
DejaVu: Accelerating Resource Allocation
in Virtualized Environments

Nedeljko Vasić, Dejan Novaković, Svetozar Miučin ∗, Dejan Kostić, and Ricardo Bianchini†

School of Computer and Communication Sciences †Department of Computer Science
EPFL, Switzerland Rutgers University, USA

{firstname.lastname}@epfl.ch ricardob@cs.rutgers.edu

Abstract

Effective resource management of virtualized environments is a
challenging task. State-of-the-art management systems either rely
on analytical models or evaluate resource allocations by running
actual experiments. However, both approaches incur a significant
overhead once the workload changes. The former needs to re-
calibrate and re-validate models, whereas the latter has to run a
new set of experiments to select a new resource allocation. Dur-
ing the adaptation period, the system may run with an inefficient
configuration.

In this paper, we propose DejaVu – a framework that (1) mini-
mizes the resource management overhead by identifying a small set
of workload classes for which it needs to evaluate resource alloca-
tion decisions, (2) quickly adapts to workload changes by classify-
ing workloads using signatures and caching their preferred resource
allocations at runtime, and (3) deals with interference by estimating
an “interference index”. We evaluate DejaVu by running represen-
tative network services on Amazon EC2. DejaVu achieves more
than 10x speedup in adaptation time for each workload change rel-
ative to the state-of-the-art. By enabling quick adaptation, DejaVu
saves up to 60% of the service provisioning cost. Finally, DejaVu
is easily deployable as it does not require any extensive instrumen-
tation or human intervention.

Categories and Subject Descriptors D.4.8 [Operating Systems]:
Performance; K.6.4 [Management of Computing and Information
Systems]: System Management

General Terms Design, Measurement, Performance

Keywords Resource management, Data center, Virtualization

1. Introduction

Cloud computing is rapidly growing in popularity and importance,
as an increasing number of enterprises and individuals have been
offloading their workloads to cloud service providers, such as Ama-
zon, Microsoft, IBM, and Google. One of the main reasons for the

∗Work done during this author’s internship at EPFL.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’12, March 3–7, 2012, London, England, UK.
Copyright c© 2012 ACM 978-1-4503-0759-8/12/03. . . $10.00

proliferation of cloud services is virtualization technology. Virtu-
alization (1) enables providers to easily package and identify each
customer’s application into one or more virtual machines (VMs);
(2) allows providers to lower operating costs by multiplexing their
physical machines (PMs) across many VMs; and (3) simplifies VM
placement and migration across PMs.

However, effective management of virtualized resources is a
challenging task for providers, as it often involves selecting the best
resource allocation out of a large number of alternatives. Moreover,
evaluating each such allocation requires assessing its potential per-
formance, availability, and energy consumption implications. To
make matters worse, the workload of certain applications varies
over time, requiring the resource allocations to be re-evaluated and
possibly changed dynamically. For example, the workload of net-
work services may vary in terms of the request rate and the resource
requirements of the request mix.

A service that is provisioned with an inadequate number of re-
sources can be problematic in two ways. If the service is over-
provisioned, the provider wastes money. If the service is under-
provisioned, its performance may violate a service-level objective
(SLO). As an illustration of the impact of such an SLO violation,
Amazon reports that it loses 1% of sales for an increase of 100 ms
in response latency [15]. Thus, it is very important that the service
is adequately provisioned.

Given these problems, automated resource managers or the sys-
tem administrators themselves must be able to evaluate many pos-
sible resource allocations quickly and accurately. Both analytical
modeling and experimentation have been proposed for evaluat-
ing allocations in similar datacenter settings [10, 12, 14, 18, 30,
33, 36, 37, 40, 42, 43]. Unfortunately, these techniques may re-
quire substantial time. Although modeling enables a large num-
ber of allocations to be quickly evaluated, it also typically re-
quires time-consuming (and often manual) re-calibration and re-
validation whenever workloads change appreciably. In contrast,
sandboxed experimentation can be more accurate than modeling,
but requires executions that are long enough to produce representa-
tive results. For example, [42] suggests that each experiment may
require minutes to execute. Finally, experimenting with resource
allocations on-line, via simple heuristics and/or feedback control
[2, 8, 21, 28, 38, 41], has the additional limitation that any tentative
allocations are exposed to users.

This paper addresses this set of problems by proposing DejaVu,
a system that simplifies and accelerates the management of virtu-
alized resources in cloud computing services. The key idea behind
DejaVu is to cache and reuse the results of previous resource allo-
cation decisions. When the DejaVu framework detects that work-
load conditions have changed (perhaps because a VM or service is

not achieving its desired performance), it can lookup the DejaVu
cache, each time using a VM identification and a workload sig-
nature. The signature is an automatically determined, pre-defined
vector of metrics describing the workload characteristics, and the
VM’s current resource utilization. To enable the cache lookups,
DejaVu automatically constructs a classifier that uses off-the-shelf
machine learning techniques. The classifier operates on workload
clusters that are determined after an initial learning phase. DejaVu
clustering has a positive effect on reducing the overall resource
management effort and overhead, because it reduces the number
of invocations of the tuning process (one per cluster).

The resource manager can use the output of DejaVu to quickly
reallocate resources. The manager only needs to resort to time-
consuming modeling, sandboxed experimentation, or on-line ex-
perimentation when no previous workload exercises the affected
VMs in the same way. When the manager does have to produce a
new optimized resource allocation using one of these methods, it
stores the allocation into the DejaVu cache for later use.

Like any other cache, DejaVu is most useful when its cached
allocations can be repeatedly reused. Although DejaVu can be used
successfully in a variety of environments, in this paper we focus on
cloud computing providers that run collections of network services
(these are also known as Web hosting providers). Previous works
and our own experience suggest that DejaVu should achieve high
“hit rates” in this environment. For example, it is well-known that
the load intensity of network services follows a repeating daily pat-
tern, with lower request rates on weekend days. In addition, these
services use multiple VMs that implement the same functionality
and experience roughly the same workload (e.g., all the application
servers of a 3-tier network service).

Our approach to dealing with performance interference on the
virtualized hosting platform recognizes the difficulty of pinpointing
the cause of interference, and the inability of cloud users to change
the hosting platform itself to eliminate interference. DejaVu uses a
pragmatic approach in which it probes for interference and adjusts
to it by provisioning the service with more resources.

The contributions of this paper are as follows:

1. We propose DejaVu, a framework for learning and reusing
optimized VM resource allocations.

2. We describe a technique for automatically profiling, clustering,
and classifying workloads. Clustering reduces the number of
tuning instances and thus reduces the overall resource manage-
ment overhead.

3. We evaluate DejaVu using realistic network services and real-
world MSN messenger and HotMail traces. Our results show
that DejaVu achieves more than 10x speedup in adaptation time
for each workload change, relative to the state-of-the-art. Fur-
ther, DejaVu saves between 35-45% and 55-60% of the pro-
visioning cost when scaling up and scaling out, respectively,
as compared to the approach that always overprovisions the
service to ensure the SLO is met. The DejaVu-achieved sav-
ings translate to about $250,000 per year for 100 large EC2
instances.

We conclude that deploying DejaVu in the field would have
two key benefits. First, it would enable cloud providers to meet
their SLOs more efficiently as workloads change. It would also
enable providers to lower their energy costs (e.g., by consolidating
workloads on fewer machines, more machines can enter a low-
power state [8, 22, 39]). Second, the more efficient adaptation to
workload changes would enable users to purchase fewer resources
from the provider. In addition, the lower provider costs would likely
translate into savings for users as well.

2. Background and Motivation

In this section, we briefly describe the background for our work,
and demonstrate the need for DejaVu.

2.1 Background

We assume that the user1 of the virtualized environment deploys
her service across a pool of virtualized servers. We use the term
application to denote a standalone application or a service compo-
nent running within a guest operating system in a virtual machine
(VM). The service itself is mapped to a number of VMs. A typi-
cal example would be a 3-tier architecture which consists of a web
server, an application server, and a database server component. All
VMs reserved for a particular component can be hosted by a single
physical server, or distributed across a number of them. The user
and the provider agree on the Service Level Objective (SLO) for
the deployed service.

