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Agenda

14.10 - 15.20 Lecture with mini exercises
15.20 - 15.40 Coffee break
15.40 - 17.00 Lecture with mini exercises

Day | (June 1) Day Il (June 7)
Basics of Bayesian Statistics and Bayesian Inference Methods and
Simple Modeling in WebPPL Modeling in Stan
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e Sampling with the CDF

e Rejection Sampling

e Importance Sampling

e Sequential Monte Carlo (SMC)

e Random walk Metropolis

e Metropolis - Hastings

¢ Hamiltonian Monte Carlo (HMC)
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Sampling using the Cumulative Distribution Function (CDF)

Suppose we can compute the inverse of the
CDF (Cumulative distribution function),

P~1(2) for some value z € [0,1]. 24
Procedure:
1. Sample z ~ U(0,1)
2. Compute x = P71(2)
P(x) = Pr(X < x)
when the 0

0 X 20

d
px) = —P(x)

Ax derivative exists

Unfortunately, we rarely have the CDF in practice.

. J Partl Part Il
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Rejection Sampling

Suppose we cannot draw samples from p(x)
directly, but we have another distribution
g(x) which we can sample from.

"\ Such g(x) is sometimes called
proposal distribution.

Suppose we have constant k such that
kqg(x) > p(x) for all x.

Procedure (rejection sampling):
1. Sample xy ~ g

2. Sample uy ~ U(0, kq(x,))
3. If uy > p(xy) then reject x;,

else x; is a sample from p(x)

David Broman

Issues

e Must find kg(x) such that it covers p(x)

e |f much space in-between, the rejection rate becomes high.

e Can use adaptive rejection sampling, but only works on low
dimensions

. Partl
Inference Methods
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Approximating Expectations

Often we would like to compute the expectation
of a function f(x) given a distribution p(x)

—[f(0)] = Jf (V)p(x)dx

If f(x) = xis the identity function, we
compute the mean ':o()()

[ x] = [x p(x)dx

If we can get a set of samples {x;} drawn

independently from p(x), wherei = 1,..., N,

, Note: this assumes that we can sample from p(x)
then we can approximate

N Can we compute the expectation without
1 .
E[f(x)] ~ > Zf(xi) sampling from p(x)?  yes by using importance sampling
i=1

. J Partl Part Il
Inference Methods Modeling in Stan 10
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Importance Sampling

We compute expectations by sampling

Suppose we want to compute the mean of p(x) from a proposal distribution ¢(x). Does
but we cannot sample from p(x), only evaluate. ® not have to cover.
Note the f(X)
expectation with _, & —
> byl [xp(x)dx Just adding g(x) to
respect to p(x) y,
written as F p(x) ¥ the numerator and v /7/7‘)
p = [x ?q(x)dx the denominator [~
X
p) /
Let f(x) = x then 07L(>‘)
q(x)
d T E
- x]l = | f(x)gx)dx = E [ f(x
p[ | Jf( ) 4() q[f( ) However, often we cannot even evaluated
| | p(x)  for samples (x;] p(x) directly (compare with Bayes’ rule)
‘q[f(x)] ~ — Zf(xi) — 2 Ai sampled ~ Can easily be evaluated up
N A N 4 q(x;) PX) .
/ i=1 i=1 | i.i.d from g(x) p(x) — ~ to a normalizing constant Z

We can approximate by |
sampling N sampled from ¢ The importance weight

. Partl Part Il
Inference Methods Modeling in Stan
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Importance Sampling

£ (x)
F/X)

g (x)

AN

0 X

1. Which of the two proposal distributions g, and g, would
give asymptotically the correct result, when N — oo

2. Which one would give the best results quickest?

David Broman

Problems with importance sampling

e Requires the proposal to be close to
the posterior, otherwise it may give
low sampling efficiency.

e Can give arbitrary error - hard to get
diagnostics.

