) that deterministically bring simulation to the same
assertion and therefore replica selection choices diverge.

At stage (4) we pick up a newly generated set of latency
triplets and append it to our initial set of EC2 latencies.
At stage (5) we restart our simulation from the initial
point. However in addition to the original set of measured
latencies, we also replay the latencies generated in the
previous iteration as concrete input.

3.6 Optimizations
We have developed a heuristic technique to guide the sym-
bolic execution in an effort to find the desired sequence of
latency samples. There are three configuration parameters
that define the search: maximum search time, number of
solutions to find, and number of symbolic variables to use.
For each iteration we attempt to find a subset of solutions in
the given time limit. If by the end of its time this set is not
empty, we sort all our solutions by the improvement ratio
that they introduce. However, if we have run out of time
or possible code paths, we then attempt to use a different
symbolic pattern (SP). In our work we define SP as a set of
assumptions (relationships) between the symbolic variables
that we input into our simulation. We use the observations of
measured samples and reference work [30], to configure SP
for each iteration of the search. One observation is that there
are different periods of time during which latency does not
change significantly (thus we can treat this period of time as
if the latency does not actually change). Another observation
is that typically only one link will change by a large amount
at any given time. By following these observations, we
can use a single symbolic variable to define path latency
over several iterations of a simulation. Moreover, we can
leave the latency of some paths unchanged by reusing
values generated in the previous iteration of the search. This
technique reduces number of symbolic variables used per
iteration and speeds up KLEE code path exploration by
simplifying PCs and reducing code path search space.

When our exploration reaches the point when it cannot
find a solution with a given configuration, we systematically
pick different SPs by re-using symbolic variables over sev-
eral iterations of the simulation. This optimization allows
us to increase the depth of search up to 10 replica selection
choices ahead.

In addition, our experiments show that using integer
numbers significantly speeds up constraint solving. There-
fore, we replaced floating point operations with their integer
equivalent, with three digits of precision.

3.6.1 Limitations
Before we can apply our method, we need to extract the
replication selection module from an application in order
to plug it into our simulation. If the logic itself is written

 50

 100

 150

 200

 250

 0 5 10 15

G
en

er
at

ed
 la

te
nc

y
[m

s]

Timeline [s]

Raw repl. 1

Smoothed 1

Raw repl. 2

Smoothed 2

Raw repl. 3

Smoothed 3

(a) Set of 3 path latencies generated by GeoPerf and the
smoothed version of these latencies after FDS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
D

F

Request completion time [ms]

GeoPerf
Original snitch

(b) CDF request completion time, Cassandra’s Dynamic
Snitch compared with GeoPerf’s ground truth algorithm

Figure 4: Comparing Cassandra’s Dynamic Snitch with the GeoPerf’s ground truth

 50

 100

 150

 200

 250

 0
 25

0
 50

0
 75

0
 10

00
 12

50

G
en

er
at

ed
 la

te
nc

y
[m

s]

Timeline [s]

Raw repl. 1

Smoothed 1

Raw repl. 2

Smoothed 2

Raw repl. 3

Smoothed 3

(a) Set of 3 path latencies generated by GeoPerf (points) and
the smoothed version of these latencies(lines) after applying
MongoDB Java driver’s CMA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
D

F

Request completion time [ms]

Mongo C++
Mongo Java

(b) Request completion time for MongoDB’s C++ and Java
drivers, as compared by GeoPerf

Figure 5: Comparing MongoDB’s drivers using GeoPerf

in a programming language other than the target language
processed by the symbolic execution engine, then this mod-
ule needs to be translated to the target language in order
to be executed. Our experience with two different systems
implemented in two different programming languages shows
that the translation effort is minor.

4. Evaluation
In this section we describe the bugs we found, our latency
measurements, and then we quantify the bugs’ impact.

4.1 Bugs Found
Cassandra First, we use GeoPerf to evaluate the per-
formance of the Cassandra’s Dynamic Snitch against the
ground truth model provided with GeoPerf. Both algorithms
were configured to use FDS as the latency smoothing func-
tion. The GeoPerf’s simulations were configured to sample
latency at 100 ms intervals. All GeoPerf’s explorations were
preloaded with 20 samples from EC2 measurements per
network path. The RTT range for symbolic latencies was
set to 100-500 ms to represent an entire range of observed

latencies within EC2. We use fixed request arrival rate of 40
requests per second.