While DejaVu is not restricted to any particular virtualized plat-
form, we evaluate it using Amazon’s Elastic Computing Cloud
(EC2) platform. EC2 offers two mechanisms for dynamic resource
provisioning, namely horizontal and vertical scaling. While hori-
zontal scaling (scaling out) lets users quickly extend their capaci-
ties with new virtual instances, vertical scaling (scaling up) varies
resources assigned to a single VM. EC2 provides many server in-
stance types, from small to extra large, which differ in available
computing units, memory and I/O performance. We evaluate De-
jaVu with both provisioning schemes in mind.

2.2 The Case for DejaVu

The key issue in resource provisioning is to come up with the suf-
ficient, but not wasteful, set of virtualized resources (e.g., number
of virtual CPU cores and memory size) that enable the applica-
tion to meet its SLO. Resource provisioning is challenging due to:
(1) workload dynamics, (2) the difficulty and overhead of deriving
the resource allocation for each workload, and (3) the difficulty in
enforcing the resource planning decisions due to interference. As
a result, it is difficult to determine the resource allocation that will
achieve the desired performance while minimizing the cost for both
the cloud provider and the user.

The most important problem is that the search space of allo-
cation parameters is very large and makes the optimal configura-
tion hard-to-find. Moreover, the workload can change and render
this computed setting sub-optimal. This in turn results in under-
performing services or resource waste.

Once they detect changes in the workload, the existing ap-
proaches for dynamic resource allocation re-run time-consuming
modeling and validation, sandboxed experimentation, or on-line
experimentation to evaluate different resource allocations. More-
over, on-line experimentation approaches (including feedback con-
trol) adjust the resource allocation incrementally, which leads to
long convergence times. The convergence problem becomes even
worse when new servers are added to or removed from the service.
Adding servers involves long boot and warm-up times, whereas re-
moving servers may cause other servers to spend significant time
rebalancing load (as in Casandra [1]).

The impact of the state-of-the-art online adaptation on perfor-
mance is illustrated by our experiment using RUBiS [6] (an eBay
clone) in which we change the workload volume every 10 minutes.
Further, to approximate the diurnal variation of load in a datacen-
ter, we vary the load according to a sine-wave. As shown in Figure
1, even if the workload follows a recurring pattern, the existing
approaches are forced to repeatedly run the tuning process since

1We use the terms “user” and “tenant” interchangeably. We reserve the term
“client” for the client of the deployed service itself.

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70 80
 0

 50

 100

 150

 200

 250

W
o
rk

lo
a
d
 v

o
lu

m
e

 (
n
u
m

b
e
r

o
f
c
lie

n
ts

)

A
v
e
ra

g
e
 l
a
te

n
c
y
 (

m
s
)

Time (min)

bad performance

over charged

Workload volume
Average latency

SLO latency

Figure 1. Every time the workload changes, the state-of-the-art
approaches spend a considerable amount of time in performance
retuning. During this time, the service can deliver insufficient per-
formance due to a lack of resources. Alternatively, the service can
be overprovisioned, and ultimately waste resources.

they cannot detect the similarity in the workload they are encoun-
tering. Unfortunately, this means that the hosted service is repeat-
edly running for long periods of time under a suboptimal resource
allocation. Such magnitude of response latency increase (100 ms)
has substantial impact on the revenue of the service [15]. Finally,
computing the optimal resource allocation is an expensive task.

When faced with such long periods of unsatisfactory perfor-
mance, the users might have to resort to overprovisioning, e.g.,
by using a large resource cap that can ensure satisfactory perfor-
mance at foreseeable peaks in the demand. For the user, doing so
incurs unnecessarily high deployment costs. For the provider, this
causes high operating cost (e.g., due to excess energy for running
and cooling the system). In summary, overprovisioning negates one
of the primary reasons for the attractiveness of virtualized services
for both users and providers.

Another problem with existing resource allocation approaches
is that virtualization platforms do not provide ideal performance
isolation, especially in the context of hardware caches and I/O. This
implies that application performance may suffer due to the activi-
ties of the other virtual machines co-located on the same physical
server. For instance, previous works and our own experience sug-
gest that, due to the interference, even virtual instances of the same
type might have very different performance over time.

3. Approach

In this section, we describe the DejaVu framework, starting with its
high-level overview.

3.1 Overview

DejaVu operates alongside the services deployed in the virtualized
environment of a cloud provider. Although other organizations are
conceivable, we assume that the cloud provider itself deploys and
operates DejaVu. Figure 2 highlights DejaVu’s main components
and the way they integrate with the cloud provider, while Figure 3
illustrates its operation. DejaVu accelerates the management of vir-
tualized resources in datacenters by caching the results of past re-
source allocation decisions and quickly reusing them once it faces
the same or a similar workload. For DejaVu to be effective in deal-
ing with dynamic workloads, it first needs to learn about workloads
and their associated resource allocations (e.g., the number and size
of the required virtualized instances on EC2) during the learning
phase (e.g., a week of service use).

To profile a workload, DejaVu deploys a proxy that duplicates
the client requests directed to selected service VM instances to the

A
B

C

Service A Service B
Service C

DejaVu Proxy
DejaVu Proxy DejaVu Proxy

A

B

C

DejaVu Profilers –

Workload classification

Figure 2. High-level overview of the way DejaVu’s integrates with
the service running in the cloud.

DejaVu profiler. DejaVu then uses a dedicated profiling machine
to compute a workload signature for each encountered workload.
The workload signature itself is a set of automatically chosen low-
level metrics. Further, DejaVu clusters the encountered workloads,
and by doing so it reduces the resource management overhead, as
well as the number of potentially time-consuming service recon-
figurations to accommodate more or fewer virtual machines. The
Tuner maps the clusters to the available virtualized resources, and
populates the resource allocation repository.

After the initial learning phase, DejaVu profiles the workload
periodically or on-demand (e.g., upon a violation of an SLO) using
its proxy. It then uses each computed workload signature to auto-
matically classify the encountered workload. If the classifier points
to a previously seen workload (cache hit), DejaVu quickly reuses
the previously computed resource allocation. In case of a different
resource allocation, DejaVu instructs the service to reconfigure it-
self. In case of a failure to classify the workload (e.g., due to an un-
foreseen increase in service volume), DejaVu can either reinvoke
the Tuner, or instruct the service to deploy its full capacity con-
figuration. Compared to the state-of-the-art, DejaVu drastically re-
duces the time during which the service is running with inadequate
resources. This translates to fewer and shorter SLO violations, as
well as significant cost reduction for running the service itself.

To deal with interference from co-located workloads, DejaVu
computes an interference index by contrasting the performance of
the service on the DejaVu profiler with that in the production en-
vironment. It then stores this information in the resource allocation
repository. Simply put, this information tells DejaVu how many
more resources it needs to request to have a better probabilistic
guarantee on the service performance. Using the historically col-
lected interference information once again allows DejaVu to re-
duce the tuning overhead relative to the interference-oblivious case
(state-of-the-art).

3.2 Workload Dispatching and Profiling

At a high level (Figure 2), DejaVu consists of two main compo-
nents: proxy and workload profiler. To profile workloads under
real-world conditions and traces, we introduce a proxy between the
clients and the hosted services. The proxy forwards the client re-
quest to the system in production, but also duplicates and sends
a certain fraction of the requests to the profiling environment for
workload characterization.

Metric 2

M
e
tr

ic
 1

Time W
o
rk

lo
a
d

v
o
lu

m
e
/t
y
p
e

DejaVu profiling

and clustering
Peformance

tuning

V
ir
tu

a
liz

e
d

re
s
o
u
rc

e
s

Time

W
o
rk

lo
a
d

v
o
lu

m
e
/t
y
p
e

Resource allocation

Workload

signature

Interference

index

Resource

allocation

M1,M2, " 1 3

M1,M2, " 1 2

M1,M2, " 1 1

Time

DejaVu online workload

classification

DejaVu reuse of

resource allocation

decisions
Training Reuse (periodic/on-demand)

Figure 3. High-level overview of DejaVu’s operation. It first profiles and clusters a dynamic workload during the learning phase. State-of-
the-art performance tuning then maps the clusters to virtualized resources. Finally, DejaVu profiles workloads at runtime and reuses previous
resource allocation decisions to allow the service to quickly adapt to workload changes.

3.2.1 DejaVu Proxy

The proxy needs to be careful when selecting the requests for pro-
filing. In the case of Internet services, the sampling is done at the
granularity of the client session to avoid issues with non-existent
web cookies that might cause workload anomalies. Other types of
applications may require more sophisticated approaches. For ex-
ample, a distributed key-value storage system (e.g., Cassandra [1])
requires sampling where the dispatching needs to be aware of the
node partitioning scheme, and duplicate only the requests with keys
that belong to the particular server instance used for workload char-
acterization.