. Part |
Inference Methods
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Markov Models

, , , Markov propert
Question: If we have a time series (a sequence of observatlc?ns), would it | Given thep prgsexc,
then make sense to treat it asi.i.d? No, there are typically dependencies. the future does not
i.i.d = independent and identically distributed depend on the past

The joint distribution can be expressed using the product rule
Gray marked nodes are

T
PO -y = po) | [ POk 1yis - 3i) / observed variables

k=2
Suppose a given distribution is independent of all previous

N1 Y2 Y3 Y4
observations, except the previous one. O_.O—O—O—>

Then it is called a first-order Markov chain

T
PO -y =20 | POkl o)

k=2 X1 X2 X3 X4
A hidden Markov model (also called state-space model) has the g_g_g_gﬁ
Markov property, latent variables x, and o;)served variables vy. Vi Vs Vs Vi
ICTE A RS ES e IAIED] [ ZEAEN ZCAED
) Part| = Part Il
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241 Sequential Monte Carlo (SMC)

@Q%:;CH KONSQT‘SZ%@ . ] .
" Key idea illustrated with an example

Uniform prior

54
Initial position: Xo ~ (0, 100) ~a

Observation model: Y; ~ N (map(X;),5)

/ x
N\

Altitude

Observe Y using noisy
altimeter and noisy sensor Mean value looked
(aircraft to ground) up from a map.

Position

Transition model: X; ~ N (X;_1 + 2,0.5)

Problem: Find p(x: | yo:¢) Constant speed,
. . measured with
That is, where is uncertainty @ @ @ @ @

the plane?

(Thanks to Daniel Lundén for the illustration and Andreas Svensson for the aircraft example)

. J Partl Part Il
Inference Methods Modeling in Stan 15
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Sequential Monte Carlo (SMC)

~

\ Initialize N number of particles
(N = 200 in this case)

Altitude

Position

Initial position: Xy ~ 4/(0,100)
Observation model: Y; ~ N (map(X;),5)
Transition model: X; ~ N (X1 + 2,0.5)

. Part | Part Il
Inference Methods Modeling in Stan 16
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v\ Weight samples using the
observations.

Altitude

Position

Initial position: Xy ~ 4/(0, 100)
Observation model: Y; ~ N (map(X;),5)
Transition model: X; ~ N (X1 + 2,0.5)

. Part | Part Il
Inference Methods Modeling in Stan 17
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Sony | v\ Resample according to their weights
(key step of SMC). Still 200 particles.

Also called bootstrap particle filter,
specific algorithm within the SMC

Altitude

Refocuses the state on areas that are

the most likely ones.
Position /
Initial position: Xo ~ ¢/(0,100) @ @‘ R
Observation model: Y; ~ N (map(X;),5)
Transition model: X; ~ N(X;_1 + 2,0.5) ‘

) Part | Part Il
Inference Methods Modeling in Stan 18
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v\ Transition - stretches out slightly
because of uncertainty

Altitude

Position
Initial position: Xo ~ 24(0, 100) @ (%) @ H@
Observation model: Y; ~ N (map(X;),5)
Transition model: X; ~ M (X;_1 + 2,0.5) G e @ @ @
. J Partl Part Il

Inference Methods Modeling in Stan 19



David Broman

‘" \ Weight again using the observation

Altitude

Position

Initial position: Xy ~ 44/(0,100)
Observation model: Y; ~ N (map(X;),5)
Transition model: X; ~ N(X;_1 + 2,0.5)

soboe o

) Part | Part Il
Inference Methods Modeling in Stan 20
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— Resample again

Altitude

Position

Initial position: Xy ~ 4/(0, 100)
Observation model: Y; ~ N (map(X;),5)
Transition model: X; ~ N (X1 + 2,0.5)

sooe o

) Part | Part Il
Inference Methods Modeling in Stan 21
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t#41 Sequential Monte Carlo (SMC)

@éQ&ZCH KONS;‘Z%@ . .
S Propagate, weight, resample, over and over again...

Altitude
Altitude

Position Position

Altitude

Altitude

Position Position

. Part | Part Il
Inference Methods Modeling in Stan 22



David Broman

a3l Sequential Monte Carlo (SMC)

@éQ&ZCH KONS;‘Z%@ . .
S Propagate, weight, resample, over and over again...

4
4

Altitude
Altitude

Position »

\

~a Note how the uncertainty increases when
. flying over water (less information)

Position

———____ Note how the estimation gets more certain
again, when flying over land.

