
Fundamentals of Bayesian Inference 
using Probabilistic Programming

David Broman 
Associate Professor, KTH Royal Institute of Technology 
Associate Director Faculty, Digital Futures

Tutorial Day 2 
June 7, 2022  
Digital Futures Hub, Stockholm, Sweden



Part I  
Inference Methods

David Broman

Part II 
Modeling in Stan 2

Agenda 

14.10 - 15.20   Lecture with mini exercises

15.20 - 15.40   Coffee break

15.40 - 17.00   Lecture with mini exercises


Course Overview

Day I (June 1) 
Basics of Bayesian Statistics and 
Simple Modeling in WebPPL

Day II (June 7) 
Bayesian Inference Methods and  
Modeling in Stan



Part I  
Inference Methods

David Broman

Part II 
Modeling in Stan 3

Part II 
Modeling in Stan

Part I 
Inference Methods



Part I  
Inference Methods

David Broman

Part II 
Modeling in Stan 4

Part I 
Inference Methods 



Part I  
Inference Methods

David Broman

Part II 
Modeling in Stan 5

• Sampling with the CDF

Inference Methods Overview

• Rejection Sampling

• Importance Sampling

• Sequential Monte Carlo (SMC)

• Random walk Metropolis

• Metropolis - Hastings

• Hamiltonian Monte Carlo (HMC)
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P(x) = Pr(X ≤ x)

p(x) =
d
dx

P(x)
when the 
derivative exists

Suppose we can compute the inverse of the 
CDF (Cumulative distribution function), 

 for some value . P−1(z) z ∈ [0,1]

Procedure: 
1. Sample  

2. Compute 

z ∼ U(0,1)

x = P−1(z)

Unfortunately, we rarely have the CDF in practice. 

Sampling using the Cumulative Distribution Function (CDF)
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• Sampling with the CDF

Inference Methods Overview

• Rejection Sampling

• Importance Sampling

• Sequential Monte Carlo (SMC)

• Random walk Metropolis

• Metropolis - Hastings

• Hamiltonian Monte Carlo (HMC)
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Suppose we cannot draw samples from  
directly, but we have another distribution 

 which we can sample from.

p(x)

q(x)
Such  is sometimes called 
proposal distribution. 

q(x)

Suppose we have constant  such that 
 for all .

k
kq(x) ≥ p(x) x

Procedure (rejection sampling): 
1. Sample  
2. Sample  
3. If  then reject ,  
    else  is a sample from  

x0 ∼ q
u0 ∼ U(0, kq(x0))

u0 > p(x0) x0
x0 p(x)

Issues 

• Must find  such that it covers  
• If much space in-between, the rejection rate becomes high. 
• Can use adaptive rejection sampling, but only works on low 

dimensions 

kq(x) p(x)

k

Rejection Sampling
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Often we would like to compute the expectation 
of a function  given a distribution f(x) p(x)

𝔼[ f(x)] = ∫ f(x)p(x)dx

If  is the identity function, we 
compute the mean

f(x) = x

𝔼[x] = ∫ x p(x)dx

𝔼[ f(x)] ≈
1
N

N

∑
i=1

f(xi)

If we can get a set of samples  drawn 
independently from , where , 
then we can approximate 

{xi}
p(x) i = 1,…, N

Note: this assumes that we can sample from p(x)
Can we compute the expectation without   
sampling from ?p(x) Yes, by using importance sampling

Approximating Expectations
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Suppose we want to compute the mean of  

but we cannot sample from , only evaluate.

p(x)
p(x)

𝔼p[x] = ∫ x p(x)dx

We compute expectations by sampling 
from a proposal distribution . Does 
not have to cover. 

q(x)

Note the 
expectation with 
respect to  
written as 

p(x)
𝔼p = ∫ x

p(x)
q(x)

q(x)dx

Let   thenf(x) = x
p(x)
q(x)

∫ f(x) q(x)dx = 𝔼q[ f(x)]

𝔼q[ f(x)] ≈
1
N

N

∑
i=1

f(xi) =
1
N

N

∑
i=1

xi
p(xi)
q(xi)

The importance weight

Just adding  to 
the numerator and 
the denominator

q(x)

𝔼p[x] =

for samples   
sampled  
i.i.d from 

{xi}

q(x)

Importance Sampling

p(x) =
p̃(x)

Z

Can easily be evaluated up 
to a normalizing constant Z

However, often we cannot even evaluated 
 directly (compare with Bayes’ rule)p(x)

Can still be solved (see e.g., Bishop, 2006)
We can approximate by 
sampling  sampled from  N q
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1. Which of the two proposal distributions  and  would 
give asymptotically the correct result, when 

q1 q2
N → ∞

2. Which one would give the best results quickest?

Importance Sampling

Problems with importance sampling 
• Requires the proposal to be close to 

the posterior, otherwise it may give 
low sampling efficiency.  