It was sufficient to run GeoPerf for 130 iterations
(equivalent to 15 s of real time and 390 symbolic latency
inputs) to notice the problem. Figure 4a first, shows the
latencies as generated by GeoPerf as well as the smoothed
version after passing through FDS. The figure demonstrates
that smoothed FDS latencies can follow the general trend
and closely represent the real state of the network. However,
Figure 4b shows that despite having the correct view of the
network, over 20% of Cassandra’s requests have RTTs of
500 ms (they are forwarded towards the slowest node of the
three). This clearly indicates an issue in the replica selection
logic. By examining the code, we have identified that the
problem was caused by a bug in the replica score comparison
function as follows:
if ((first-next)/first>BADNESS_THRESHOLD). As
the value of next score could be greater than the first

score, it results in comparison of the threshold with a
negative value. Ultimately, this prevents the sorting function
from being called.

MongoDB Next, we compare the performance of the C++
and Java drivers of MongoDB, their only difference was in
the smoothing functions used: EWMA(0.25) and CMA for
C++ and Java version respectively. In contrast to Cassandra’s
exploration, GeoPerf was now configured to compare the
two provided algorithms (the use of ground truth was not
necessary in that case). The system was set with a 5-
second sampling interval to match MongoDB’s logic. We
ran a simulation for a total of 230 iterations (equivalent
to 20 min of real time and 690 symbolic entries). First,
Figure 5a shows the latencies generated by GeoPerf, and
those perceived by MongoDB logic after passing through
the Java driver’s smoothing function. The latency generated
by GeoPerf demonstrates the inability of the Java driver to
adapt to periodic latency changes. As time progresses, the
Java’s CMA smoothing function becomes more resistant to
change, until it cannot react to path order changes. As shown
on 5b, when Java and C++ drivers are compared under
identical conditions, the Java driver demonstrates inferior
performance in 80% of the cases. The problem identified
here is related to CMA not being reset in the Java driver on
a periodic basis.

Although these bugs might appear to be simple, they
were not discovered previously. Common software testing
often does not provide full test case coverage, thus it is hard
to find bugs in application logic that affect performance,
particularly in the presence of noisy input (e.g., network
latencies). In the case of Cassandra, the official fix for the
bug that we found also included a new test case to cover the
specific scenario that we pointed out to the developers.
GeoPerf’s running time We conduct our explorations
using a cluster of 8 heterogeneous machines running Ubuntu
14.04, with a total number of 76 CPU cores and 2GB
RAM per core. We use Cloud9 [12] to parallelize and
distribute symbolic execution over these machines. Both sets
of explorations finish in under 5 hours.

4.2 Geo-Distributed Latencies
In this section, we present our network measurements among
the geo-distributed datacenters of Amazon EC2.
Methodology To obtain real world data we instantiated
geographically distributed instances of our measurement
client on EC2 in all 9 available regions. We measured
latencies between each of these datacenters over a period
of 2 weeks using t2.micro EC2 instance 4. We collected
samples obtained from 3 different sources: (1) using ICMP
ping, (2) application-level TCP ping (Nagle’s algorithm was
turned off), and (3) application-level UDP ping. These three
different sources of samples helped us to understand the
potential causes of latency changes. In our measurements,
TCP samples demonstrate highest RTTs due to packet re-

4 Prior to our final measurement, we run a control test using m3.xlarge
instances and found that the low bandwidth RTT data does not seem to
be affected by the instance size.

 0

 50

 100

 150

 200

 250

 300

 350

 400

22 00 02 04 06 08 10

La
te

nc
y

[m
s]

13-14 Jan 2015 (GMT)

Sydney
Tokyo

Singapore
Sao Paulo

California
Oregon

Virginia
Frankfurt

Figure 6: RTT measurement over UDP from EC2 Ireland
datacenter to all other 8 regions of EC2 (after low pass filter).
Red background highlights the time of the day when the order
of replicas change (Singapore-Säo Paulo).