Having a proxy between the service in production and the test-
ing environment (in our case the profiling environment) has been
addressed before [42]. The authors typically propose application
protocol-aware proxies, ending up with numerous implementations
that understand HTTP, mod-jk, jdbc, etc. In contrast, our workload
characterization targets an arbitrary service; this in turn poses a
need for a general proxy that can work with any service. Hence,
we propose a novel proxy which which sits between the applica-
tion and transport layers.

The proxy duplicates incoming network traffic (all the requests)
of the server instance that DejaVu intends to profile, and forwards it
to the clone. By doing so, DejaVu ensures that the clone VM serves
the same requests as the profiled instance, resulting in the same or
similar behavior. Finally, to make the profiling process transparent
to the other nodes in the cluster, the clone’s replies are dropped by
the profiler. To avoid instrumentation of the service (e.g., changing
the listening ports), we transparently redirect incoming traffic to the
DejaVu proxy using iptables routines [19].

It is particularly hard to make the profiler behave just like the
production instance in multi-tier services. For example, consider
a three-tier architecture. In this architecture, it is common for the
front-end web server to invoke the application server which then
talks to the database server before replying back to the front-end.
In this case, if DejaVu is instructed to profile only the application
server (the middle tier), it is obvious that we need to deal with the
absence of the database server.

DejaVu addresses this challenge by having its proxy cache re-
cent answers from the database such that they can be re-used by
the profiler. Requests coming from the clone are also sent to the

proxy. Upon receiving a request from the profiler, the proxy com-
putes its hash and mimics the existence of the database by looking
up the most recent answer for the given hash. Note that the proxy’s
lookup table exhibits good locality since both the production and
the profiler deal with the same requests, only slightly shifted in time
as one of these two might be running faster. This caching scheme
does not necessarily produce the exact same behavior as in the pro-
duction system because the proxy can: (1) miss some answers due
to minor request permutations (i.e. the profiler and the production
instance generate different timestamps), or (2) feed the profiler with
obsolete data. However, the scheme still generates the load on the
profiler that is similar to that of the production system (recall that
DejaVu does not need a verbatim copy of the production system).

3.2.2 DejaVu Profiler

During the workload characterization process, DejaVu’s profiler
serves realistic requests (sent by the proxy) in the profiling envi-
ronment, allowing us to collect all the metrics required by the char-
acterization process, without interfering with the system in produc-
tion. DejaVu relies on VM cloning to reconstruct a subset of the
monitored service that can serve the sampled requests, but makes
sure that VM clones have different network identities (recall that
the clone is running in our private profiling environment). To min-
imize the cloning cost, DejaVu profiles only a subset of the ser-
vice, typically a single server instance (e.g., one VM per tier) and
assumes that services balance the load evenly across its server in-
stances.

The services with little or no state are quickly brought to an
equivalent operational state to that of the system in production. In
contrast, replicating a database instance might be time-consuming,
and it is important to consider the cloning of the disk storage [7,
20]. However, our goal is not to exactly capture the service’s com-
plex behavior and resulting performance, but only to label the cur-
rent workload which gives us additional flexibility – our VM clone
does not need to be tightly synchronized with the system in produc-
tion. Instead, we envision periodic synchronization and resort to the
current image, as long as DejaVu manages to identify the minimal
set of resources that enable the service to meet its SLO.

To avoid the VM cloning and DejaVu overhead altogether, one
can perform profiling on-line, without cloning the monitored VM.

(a) SPECweb2009 (b) RUBiS (c) Cassandra

Figure 4. Low-level metrics can serve as a signature which reliably identifies workloads that differ either in their type (i.e., read/write ratio)
or intensity.

This again comes with two major obstacles. First, some metrics
might be disturbed by co-located tenants during the sampling pe-
riod; hence one would need to carefully identify the signature-
forming metrics that are immune to interference. The second ob-
stacle is that the cloud provider would need to make all low-level
metrics available for our profiling.

3.3 Choosing the Workload Signature

For any metric-based workload recognition, it is crucial that the set
of metrics chosen as the workload signature can uniquely identify
all types of workload behaviors. Before going into the details of our
workload signature selection process, we discuss how we collect
the workload-describing metrics.

The DejaVu framework relies on its Monitor to periodically or
on-demand (e.g., upon a violation of an SLO) collect the workload
signatures. The design of the Monitor includes several key chal-
lenges:

• Non-intrusive monitoring. Given the diverse set of applications
that might run in the cloud, DejaVu cannot rely on any prior ser-
vice knowledge, semantics, implementation details, or highly-
specific logs. Further, DejaVu assumes that it has to work well
without having any control over the guest VMs or applications
running inside them. This is a desirable constraint given that we
target hosting environments like Amazon’s EC2 that provides
only a “bare-bones” virtual server.

• Isolation. Because the DejaVu profiler (possibly running on a
single machine) might be in charge of characterizing multiple
services, we need to make sure that the obtained signatures are
not disturbed by other profiling processes running on the same
profiler.

• Small overhead. Since DejaVu might be running all the time, its
proxy must induce negligible overhead while duplicating client
requests, to avoid an impact on application performance.

Using low-level metrics to capture the workload behavior is
attractive as it allows us to uniquely identify different workloads
without requiring knowledge about the deployed service. The vir-
tualization platforms are already equipped with various monitoring
tools that are useful to us. For instance, Xen’s xentop command
reports individual VM resource consumption (CPU, memory, and
I/O). Further, modern processors usually have a set of special regis-
ters that allow monitoring of performance counters without affect-
ing the code that is currently running. It has been shown that these
Hardware Performance Counters (HPC) can be used for workload
anomaly detection [17] and online request recognition [29]. In ad-
dition, the HPC statistics can conveniently be obtained without in-
strumenting the guest VM. We only read a hardware counter value
before a VM is scheduled, and right after it is preempted. The dif-

ference between the two gives us the exact number of events for
which the VM should be “charged”. Tools such as Xenoprof al-
ready provide this functionality with passive sampling.

Leveraging low-level metrics brings another practical question:
given the complexity of the hosted services, can we rely on these
metrics as a reliable signature to distinguish different workloads?
We assume that as long as a relevant counter value lies in a certain
interval, the current workload belongs to the class associated with
the interval.

To validate this assumption in practice, we run experiments with
realistic applications. In particular, we run typical cloud bench-
marks under different load volumes, with 5 trials for each volume.
Figures 4(a) - 4(c) present the results with each point representing
a different trial. In the most obvious example, Figure 4(a) clearly
shows that the hardware metric (Flops rate in this case) can reli-
ably differentiate the incoming workloads.Moreover, the results for
each load volume are very close. Once we change either workload
type (e.g., read/write ratio) or intensity, a large gap between counter
values appear. Similar trends are seen in the other benchmarks as
well, but with a bit more noise. Nevertheless, the remaining metrics
that belong to the signature (we are plotting only a single counter
for each benchmark) typically eliminate the impact of noise.

While we can choose an arbitrary number of xentop-reported
metrics to serve as the workload signature, the number of HPC-
based metrics is limited in practice – for instance, our profiling
server, Intel Xeon X5472, has only four registers that allow mon-
itoring of HPCs, with up to 60 different events that can be mon-
itored. It is possible to monitor a large number of events using
time-division multiplexing, but this causes a loss in accuracy [16].
Moreover, many of these events are not very useful for workload
characterization, as they provide little or no value when comparing
workloads. Finally, we can reduce the dimensionality of the ensu-
ing classification problem and significantly speed up the process by
selecting only a subset of relevant events.

The task at hand is a typical feature selection process, which
evaluates the effect of selected features on classification accuracy.
The problem has been investigated for years, resulting in a large
number of machine learning techniques. As our focus is not on in-
venting newmodels, we simply apply various mature methods from
theWEKAmachine learning package [13] on our datasets obtained
from profiling (Section 3.4). During this phase, we form the dataset
by collecting all HPC and xentop-reported metric values.