• Can give arbitrary error - hard to get 
diagnostics. 
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Question: If we have a time series (a sequence of observations), would it 
then make sense to treat it as i.i.d? No, there are typically dependencies.

The joint distribution can be expressed using the product rule

p(y1, …, yT) = p(y1)
T

∏
k=2

p(yk |y1, …, yk−1)

Suppose a given distribution is independent of all previous 
observations, except the previous one.
Then it is called a first-order Markov chain

p(y1, …, yT) = p(y1)
T

∏
k=2

p(yk |yk−1)

y1 y2 y3 y4

Gray marked nodes are 
observed variables 

p(x1, …, xT, y1, …, yT) = p(x1)p(y1 |x1)
T

∏
k=2

p(xk |xk−1)p(yk |xk)

Markov property 
Given the present, 
the future does not 
depend on the past

x1 x2 x3 x4

y1 y2 y3 y4

A hidden Markov model (also called state-space model) has the 
Markov property, latent variables x, and observed variables  y. 

Markov Models

i.i.d = independent and identically distributed
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A Model for Aircraft Localization

I Initial position: X0 ⇠ U(0, 100)
I Transition model: Xt ⇠ N (Xt�1 + 2, 0.5)

I Observation model: Yt ⇠ N (map(Xt), 5)

I Problem: Find p(xt | y0:t)

X0

Y0

X1

Y1

X2

Y2

X3

Y3

X4

Y4

· · · Xt

Yt
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Sequential Monte Carlo (SMC)A Model for Aircraft Localization

I Initial position: X0 ⇠ U(0, 100)
I Transition model: Xt ⇠ N (Xt�1 + 2, 0.5)

I Observation model: Yt ⇠ N (map(Xt), 5)

I Problem: Find p(xt | y0:t)

X0

Y0

X1

Y1

X2

Y2

X3

Y3

X4

Y4

· · · Xt

Yt

Key idea illustrated with an example

(Thanks to Daniel Lundén for the illustration and Andreas Svensson for the aircraft example)

A Model for Aircraft Localization

Position
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A Model for Aircraft Localization

I Initial position: X0 ⇠ U(0, 100)
I Transition model: Xt ⇠ N (Xt�1 + 2, 0.5)

I Observation model: Yt ⇠ N (map(Xt), 5)

I Problem: Find p(xt | y0:t)

X0

Y0

X1

Y1

X2

Y2

X3

Y3

X4

Y4

· · · Xt

Yt

Uniform prior

Observe Y using noisy 
altimeter and noisy sensor 
(aircraft to ground) 

Mean value looked 
up from a map.

Constant speed, 
measured with 
uncertaintyThat is, where is 

the plane?
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Sequential Monte Carlo (SMC)

A Model for Aircraft Localization

I Initial position: X0 ⇠ U(0, 100)
I Transition model: Xt ⇠ N (Xt�1 + 2, 0.5)

I Observation model: Yt ⇠ N (map(Xt), 5)

I Problem: Find p(xt | y0:t)

X0
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X1

Y1

X2

Y2

X3

Y3

X4

Y4

· · · Xt

Yt

A Model for Aircraft Localization

I Initial position: X0 ⇠ U(0, 100)
I Transition model: Xt ⇠ N (Xt�1 + 2, 0.5)

I Observation model: Yt ⇠ N (map(Xt), 5)

I Problem: Find p(xt | y0:t)

X0

Y0

X1

Y1

X2

Y2

X3

Y3

X4

Y4

· · · Xt
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A Model for Aircraft Localization

I Initial position: X0 ⇠ U(0, 100)
I Transition model: Xt ⇠ N (Xt�1 + 2, 0.5)

I Observation model: Yt ⇠ N (map(Xt), 5)

I Problem: Find p(xt | y0:t)

X0

Y0

X1

Y1

X2

Y2

X3

Y3

X4

Y4

· · · Xt

Yt

Sequential Monte Carlo inference

Initialize 200 samples from X0

Position

A
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Initialize N number of particles  
(N = 200 in this case)
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Sequential Monte Carlo (SMC)