Altitude

When SMC is used in PPLs, resampling
typically happens at observations

Position

. Part | Part Il
Inference Methods Modeling in Stan 23
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Inference Methods Overview

e Sampling with the CDF

¢ Rejection Sampling
e Importance Sampling

e Sequential Monte Carlo (SMC)

e Random walk Metropolis

e Metropolis - Hastings

¢ Hamiltonian Monte Carlo (HMC)

Markov chain Monte Carlo (MCMC) methods

) Partl Part Il
Inference Methods Modeling in Stan 24
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It is hard to make importance sampling and SMC to scale to higher dimensional problems.

We will now give the intuition for a common type of dependent sampler:

Markov chain Monte Carlo

Walks over the the posterior, only The direction of the step taken is random
remembering the previous step. (hence Monte Carlo).

Each step is dependent on its
previous state.

Sometimes called “random walk”

) Partl Part Il
Inference Methods Modeling in Stan 26
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Recall: Bayesian Inference and Bayes’ Rule

Goal: Estimate the parameters 6 (random variables)
given the observation of data x.

Prior, our beliefs of the

Likelihood of generating data x parameters right now.
given the parameters ¢ \
p(x|0)p(0)
p0|x) =
/ p(x) \
Normalizing constant.
Posterior, the inferred parameters Determined by prior and
@ given the observed data. likelihood.

But, to calculate p(x), we needed to compute the integral

p(x) = J p(x|0)p(0)dO, which can be very hard!

) Part | Part Il
Inference Methods Modeling in Stan 27
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Computing Posterior Ratio

Suppose we want to compute the posterior for two 5 B p(x|0)p(6)
parameters &, and 6, in the parameter space. p@|x) =

p(x)

Not possible directly, if we cannot
pO|x) p@|x) «— compute p(x)

But, can we not compute the ratio?

px16,)p0) PE— Knowing the un-normalized posterior is
pO1x) p(x) - px|0)p(6,) enough (the numerator of Bayes’ rule)
p&x)  pxl&Ip@)  p(x|6,)p(6,)
p(x) \ T
x|0)p(6
The normalization constant p(x) is p(@|x) = pix|0p(O) x p(x|Q)p(6)
cancelled out! p(x)
The un-normalized posterior |
proportional to the posterior.
) Part | Part Il
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6
S) -0.5
4 -0.4

‘- B

1

IR 3
0 2 4

Acceptance rate: 0.87 Acceptance rate: 0.9

/ Procedure:
1. Select a start position &.

2. Randomly select a new possible move to 6’

\ Can end up in different

A posterior (2 dim) with two hills. local maximums.

(e.g. using multivariate normal dist) What do we get? Problems'?
3. I1f f(8") > f(0), then accept and move 0 «— 6, Potentially the mode, but not
We writ I else reject. the posterior. Does not
e write f(0)) o p(x|O)p(6) 4. Go to step 2. explore the space.
) Partl Part Il

Inference Methods Modeling in Stan 29



Random Walk (Really)

0.5

0.5
-0.4

0.3

O
Acceptance rate. 1.0

Acceptance rate. 1 .O

Procedure:
1. Select a start position 6.

2. Randomly select a new possible move to 6’
(e.g. using multivariate normal dist)

3. Accept and move @ < &', and go to step 2.

David Broman

-0.5

-0.4

B |

N
2“ I |

Acceptance rate: 1 .O

What do we get now?

Explores randomly, but without
considering the proportion to the pdf.

Can we get something in between?

) Partl Part Il
Inference Methods

Modeling in Stan
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-0.5

— = —

Acceptance rate: 0.74 5

-0.4

T
Accepts in green, | 03
rejects in red. .
2 A -0.2
1 | -0.1
IR A
0 2 4 0
The distribution ~ Procedure:
used to make 1. Select a start position &.
the move is 2. Randomly select a new possible move to &

calledthe ——5 (e.g. using multivariate normal dist.)

jumping or 3. Compute r. Sample x ~ U(0,1).
pf°'°.°sa'. 4. 1f x < r, then accept and move 8 < @', else reject.
distribution.

5. Go to step 2.

) Partl
Inference Methods

David Broman

Must discard the "warm-
up” before finding the
typical set.