To
p−

1
To

p−
2

To
p−

3
To

p−
4

To
p−

5
To

p−
6

To
p−

7

0

20

40

60

80

N
um

be
r

of
 r

eo
rd

er
in

gs
 p

er
 d

ay

0

10

20

30

40

50

60

70

80
Frankfurt
Virginia
Tokyo
Sydney
California

Ireland
Sao.Paulo
Oregon
Singapore

Figure 7: Change of order for the closest K out of total 8
nodes, per region per day over 2 weeks. The color of the boxes
corresponds to different EC2 regions. 14 days are aggregated
into one boxplot, where the top and the bottom of each box
indicate 25th and 75th percentiles, outliers are represented by
dots. The horizontal axis indicates the highest indexes of the top
K nodes affected. Top-8 reorderings are identical to the Top-7
and thus not shown on the graph.

transmission delays, UDP latencies are equivalent or better
than ICMP, potentially due to fast path processing of the
UDP packets on many routers. Thus, we chose UDP as our
primary dataset for our further analysis.

To compute the number of reorderings we perform the
following steps. First: We group paths based on their source
region, such that we consider only realistic subsets of paths
to order. For example, from the viewpoint of an instance
of a latency-aware geo-distributed system, running in the
Ireland datacenter latency is measured from itself to all other
8 regions, while the paths between the other replicas are not
relevant. Second: We have applied a low pass filter to our
samples in order to remove high frequency noise and high
variance (we computed an equivalent to Figure 6 for each
node). To do that we have converted the latency samples
to the frequency domain using the Fast Fourier Transform,

0%
50%
80%
90%

99%

99.9%

 0 10 20 30 40 50 60 70 80 90

Pe
rc

en
til

es

Median time lost [ms]

Top-1
Top-2
Top-3
Top-4

Top-5
Top-6
Top-7

(a) Median time lost from Virginia

0%
50%
80%
90%

99%

99.9%

 0 200 400 600 800 1000 1200 1400

Pe
rc

en
til

es

Maximum time lost [ms]

Top-1
Top-2
Top-3
Top-4

Top-5
Top-6
Top-7

(b) Maximum time lost from Virginia

0%
50%
80%
90%

99%

99.9%

 0 10 20 30 40 50 60 70 80 90

Pe
rc

en
til

es

Median time lost [ms]

Top-1
Top-2
Top-3
Top-4

Top-5
Top-6
Top-7

(c) Median time lost from Ireland

0%
50%
80%
90%

99%

99.9%

 0 200 400 600 800 1000 1200 1400
Pe

rc
en

til
es

Maximum time lost [ms]

Top-1
Top-2
Top-3
Top-4

Top-5
Top-6
Top-7

(d) Maximum time lost from Ireland

Figure 8: Median and maximum time wasted for the window size of 5 min from Ireland and Virginia. Including more replicas
typically increases the maximum penalty, but can produce more stability by going beyond replica positions with high variance. Top-8
configurations use all available replicas and by default perform optimally and thus not shown here.

and nullified frequencies higher than 1 Hz. Finally the data
was converted back to the time domain using an inverse
FFT. Third: For each group of links we counted the number
of order-changing events and recorded their durations. We
ignore events with a duration below a threshold, currently 5
minutes. Finally: For each event we identified the indices of
the replicas that were affected. The highest index was used
to generate Figure 7.
The Case for Replica Selection Figure 6 shows RTT
measurements over a period of one day from the Ireland
EC2 datacenter to datacenters in all other regions of EC2.
For visual convenience, we applied a low pass filter to the
raw data to remove high frequency noise. This figure shows
that from the point of view of the Ireland datacenter, the
order of paths based on their RTT changes periodically.
Path reordering occurs when two latency curves cross over
each other. The importance of any such event is defined
by its duration and the change in the ordering of the top
N nodes that are affected by this event. Changing replica
ordering too frequently is not desirable, as this may neg-
atively affect caching and other aspects of performance.
As a result changing the order or replicates should only
be done after some period of time. Additionally, the order
of the closest replicas has greater impact than a change
in the order of the farther nodes, for example consider
the top 3 or top N/2+1 (where N is a total number of

