
ESPRES: Easy Scheduling and Prioritization for SDN

Peter Perešı́ni† Maciej Kuźniar† Marco Canini∗ Dejan Kostić‡

† EPFL ∗ Université catholique de Louvain ‡ Institute IMDEA Networks

Network state is always in flux. Due to traffic engineer-
ing, topology changes, policy updates, VM migrations, etc.,
today’s networks undergo a variety of large updates that con-
currently affect many switches. Transitioning between net-
work states can be a source of instability, leading to out-
ages, disruptions and security vulnerabilities. Consistent net-
work updates [7] introduces a mechanism that guarantees to
preserve well defined behaviors when transitioning between
states. However, a major problem for this technique is the
update performance, that is, the time it takes to install a net-
work state update onto the data-plane—the current generation
of OpenFlow switches can install flows with rate as low as 40
rules/second [2].1 Even moderate-sized updates can take sev-
eral seconds, during which operators are in the dark about how
badly links could be congested. [5] Therefore it is desirable to
complete updates quickly. However, we note that the lowest
bound of the total time to complete the update is determined
by the switch that is last to complete.

We observe that a large network update may consist of a
set of sub-updates that are independent and can be installed
in parallel in any order. Each sub-update comprises a list of
rule modification commands across multiple switches along
with an associated dependency graph between commands, as
defined in [6]. Our insight is that it is possible to exploit this
independence to improve the update performance by carefully
managing the scheduling of deciding which sub-update to in-
stall in which order and, within each sub-update, which com-
mands to enqueue at each switch. We can define the update
performance to optimize for various objectives, such as:
Finishing sub-updates quickly. While the overall network
update time is dictated by the slowest switch, we can increase
the update efficiency by finishing particular sub-updates soon
after the update starts. This is especially important for consis-
tent updates [7] since traffic is processed according to a sub-
update only when the corresponding two-phase commit ends.
Minimizing flow table overhead. Besides performance, an
important problem is the rule-space overhead due to the extra
number of rules that must be kept at the switches to implement
the update. Like others [3, 6], we observe that there is a trade-
off between consistency, update speed and number of rules
installed at a switch during an update. However, if an update
consists of many independent rule commands, a scheduler can
reorder the modifications to reduce the rule overhead during an
update without impacting the total update time, for example by

1While next generation hardware may alleviate the issue, others [1] have
argued that certain hardware limitations will stay for several generations of
ASIC design. Moreover, as flow table sizes increase, certain updates may
affect an even greater number of fine-grained rules.

interleaving rule insertions with rule deletion commands.
Minimizing transient inconsistencies. In the absence of a
consistent network update, a sub-update may disrupt traffic
during the period between the first and last data-plane modifi-
cations take place (for example an update that first deletes old
rules and then installs new ones). Therefore, it is desirable to
keep this transient phase as short as possible by scheduling the
last modification to occur soon after the first.
Prioritizing important updates. Certain sub-updates or en-
tire network updates may be more important than others (e.g.,
an update blocking all flows from a virus-infected machine
should have priority over load shifting due to traffic engineer-
ing). As such, they should be applied as early as possible, even
if they were issued at a later time than the less important ones.

However, finding the optimal schedule is time consuming
and computationally intensive. Further, even if a complete
list of individual rule modifications is known beforehand along
with their dependency graphs, computing the optimal update
schedule is difficult because switches process commands at
variable speeds and can queue them up.

To overcome these challenges, we design ESPRES, a layer
that operates at runtime by rate-limiting and reordering up-
dates to fully utilize switches without overloading them. We
find that this is sufficient to reach the aforementioned goals.
Further, combining switch queue management with even sim-
ple and quick heuristic scheduling disciplines can significantly
improve the update performance. Our early results show that
compared to using no scheduler, a simple scheduler yields 4
times quicker sub-update completion time for 20th percentile
of sub-updates and 40% quicker for 50th percentile. More-
over, a scheduling algorithm optimized for rule-space over-
head causes only 10% overhead instead of 76% without any
scheduler.

ESPRES
ESPRES is a sub-update scheduler that runs as a middle layer
placed between the controller and the (OpenFlow) switches.
As an input, ESPRES receives a stream of updates, each of
which is a set of independent sub-updates. A sub-update con-
sists of (i) rule modifications and their dependency graphs,2

(ii) a slice definition, that is, a collection of predicates on
packet headers and a set of switches and ports this sub-update
applies to, and (iii) an optional update priority. A dependency
between sub-updates of different updates exists in case there

2We assume that these dependencies come either from the controller or
the consistent update runtime. In the latter case the dependencies express the
different stages of the two-phase commit. Deriving them in an automatic way
is part of future work.



is an overlap between their respective slice definitions (there
is a nonempty intersection of a set of switches and ports and
the conjunction of predicates is nonempty).
Queue management and intra-update scheduling. A key
insight in ESPRES is maintaining good responsiveness by ac-
tively managing switch command queues. That is, instead of
sending (and queuing) all commands at once to a switch (with
no possible future reordering/cancellation), ESPRES queues
these commands inside the controller and sends to the switch
a small yet large enough number to obtain full switch per-
formance. We show the importance of such queue manage-
ment in Fig. 1—naively sending all available commands to the
switch fills up its queue, which may delay the installation of
rules for an almost completed sub-update. Instead, when the
queue length is actively managed, the controller can decide
which commands are to be sent next according to a particu-
lar scheduling disciplines (e.g., prefer rules from sub-updates
that already started) and/or different priorities. Additionally,
keeping bounded command queues on switches helps avoid-
ing switch error messages that may happen due to the switch
being overloaded.