A Model for Aircraft Localization

I Initial position: X0 ⇠ U(0, 100)
I Transition model: Xt ⇠ N (Xt�1 + 2, 0.5)

I Observation model: Yt ⇠ N (map(Xt), 5)

I Problem: Find p(xt | y0:t)
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A Model for Aircraft Localization

I Initial position: X0 ⇠ U(0, 100)
I Transition model: Xt ⇠ N (Xt�1 + 2, 0.5)

I Observation model: Yt ⇠ N (map(Xt), 5)
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A Model for Aircraft Localization

I Initial position: X0 ⇠ U(0, 100)
I Transition model: Xt ⇠ N (Xt�1 + 2, 0.5)

I Observation model: Yt ⇠ N (map(Xt), 5)

I Problem: Find p(xt | y0:t)

X0

Y0

X1

Y1

X2

Y2

X3

Y3

X4

Y4

· · · Xt

Yt

Weight samples using the 
observations.

Sequential Monte Carlo inference

Weigh samples using observation model

Position

A
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Sequential Monte Carlo inference

Resample

Position
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Sequential Monte Carlo (SMC)

A Model for Aircraft Localization

I Initial position: X0 ⇠ U(0, 100)
I Transition model: Xt ⇠ N (Xt�1 + 2, 0.5)
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A Model for Aircraft Localization

I Initial position: X0 ⇠ U(0, 100)
I Transition model: Xt ⇠ N (Xt�1 + 2, 0.5)

I Observation model: Yt ⇠ N (map(Xt), 5)

I Problem: Find p(xt | y0:t)

X0

Y0

X1

Y1

X2

Y2

X3

Y3

X4

Y4

· · · Xt

Yt

Resample according to their weights 
(key step of SMC). Still 200 particles.

Also called bootstrap particle filter, 
specific algorithm within the SMC 

A Model for Aircraft Localization

I Initial position: X0 ⇠ U(0, 100)
I Transition model: Xt ⇠ N (Xt�1 + 2, 0.5)

I Observation model: Yt ⇠ N (map(Xt), 5)

I Problem: Find p(xt | y0:t)

X0

Y0

X1

Y1

X2

Y2

X3

Y3

X4

Y4

· · · Xt

Yt

Refocuses the state on areas that are 
the most likely ones.
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Sequential Monte Carlo inference

Propagate samples using transition model

Position
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Sequential Monte Carlo (SMC)

A Model for Aircraft Localization

I Initial position: X0 ⇠ U(0, 100)
I Transition model: Xt ⇠ N (Xt�1 + 2, 0.5)

I Observation model: Yt ⇠ N (map(Xt), 5)

I Problem: Find p(xt | y0:t)

X0

Y0

X1

Y1

X2

Y2

X3

Y3

X4

Y4

· · · Xt

Yt

A Model for Aircraft Localization

I Initial position: X0 ⇠ U(0, 100)
I Transition model: Xt ⇠ N (Xt�1 + 2, 0.5)

I Observation model: Yt ⇠ N (map(Xt), 5)

I Problem: Find p(xt | y0:t)

X0

Y0

X1

Y1

X2

Y2

X3

Y3

X4

Y4

· · · Xt

Yt

A Model for Aircraft Localization

I Initial position: X0 ⇠ U(0, 100)
I Transition model: Xt ⇠ N (Xt�1 + 2, 0.5)

I Observation model: Yt ⇠ N (map(Xt), 5)

I Problem: Find p(xt | y0:t)

X0

Y0

X1

Y1

X2

Y2

X3

Y3

X4

Y4

· · · Xt

Yt
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I Initial position: X0 ⇠ U(0, 100)
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· · · Xt
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Transition - stretches out slightly 
because of uncertainty 



Part I  
Inference Methods

David Broman

Part II 
Modeling in Stan

Sequential Monte Carlo inference

Weigh samples using observation model
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A Model for Aircraft Localization

I Initial position: X0 ⇠ U(0, 100)
I Transition model: Xt ⇠ N (Xt�1 + 2, 0.5)

I Observation model: Yt ⇠ N (map(Xt), 5)
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· · · Xt

Yt

Weight again using the observation
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Sequential Monte Carlo (SMC)
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A Model for Aircraft Localization

