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Abstract—Complex real-time systems are traditionally devel-
oped in several disjoint steps: (i) decomposition of applications
into sets of recurrent tasks, (ii) worst-case execution time es-
timation, and (iii) schedulability analysis. Each step is already
in itself complex and error-prone, and the composition of all
three poses a nontrivial integration problem. In particular, it is
challenging to obtain an end-to-end analysis of timing properties
of the whole system due to practical differences between the
interfaces of tools for extracting task models, execution time
analysis, and schedulability tests. To address this problem, we
propose a seamless and pragmatic end-to-end compilation and
timing analysis toolchain, where source programs are written
in a real-time extension of C, called Timed C. The toolchain
automatically translates timing primitives into executable code,
measures execution times, and verifies temporal correctness using
an extended schedulability test for non-preemptive generalized
multiframe task sets. Novel aspects of our approach are: (i) both
soft and firm tasks can be expressed at the programming
language level and stated timing requirements are automatically
verified by the schedulability test, and (ii) the schedulability test
outputs per-job response-time information that enables a new
approach to sensitivity analysis. Specifically, we perform a weakly
hard sensitivity analysis that determines the worst-case execution
time margins for the strongest still-satisfied (M,K) constraint,
where M = m1 + . . . + mN denotes the number of deadline
misses across the entire task set, and K = {k1, . . . , kN} is the
set of windows of interest of the different tasks. The toolchain is
implemented as a source-to-source compiler, freely available as
open source, and conveniently distributed as a Docker container.

I. INTRODUCTION

The implementation and validation of a real-time system
involves a number of distinct steps. First, the application is
decomposed into a set of recurrent tasks. The properties and
constraints of the tasks (such as periodicities, dependencies,
and deadlines) are either specified natively in a real-time
programming language (such as Ada [12], a real-time extension
of C [17, 31], or RTSJ [44]), or by using system calls provided
by a real-time operating system (RTOS). In a second step,
the worst-case execution time (WCET) [45] of each task is
determined, either using static analysis methods that determine
a conservative, safe upper bound on the actual WCET [16, 19],
or by using measurement-based methods [6] that estimate a
WCET bound based on a set of execution traces. These WCET
estimates together with task properties such as their periodicity
are then given as input to a schedulability analysis.

The viability of this traditional design methodology, however,
is problematic from both practical and theoretical viewpoints.

Practically speaking, research on tools and methods for
the different steps proceeds largerly in isolation, making it
challenging to integrate individual solutions into an automatic
toolchain. Theoretically, the soundness of each step relies on
the correctness of previous steps. For instance, a schedulability
analysis of hard real-time systems requires the existence of
a safe WCET bound for each task. This is, however, a very
strong assumption: on the one hand, static methods are safe
and conservative [16, 19, 45], but rely on the correctness of
the timing model of the hardware, which is hard to obtain for
complex modern architectures. Measurement-based methods
are on the other hand inherently unsafe because they can only
provide observations for a subset of all possible execution
traces [45]. Thus, in practice, uncertain WCET estimates,
together with timing imprecisions induced by the RTOS or
underlying hardware platform, render even a theoretically
“hard” schedulability result less than 100% certain. A binary
analysis outcome (“schedulable” or “not schedulable”) is clearly
unsatisfying when the inputs have a high level of uncertainty.

To make progress on both fronts—tool integration and
platform unpredictability—we propose an end-to-end toolchain
for Timed C, a recently proposed dialect of the C programming
language with explicit timed semantics [31]. As illustrated in
Fig. 1, our toolchain seamlessly integrates (i) a source-to-source
compiler [31], (ii) automatic instrumentation for measurement-
based timing analysis (Section III), (iii) a uniprocessor schedu-
lability analysis extended with support for Timed C semantics
(Section IV), and (iv) a novel sensitivity analysis for weakly
hard constraints [18] (Section V), a classic way of specifying
real-time requirements with a quantifiable degree of “softness.”