Applying different techniques on our dataset, we note that the
CfsSubsetEval technique, in collaboration with the Greed-
StepWise search, results in high classification accuracy. The
technique evaluates each attribute individually, but also observes
the degree of redundancy among them internally to prevent undesir-
able overlap. As a result, we derive a set of N representative HPCs

and xentop-reported metrics, which serve as the workload signature
(WS) in the form of an ordered N-tuple:

WS = {m1,m2, ...,mN} (1)

where mi represents the metric i. We further analyze the feature
selection process by manually inspecting the chosen counters. For
instance, the HPC counters chosen to serve as the workload signa-
ture in case of the RUBiS workload are depicted in Table 1 (the
xentop metrics are excluded from the table). Indeed, the signature
metrics provide performance information related to CPU, cache,
memory, and the bus queue.

Given that the selection process is data-driven, the metrics form-
ing the workload signatures are application-dependent. We how-
ever do not view this as an issue since the metric selection process
is fully automated and transparent to the user.

To ensure that our workload signature is robust to arbitrary
sampling duration, we normalize the values with the sampling time.
This is important as it allows us to generalize our signatures across
workloads regardless of how long the sampling takes.

3.4 Identifying Workload Classes

Given that the majority of network services follow a repeating
daily pattern, DejaVu should achieve high “cache hit rates”. But
still a challenge remains. To achieve high hit rates, DejaVu first
needs to populate preferred resource allocations for representative
workloads, i.e. those workloads that will most likely reoccur in the
near future and result in a cache hit.

Note that there is a tradeoff between the overhead of adjusting
resource allocations (tuning) and the achieved hit rates. One can
achieve high hit rates by naively marking every workload as rep-
resentative. However, this would cause DejaVu to perform costly
tuning for too many workloads. On the other hand, omitting some
important workloads could lead to unacceptable resource alloca-
tions during certain periods.

DejaVu addresses this tradeoff by automatically identifying a
small set of workload classes for a service. First, it monitors the
service for a certain period (e.g., a day or week) until the admin-
istrator decides that DejaVu has seen most, or ideally all, work-
loads. During this initial profiling phase, DejaVu collects the low-
level metrics discussed in Section 3.3. Then, it analyzes the dataset
to identify workload signatures, and represent each workload as a
point in N-dimensional space (N is the number of metrics in the
signature). Finally, DejaVu clusters workloads into classes.

DejaVu leverages a standard clustering technique, simple k
means, to produce a set of workload classes for which the Tuner
needs to obtain the resource allocations. The framework can au-
tomatically determine the number of classes, as we did in our ex-
periments, but also allows the administrators to explicitly strike the
appropriate tradeoff between the tuning overhead and hit rate. As
an example, Figure 5 shows the representative workload classes
that we obtain from a service after replaying the day-long Mi-
crosoft HotMail trace [35]. Each workload is projected onto the
two-dimensional space for clarity. DejaVu collected a set of 24
workloads (an instance per hour), and it identified only four dif-
ferent workload classes for which it has to perform the tuning. For
instance, a workload class holding a single workload (the top right
corner) stands for the peak hour.

DejaVu assumes that the workload classes obtained in the pro-
filing environment are also relevant for the production system. This
does not mean that the counter values reported by the profiler need
to be comparable to corresponding values seen by the service in
production. This would be too strong of an assumption, as DejaVu
would then have to make the profiling environment a verbatim copy
of the hosting platform, which is most likely infeasible. Instead,

0

200

400

600

800

0 5 10 15 20 25 30

M
e
tr

ic
 2

Metric 1

Figure 5. Identifying the representative workloads - DejaVu sub-
stantially reduces the tuning overhead by producing only 4 work-
load classes out of 24 initial workloads.

DejaVu only assumes that the relative ordering among workloads
is preserved between the profiling and the production environment.
For instance, if workload A is closer to workload B than to work-
load C in the profiling environment, the same also holds in the pro-
duction environment. We have verified this assumption empirically
using machines of different types in our lab.

After DejaVu identifies the workload classes, it triggers the
tuning process for a single workload from each workload class.
It typically chooses the instance that is closest to the cluster’s
centroid. The Tuner’s job is to determine the sufficient, but not
wasteful, set of virtualized resources (e.g., number and type of
virtual instances) that ensure the application meets its SLO. The
Tuner can use modeling or experiments for this task. Moreover,
it can be manually driven or entirely automated. The choice of
a tuning mechanism is orthogonal to our work. After the Tuner
determines resource allocations for each workload class, DejaVu
has a table populated with workload signatures along with their
preferred resource allocations – the workload signature repository
– which it can re-use at runtime.

Since our focus is not on the Tuner itself, we resort to a very
simple technique – linear search – in our evaluation. In more detail,
we replay a sequence of runs of the workload, each time with an
increasing amount of virtual resources. We then choose the minimal
set of resources that fulfill the target SLO. For instance, one can
incrementally increase the CPU or memory allocation (by varying
the VMM’s scheduler caps) until the SLO is fulfilled. Since our
experiments involve EC2, we can only vary the number of virtual
instances or instance type. Note that we can accelerate the tuning
process by using more sophisticated methods, as in [30]. We leave
this avenue for our future work.

3.5 Quickly Adapting to Workload Changes

Since DejaVu’s goal is to re-use resource allocation decisions at
runtime, it needs a mechanism to decide to which cluster a newly
encountered workload belongs – the equivalent of the cache lookup
operation. DejaVu uses the previously identified clusters to label
each workload with the cluster number to which it belongs, such
that it can train a classifier to quickly recognize newly encountered
workloads at runtime. The resulting classifier stands as the explicit
description of the workload classes. We have experimented with
numerous classifier implementations from the WEKA package and
observe that both Bayesian models and decision trees work well for
the network services we considered. We use the C4.5 decision tree
in our evaluation, or more precisely its open source Java implemen-
tation – J48).

Upon a workload change, DejaVu promptly collects the rele-
vant low-level metrics to form the workload signature of the new
workload and queries the DejaVu repository to find the best match

Name Description Name Description

busq_empty Bus queue is empty cpu_clk_unhalted Clock cycles when not halted
l2_ads Cycles the L2 address bus is in use l2_reject_busq Rejected L2 cache requests
l2_st Number of L2 data stores load_block Events pertaining to loads
store_block Events pertaining to stores page_walks Page table walk events

Table 1. The HPC metrics included in RUBiS’s workload signature.

among the existing signatures. To do this, it uses the previously
defined classification model and outputs the resource allocation of
the cluster to which the incoming signature belongs. Given that the
number of workload classes is typically small and the classification
time practically negligible, DejaVu can adjust to workload changes
on the order of a few or several seconds, as needed by the DejaVu
profiler to collect the workload signatures.

Along with the preferred resource allocations, the repository
also outputs the certainty level with which the repository assigned
the new signature to the chosen cluster. If the repository repeatedly
outputs low certainty levels, it most likely means that the workload
has changed over time and that the current clustering is no longer
relevant. DejaVu can then initiate the clustering and tuning process
once again, allowing it to determine new workload classes, conduct
the necessary experiments (or modeling activities), and update the
Repository. Meanwhile, DejaVu configures the service with the
maximum allowed capacity to ensure that the performance is not
affected when experiencing non-classified workloads.

3.6 Addressing Interference

In the previous subsection, we described how to populate the repos-
itory with the smallest (also called baseline) resource allocation
that meets the SLO at the time of tuning. The baseline allocation
however, due to interference, may not guarantee sufficient perfor-
mance at all times. DejaVu deals with this problem by estimating
the interference index and using it, along with the workload signa-
ture, when determining the preferred resource allocation.

In more detail, after DejaVu deploys the baseline resource al-
location for the current workload, it monitors the resulting perfor-
mance (e.g., service latency). If it observes that the SLO is still
being violated, DejaVu blames interference for the performance
degradation.Workload changes are excluded from the potential rea-
sons, because the workload class has just been identified in isola-
tion. It then proceeds by computing the interference index as:

Interference index =
PerformanceLevelproduction

PerformanceLevelisolation
(2)

The index contrasts the performance of the service in production
after the baseline allocation is deployed with that obtained from
the profiler. Note that DejaVu relies on each application to report
a performance-level metric (e.g., response time, throughput). This
metric already needs to be collected and reported when the per-
formance is unsatisfactory. Others have argued for computing this
metric [18].

Finally, DejaVu queries the repository for the preferred resource
allocation for the current workload and the interference amount. If
the repository does not contain the corresponding entry, DejaVu
triggers the tuning process and sends the obtained results, along
with the estimated index, to the repository for later use. After this
is done, DejaVu will be able to quickly lookup the best resource
allocation for this workload given the same amount of interference.