Compute ratio 7:

if f(0') > 1(0)
thenr = 1
J(0')
else r = How do we select the
1(0) proposal distribution?
Part i

Modeling in Stan 31
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6 0
S -0.5 5 -0.5
4 -04 4 k -0.4
3 -0.3 3 -0.3
2 K 0.2 2 | 0.2
0 2 4 o 0 2 4 0
Acceptance rate: 0.914 Acceptance rate: 0.3

Too small step sizes (configured using e.g. Larger step sizes lead to:

variance of the proposal distribution) lead to: - Better exploration of the posterior.

- Too many steps to get to the typical set. - High rejection rate.

- Explores slowly the whole posterior. Earlier investigations show that an acceptance rate of 0.23

Is good for higher dimensional models (Lambert, 2018)

) Partl Part Il
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Problems with Random Walk Metropolis

Random walk Metropolis has a few problems:
1. It cannot handle constrained parameter spaces
2. Proposal distributions need to be symmetric.

Consider the following

simple constrained
Discussion: Can we simply reject a posterior (Beta) with
Metropolis step if it goes below zero? support [0,1]
Why/why not”? What is the problem?

There will be too few samples just

to the right of zero, because 0 1
contributing steps only come from

the right, not from the left of zero.

) Part | Part Il
Inference Methods Modeling in Stan 33
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e Sampling with the CDF

¢ Rejection Sampling
e Importance Sampling

e Sequential Monte Carlo (SMC)

e Random walk Metropolis

e Metropolis - Hastings

¢ Hamiltonian Monte Carlo (HMC)

« ) Partl Part Il
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Metropolis-Hastings

Solution: Metropolis-Hastings, that can handle
asymmetric proposals!
New way of computing

Procedure (same as for Metropolis): the ratio.

1. Select a start position &.

2. Randomly select a new possible move to 0’ Compute ratio r:
(e.g. using multivariate normal dist.) if f(0") > f(0)
3. Compute r. Sample x ~ U(0,1). thenr =1
4. 1f x < r, then accept and move @ < &', else reject. olse 7 — f(0) J(0]0)

The first fraction is th The second fraction
Question: What happens if J(8|0") = J(0'| 0)? e first fraction Is the compensates for asymmetric

same as for random walk | X Tis th
Answer: then the proposal distribution is symmetric,  Metropolis. proposals fW ere J is the
proposal distribution)

and it collapses to random walk Metropolis.

. J Partl Part Il
Inference Methods Modeling in Stan 35
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Problems with Metropolis-Hastings

Is Metropolis-Hastings efficient? Are there
better alternatives? Problems?

Metropolis-Hastings is blindfolded. It does not make use
of the underlying shape of the posterior.

If we can see a few

meters in the fog, we __»
have an idea about the
direction.

Solution: Hamiltonian Monte Carlo

) Part | Part Il
Inference Methods Modeling in Stan 36
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e Sampling with the CDF

¢ Rejection Sampling
e Importance Sampling

e Sequential Monte Carlo (SMC)

e Random walk Metropolis

e Metropolis - Hastings

e Hamiltonian Monte Carlo (HMC)

) Partl Part Il
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Hamiltonian Monte Carlo (HMC)

Posterior (in blue) Key steps (informal):

1. Initiate the momentum.
/ 2. The sledge moves over NLP space for a time T.
3. Stop. Compute r (also compensate for
momentum) and check if accept or reject.

HMC uses an inverted
landscape: Negative Log

Posterior (NLP) (in red) T~
e —O
The “sledge” descends in : ((//%‘\Q
NLP space (ascends in 7 ‘ -
posterior space). 707 ~—

N Idea: Model the problem using total |
U (6) energy (Hamiltonians), summing up The U-turn problem: sledge can come back
potential energy U(6) and kinetic (forces shorted time steps, if not handled)
energy KE(m), which depends on the Solution: No-U-Turn Sampler (NUTS).
momentum m. Monitors the distance. Used in Stan.
«.») Partl Part Il
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In certain special cases, we can
compute the posterior analytically!

Special pairs of likelihoods and priors

» Bernoulli (likelihood) and Beta (prior)
» Binomial (likelihood) and Beta (prior)
» Poisson (likelihood) and Gamma (prior)
» Multinomial (likelihood) and Dirichlet (prior)

Example with e ... and more.