The proposed toolchain targets non-preemptively scheduled
uniprocessors because this initial version is primarily aimed at
microcontrollers and similarly small, embedded platforms. It
is convenient for programmers since it automatically translates
Timed C’s native timing primitives into executable code,
measures execution times, and assesses the application’s
temporal correctness with a novel weakly hard sensitivity
analysis based on an extended uniprocessor schedulability
test [30] for non-preemptive generalized multiframe tasks [5]
without exposing any of the details pertaining to the integration
of the individual methodologies and tools to the programmer.

Furthermore, our toolchain is pragmatic in two major ways.
First, it works for any hardware platform supported by a
C compiler (since the Timed C source-to-source compiler
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Fig. 1: Overview of the proposed end-to-end toolchain for Timed C. The overall methodology and toolchain consists of three main parts: a
measurement-based WCET analysis that automatically instruments and profiles the real-time program on the target platform (Section III), an
exact schedualbility analysis (Section IV), followed by a sensitivity analysis (Section V), which iteratively searches for boundaries in the
space of task set parameters for which the system exhibits a varying number of deadline misses.

translates to “plain” C) that allows for dynamic execution-time
measurements (since we do not rely on static WCET analysis),
which makes it readily applicable in many contexts and with
a low barrier to entry. Second, our toolchain embraces the
inherent platform unpredictability that realistically cannot be
avoided on contemporary commodity hardware by reporting
margins instead of guarantees. Specifically, instead of providing
a simplistic “yes/no” result, the toolchain performs a weakly
hard sensitivity analysis that determines the strongest still-
satisfied weakly hard real-time constraint (across the entire
task set) as a function of increasing maximum execution times.

For example, after compiling a given task set and and
profiling it on the deployment platform, the toolchain might
report that (i) no deadlines will be missed assuming the
observed WCET estimates, (ii) one deadline miss cannot be
ruled out if WCETs increase by, say, 30%, (iii) two deadline
misses cannot be ruled out if WCETs increase by 43%,
(iv) three deadline misses cannot be ruled out if WCETs
increase by 61%, and so on. Pragmatically speaking, such
output is much more useful to an engineer than a simple “yes/no”
schedulability result, or a single response-time bound based
on uncertain WCET estimates, because it provides insight into
the system’s robustness, i.e., a quantitative assessment of the
margin of error in the reported timing properties. Especially
given that many embedded real-time systems can typically
tolerate “a few” deadline misses (e.g., this is true for most
control systems), it can be highly valuable to learn that an
unexpected WCET increase by X% will result in no more
than Y deadline misses (across a configurable window of ki
consecutive invocations for each task ⌧i).

In addition to the practical aspects of the proposed toolchain—
which is freely available1 as an open-source project and
distributed as a Docker container—this paper makes two
algorithmic contributions to the state of the art. First, we provide
a uniprocessor schedulability test for Timed C programs that
realize a set of periodic generalized multiframe tasks (GMF) [5]
scheduled by a non-preemptive job-level fixed-priority (JLFP)

1https://github.com/timed-c/end-to-end-toolchain

scheduling algorithm, which is obtained by extending a recent
schedulability test [30] for independent non-preemptive jobs
to support precedence constraints and the forced abortion of
jobs (which is needed for a key feature of Timed C, namely
“firm timing points,” as discussed in Section II-A).

Second, we provide the first sensitivity analysis for weakly
hard real-time systems, which yields a WCET margin for
the strongest still-satisfied (M,K) specification, that is, the
largest factor by which all WCET estimates can be scaled
while missing at most M = m1 + . . .+mN deadlines across
all N tasks w.r.t. a set K = {k1, . . . , kN} of user-configurable
windows of interest of ki jobs each.

II. BACKGROUND AND SYSTEM MODEL

This section provides a brief introduction to Timed C, its
key features (Section II-A), and then defines a system model
to represent a wide class of Timed C programs (Section II-B).