I Initial position: X0 ⇠ U(0, 100)
I Transition model: Xt ⇠ N (Xt�1 + 2, 0.5)

I Observation model: Yt ⇠ N (map(Xt), 5)

I Problem: Find p(xt | y0:t)

X0

Y0

X1

Y1
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Y2

X3
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Y4

· · · Xt

Yt

Resample again

Sequential Monte Carlo inference

Resample

Position
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Sequential Monte Carlo (SMC)
Sequential Monte Carlo inference

Propagate, weigh, resample

Position
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Propagate, weight, resample, over and over again…

Sequential Monte Carlo inference

Propagate, weigh, resample

Position
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Propagate, weigh, resample
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Sequential Monte Carlo (SMC)
Propagate, weight, resample, over and over again…

Sequential Monte Carlo inference

Propagate, weigh, resample

Position
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Sequential Monte Carlo inference

Propagate, weigh, resample

Position
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Sequential Monte Carlo inference

Propagate, weigh, resample

Position
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Note how the uncertainty increases when 
flying over water (less information)

Note how the estimation gets more certain 
again, when flying over land.

When SMC is used in PPLs, resampling 
typically happens at observations
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• Sampling with the CDF

Inference Methods Overview

• Rejection Sampling

• Importance Sampling

• Sequential Monte Carlo (SMC)

• Random walk Metropolis

• Metropolis - Hastings

• Hamiltonian Monte Carlo (HMC)

Markov chain Monte Carlo (MCMC) methods
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• Sampling with the CDF

Inference Methods Overview
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• Metropolis - Hastings

• Hamiltonian Monte Carlo (HMC)
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Markov chain Monte Carlo (MCMC)

It is hard to make importance sampling and SMC to scale to higher dimensional problems.

We will now give the intuition for a common type of dependent sampler: 

Markov chain Monte Carlo 

Each step is dependent on its 
previous state.

Walks over the the posterior, only 
remembering the previous step.

The direction of the step taken is random 
(hence Monte Carlo). 

Sometimes called “random walk”
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p(θ |x) =
p(x |θ)p(θ)

p(x)

Goal: Estimate the parameters  (random variables) 
given the observation of data .

θ
x

Prior, our beliefs of the 
parameters right now.Likelihood of generating data  

given the parameters 
x

θ

Posterior, the inferred parameters 
 given the observed data.θ

Normalizing constant. 
Determined by prior and  
likelihood.

Recall: Bayesian Inference and Bayes’ Rule

But, to calculate , we needed to compute the integral 

, which can be very hard!

p(x)
p(x) = ∫ p(x |θ)p(θ)dθ
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p(θ |x) =
p(x |θ)p(θ)

p(x)

Suppose we want to compute the posterior for two 
parameters  and  in the parameter space.θ1 θ2

Not possible directly, if we cannot 
compute p(x)

Computing Posterior Ratio

p(θ1 |x) p(θ2 |x)

But, can we not compute the ratio?

p(θ1 |x)
p(θ2 |x)

=

p(x |θ1)p(θ1)
p(x)

p(x |θ2)p(θ2)
p(x)

=
p(x |θ1)p(θ1)
p(x |θ2)p(θ2)

The normalization constant  is 
cancelled out!

p(x)

Knowing the un-normalized posterior is 
enough (the numerator of Bayes’ rule)

p(θ |x) =
p(x |θ)p(θ)

p(x)
∝ p(x |θ)p(θ)

The un-normalized posterior i 
proportional to the posterior.
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Climbing the Hill of the Posterior

A posterior (2 dim) with two hills.

Procedure: 
1. Select a start position . 
2. Randomly select a new possible move to   

  (e.g. using multivariate normal dist) 
3. If , then accept and move ,  

  else reject. 
4. Go to step 2.

θ
θ′ 

f(θ′ ) > f(θ) θ ← θ′ 

Acceptance rate: 0.87 Acceptance rate: 0.9

Can end up in different 
local maximums.

What do we get? Problems?

Potentially the mode, but not 
the posterior. Does not 
explore the space.

We write f(θ) ∝ p(x |θ)p(θ)
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Random Walk (Really)

Procedure: 
1. Select a start position . 
2. Randomly select a new possible move to   

  (e.g. using multivariate normal dist) 
3. Accept and move , and go to step 2.

θ
θ′ 

θ ← θ′ 

What do we get now?

Explores randomly, but without 
considering the proportion to the pdf.