Bernoulli-Beta With n number of

observations {x;}

Likelihood

Prior Posterior
n
Bern

Beta(a, ) Beta(a + i X, ) +n— Z X;)
i=1

=1

Such priors are called
/ conjugate priors

David Broman

Conjugate Priors and Delayed Sampling

Can we automate this?

Yes! See our work on
delayed sampling.

Lawrence M. Murray, Daniel Lundén, Jan Kudlicka, David Broman,
and Thomas B. Schon. Delayed Sampling and Automatic Rao-

Blackwellization of Probabilistic Programs. In Proceeding of the

21st International Conference on Artificial Intelligence and
Statistics (AISTATS), Lanzarote, Canary Islands, 2018.

) Part |
Inference Methods

Part Il
Modeling in Stan
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The language is named Stan to honor
Stanislaw Ulam (made significant
contributions to Monte Carlo methods)

Copyright Los Alamos National Laboratory \\

« Stan is a probabilistic programming/modeling language
(imperative and Turing complete).
e The number of random variables (pa ramete rs) is fixed at Stanis a state-ofthe-art platiorm for statistcal modeling and high-performance staisica

computation. Thousands of users rely on Stan for statistical modeling, data analysis, and

compile time (not a universal PPL in the sense of WebPPL).

Users specify log density functions in Stan’s probabilistic programming language and get:

e full Bayesian statistical inference with MCMC sampling (NUTS, HMC)

o Itisvery fast, using a special version of Hamiltonian Monte
Carlo (HMC) called No-U-Turn (NUTS). Tl T s s i Fn 5

Stan’s math library provides differentiable probability functions & linear algebra (C++ autodiff).
Additional R packages provide expression-based linear modeling, posterior visualization, and

It also supports Black-box variational inference.

Get Started

Stan interfaces with the most popular data analysis languages (R, Python, shell, MATLAB, Julia,
Stata) and runs on all major platforms (Linux, Mac, Windows). To get started using Stan begin with
the Installation and Documentation pages.

Designed by Carpenter et al. and developed by the
Stan team. See:

Citing Stan

https://mc-stan.org/

Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt,
M., Brubaker, M., Guo, J., Li, P. and Riddell, A., 2017. Stan: A probabilistic Please check out the

programming language. Journal of statistical software, 76(1). comprehensive documentation.

Part | ) Partll
Inference Methods Modeling in Stan 41
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Coin Flip - Hello World!

A Stan model consists of a number of blocks. Here, one parameter, the probability
Alock of head. Note that type must be a real
. - ock “parameters”: with the interval [0,1]
Model..(.:ompute the p.OSter'Or Specifies random variables
probability after one flip (head) that will be inferred. Why?
\ Answer: constrained by
¥ the support of the Beta
parameters f{ v distribution.
real <lower=0, upper=1> p;
} The prior distribution for
/ the latent variable p is
model { the Beta distribution
V .
. . &
Block “model”: / P beta(2.0{2.0?:
Specifies the probabilistic model ; 1 ~ bernoulli(p);
by connecting data, parameters,
and distributions.
. In this case, we observe a
The observations have “head” (integer value 1) using the
fixed values left to ~. Bernoulli distribution.
Part | . Partll
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921 Installing and Running Stan with PyStan
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Import PyStan and libraries

for plotting. T ————— | import stan
import seaborn as sns
The model is defined as an inline import matplotlib.pyplot as plt

string, or in an external file. ———— | nodel = "u»

parameters {

Simple to install using python3 real <lower=0, upper=1> p;
python3 -m pip install pystan ;

Install other packages model {

python3 -m pip install pandas seaborn p ~ beta(2.0,2.0);

1 ~ bernoulli(p);
Many alternatives exist, for example for R, Matlab, }
command line etc. See https://mc-stan.org/ g

//» DOSterior — StanobUild(mOdel)

fit = posterior.sample(num_chains=4, num_samples=5000)

Using HMC (NUTS) to compute samples. In this |k st G

Compiles the model.

case 4 times 5000 (runs 4 chains in parallel). print(df.describe().T) |
) o sns.histplot(data=df, x="p", bins=50)
Display summary statistics plt.savefig('plot.pdf"')
using the pandas package. helloccom

Plot using package seaborn.