replicas) that would be the first candidates for a query. The
behavior shown in Figure 6 demonstrates that any static
configuration will perform suboptimally for a significant
amount of time. The magnitude of latency changes in our
measurements often exceeds default sorting thresholds in
the tested replica selection algorithms, thus making these
reorderings significant.
The Global View To achieve a global view, we tried to an-
swer the question of how often significant path reorderings
occur across all regions of EC2. Figure 7 contains aggre-
gated data showing summaries for two weeks of continuous
latency sampling. This figure contains data for different
days of the week and different datacenters. The vertical axis
shows the number of path reorderings that happened during
a day, while the horizontal axis shows the highest index of
those paths that have been affected. These plots show how
often a developer can expect the replica order to change
based on the geographic location of the datacenter and
subset of the closest replicas that are relevant for a specific
application. For example, if your datacenter is in California
and you perform strong consistency reads implemented by
a quorum of nodes (8/2 + 1 = 5 nodes) then the median
number of reorderings is 15 per day.

4.3 Exploring Replica Position Stability
Next, we explore the stability of replica positions in the
nearest-K order from any given datacenter. We apply a low-

0

0.1
...

0.7

0.8

0.9

1

-50 0 50 100 150 200 250

C
D

F

Median improvement [ms]

(a) Cassandra’s buggy version compared against fixed version

0

0.1
...

0.7

0.8

0.9

1

-50 0 50 100 150

C
D

F

Median improvement [ms]

(b) MongoDB’s C++ and Java drivers compared

Figure 9: The CDFs of median request completion time difference (EC2 latency trace replay via GeoPerf). Each figure contains 14
CDFs, one for each day of the trace of latency samples.

pass filter to the observed latencies to remove frequencies
higher than 1 Hz. We divide the sampling period into inter-
vals of 5 min, and at the start of each interval we determine a
static replica choice based on the median latencies observed
in the previous interval. These choices mimic the typical
replica selection algorithm behavior, and remain static for
the duration of the 5-min window. For each sample, we
then determine the difference between the static choice and
optimal choice at points in time separated by 1 second. At
the end of the interval, we output the median and maximum
difference encountered during that interval. This difference
indicates the time one would lose while remaining with a
static replica set chosen based on past interval performance.
We repeat these computations to cover all possible Top-
K combinations, in which we consider the delay between
the datacenter at hand and its closest K replicas. Top-2 for
example refers to the case of a total of three replicas.

Figure 8 contains two sets of graphs showing the median
and maximum delays observed from the Ireland and Virginia
datacenters. We chose these datacenters because they are
the closest ones to large fractions of users in Europe and
the Eastern US. The results are surprising. For example,
having only two additional replicas dramatically increases
the uncertainty and variance as observed from the Virginia
datacenter, as shown by the significantly more time intervals
affected (Y-axis) and median time lost (X-axis) in Figure
8a. In particular, more than 29% of time intervals suffer
some median time lost, up from 3% for Top-1. Adding
more replicas can decrease the uncertainty, for example
Top-5 shows only 0.1% time intervals with time lost. This
behavior is directly driven by the variability on the paths
from the datacenter at hand and other replicas. Going to Top-
7 replicas for example again increases the variance (0.3%
affected time intervals). However, adding more replicas
makes the selection process more vulnerable to unexpected
delays and this increases the maximum time lost, as shown
in Figure 8b. This figure also shows that roughly 1% of time
intervals experience latency penalty of about 600 ms. This
is at least an order of magnitude greater penalty than the
median time lost (Figure 8a).

The view from the Ireland datacenter is qualitatively
the same (Figure 8c), but the unstable replica positions

and the times lost differ. Here, Top-4 replicas show fairly
low uncertainty with 1.4% time intervals affected. However,
uncertainty is harder to eliminate by more than a factor of
10; close to 1.5% of intervals show some median time lost
for Top-4, as opposed to 0.1% for Top-5 from Virginia. In
contrast, Top-5 from Ireland shows the worst variance.

These findings demonstrate: i) the need for careful adap-
tation by the replica selection mechanisms, and ii) the
difficulty in producing robust algorithms that work well
across a variety of network conditions.