Acceptance rate: 1.0 Acceptance rate: 1.0 Acceptance rate: 1.0

Can we get something in between?
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Random Walk Metropolis

Compute ratio : 
if   
then  

else 

r
f(θ′ ) ≥ f(θ)

r = 1
r =

f(θ′ )
f(θ)

How do we select the 
proposal distribution?

Procedure: 
1. Select a start position . 
2. Randomly select a new possible move to   

  (e.g. using multivariate normal dist.) 
3. Compute . Sample . 
4. If , then accept and move , else reject. 
5. Go to step 2.

θ
θ′ 

r x ∼ U(0,1)
x ≤ r θ ← θ′ 

The distribution 
used to make 
the move is 
called the 
jumping or 
proposal 
distribution.

Acceptance rate: 0.74
Must discard the “warm-
up” before finding the 
typical set.

Accepts in green, 
rejects in red.
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Proposal Distribution and Step Size

Acceptance rate: 0.914

Too small step sizes (configured using e.g. 
variance of the proposal distribution) lead to: 
- Too many steps to get to the typical set. 
- Explores slowly the whole posterior.

Larger step sizes lead to: 
- Better exploration of the posterior. 
- High rejection rate.

Earlier investigations show that an acceptance rate of 0.23 
is good for higher dimensional models (Lambert, 2018) 

Acceptance rate: 0.3
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Problems with Random Walk Metropolis

Random walk Metropolis has a few problems: 
1. It cannot handle constrained parameter spaces 
2. Proposal distributions need to be symmetric.

Consider the following 
simple constrained 
posterior (Beta) with 
support [0,1]

There will be too few samples just 
to the right of zero, because 
contributing steps only come from 
the right, not from the left of zero.

Discussion: Can we simply reject a 
Metropolis step if it goes below zero? 
Why/why not? What is the problem?
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• Sampling with the CDF

Inference Methods Overview

• Rejection Sampling

• Importance Sampling

• Sequential Monte Carlo (SMC)

• Random walk Metropolis

• Metropolis - Hastings

• Hamiltonian Monte Carlo (HMC)
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Metropolis-Hastings

Solution: Metropolis-Hastings, that can handle 
asymmetric proposals!

Compute ratio : 
if   
then  

else 

r
f(θ′ ) ≥ f(θ)

r = 1
r =

f(θ′ )
f(θ)

J(θ |θ′ )
J(θ′ |θ)

Procedure (same as for Metropolis): 
1. Select a start position . 
2. Randomly select a new possible move to   

  (e.g. using multivariate normal dist.) 
3. Compute . Sample . 
4. If , then accept and move , else reject. 
5. Go to step 2.

θ
θ′ 

r x ∼ U(0,1)
x ≤ r θ ← θ′ 

New way of computing 
the ratio.

The first fraction is the 
same as for random walk 
Metropolis.

The second fraction 
compensates for asymmetric 
proposals (where  is the 
proposal distribution)

J
Question: What happens if ?J(θ |θ′ ) = J(θ′ |θ)
Answer: then the proposal distribution is symmetric, 
and it collapses to random walk Metropolis.
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Problems with Metropolis-Hastings

Solution: Hamiltonian Monte Carlo 

Is Metropolis-Hastings efficient? Are there 
better alternatives? Problems?

Metropolis-Hastings is blindfolded. It does not make use 
of the underlying shape of the posterior.

If we can see a few 
meters in the fog, we 
have an idea about the 
direction. 
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• Sampling with the CDF

Inference Methods Overview

• Rejection Sampling

• Importance Sampling

• Sequential Monte Carlo (SMC)

• Random walk Metropolis

• Metropolis - Hastings

• Hamiltonian Monte Carlo (HMC)
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Hamiltonian Monte Carlo (HMC)

Posterior (in blue)

HMC uses an inverted 
landscape: Negative Log 
Posterior (NLP) (in red)

Idea: Model the problem using total 
energy (Hamiltonians), summing up 
potential energy  and kinetic 
energy , which depends on the 
momentum .

U(θ)
KE(m)

m

Key steps (informal): 
1. Initiate the momentum. 
2. The sledge moves over NLP space for a time T. 
3. Stop. Compute  (also compensate for 

momentum) and check if accept or reject.
r

The “sledge” descends in 
NLP space (ascends in 
posterior space).