Part | . Partll
Inference Methods Modeling in Stan 43
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Installing and Running Stan with PyStan

import stan
import seaborn as sns

David Broman

7001 import matplotlib.pyplot as plt
600 - mOdel — muon
500 - parameters {
. real <lower=0, upper=1> p;
S 400 - }
O
@)
300 -
model {
200 - ) e beta(2.0,2.0);
1 ~ bernoulli(p);
100 A }
muonn
O .
posterior = stan.build(model)
count std 25% 50% 75% max
parameters fit = posterior.sample(num_chains=4, num_samples=5000)
ip. 20000.0 —3.927449 ©.796823 -12.090559 —4.113380 -3.615265 -3.421164 -3.365058 e
accept_stat__ 20000.0 ©.909745 0.135527 0.037345 0.878151 0.969057 1.000000 1.c00000 dT = fit.to_frame()
stepsize__ 20000.0 0.969405 0.060270 0.921199 0.934746 0.941851 0.976509 1.072718 print(df.describe().T)
treedepth__  20000.0 1.381600 0.490605 1.000000 1.000000 1.000000 2.000000 3.000000 : - . s e
n_leapfrog__  20000.0 2.397000 1.088508 1.000000 1.000000 3.000000 3.000000 7.ooepee  SNS-histplot(data=df, x="p", bins=50)
divergent__  20000.0 ©0.000000 ©0.000000 ©0.000000 ©0.000000 0.000000 ©.000000 0.000000 plt.savefig('plot.pdf')
onerg 00000 3.365103 3.672399 4.113744 4.836225 12.497514 ~ _
P 20000.0 0.602667 ©.200825 | 0.025453 0.459164 0.617964 0.760641  0.997623 hello-coin.py
Run using: python3 hello-coin.py
Part | ) Partll

Inference Methods
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31 Using Data and Iterating Over Arrays

29 OCH KONST 2%
B il
AN

Block “data”:
Declares data that will »| data {

be observed. int<lower=8> Nj «——__ Aninteger N states the
array[N] int flips;

} 1\ number of coin flips.
parameters { The data is declared as an
real <lower=0, upper=1> P; |nteger array Of SlZe N

800 A

600 -

by
Iterate over the array and

model { / observe each element.
for(i in 1:N) {

flips[i] ~ bernoulli(p);

Count

400 -

200 - },
o 01 02 03 04 05 06 07 08 09 P beta(z'elz'e);
P } 7
count mean std coin-flips.stan
: Sttt bk terhod | ook g Question: Given the data flips=[1,0,1,1,0, 1,0, 1, O, 0],

where N=10, what do we expect the posterior of p to be?
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921 Loading Data and Running From Python
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%x%’g“‘%g

import stan
import seaborn as sns
import matplotlib.pyplot as plt

Create a dictionary
with the data. Note —» mdata = {"flips" : [1, @, 1, 1, @, 1, @, 1, 0, 0]}

: mdatal"N"] = len(mdatal["flips"])
that the string names Compile the model. Pass

must match. . with open("coin-flips. i) A& £ the data. In this case, we
model = f.read()

/ use a seed to get a same

Read the mode| posterior = stan.build(model, data=mdata, random_seed=1) result each time we run.

from a Stan file.
fit = posterior.sample(num_chains=4, num_samples=5000)

df = fit.to_frame()

print(df.describe().T) ¢-\“‘-\---

sns.histplot(data=df, x="p", bins=50) 4  Print and plot as in the
plt.savefig('plot.pdf"') previous example.

coin—?Iips.py
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Some Alternatives

Instead of writing an explicit for loop, we can use a
vector operation (implicitly mapping each element)

data { model {
int<lower=0> N; flips ~ bernoulli(p);
array[N] int flips; } p ~ beta(2.0,2.0);

s

parameters {
real <lower=0, upper=1> p;

; We can also explicitly add to the accumulated log weight

model < (global variable called target in Stan).
for(i in 1:N) {
flips[i] ~ bernoulli(p);

b model {
forCr 2 ANy £
target += bernoulli_lpmf(flips[i] | p);

Note the explicit log-pmf function.

p ~ beta(2.0,2.0);
; }
coin-flips.stan p ~ beta(2.0,2.0);
¥
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Log Weights and the Log-Sum-Exp Trick

Why log weights?

eNumerically more stable when approximating real numbers using
floating-point numbers on a computer.

eEfficiency: Where we would have needed multiplications and divisions,
we instead perform additions and subtractions on log weights.