Interference may vary across the VM instances of a ser-
vice, making it hard to select a single instance for profiling
that will uniquely represent the interference across the entire
service. Inspired by typical performance requirements (e.g., the
Xth− percentile of the response time should be lower than Y

seconds), we envision a selection process that chooses an instance
at which interference is higher than inX% of the probed instances.
This conservative performance estimation would give us a proba-
bilistic guarantee on the service performance.

For the time being, DejaVu quantifies the interference impact
and reacts upon it to maintain the SLO. However, we plan to
further investigate this aspect of DejaVu and ensure it provides
finer information about the interference. Assuming that the cloud
provider collects the low-level metrics from its VM instances, it
might compare the metric values imposed by the same workload
class over time to reveal which resource is primarily affected by
the interference (e.g., cache, I/O).

3.7 Discussion

We now discuss a few interesting questions about DejaVu.

Who should run DejaVu: the cloud provider or a third party?
Althoughwe view this choice as orthogonal to our work, we believe
that it is more practical for the cloud provider to run DejaVu. In fact,
this is the setup we have assumed so far. This deployment scenario
eliminates the privacy and network traffic concerns with shipping
code (clones of the services’ VMs) and client requests to a third
party.

Nevertheless, it is conceivable that a third party could run De-
jaVu. In this case, users would likely have to explicitly contract
with both the provider and the third party. Alternatively, the De-
jaVu proxy could be configured to selectively duplicate the incom-
ing traffic such that private information (e.g., e-mails, user-specific
data) is not dispatched to the profiler. However, having to share the
service code with the third party would still be a problem.

Regardless of who runs DejaVu, a tenant needs to reveal cer-
tain information about their service. Specifically, the proxy needs
to know the port numbers used by the service to communicate with
the clients and, internally, among VMs. Finally, to completely au-
tomate the resource allocation process, DejaVu assumes that it can
enforce a chosen resource allocation policy without necessitating
user involvement. Amazon EC2, for instance, allows us to auto-
matically adjust the number of running instances by using its APIs.

How does DejaVu deal with unforeseen workloads?DejaVu pro-
vides no worse performance than the existing approaches when it
encounters a previously unknown workload (e.g., large and unseen
workload volume [4]). In this case, DejaVu has to spend additional
time to identify the resource allocation that achieves the desired
performance at minimal cost (just like the existing systems). To try
to avoid an SLO violation by the service, the current version of De-
jaVu responds to unforeseen workloads by deploying the maximum
resource allocation (full capacity). If the workload occurs multiple
times, DejaVu invokes the Tuner to compute the minimal set of re-
quired resources and then readjust the resource allocation.

What is the scope of DejaVu? Although DejaVu primarily tar-
gets “request-response” Internet services, we believe that our in-
terference mechanism can be useful even for long-running batch
workloads (e.g., MapReduce/Hadoop jobs). In this case, DejaVu
would require the equivalent of an SLO. For example, for Hadoop
map tasks, the SLO could be their user-provided expected running

times (possibly as a function of the input size). Upon an SLO vi-
olation, DejaVu would run a subset of tasks in isolation to deter-
mine the interference index. This computation would also expose
cases in which interference is not significant and the user simply
mis-estimated the expected running times. We leave the issue of
applying DejaVu to other types of workloads for future work.

4. Evaluation

Our evaluation uses realistic traces and workloads to answer the
following questions. First, can DejaVu produce significant savings
while scaling network services horizontally (scaling out) and verti-
cally (scaling up)? Second, how does DejaVu compare with: (1) a
time-based controller (called Autopilot) which attempts to leverage
the re-occurring (e.g., daily) patterns in the workload by repeating
the resource allocations determined during the learning phase at
appropriate times, and (2) an existing autoscaling platform, such as
RightScale [24]? Third, is DejaVu capable of detecting and mitigat-
ing the effect of interference? Finally, can the profiling overhead,
and to what extent, affect the performance of the production sys-
tem? This section starts by describing our experimental setup.

Testbed. Our profiling environment consists of two servers: Intel
SR1560 Series rack servers with Intel Xeon X5472 processors
(eight cores at 3 GHz), 8 GB of DRAM, and 6 MB of L2 cache
per every two cores. We use them to collect the low-level metrics
while hosting the clone instances of Internet service components.

We evaluate the DejaVu framework by running widely-used
benchmarks on Amazon’s EC2 cloud platform. We ran all our
experiments within an EC2 cluster of 20 virtual machines (both
clients and servers were running on EC2). To demonstrate DejaVu’s
ability to scale out, we vary the number of active instances from 2 to
10 as the workload intensity changes, but resort only to EC2’s large
instance type. In contrast, we demonstrate its ability to scale up by
varying the instance type from large to extra-large, while keeping
the number of active instances constant.

To focus on DejaVu rather than on the idiosyncrasies of EC2,
our scale out experiments assume that the VM instances to be added
to a service have been pre-created and stopped. In our scale up
experiments, we also pre-create VM instances of both types (large
and extra large). Pre-created VMs are ready for instant use, except
for a short warm-up time. In all cases, state management across
VM instances, if needed, is the responsibility of the service itself,
not DejaVu.

Internet services.We evaluate DejaVu for two representative types
of Internet services: (1) a classic multi-tier web site with an SQL
database back-end (SPECweb2009), and (2) a NoSQL database in
the form of a key-value storage layer (Cassandra).

SPECweb2009 [32] is a benchmark designed to measure the
performance of a web server serving both static and dynamic con-
tent. Further, this benchmark allows us to run 3 workloads: e-
commerce, banking, and support. While the first two names speak
for themselves, the last workload tests the performance level while
downloading large files.

Cassandra [1] differs significantly from SPECweb2009. It is a
distributed storage facility for maintaining large amounts of data
spread out across many servers, while providing highly available
service without a single point of failure. Cassandra is used by
many real Internet services, such as Facebook and Twitter, whereas
the clients to stress-test it are part of the Yahoo! Cloud Service
Benchmark [11].

In Section 4.4, we also profile RUBiS [6], a three-tier e-
commerce application (given its similarity to SPECweb2009, we
do not demonstrate the rest of DejaVu’s features on this bench-
mark). RUBiS consists of a front-end Apache web server, a Tomcat

application server, and a MySQL database server. In short, RUBiS
defines 26 client interactions (e.g., bidding, selling) whose fre-
quencies are defined by RUBiS transition tables. Our setup has
1,000,000 registered clients and that many stored items in the
database, as defined by the RUBiS default property file.

Given that these are widely-used benchmarks, client emulators
are publicly available for all of them and we use them to generate
client requests. Each emulator can change the workload type by
varying its “browsing habits”, and also collect numerous statistics,
including the throughput and response time, which we use as the
measure of performance. Finally, all clients run on EC2 instances
to ensure that the clients do not experience network bottlenecks.

Workload traces. To emulate a highly dynamic workload of a real
application, we use real load traces from HotMail (Windows Live
Mail) and Windows Live Messenger from September, 2009 [35].
Figures 6(a) and 7(a) plot the normalized load from these traces.
Both traces contain measurements at 1-hour increments during one
week, aggregated over thousands of servers. We proportionally
scale down the load such that the peak load from the traces corre-
sponds to the maximum number of clients that we can successfully
serve when operating at full capacity (10 virtual instances).

In all our experiments, we use the first day from our traces for
initial tuning and identification of the workload classes, whereas
the remaining 6 days are used to evaluate the performance/cost
benefits when DejaVu is used.

4.1 Case Study 1: Scaling Out

Our first set of experiments demonstrates DejaVu’s ability to reduce
the service provisioning cost by dynamically adjusting the number
of running instances (scale out) as the workload intensity varies
according to our live traces. We show DejaVu’s benefits with Cas-
sandra’s update-heavy workload which has 95% of write requests
and only 5% of read requests.

Figure 6(b) plots how DejaVu varies the number of active server
instances as the workload intensity changes according to the Mes-
senger traces. The initial tuning produces 4 different workload
classes and ultimately 4 preferred resource allocations that are ob-
tained using the Tuner. DejaVu collects the workload signature ev-
ery hour (dictated by the granularity of the available traces) and
classifies the workload to promptly re-use the preferred resource
allocation. While the savings compared to the fixed maximum al-
location are promising, about 55% over the 6-day period, we need
to ensure that the desired performance level is maintained.