The U-turn problem: sledge can come back 
(forces shorted time steps, if not handled)

Solution: No-U-Turn Sampler (NUTS). 
Monitors the distance. Used in Stan.
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Conjugate Priors and Delayed Sampling

Special pairs of likelihoods and priors 

Can we automate this?

Likelihood 
Bern

In certain special cases, we can 
compute the posterior analytically! 

Such priors are called 
conjugate priors

Prior 
Beta(α, β)

Posterior 

Beta(α +
n

∑
i=1

xi, β + n −
n

∑
i=1

xi)

Example with 
Bernoulli-Beta With  number of 

observations 
n

{xi}
Yes! See our work on 
delayed sampling.

Lawrence M. Murray, Daniel Lundén, Jan Kudlicka, David Broman, 
and Thomas B. Schön. Delayed Sampling and Automatic Rao-
Blackwellization of Probabilistic Programs. In Proceeding of the 
21st International Conference on Artificial Intelligence and 
Statistics (AISTATS), Lanzarote, Canary Islands, 2018.

• Bernoulli (likelihood) and Beta (prior) 
• Binomial (likelihood) and Beta (prior) 
• Poisson (likelihood) and Gamma (prior) 
• Multinomial (likelihood) and Dirichlet (prior) 
•… and more. 
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Part II 
Modeling in Stan 

Copyright Los Alamos National Laboratory
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• Stan is a probabilistic programming/modeling language 
(imperative and Turing complete). 

• The number of random variables (parameters) is fixed at 
compile time (not a universal PPL in the sense of WebPPL). 

• It is very fast, using a special version of Hamiltonian Monte 
Carlo (HMC) called No-U-Turn (NUTS). 

• It also supports Black-box variational inference. 

Please check out the 
comprehensive documentation.

https://mc-stan.org/

Copyright Los Alamos National Laboratory

The language is named Stan to honor 
Stanislaw Ulam (made significant 
contributions to Monte Carlo methods)

Designed by Carpenter et al. and developed by the 
Stan team. See: 

Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, 
M., Brubaker, M., Guo, J., Li, P. and Riddell, A., 2017. Stan: A probabilistic 
programming language. Journal of statistical software, 76(1).

Stan
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Here, one parameter, the probability 
of head. Note that type must be a real 
with the interval [0,1]

A Stan model consists of a number of blocks.

Block “parameters”: 
Specifies random variables 
that will be inferred.

Model: Compute the posterior 
probability after one flip (head)

Block “model”: 
Specifies the probabilistic model 
by connecting data, parameters, 
and distributions.

In this case, we observe a 
“head” (integer value 1) using the 
Bernoulli distribution. 

The prior distribution for 
the latent variable  is 
the Beta distribution.

p

The observations have 
fixed values left to .∼

Why?
Answer: constrained by 
the support of the Beta 
distribution.

Coin Flip - Hello World!
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Simple to install using python3 
python3 -m pip install pystan

Many alternatives exist, for example for R, Matlab, 
command line etc. See https://mc-stan.org/

Compiles the model. 

Import PyStan and libraries 
for plotting. 

The model is defined as an inline 
string, or in an external file. 

Using HMC (NUTS) to compute samples. In this 
case 4 times 5000 (runs 4 chains in parallel).

Plot using package seaborn.  

Display summary statistics 
using the pandas package. hello-coin.py 

Install other packages 
python3 -m pip install pandas seaborn

Installing and Running Stan with PyStan



Part I  
Inference Methods

David Broman

Part II 
Modeling in Stan 44

Run using: python3 hello-coin.py 
hello-coin.py 

Installing and Running Stan with PyStan
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coin-flips.stan

Block “data”: 
Declares data that will 
be observed. 

Question: Given the data flips=[1, 0, 1, 1, 0, 1, 0, 1, 0, 0], 
where N=10, what do we expect the posterior of p to be? 

Iterate over the array and 
observe each element. 

An integer N states the 
number of coin flips. 

The data is declared as an 
integer array of size N.

Using Data and Iterating Over Arrays
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coin-flips.py

Create a dictionary 
with the data. Note 
that the string names 
must match.

Read the model 
from a Stan file. 

Compile the model. Pass 
the data. In this case, we 
use a seed to get a same 
result each time we run. 

Print and plot as in the 
previous example. 

Loading Data and Running From Python
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coin-flips.stan

Instead of writing an explicit for loop, we can use a 
vector operation (implicitly mapping each element)

We can also explicitly add to the accumulated log weight 
(global variable called target in Stan).  
Note the explicit log-pmf function.