A. The Timed C Language
Timed C [31] is a recently introduced programming language

that is designed to expose fine-grained control of program
timing to application programmers. In particular, it offers a set
of temporal and concurrent constructs with a clear temporal
semantics at the language level that enable programmers to
easily detect and react to transient overruns at the granularity
of individual blocks. For instance, Timed C provides a safe
construct for interrupting and aborting the execution of a
given code fragment when, for any reason, it does not finish
by its deadline. These features empower the programmer to
have precise control of the timing of I/O interactions, making
Timed C a good alternative for embedded real-time systems.

Timed C uses the concept of timing points to let the
programmer express and combine various timing constraints as
first-class constructs. The current implementation of the Timed
C language provides programmers with two types of timing
point primitives: (i) soft timing points and (ii) firm timing
points. A soft timing point (STP) is specified as

stp(expr1, expr2, n)



1 task foo(){
2 stp(20,inf,ms);
3 while(1){
4 work();
5 stp(60,40,ms);
6 }
7 } 0 80

3-4 5 3-4 5
20 40 60 100 120 140

Fig. 2: A Timed C program realizing a simple periodic task and a
timing diagram of its execution. The task has offset 20, period 60,
and relative deadline 40 ms. In the timing diagram, the upward arrows
show arrival times and the dashed downward arrows show deadlines.

where the arguments expr1 2 N and expr2 2 N are the
lower bound and the upper bound on the amount of delay
relative to the previous timing point, respectively. The argument
n 2 N is the resolution exponent of the time values, i.e.,
the resolution is 10�n seconds (a common choice is the
macro ms, which expands to 3 to yield millisecond resolution).
Equivalently, expr1 can be seen as the relative arrival time
of the code fragment following the timing point with respect
to the arrival time of the code fragment preceding the current
timing point, while expr2 can be seen as the relative deadline
of the code fragment preceding the current timing point.

Fig. 2 shows a Timed C program example with two soft
timing points, together with its timing trace. The program
implements a simple periodic task with period 60, an offset
20, and a soft deadline of 40 ms. The offset is applied using
the first stp construct (line 2) by forcing the program to start
the while loop (i.e., the next fragment of the code) only
when 20 ms have passed since the invocation of function foo.
Since the role of the first stp is to apply the offset, it does
not enforce a deadline on the prior code and hence its second
argument is set to 1. The second stp (line 5) ensures that the
while loop is periodic and is activated only when 60 ms have
passed since the execution of the previous timing point. For
example, in the timing diagram shown in Fig. 2, the first call
to work() takes 30 ms and the program reaches the stp on
line 5 at t = 50ms. The stp on line 5 will delay the execution
of the program until t = 80ms to ensure that the while loop
(line 3) is executed periodically every 60 ms. Furthermore, the
stp on line 5 specifies a deadline for the code in the while
loop. Since the deadline is relative to the previous time point,
the first deadline will be at time 60 = 20 + 40, the second
deadline will be at t = 120ms, etc. As an STP applies a
soft deadline, Timed C will not stop the code if it overruns
the deadline. For example, in Fig. 2, the second call to the
work() function takes 45 ms (released at t = 85, finished at
t = 130). The stp function will then return the amount of
overrun (tardiness) experienced by the code fragments. It is
worth noting that our toolchain ensures that, even if the code
within the timing points overruns, it will not impact the arrival
time of later timing points.

Firm timing points (FTPs) are defined as follows

ftp(expr1, expr2, n)

where the arguments expr1, expr2 and n have the same
meaning as for stp. However, unlike an STP, an FTP ensures
that the execution of the code fragment prior to the timing
point will be terminated at the deadline specified by expr2.

1 task work(){
2 while(1){
3 foo();
4 ftp(40,20,ms);
5 bar();
6 stp(20,10,ms);
7 }
8 } 0 80

2-3 54 6 4 2-3 4 5 6
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Fig. 3: Example of mixed soft and firm timing points. The example
shows a generalized multiframe task implemented in Timed C.

In cases where the lower and upper bounds of a timing point
are equal, Timed C provides the following constructs

sdelay(expr, n) fdelay(expr, n)

which are equivalent to stp(expr, expr, n) and
ftp(expr, expr, n), respectively.