Figure 6(c) shows the response latency in this case. The SLO
latency is set to 60 ms. Although this is masked by the monitor-
ing granularity, we note that Cassandra takes a long time to sta-
bilize (e.g., tens of minutes) after DejaVu adjusts the number of
running instances. This delay is due to Cassandra’s re-partitioning;
a well-known problem that is the subject of ongoing optimization
efforts [11]. Apart from Cassandra’s internal issues, DejaVu keeps
the latency below 60 ms, except for short periods when the la-
tency is fairly high – about 100 ms. These latency peaks corre-
spond to DejaVu’s adaptation time, around 10 seconds, which is
needed by the profiler to collect the workload signature and deploy
a new preferred resource allocation. Note that this is 18x faster than
the reported figures of about 3 minutes for adaptation to workload
changes by state-of-the-art experimental tuning [42].

We now conduct a similar set of experiments, but drive the
workload intensities using the HotMail trace. Figures 7(b) and
7(c) visualize the cost (in number of active instances) and latency
over time, respectively. While the overall savings compared to
the maximum allocation are again similar (60% over the 6-day
period), there are few points to note. First, the initial profiling
identified 3 workload classes for the HotMail traces, instead of

 0

 20

 40

 60

 80

 100

09/07 09/08 09/09 09/10 09/11 09/12 09/13

N
o
rm

a
liz

e
d
 l
o
a
d
 [
%

]

Date (in 2009)

(a) Windows Live Messenger load trace.

 0

 2

 4

 6

 8

 10

09/07 09/08 09/09 09/10 09/11 09/12 09/13 09/14

C
o
s
t

Date (in 2009)

Learning Reuse

DejaVu
Autopilot

(b) Number of virtual instances used to accommodate the load.

 0

 20

 40

 60

 80

 100

 120

09/07 09/08 09/09 09/10 09/11 09/12 09/13 09/14

L
a
te

n
c
y
 [
m

s
]

Date (in 2009)

Learning Reuse

SLO

(c) Service latency as DejaVu adapts to workload changes. SLO = 60 ms.

Figure 6. Scaling out Cassandra with the Messenger trace.

4 for the Messenger traces. Second, during the 4th day, DejaVu
could not classify one workload with the desired confidence, as it
differs significantly from the previously defined workload classes.
The reason is that the initial profiling had not encountered such
a workload in the first day of the traces. To avoid performance
penalties, DejaVu decided to use the full capacity to accommodate
this workload. If this scenario were to re-occur, DejaVu would
resort to repeating the clustering process.

Comparison with existing approaches. Next, we compare De-
jaVu’s behavior with that of two existing approaches. Figure
6(b) depicts the resource allocation decisions taken by Autopi-
lot. Specifically, Autopilot simply repeats the hourly resource al-
locations learned during the first day of the trace. The Autopilot
approach leads to suboptimal resource allocations and the asso-
ciated provisioning cost increases. Due to poor allocations, Au-
topilot violates the SLO at least 28% of the time, in both traces.
These measurements illustrate the difficulty of using past workload
information blindly.

 0

 20

 40

 60

 80

 100

09/07 09/08 09/09 09/10 09/11 09/12 09/13 09/14

N
o
rm

a
liz

e
d
 l
o
a
d
 [
%

]

Date (in 2009)

(a) HotMail load trace.

 0

 2

 4

 6

 8

 10

09/07 09/08 09/09 09/10 09/11 09/12 09/13 09/14
C

o
s
t

Date (in 2009)

Learning Reuse

DejaVu
Autopilot

(b) Number of virtual instances used to accommodate the load.

 0

 20

 40

 60

 80

 100

 120

09/07 09/08 09/09 09/10 09/11 09/12 09/1309/14

L
a
te

n
c
y
 [
m

s
]

Date (in 2009)

Learning Reuse

SLO

(c) Service latency as DejaVu adapts to workload changes. SLO = 60 ms.

Figure 7. Scaling out Cassandra with the Hotmail trace.

We further compare DejaVu with an existing autoscaling plat-
form called RightScale [24]. Because we are not RightScale cus-
tomers, we reproduced their approach based on publicly available
information. The RightScale algorithm reacts to workload changes
by running an agreement protocol among the virtual instances. If
the majority of VMs report utilization that is higher than the pre-
defined threshold, the scale-up action is taken by increasing the
number of instances (by two at a time, by default). In contrast, if
the instances agree that the overall utilization is below the speci-
fied threshold, the scaling down is performed (decrease the number
of instances by one, by default). To ensure that the comparison is
fair, we run the Cassandra benchmark which is CPU and memory
intensive, as assumed by the RightScale default configuration [25].

Figure 8 shows the average adaptation time for DejaVu and
RightScale (assuming its default configuration) for the HotMail and
Messenger traces. In case of RightScale, we experiment with 3 (the
minimum used in [25]) and 15 minutes (the recommended value)
for the “resize calm time” parameter – the minimum time between
successive RightScale adjustments. DejaVu’s reaction time is about

 1

 10

 100

 1000

 10000

DejaVu RightScale DejaVu RightScale

T
im

e
 [
s
e
c
]

Messenger traces HotMail traces

Figure 8. DejaVu and RightScale decision times (error bars show
the standard error). RightScale decision times are shown for the
“resize calm time” of 3 and 15 minutes in the middle and on the
right for each trace, respectively.

10 seconds in the case of a “cache hit”. Note that this time can vary
depending on the length of the workload signature (e.g., a larger
number of HPCs may take longer to collect). When a single resize
operation is sufficient for RightScale, we record an instantaneous
adaptation time (zero seconds). However, multiple resize opera-
tions are often needed. As a result, RightScale’s adaptation time is
between one and two of orders of magnitude longer than DejaVu’s
(note the log scale on the Y axis). This is because DejaVu can au-
tomatically jump to the right configuration, rather than gradually
increase or decrease the number of instances as RightScale does.
Note that the resize calm time is different in nature from the VM
boot up time and cannot be eliminated for RightScale; RightScale
has to first observe the reconfigured service before it can take any
other resizing action.

4.2 Case Study 2: Scaling Up

We next evaluate DejaVu’s ability to reduce the service provision-
ing cost while varying the instance type (scaling up) from large
to extra-large or vice versa, as dictated by the workload intensity.
Toward this end, we monitor the SPECweb service with 5 virtual
instances serving at the front-end, and the same number of them at
the back-end layer. We use the support benchmark which is mostly
I/O-intensive and read-only to contrast with the Cassandra exper-
iments which are CPU-, memory-, and write-intensive. Similar to
the previous experiments, DejaVu uses the first day for the initial
profiling/clustering, while the remaining days are used to evaluate
its benefits.

Figures 9(a) plots the provisioning cost, shown as the instance
type used to accommodate the HotMail load over time. Note that
the smaller instance was capable of accommodating the load most
of the time. Only during the peak load (two hours per day in
the worst case), DejaVu deploys the full capacity configuration to
fulfill the SLO. In monetary terms, DejaVu produces savings of
roughly 45%, relative to the scheme that has to overprovision at all
times with the peak load in mind. Figure 9(b) demonstrates that the
savings come with a negligible effect on the performance levels; the
quality of service (QoS, measured as the data transfer throughput)
is always above the target that is specified by the SPECweb2009
standard. The standard requires that at least 95% of the downloads
meet a minimum 0.99Mbps rate in the support benchmark for a run
to be considered compliant.

We perform a similar set of experiments with the Messenger
trace. In this case, Figures 10(a) and 10(b) show the provisioning
cost and performance levels, respectively. The savings in this case
are about 35% over the 6-day period. Excluding a few seconds after

L

XL

09/07 09/08 09/09 09/10 09/11 09/12 09/13 09/14

C
o
s
t

Date (in 2009)

Learning Reuse

(a) Virtual instance types used to accommodate the load.

 80

 85

 90

 95

 100

09/07 09/08 09/09 09/10 09/11 09/12 09/1309/14
Q

o
S

 [
%

]
Date (in 2009)

Learning Reuse

SLO

(b) Service latency as DejaVu adapts to workload changes. QoS = 95%.

Figure 9. Scaling up SPECweb with the Hotmail trace.

each workload change spent on profiling, QoS is as desired, above
95%.

4.3 Case Study 3: Addressing Interference

Our next experiments demonstrate how DejaVu detects and mit-
igates the effects of interference. We mimic the existence of a
co-located tenant for each virtual instance by injecting into each
VM a microbenchmark which occupies a varying amount (either
10% or 20%) of the VM’s CPU and memory over time. The mi-
crobenchmark iterates over its working set and performs multipli-
cation while enforcing the set limit. These amounts of interference
mimic the amount of performance degradation reported in similar
settings [44].