Sometimes we want to compute the sum of logs, using a LogSumExp (LSE) function.

Definition (LSE): A naive implementation is
LSE(x;, ...,x,) = log(exp(x;) + --- + exp(x,)) numerically unstable.

Solution: The log-sum-exp trick (stable):

LSE(xla cee xn) — |Og(exp(x1 T xmax) + T + exp('xn _ xmax)) + xmax

where x, . = max({x, ..., x,})

Part | . Partll
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Assignments (If Time Allows)

Implement the following assignments using either Stan or WebPPL.

Task A. Go to https://people.kth.se/~dbro/ppl-tutorial-june-2022.html (you got the link in your email) and
download the slides for Stan (just presented).

Al. Type in and test the model with many coin flips. Play around.

A2. Rewrite the model using conjugate priors.

-8 _ S - , S - _ - P~ S - - P~ - = - P~ -
— = / — = — \— = - PTN - Lo T o~ e PP P = T c B - 22 im - QS oabs — NPT ST O B To N o o 2Ll S o e  —

Task B. Suppose you have the following data: length = [55, 57, 52, 64, 53, 64]andage =

[4, 10, 2, 17, 6, 20],where thetuple (1length[i], age[i]) represents the length in cm and age in
weeks for a baby. Create a WebPPL/Stan script that infers a posterior distribution over the length of six months old

babies by using Bayesian linear regression of the form [. ~ N(a + pa;, 6), where N is the normal distribution, [,

the length, a; the age, and &, 5, and ¢ are random variables.

B1. Visualize the result and compute the expected value (in WebPPL, use function expectation (INF), where
INF is the call to the Infer function). What is the uncertainty of the estimation? Discuss the results.

B2. Discuss what reasonable priors for a, 3, and ¢ can be. Test and explain how different priors affect the result.

B3. Suppose you extend the data set with one more data point, where the length is 100 cm, and the age is 5
weeks. How do the mean value and the uncertainty in the estimation change?

Part |
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el Latent Dirichlet Allocation (LDA)
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I

Topic Observed words
Topic assignment, n:th from document d Per topic,
proportions for word in The n:th word in distribution over
document d document d document d vocabulary

& 0

4 Number
‘ Number of of topics
words per
Number of document
documents
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Other Concepts

e Posterior Predictive Checks (PPC) - from the inferred model, generate fake data and

compare with original data. In Stan, use block “generated quantities”. See p. 289 (Lambert,
2018)

e Cross-validation: k-fold cross-validation. Rotate test and training sets.

e Validation set: divide into training, validation, and test set, where the validation set is used,
for instance, to tune hyper parameters.

e Stan does not support discrete parameters directly (because of HMC). However, discrete
parameters can be used by marginalizing them out (combining blocks “transformed
parameters” and “model”). See p. 401 - 406 (Lambert, 2018).
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Are we already done?
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Assignments (Optional)

e |f you are participating in the course, send your solution at the latest at 11 am on Thursday, June 23.
Submit the solution as a Zip file, where you include code, graphs, and discussions that explain your
solutions (explanations in a PDF file).

e The code tasks must be executable, easy to install, with a reasonable README file.

e |f you are not in the course, you do not need to send any solutions.

Al. Implement the LDA model in Stan. Import data using the format defined here
http://archive.ics.uci.edu/ml/datasets/Bag+of+Words. Test with small data sets (designed by
yourself), as well as some of the ones in the above repo. Make sure to print out the top words in
each topic. You may take inspiration from existing solutions (a partial solution is available on the Stan

website) but you need to write all the code yourself.
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Conclusions

Some key take away points:

Several approximate inference algorithms use sampling
techniques (rejection sampling, SMC, MCMC variants etc.)

Modern MCMC algorithms, such as HMC, scales bett
to high-dimensional problems in PPLs.

Stan is a PPL that implements HMC and NUTS.

| might give a follow-up tutorial in the fall, focusing on
advanced PPL technigues and our research results.

Thanks for listening!

er

David Broman

Part |
Inference Methods

Part Il
Modeling in Stan

56