4.4 Evaluating the Impact of the Bugs
Here we quantify the potential impact of the bugs found
by GeoPerf in both systems under real world conditions.
We set up our simulations as in the previous section, and
use 14 consecutive days of EC2 latencies (from Tue, 06
Jan 2015, 9GMT) obtained earlier as a concrete input set to
GeoPerf. To consider the possible scenarios, first we group
the latency samples based on the originating region. Then,
from each group we pick up combinations of triplets (3-
way replication is a popular, straightforward choice). We
have sampled 9 regions, where each region has 8 potential
destinations, producing 9

(8
3

)
= 504 combinations in total.

Figure 9 shows the median time gained per request per
day. For Cassandra’s evaluation, instead of using the ground
truth model we used the original version of the Dynamic
Snitch and the fixed version of the same Snitch. Figure 9a
shows that over 20% of all requests were affected by the
bug. The median loss for 10% of all requests is above 50 ms.

Next, we compare the C++ and Java MongoDB drivers.
Figure 9b shows the effects of using CMA in a dynamic
network environment. Over 10% of all requests were unable
to react to changing conditions, which resulted in a long
tail. The negative CDF tail on both Figures 9a and 9b
is explained by two factors. First both systems choose a
replica at random if it passes a latency threshold, which
accounts for a certain amount of a slightly worse replica
to be chosen by the fixed algorithms. Second, when path
latency shows a high variance there is a certain amount of
inertia in both Cassandra’s FDS and MongoDB C++ drivers
EWMA, which results in gaining extra time when latency
returns to its mean value.

In summary, these findings demonstrate the significance
of the bugs found in both systems, and the potential time loss
in cloud services due to these bugs.

5. Related Work
Latency Measurements Existing work in the area of
latency measurements can be generalized in two categories.
The first category [9, 35, 37, 40, 42] concentrates on study-
ing the impact of virtualization on the network and appli-
cation performance in a cloud environment. These works
show that sharing of hardware resources can have a negative
effect on latency, throughput, and bandwidth of applications
running on these virtual machines. Moreover, these per-
formance artifacts are very different from those that occur
in non-virtualized environments, and the artifacts are often
hard to predict. Note that all of these studies look at the
performance within a single datacenter, whereas GeoPerf is
concerned primarily with the latency across the wide-area.

The second group of works [10, 30, 32] studies packet
loss, delay, and jitter over the geo-distributed WAN network
paths. An interesting comparison of cloud providers is done
in CloudCmp [26], where the authors computed the CDF for
the optimal paths from 260 clients provided by the PlanetLab
testbed [16] to the datacenters of four cloud providers; three
datacenters from Amazon were tested among other configu-
rations. They report that the latencies among datacenters are
highly dependent on their geographic locations. Latencies
between different cloud providers are often incomparable
due to the different geographic locations of their datacenters.
These results suggest that any static configuration of the
replica selection algorithms should be always tailored to the
deployment on a specific cloud provider.

However, to the best of our knowledge, our study is the
first to show the correlation of geo-distributed network paths
among all regions of one cloud provider, and to demonstrate
how such dynamics can affect the nearest replica selection.
Symbolic Execution Symbolic execution has a long history,
and some of the first works are [11, 17]. EXE [15], KLEE
[13], JPF-SE [6], CUTE and jCUTE [36] are modern exam-
ples of symbolic execution tools, and most of them are being
updated by the academia and open source communities.

However, symbolic execution is not used only to discover
common bugs in various applications. For example, Siegel
[38] uses the SPIN model checker and symbolic execution
techniques to compare and verify correctness of the Message
Passing parallel implementation of the algorithms given
its sequential counterpart. Person [33] proposes differential
symbolic execution to determine differences between two
versions of the same application. KleeNet [34] applies sym-
bolic execution to a network of wireless sensors. It runs on
unmodified applications, while automatically injecting non-
deterministic events common for distributed systems. GeoP-
erf, while performing tests on algorithms that are designed
for distributed systems, does not require non deterministic