Some Alternatives
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Why log weights?

•Numerically more stable when approximating real numbers using 
floating-point numbers on a computer. 

•Efficiency: Where we would have needed multiplications and divisions, 
we instead perform additions and subtractions on log weights.

Sometimes we want to compute the sum of logs, using a LogSumExp (LSE) function.

Definition (LSE): 
LSE(x1, …, xn) = log(exp(x1) + ⋯ + exp(xn))

A naive implementation is 
numerically unstable.

Solution: The log-sum-exp trick (stable): 
 

where 

LSE(x1, …, xn) = log(exp(x1 − xmax) + ⋯ + exp(xn − xmax)) + xmax

xmax = max({x1, …, xn})

Log Weights and the Log-Sum-Exp Trick
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Assignments (If Time Allows)
Implement the following assignments using either Stan or WebPPL. 

Task B. Suppose you have the following data: length = [55, 57, 52, 64, 53, 64] and age =  
[4, 10, 2, 17, 6, 20], where the tuple (length[i], age[i]) represents the length in cm and age in 
weeks for a baby. Create a WebPPL/Stan script that infers a posterior distribution over the length of six months old 
babies by using Bayesian linear regression of the form  , where  is the normal distribution,  
the length,  the age, and , and  are random variables.

li ∼ N(α + βai, σ) N li
ai α, β σ

B1. Visualize the result and compute the expected value (in WebPPL, use function expectation(INF), where 
INF is the call to the Infer function). What is the uncertainty of the estimation? Discuss the results. 
B2. Discuss what reasonable priors for , , and  can be. Test and explain how different priors affect the result. 
B3. Suppose you extend the data set with one more data point, where the length is 100 cm, and the age is 5 
weeks. How do the mean value and the uncertainty in the estimation change?

α β σ

Task A. Go to https://people.kth.se/~dbro/ppl-tutorial-june-2022.html (you got the link in your email) and 
download the slides for Stan (just presented).
A1. Type in and test the model with many coin flips. Play around.  
A2. Rewrite the model using conjugate priors.

https://people.kth.se/~dbro/ppl-tutorial-june-2022.html
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Number of 
documents

Number of 
words per 
document

Number 
of topics

Per topic, 
distribution over 
vocabulary

Topic 
proportions for 
document d

Topic 
assignment, n:th 
word in 
document d

Observed words 
from document d 
The n:th word in 
document d

Latent Dirichlet Allocation (LDA)



Part I  
Inference Methods

David Broman

Part II 
Modeling in Stan 51

• Posterior Predictive Checks (PPC) - from the inferred model, generate fake data and 
compare with original data. In Stan, use block “generated quantities”. See p. 289 (Lambert, 
2018)  

• Cross-validation: k-fold cross-validation.  Rotate test and training sets.  
• Validation set: divide into training, validation, and test set, where the validation set is used, 

for instance, to tune hyper parameters. 
• Stan does not support discrete parameters directly (because of HMC). However, discrete 

parameters can be used by marginalizing them out (combining blocks “transformed 
parameters” and “model”). See p. 401 - 406 (Lambert, 2018).

Other Concepts



Part I  
Inference Methods

David Broman

Part II 
Modeling in Stan 52

Are we already done? 
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Assignments (Optional)
• If you are participating in the course, send your solution at the latest at 11 am on Thursday, June 23. 

Submit the solution as a Zip file, where you include code, graphs, and discussions that explain your 
solutions (explanations in a PDF file).  

• The code tasks must be executable, easy to install, with a reasonable README file.  
• If you are not in the course, you do not need to send any solutions.

A1. Implement the LDA model in Stan. Import data using the format defined here  
http://archive.ics.uci.edu/ml/datasets/Bag+of+Words. Test with small data sets (designed by 
yourself), as well as some of the ones in the above repo. Make sure to print out the top words in 
each topic. You may take inspiration from existing solutions (a partial solution is available on the Stan 
website) but you need to write all the code yourself. 
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Conclusions

Thanks for listening!

Some key take away points:

• Stan is a PPL that implements HMC and NUTS.

• Several approximate inference algorithms use sampling 
techniques (rejection sampling, SMC, MCMC variants etc.)

• Modern MCMC algorithms, such as HMC, scales better 
to high-dimensional problems in PPLs. 

• I might give a follow-up tutorial in the fall, focusing on 
advanced PPL techniques and our research results. 