Fig. 3 shows a Timed C program that uses a mixture of soft
and firm timing points and a timing diagram depicting one of its
executions. In this timing diagram, the first call to the function
foo() completes at t = 10. Since the expr1 of the next
timing point (line 4) is 40, Timed C delays the call to function
bar() until time t = 40. The function bar() completes at
time t = 45 and the stp on line 6 delays the next iteration
of the while loop until t = 60 (= 40 + 20). In the second
iteration, function foo() would have required 30 ms; however,
thanks to the firm timing point (line 4), it is interrupted and
aborted at t = 80, preventing the overrun from impacting
subsequent invocations of the bar() function. Since in some
scenarios interrupting a computation may lead to unexpected
behavior, Timed C’s critical construct, discussed shortly
in Section III, can be used to defer such untimely interruptions.

In this paper, we focus on a subset of Timed C’s expressive
power to encode generalized multiframe tasks (GMFs) [5],
where frames have either soft or firm deadlines. To this end,
we next introduce a model of Timed C programs as GMF tasks.

B. System Model

We consider a uniprocessor platform that runs a set of
generalized multiframe tasks (GMF) [5] scheduled by a job-
level fixed-priority (JLFP) scheduling algorithm such as fixed-
priority (FP) or earliest-deadline first (EDF) scheduling. We
assume that when a code fragment is called, it executes non-
preemptively until completion or until it is terminated by a firm
timing point. Each timing point also provides a preemption
point in the application, i.e., when the timing point is reached
another task may be dispatched by the scheduler.

Following the GMF task model [5], we assume that each task
⌧i (1  i  n) is defined by an offset Oi and consists of a finite
sequence of Ni frames hFi,1,Fi,2, . . . ,Fi,Nii. Each frame Fi,j

is characterized by (Cmin
i,j , Cmax

i,j , Ai,j , Di,j , ji,j , �i,j), where
Cmin

i,j is the best-case execution time (BCET), Cmax
i,j is the

worst-case execution time (WCET), Ai,j is the inter-arrival
time, Di,j is the relative deadline, ji,j is the release jitter,
and �i,j 2 {soft, firm} is the type of deadline of the frame.
The first instance of the first frame Fi,1 arrives at time Oi.
Then, the value of Ai,j denotes the relative time between
the arrival of an instance of frame Fi,j and the arrival of
the previous frame released by the same task, as explained



in Section II-A. To reduce clutter, we introduce the notation
Oi,j = Oi+

Pj
k=2 Ai,k to refer to the offset of frame Fi,j . We

also define the period of the GMF task as Ti =
PNi

k=1 Ai,k.
Each periodic GMF task generates an infinite number of

instances. For the sake of analysis, we transform the set of
periodic GMF tasks in an infinite set of jobs J . Each job
Ji 2 J refers to the execution of one frame executed by a GMF
task. To relate the two models, we define the three functions
�(Ji) : N ! {1, . . . , n}, �(Ji) : N ! N, and �(Ji) : N !
{1, . . . , N�(Ji)} that return the task number, instance number,
and frame number corresponding to job Ji, respectively.

Each job Ji is characterized by a 7-tuple
(rmin

i , rmax
i , cmin

i , cmax
i , di, �i,⇡i), where rmin

i is the
absolute arrival time (also known as the earliest release time),
rmax
i is the latest release time, cmin

i and cmax
i are the BCET

and WCET, di is the absolute deadline, �i is the type of
deadline, and ⇡i is the priority of the job. Let k denote
the value returned by �(Ji), ` denote the value returned by
�(Ji), and j denote the value of �(Ji). Then, Ji’s BCET
and WCET are given by cmin

i = Cmin
k,j and cmax

i = Cmax
k,j ,

respectively, and the earliest and latest release times are given
by rmin

i = Ok,j + Tk · (` � 1), rmax
i = rmin

i + jk,j . The
deadline of Ji is di = rmin

i + Dk,j . It is worth noting that
the priority of a job depends on the scheduling policy. For
example, for FP scheduling, ⇡i is equal to the priority of the
associated task ⌧k, while for EDF scheduling it is equal to the
absolute deadline of the job, i.e., ⇡i = di, where a smaller
value denotes a higher priority. We assume that ties on the
priority are broken arbitrarily but consistently.