Figure 11(a) contrasts DejaVu with an alternative in which its
interference detection is disabled. Without interference detection,
one can see that the service exhibits unacceptable performance
most of the time. Recall that the SLO is 60 ms. In contrast, DejaVu
relies on its online feedback to quickly estimate the impact of
interference and lookup the resource allocation that corresponds
to the interference condition such that the SLO is met at all times.
Figure 11(b) shows that DejaVu indeed provisions the service with
more resources to compensate for interference.

4.4 Measuring DejaVu’s Overhead

DejaVu requires only one or a few machines to host the profiling
instances of the services that it manages. Its network overhead cor-
responds to the amount of traffic that it sends to the profiling envi-
ronment. This overhead is roughly equal to 1/n of the incoming
network traffic, where n is the number of service instances, as-
suming the worst case in which the DejaVu proxy is continuously
duplicating network traffic and sending it to the DejaVu profiler.
Given that the inbound traffic (client requests) is only a fraction
of the outbound traffic (service responses) for typical services, the

L

XL

09/07 09/08 09/09 09/10 09/11 09/12 09/13 09/14

C
o
s
t

Date (in 2009)

Learning Reuse

(a) Virtual instance types used to accommodate the load.

 80

 85

 90

 95

 100

09/07 09/08 09/09 09/10 09/11 09/12 09/13 09/14

Q
o
S

 [
%

]

Date (in 2009)

Learning Reuse

SLO

(b) Service latency as DejaVu adapts to workload changes. QoS = 95%.

Figure 10. Scaling up SPECweb with the Messenger trace.

network overhead is likely to be negligible. For example, it would
be 0.1% of the overall network traffic for a service that uses 100
instances, assuming a 1:10 inbound/outbound traffic ratio that is
typically used for home broadband connections.

We now turn our attention to a more important question: To
what extent does the DejaVu proxy affect the performance of the
system in production, as it duplicates the traffic of a single service
instance? To answer this question, we run a set of experiments with
the RUBiS benchmark, while profiling its database server instance.
We compare the service latency under a setup where the profiling
is disabled against a setup with continuous profiling. To exercise
different workload volumes, we vary the number of clients that are
generating the requests from 100 to 500. Our measurements show
that the presence of our proxy degrades response time by about 3
ms on average.

4.5 Summary

To summarize, our evaluation shows that DejaVu maps multiple
workload levels to a few relevant clusters. It uses this information
at runtime to quickly adapt to workload changes. The adaptation
is short (about 10 seconds) and more than 10 times faster than
the state-of-the-art. Having such quick adaptation times effectively
enables online matching of resources to the offered load in pursuit
of cost savings.

We demonstrate provisioning cost savings of 35-60% (com-
pared to a fixed, maximum allocation) using realistic traces and two
disparate and representative Internet services: a key-value store and
a 3-tier web service. The savings are higher (50-60% vs. 35-45%)
when scaling out (varying the number of machines) vs. scaling up
(varying the performance of machines) because of the finer granu-
larity of possible resource allocations. The scaling up case had only
two choices of instances (large and extra-large) with a fixed number
of instances vs. 1-10 identical instances when scaling out.

 0

 20

 40

 60

 80

 100

 120

09/07 09/08 09/09 09/10 09/11 09/12 09/13 09/14

L
a
te

n
c
y
 [
m

s
]

Date (in 2009)

Learning Reuse

SLO

DejaVu interference detection disabled
DejaVu

(a) Service latency as DejaVu adapts to workload changes.

 0

 2

 4

 6

 8

 10

09/07 09/08 09/09 09/10 09/11 09/12 09/13 09/14
C

o
s
t

Date (in 2009)

Learning Reuse

(b) Number of virtual instances used to accommodate the load.

Figure 11. Scaling out Cassandra with the Messenger trace under
interference. The amount of interference varies, and is set to either
10% or 20%.

DejaVu successfully manages interference by recognizing the
existence of interference and pragmatically using more resources
to compensate for it.

The DejaVu-achieved savings translate to more than $250,000
and $2.5 Million per year for 100 and 1,000 instances, respectively
(assuming $0.34/hour for a large instance on EC2 and $0.68/hour
for extra large as of July 2011). We draw these service sizes from
the available data: the Reddit aggregation web site reportedly
uses about one hundred EC2 instances (218 virtual CPUs) [23],
whereas the Animoto video creation site uses a few thousand EC2
instances [26].

In terms of overheads, we argue that the network traffic induced
by DejaVu is negligible, while our final experiments demonstrate
that DejaVu’s impact on the performance of the system in produc-
tion is also practically negligible.

5. Related Work

There has been a large body of recent work on various aspects of
data center resource management.

Automated resource management in virtualized data centers.
Industrial efforts such as Rightscale [24] use a load-based threshold
to automatically trigger creation of a previously configured number
of new virtual instances in a matter of minutes. This approach
uses an additive-increase controller, and as such may take long to
converge.

Applying modeling and machine learning to resource manage-
ment in data centers. Urgaonkar et al. [37] propose a closed queu-
ing network model along with Mean Value Analysis (MVA) algo-
rithm for multi-tier applications. Watson et al. [40] follow a simi-

lar approach, and develop queuing-based performance models for
enterprise applications, but with emphasis on the virtualized envi-
ronment. Another example of explicitly using models to enhance
coordinated provisioning of various computer resources was pre-
sented in [12]. Stewart et al. [33] significantly enhance the accuracy
of models by explicitly modeling a non-stationary transaction mix;
their main point is that the workload type (as in a different type of
incoming requests to a service) is equally important as the work-
load volume itself. In general, these efforts work well for the work-
loads used during parameter calibration, but may require (manual)
adjustment when the workload changes. Further, achieving higher
accuracy requires highly skilled labor, along with a deep under-
standing of the application.

Running actual experiments instead of using models. Zheng et
al. [42] advocated running actual experiments for resource manage-
ment in a virtualized environment. Relative to this work, DejaVu
quickly characterizes the workloads at runtime to avoid re-running
experiments. In doing so, it dramatically reduces the amount of
time the service is running with suboptimal parameters.

Performance counters and workload characterization. Re-
cently, HPCs have been extensively used to characterize activities
within the entire system for various purposes. For instance, Merkel
et al. [17] leverage HPCs to predict task energy consumptions.
Using these predictions, a scheduler can get the maximum perfor-
mance out of a multiprocessor system, and still avoid overheating
of system components. Sweeney et al. [34] demonstrate that HPCs
are also useful in understanding the behavior of Java applications.
Namely, their tool is effective in identifying performance anoma-
lies and can help in pinpointing their cause. Finally, Shen et al. [29]
argue that the HPCs might be used for on-the-fly prediction at the
request granularity, thus enabling online system adaptation. Al-
though related, our work is fundamentally different as we are aim-
ing at workload classification, rather than fine-granularity recogni-
tion. For instance, our monitoring module could provide feedback
such as “workload volume is medium, and the requests are mostly
read requests”.

Even earlier, sample-based profiling was used to identify differ-
ent activities running within the system (e.g., Magpie [3] and Pin-
point [9]). For instance, Magpie uses clustering to classify requests
and produce a workload model. Although such tools can be useful
for post-execution decisions, they do not provide online identifica-
tion and the ability to react during execution. This ability is crucial
for our framework to quickly adapt to workload changes.

Automatic benchmarking. Developers devote considerable time
to benchmarking to obtain insight into the performance, inter-layer
interactions, and most important for our work, workload charac-
terization. There have been a few works that automate this labori-
ous task [30, 43]. Although this is orthogonal to our approach, our
framework would greatly benefit from the existence of a tool that
determines the most representative workloads to benchmark.

Automatic VM configuration and performance crisis detection.
Soror et al. [31] address the problem of automatically configuring
a database management system (DBMS) by adjusting the configu-
rations of the VM in which they run. They use information about
the anticipated workload and then compute the workload-specific
configuration. However, their framework assumes help from the
DBMS which describes a workload in the form of a set of SQL
statements. In contrast, DejaVu does not require any information
from the guest OS (VM), and very little information from the ap-
plication running inside it.