events or event reorderings; the replica selection algorithms
are explored in a completely deterministic environment. This
dramatically reduces the number of possible code paths to
explore, and therefore reduces the search time requirements.
Relative to all these approaches, our contribution is applying
symbolic execution to a new problem, and overcoming the
difficulties that arise in this case. In particular, we deal with
the performance-related (latency) issues.
Replica Selection algorithms Geo-distributed storage sys-
tems tend to forward client’s requests towards the “closest”
replicas to minimize network delay and to provide the
best performance. This task commonly occurs, e.g., in self-
organizing overlays [39]. One of the primary tasks is to
correctly compute or estimate the distance among the nodes;
various systems have tackled this problem. Vivaldi [19]
piggy-backs probes on the application messages in order
to infer virtual network coordinates. GNP [31] performs
measurements from the dedicated vantage points to compute
network coordinates. Alternative approaches for estimating
network distance include [22, 25, 28].

The next step is to use estimated distances to select an ap-
propriate replica to contact. Meridian [43] is a decentralized,
lightweight overlay network that can estimate the distance
to a node in the network by performing a set of pings that
are spaced logarithmically from the target. OASIS [23] is
a system built on top of Meridian, and also incorporates
server load information. DONAR [41] also argues for a
decentralized approach, by using a set of mapping nodes,
each running a distributed selection algorithm to determine
and assign the closest replica for each client. In our work,
we do not argue for the best replica selection algorithm, but
rather provide a tool that can find flaws in the performance
of such algorithms.

6. Conclusion
In this paper, we first demonstrate the need for dynamic
replica selection within a geo-distributed environment on
a public cloud. Second, we propose a novel technique of
combining symbolic execution with lightweight modeling to
generate a sequential set of latency inputs that can demon-
strate weaknesses in replica selection algorithms. We have
created a general purpose system capable of finding bugs
and weaknesses in replica selection algorithms. We use our
system GeoPerf to analyze the replica selection logic in
Cassandra and MongoDB datastores, and find a bug in each
of them. We plan to release our software and latency samples
as open source.
Acknowledgments We thank our shepherd Douglas Terry,
and the anonymous reviewers for their feedback. We are
grateful to Peter Peresini for code reviews, and comments
on earlier drafts. The research leading to these results has
received funding from the European Research Council un-
der the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement 259110.

References
[1] Amazon ec2. http://aws.amazon.com/ec2/.

[2] Google cloud. https://cloud.google.com/.

[3] Java metrics library. https://github.com/dropwizard/

metrics.

[4] Microsoft azure. http://azure.microsoft.com/.

[5] Mongodb. http://www.mongodb.org/.

[6] ANAND, S., PĂSĂREANU, C. S., AND VISSER, W. JPF–SE:
A symbolic execution extension to Java pathfinder. In Tools
and Algorithms for the Construction and Analysis of Systems.
Springer, 2007, pp. 134–138.

[7] APACHE. Cassandra. http://cassandra.apache.org/.

[8] APACHE. Cassandra, snitch types. http://www.datastax.
com/documentation/cassandra/2.0/cassandra/

architecture/architectureSnitchesAbout_c.html.

[9] BALLANI, H., COSTA, P., KARAGIANNIS, T., AND ROW-
STRON, A. Towards predictable datacenter networks. In
ACM SIGCOMM Computer Communication Review (2011),
vol. 41, ACM, pp. 242–253.

[10] BOLOT, J.-C. End-to-end packet delay and loss behavior
in the internet. ACM SIGCOMM Computer Communication
Review 23, 4 (1993), 289–298.

[11] BOYER, R. S., ELSPAS, B., AND LEVITT, K. N. Selecta for-
mal system for testing and debugging programs by symbolic
execution. ACM SigPlan Notices 10, 6 (1975), 234–245.

[12] BUCUR, S., URECHE, V., ZAMFIR, C., AND CANDEA,
G. Parallel symbolic execution for automated real-world
software testing. In Proceedings of the sixth conference on
Computer systems (2011), ACM, pp. 183–198.

[13] CADAR, C., DUNBAR, D., AND ENGLER, D. R. KLEE:
Unassisted and Automatic Generation of High-Coverage Tests
for Complex Systems Programs. In OSDI (2008), vol. 8,
pp. 209–224.