Each job has a non-deterministic yet bounded release time
that occurs within the interval [rmin

i , rmax
i ]. We assume that

the release jitter is caused by implementation factors such as
interrupt latency or timer inaccuracy.

We define Omax to be the latest possible arrival time of the
first instance of any frame in the task set, that is, Omax =
maxi{Oi,Ni | 8i 2 {1, . . . , n}}. The hyperperiod of a set of
GMF tasks is denoted by H and is equal to the least-common
multiple (LCM) of the periods of the tasks. We denote the task
set utilization by U =

P
Ci/Ti, where Ci is the total sum of

the WCET of the frames of a task, i.e., Ci =
P

1jNi
Cmax

i,j .
In the context of Timed C, a frame of a GMF task is a code

segment between two timing points. Its inter-arrival time is
defined by the argument expr1 of the preceding timing point,
while its relative deadline is defined by the argument expr2
of the following timing point. An example of a GMF task with
two frames implemented in Timed C is shown in Fig. 3.

III. TIMING ANALYSIS

Our end-to-end toolchain currently uses a measurement-
based timing analysis to simplify portability between different
platforms. However, the overall end-to-end methodology itself
is not bound to measurement-based methods, and static timing
analysis would be interesting to add in future work.

In this section, we explain how the toolchain currently
estimates the BCET, WCET, maximum jitter, and trigger
precision for a given Timed C program and execution platform.

We explain the meaning of these terms and how the values are
computed. As depicted in the first part of Fig. 1, the timing
analysis consists of two main stages: (i) instrumentation and
(ii) generation of timing traces. The timing traces are then
used to generate the input to the schedulability test.

A. Instrumentation
There are two steps: (i) a Timed C instrumentation step that

takes Timed C code as input and produces an instrumented
version of the Timed C code, including measurement statements,
and (ii) the source-to-source compilation that compiles the
instrumented Timed C code to target-specific C code.

We explain the instrumentation procedure using the Timed
C example program in Fig. 4(a). Task rts periodically calls
functions sense, compute, and actuate. The function
sense writes a new value to s by reading from a sensor.
The function compute reads from s and a, and writes to
b. In line 6, the content pointed to by b is copied to a. In
this example, the calls to sense and compute have a firm
deadline of 40 ms as specified by the fdelay at line 8. Note,
when compute returns a new value and writes into b, the
critical block ensures that this new value is written to
a without being interrupted by fdelay. That is, the Timed
C construct critical makes sure that the execution of the
critical block has finished before the execution of the code
fragment is aborted. The term trigger precision is used for the
extra time it takes to escape out of the critical section and jump
to the fdelay. On line 9, actuate reads a and performs
its operation with a soft deadline of 10 ms. If compute and
sense take longer than 40 ms, the previous value of a will
be used by actuate. The periodicity is still correct.

The instrumenting compiler assigns a unique id to each
timing points in a task. In the example, there are 3 timing
points (marked as TP0, TP1, and TP2 in the code), where the
initial timing point TP0 is the start of the function. There are
three code fragments, each represented as the code between two
timing points (fragments TP0-TP1, TP1-TP2, and TP2-TP1).

During the instrumentation, the compiler performs static
analysis and inserts three different types of instructions to
each code fragment. These instructions measure the absolute
arrival, start time, and finish time of the code fragment. The
instruction for measuring the arrival and start time are inserted
at the beginning of the code fragment (for instance before line
2 for fragment TP0-TP1). The instruction for measuring the
finish time is inserted at the end of the code fragment (before
line 8 in the case of TP0-TP1).

The instrumenting compiler passes the instrumented Timed C
code to the KTC compiler [31] that compiles the instrumented
Timed C code into target specific code.

B. Generation of Timing Traces
Timing traces are generated when the instrumented target-

specific binary is executed. The traces can either be generated
as a continuous log while running the real-time system on the
target platform, or as a summary log that only exports the
worst-case values, and not the whole trace.