2

1
Switch 1:

waiting in the queue

Switch 2:

dependency

Flows to install: Switch command queues:

Figure 1: Dashed sub-update is held back
by the dependency waiting in switch 2’s
command queue.

In our current
prototype we de-
veloped a simple
heuristic that op-
timizes for sub-
update comple-
tion time. Our
algorithm priori-
tizes sub-updates
according to the number of remaining rule modifications that
each sub-update contains (i.e., small updates first). Given a se-
lected sub-update, the algorithm installs all rule modifications
that have their dependencies satisfied if the queue lengths at
all affected switches are below a threshold (2 in our experi-
ments).3

Inter-update scheduling. As mentioned, different sub-
updates may have different priorities; ESPRES performs inter-
update scheduling to satisfy them. The key idea is to ex-
ploit the independence of sub-updates associated with differ-
ent slices, and thus potentially reorder them arbitrarily. De-
veloping an algorithm for this type of scheduling is part of
our ongoing work. Besides reordering updates, we envision
that, during high churn of updates, the algorithm may defer in-
stalling lower priority sub-updates and potentially merge them
with subsequent sub-updates associated with the same slice.

Early results
We used ESPRES to control the installation of a 1000-sub-
updates update in an IBM topology [4] containing 18 switches
in a Mininet environment. The emulator uses the refer-
ence OpenFlow switch implementation rate limited to 40
rule modifications/second to correspond to existing hardware
switches [2]. Fig. 2 shows that significant benefits come even
from simple scheduling algorithms. Our simple algorithm de-

3We estimate the queue length based on the difference between sent Bar-
rier Requests and received Barrier Replies.

scribed above comes very close to an optimal schedule calcu-
lated by an integer linear program, which runs in 10 minutes.
Further, our algorithm is 4 times better than not using a sched-
uler for 20th percentile of flows, 40% better for 50th percentile
and achieves equal total update time. Even if the switches
were faster, these results would still hold since the absolute
times would change proportionally to the switch processing
rate, unless the controller itself becomes the bottleneck.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10

C
D

F

time [s]

optimal schedule
ESPRES

incremental update
no scheduler

Figure 2: CDF of sub-update times. Our
simple schedule is close to optimal and sig-
nificantly better than having no scheduler.

We also ex-
periment with
a scheduler
aiming to to
minimize rule-
space overhead
at every switch
on a FatTree
topology with
20 switches and
370 sub-updates; The scheduler orders sub-updates such
that sub-updates deleting rules from overloaded switches are
placed first. We find that on average our algorithm causes
10.2% (11.3 rules) maximum overhead,4 averaged over 6
runs. A naive update without any scheduler results in 76%
overhead and an incremental consistent update [3] with 4
rounds causes 16.5% (17 rules) for the same experiment. For
comparison, an optimal schedule calculated by integer linear
program (assuming constant switch performance) decreases
this overhead to 2 rules in our case. However, such compu-
tation is impractical as it takes hours to compute even for a
moderate number of sub-updates (100). We note that the work
in [3] and our scheduler are complementary — Katta et al.
divide a network update into sequential rounds, bounding the
worst-case overhead within each round. In contrast, ESPRES
works on a whole network update/round and tries to avoid
the worst-case scenario (but without any formal guarantees).
Therefore, the two approaches can be combined together.
Acknowledgments. The research leading to these results has received fund-
ing from the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC grant agreement 259110.
This work was partially supported by the ARC grant 13/18-054 from Com-
munauté française de Belgique.

References
[1] A. Curtis, J. Mogul, J. Tourrilhes, and P. Yalagandula. DevoFlow: Scal-

ing Flow Management for High-Performance Networks. In SIGCOMM,
2011.

[2] D. Y. Huang, K. Yocum, and A. C. Snoeren. High-fidelity switch models
for software-defined network emulation. In HotSDN, 2013.

[3] N. P. Katta, J. Rexford, and D. Walker. Incremental Consistent Updates.
In HotSDN, 2013.

[4] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The
Internet Topology Zoo. Journal on Selected Areas in Communications,
29(9), 2011.

[5] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. A. Maltz.
zUpdate : Updating Data Center Networks with Zero Loss. In SIG-
COMM, 2013.

[6] R. Mahajan and R. Wattenhofer. On Consistent Updates in Software De-
fined Networks. In HotNets, 2013.

[7] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker. Ab-
stractions for Network Update. In SIGCOMM, 2012.

4The number of extra rules compared to the maximum between initial and
final number of rules at each switch