[14] CADAR, C., AND ENGLER, D. Execution generated test
cases: How to make systems code crash itself. In Model
Checking Software. Springer, 2005, pp. 2–23.

[15] CADAR, C., GANESH, V., PAWLOWSKI, P. M., DILL, D. L.,
AND ENGLER, D. R. EXE: Automatically Generating Inputs
of Death. In CCS (2006).

[16] CHUN, B., CULLER, D., ROSCOE, T., BAVIER, A., PETER-
SON, L., WAWRZONIAK, M., AND BOWMAN, M. Planetlab:
an overlay testbed for broad-coverage services. ACM SIG-
COMM Computer Communication Review 33, 3 (2003), 3–12.

[17] CLARKE, L. A. A system to generate test data and
symbolically execute programs. Software Engineering, IEEE
Transactions on, 3 (1976), 215–222.

[18] CORMODE, G., SHKAPENYUK, V., SRIVASTAVA, D., AND

XU, B. Forward decay: A practical time decay model for
streaming systems. In Data Engineering, 2009. ICDE’09.
IEEE 25th International Conference on (2009), IEEE,
pp. 138–149.

[19] DABEK, F., COX, R., KAASHOEK, F., AND MORRIS, R.
Vivaldi: A decentralized network coordinate system. In

ACM SIGCOMM Computer Communication Review (2004),
vol. 34, ACM, pp. 15–26.

[20] DEAN, J., AND BARROSO, L. A. The tail at scale. Commun.
ACM 56, 2 (Feb. 2013), 74–80.

[21] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULA-
PATI, G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMA-
NIAN, S., VOSSHALL, P., AND VOGELS, W. Dynamo:
Amazon’s Highly Available Key-value Store. In SOSP (2007).

[22] FRANCIS, P., JAMIN, S., JIN, C., JIN, Y., RAZ, D.,
SHAVITT, Y., AND ZHANG, L. Idmaps: A global internet
host distance estimation service. Networking, IEEE/ACM
Transactions on 9, 5 (2001), 525–540.

[23] FREEDMAN, M. J., LAKSHMINARAYANAN, K., AND

MAZIÈRES, D. Oasis: Anycast for any service. In NSDI
(2006), vol. 6, pp. 10–10.

[24] GANESH, V., AND DILL, D. L. A decision procedure for bit-
vectors and arrays. In Computer Aided Verification (2007),
Springer, pp. 519–531.

[25] LEDLIE, J., GARDNER, P., AND SELTZER, M. I. Network
coordinates in the wild. In NSDI (2007), vol. 7, pp. 299–311.

[26] LI, A., YANG, X., KANDULA, S., AND ZHANG, M. Cloud-
cmp: comparing public cloud providers. In Proceedings of the
10th ACM SIGCOMM conference on Internet measurement
(2010), ACM, pp. 1–14.

[27] LINDEN, G. Make Data Useful. https://sites.google.
com/site/glinden/Home/StanfordDataMining.

2006-11-28.ppt.

[28] MADHYASTHA, H. V., ISDAL, T., PIATEK, M., DIXON, C.,
ANDERSON, T., KRISHNAMURTHY, A., AND VENKATARA-
MANI, A. iplane: An information plane for distributed
services. In Proceedings of the 7th symposium on Operating
systems design and implementation (2006), USENIX Associ-
ation, pp. 367–380.

[29] MANZANO, F. A. The symbolic maze! https://feliam.

wordpress.com/2010/10/07/the-symbolic-maze/.

[30] MARKOPOULOU, A., TOBAGI, F., AND KARAM, M. Loss
and delay measurements of internet backbones. Computer
Communications 29, 10 (2006), 1590–1604.

[31] NG, T. E., AND ZHANG, H. Predicting internet network
distance with coordinates-based approaches. In INFOCOM
2002. Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE
(2002), vol. 1, IEEE, pp. 170–179.

[32] PAXSON, V. End-to-end routing behavior in the internet.
ACM SIGCOMM Computer Communication Review 36, 5
(2006), 41–56.