Bodik et al. [5] propose a methodology for automatic classi-
fication and identification of performance crises, and in particu-

lar for detecting whether a given crisis has been seen before, so
that a known solution may be immediately applied. As opposed
to DejaVu, the focus of the work is mostly on (1) identifying per-
formance anomalies due to bugs or unexpected behaviors, and (2)
speeding up the stabilization. In contrast, DejaVu accelerates the
management of virtualized resource allocations under workload
changes.

Cost-aware elasticity. Sharma et al. [27] propose Kingfisher, a sys-
tem that tries to minimize the cloud tenant’s deployment cost, while
being elastic to workload changes. Kingfisher takes into account
the cost of each VM instance, the possibilities of scaling up and
scaling out, as well as the transition time from one configuration to
another. It then solves an integer linear program to derive the min-
imum cost configuration under each workload change. Kingfisher
and DejaVu are orthogonal and can benefit from one another. King-
fisher assumes a perfect workload predictor, and it would benefit
from storing its resource allocation decisions in the DejaVu cache
(and avoid re-running the ILP solver every time a workload change
dictates a configuration change). DejaVu could simply use King-
fisher as its Tuner.

6. Conclusion

The problem of resource allocation is challenging in the cloud, as
the co-located workloads constantly evolve. The result is that sys-
tem administrators find it difficult to properly manage the resources
allocated to the different virtual machines, leading to suboptimal
service performance or wasted resources for significant periods of
the time.

In this paper we described the design and implementation of De-
jaVu, a framework that quickly and automatically reacts to work-
load changes by learning the preferred virtual resource allocations
from past experience. DejaVu also detects performance interfer-
ence across virtual machines and adjusts the resource allocation to
counter it.

Though this work provides a solid foundation, there are multiple
challenging directions that we want to pursue in the future. For
example, we demonstrated that an application can significantly
benefit from its own resource allocation experience. However, we
believe that it can benefit from the experience of other cloud tenants
as well, and we plan to further explore this potential.

Acknowledgments

This research is funded by the Swiss NSF (grant FNS 200021-
130265). Dejan Novaković is also supported by the Swiss NSF
(grant FNS 200021-125140). We thank the anonymous review-
ers for their valuable feedback. We are grateful to Eno Thereska,
Austin Donnelly, and Dushyanth Narayanan for providing us with
their HotMail and Messenger traces.

References

[1] Apache Foundation. The Apache Cassandra Project. http://

cassandra.apache.org/.

[2] M. Aron, P. Druschel, and W. Zwaenepoel. Cluster reserves: a mech-
anism for resource management in cluster-based network servers. In
SIGMETRICS, 2000.

[3] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using magpie for
request extraction and workload modelling. In OSDI, 2004.

[4] P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Patterson.
Characterizing, modeling, and generating workload spikes for stateful
services. In Symposium on Cloud Computing, 2010.

[5] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen.
Fingerprinting the datacenter: automated classification of performance
crises. In EuroSys, 2010.

[6] E. Cecchet, J. Marguerite, and W. Zwaenepoel. Performance and
scalability of ejb applications. SIGPLAN Not., 2002.

[7] E. Cecchet, R. Singh, U. Sharma, and P. Shenoy. Dolly: virtualization-
driven database provisioning for the cloud. In VEE, 2011.

[8] J. S. Chase, D. C. Anderson, P. N. Thakar, and A. M. Vahdat. Manag-
ing energy and server resources in hosting centers. In SOSP, 2001.

[9] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint:
Problem determination in large, dynamic internet services. In DSN,
2002.

[10] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gau-
tam. Managing server energy and operational costs in hosting centers.
In SIGMETRICS, 2005.

[11] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In SoCC, 2010.

[12] R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A.M. Vahdat. Model-
based resource provisioning in a web service utility. In USITS, 2003.

[13] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The weka data mining software: an update. SIGKDD Explor.

Newsl., 11:10–18, November 2009.

[14] T. Heath, A. P. Centeno, P. George, L. Ramos, Y. Jaluria, and R. Bian-
chini. Mercury and freon: temperature emulation and management for
server systems. In ASPLOS, 2006.

[15] G. Linden. Make Data Useful. https://sites.google.

com/site/glinden/Home/StanfordDataMining.

2006-11-28.ppt.

[16] W. Mathur and J. Cook. Improved estimation for software multiplex-
ing of performance counters. In MASCOTS, 2005.

[17] A. Merkel and F. Bellosa. Balancing power consumption in multipro-
cessor systems. In EuroSys, 2006.

[18] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: managing
performance interference effects for qos-aware clouds. In EuroSys,
2010.

[19] Netfilter. netfilter/iptables. http://www.netfilter.org/.

[20] F. Oliveira, K. Nagaraja, R. Bachwani, R. Bianchini, R. P. Martin,
and T. D. Nguyen. Understanding and validating database system
administration. In USENIX, 2006.

[21] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Mer-
chant, and K. Salem. Adaptive control of virtualized resources in util-
ity computing environments. In EuroSys, 2007.

[22] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath. Load balancing
and unbalancing for power and performance. In Proceedings of the

Workshop on Compilers and Operating Systems for Low Power, 2001.

[23] Reddit. http://www.reddit.com/r/IAmA/comments/

a2zte/i_run_reddits_servers_and_do_a_bunch_of_

other/.

[24] RightScale. http://www.rightscale.com/.

[25] RightScale. http://support.rightscale.com/

12-Guides/Lifecycle_Management/03_-_

Understanding_Key_Concepts/RightScale_

Alert_System/Alerts_based_on_Voting_Tags/

Understanding_the_Voting_Process.

[26] RightScale. Animoto’s facebook scale-up. http:

//blog.rightscale.com/2008/04/23/

animoto-facebook-scale-up/.

[27] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh. A cost-aware elasticity
provisioning system for the cloud. In Distributed Computing Systems

(ICDCS), 2011 31st International Conference on, pages 559 –570,
june 2011.

[28] K. Shen, H. Tang, T. Yang, and L. Chu. Integrated resource man-
agement for cluster-based internet services. SIGOPS Oper. Syst. Rev.,
2002.

[29] K. Shen, M. Zhong, S. Dwarkadas, C. Li, C. Stewart, and X. Zhang.
Hardware counter driven on-the-fly request signatures. ASPLOS,
2008.

[30] P. Shivam, V. Marupadi, J. Chase, T. Subramaniam, and S. Babu.
Cutting corners: workbench automation for server benchmarking. In
USENIX, 2008.

[31] A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem, P. Kokosielis,
and S. Kamath. Automatic virtual machine configuration for database
workloads. In SIGMOD, 2008.

[32] SPECweb2009. http://www.spec.org/web2009/.

[33] C. Stewart, T. Kelly, and A. Zhang. Exploiting nonstationarity for
performance prediction. In EuroSys, 2007.

[34] P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwan,
D. Grove, and M. Hind. Using hardware performance monitors to
understand the behavior of java applications. In VM, 2004.

[35] E. Thereska, A. Donnelly, and D. Narayanan. Sierra: practical power-
proportionality for data center storage. In EuroSys, 2011.

[36] R. Thonangi, V. Thummala, and S. Babu. Finding good configurations
in high-dimensional spaces: Doing more with less. In Proceedings of

the International Symposium on Modeling, Analysis, and Simulation

of Computer and Telecomunication Systems, 2008.

[37] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi. An
analytical model for multi-tier internet services and its applications. In
SIGMETRICS, 2005.

[38] B. Urgaonkar, P. J. Shenoy, and T. Roscoe. Resource overbooking and
application profiling in shared hosting platforms. In OSDI, 2002.

[39] N. Vasić, M. Barisits, V. Salzgeber, and D. Kostić. Making Cluster
Applications Energy-Aware. In ACDC, 2009.

[40] B. J. Watson, M. Marwah, D. Gmach, Y. Chen, M. Arlitt, and Z. Wang.
Probabilistic performance modeling of virtualized resource allocation.
In ICAC, 2010.

[41] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. Black-box and
gray-box strategies for virtual machine migration. In NSDI, 2007.

[42] W. Zheng, R. Bianchini, G. J. Janakiraman, J. R. Santos, and Y. Turner.
Justrunit: Experiment-based management of virtualized data centers.
In USENIX, 2009.

[43] W. Zheng, R. Bianchini, and T. D. Nguyen. Automatic configuration
of internet services. In EuroSys, 2007.

[44] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared re-
source contention in multicore processors via scheduling. In ASPLOS,
2010.