[33] PERSON, S., DWYER, M. B., ELBAUM, S., AND PSREANU,
C. S. Differential symbolic execution. In Proceedings
of the 16th ACM SIGSOFT International Symposium on
Foundations of software engineering (2008), ACM, pp. 226–
237.

[34] SASNAUSKAS, R., LANDSIEDEL, O., ALIZAI, M. H.,
WEISE, C., KOWALEWSKI, S., AND WEHRLE, K. Kleenet:
discovering insidious interaction bugs in wireless sensor
networks before deployment. In Proceedings of the 9th

http://aws.amazon.com/ec2/
https://cloud.google.com/
https://github.com/dropwizard/metrics
https://github.com/dropwizard/metrics
http://azure.microsoft.com/
http://www.mongodb.org/
http://cassandra.apache.org/
http://www.datastax.com/documentation/cassandra/2.0/cassandra/architecture/architectureSnitchesAbout_c.html
http://www.datastax.com/documentation/cassandra/2.0/cassandra/architecture/architectureSnitchesAbout_c.html
http://www.datastax.com/documentation/cassandra/2.0/cassandra/architecture/architectureSnitchesAbout_c.html
https://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-28.ppt
https://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-28.ppt
https://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-28.ppt
https://feliam.wordpress.com/2010/10/07/the-symbolic-maze/
https://feliam.wordpress.com/2010/10/07/the-symbolic-maze/

ACM/IEEE International Conference on Information Process-
ing in Sensor Networks (2010), ACM, pp. 186–196.

[35] SCHAD, J., DITTRICH, J., AND QUIANÉ-RUIZ, J.-A. Run-
time measurements in the cloud: observing, analyzing, and
reducing variance. Proceedings of the VLDB Endowment 3,
1-2 (2010), 460–471.

[36] SEN, K., AND AGHA, G. Cute and jcute: Concolic unit
testing and explicit path model-checking tools. In Computer
Aided Verification (2006), Springer, pp. 419–423.

[37] SHEA, R., WANG, F., WANG, H., AND LIU, J. A deep
investigation into network performance in virtual machine
based cloud environments.

[38] SIEGEL, S. F., MIRONOVA, A., AVRUNIN, G. S., AND

CLARKE, L. A. Using model checking with symbolic exe-
cution to verify parallel numerical programs. In Proceedings
of the 2006 international symposium on Software testing and
analysis (2006), ACM, pp. 157–168.

[39] VAHDAT, A., CHASE, J. S., BRAYNARD, R., KOSTIĆ, D.,
REYNOLDS, P., AND RODRIGUEZ, A. Self-organizing sub-
sets: From each according to his abilities, to each according
to his needs. In IPTPS (2002), vol. 2429 of Lecture Notes in
Computer Science, Springer, pp. 76–84.

[40] WANG, G., AND NG, T. E. The impact of virtualization
on network performance of amazon ec2 data center. In
INFOCOM, 2010 Proceedings IEEE (2010), IEEE, pp. 1–9.

[41] WENDELL, P., JIANG, J. W., FREEDMAN, M. J., AND

REXFORD, J. Donar: decentralized server selection for cloud
services. ACM SIGCOMM Computer Communication Review
41, 4 (2011), 231–242.

[42] WHITEAKER, J., SCHNEIDER, F., AND TEIXEIRA, R. Ex-
plaining packet delays under virtualization. ACM SIGCOMM
Computer Communication Review 41, 1 (2011), 38–44.

[43] WONG, B., SLIVKINS, A., AND SIRER, E. G. Meridian: A
lightweight network location service without virtual coordi-
nates. In ACM SIGCOMM Computer Communication Review
(2005), vol. 35, ACM, pp. 85–96.

	Introduction
	Systems That Use Replica Selection
	Replica Selection Algorithms

	GeoPerf
	Symbolic Execution Background
	Systematically Exploring Replica Sel. Algorithms
	Comparing the Selection Algorithms
	Discrete Event Simulation
	Iterative Search
	Optimizations
	Limitations

	Evaluation
	Bugs Found
	Geo-Distributed Latencies
	Exploring Replica Position Stability
	Evaluating the Impact of the Bugs

	Related Work
	Conclusion