1 task rts(int* a,int* b,int s){ // TP0
2 while(1){
3 sense(&s);
4 compute(b, a, s);
5 critical{
6 memcpy(a, b, 100);
7 }
8 fdelay(40, ms); // TP1
9 actuate(a);

10 sdelay(10, ms); // TP2
11 }
12 } (a)

(b)

src arrival start finish precision dst
0 0 4 30 0 1
1 40 42 52 0 2
2 50 52 91 23 1
1 90 91 100 0 2

Fig. 4: (a) Example Timed C task and (b) a partial timing trace.

Fig. 4(b) shows an example of the former approach of a
partial timing trace. Each row in the timing trace lists the
execution details of a code fragment. For efficiency of the
instrumented C code, this information is stored in a memory
buffer before it is written to the timing trace log. Each row in
the buffer contains six fields, corresponding to the columns in
Fig. 4(b). The instrumentation for measuring the arrival time
stores the src and arrival information, where src is the ID of the
source timing point, and arrival is the arrival time of the timing
point at the start of a code fragment. The instrumentation for
measuring the start and finish time store the start and finish
information, respectively. Both these calls log the total time
elapsed since the start of the task (absolute time). The successor
timing point stores the precision and dst information, where
precision is the maximal time it can take to abort a job and dst
is the identifier of the destination timing point. The precision
field stores the trigger precision, which includes platform jitter
and worst-case execution time of a critical section, if available.

From the timing trace, the BCET, WCET, and trigger
precisions for each code fragment can be computed. Recall from
Section II-B that a code fragment between two timing points
in Timed C corresponds to a GMF frame. For instance, assume
that we compute the values for the frame that corresponds to the
code fragment between timing points 1 and 2 (TP1 and TP2) in
Fig. 4. The WCET is then Cmax

1,k = max (52�42, 100�91) =
10, the BCET Cmin

1,k = min(52 � 42, 100 � 91) = 9. The
release jitter cannot be computed from the timing trace, and is
instead considered a platform specific parameter, which can be
obtained in platform-specific ways. For instance, on a Linux
system, the cyclictest tool may be used.

IV. SCHEDULABILITY ANALYSIS

The proposed end-to-end toolchain integrates a customized
and extended version of the open-source2 schedulability
analysis for non-preemptive job sets proposed by Nasri and
Brandenburg [30], which we denote as NPA for brevity. The
reason why we chose NPA as the basis for our toolchain is that
it is the only applicable response-time analysis to yield per-job

2https://github.com/brandenburg/np-schedulability-analysis

response-time bounds, which is essential for enabling a weakly
hard sensitivity analysis (as discussed later in Section V).

In the following, we summarize NPA, point out where it is
insufficient for our purposes, and then describe our extensions.
Due to space constraints, we assume the reader to have some
familiarity with NPA at a high level and refer to [30] for details.

A. Background and Overview
NPA [30] assesses the schedulability of a given finite set

of jobs under a given JLFP scheduler by exploring the space
of all possible schedules of the jobs that the scheduler can
generate. NPA can be applied to analyze recurrent workloads
(i.e., infinite job sets generated by, for instance, periodic tasks)
if it is possible to determine a finite observation window such
that the absence of deadline misses in the observation window
implies the absence of deadline misses altogether.

To effectively search the extremely large space of possible
schedules, NPA relies on the notion of a schedule-abstraction
graph, which allows for an aggregation of schedules with
similar properties (i.e., scenarios that lead to similar scheduling
decisions). A schedule-abstraction graph is a directed acyclic
graph (DAG) whose edges represent jobs (i.e., code segments
executed non-preemptively) dispatched by the scheduling
algorithm, and whose vertices represent time intervals during
which the last-scheduled job on any incident path may complete
its execution in any of the schedules represented by the path.

For example, Fig. 5 shows a job set and its equivalent
schedule-abstraction graph under FP scheduling. This job set
has been generated for an observation window of length 27 for
two GMF tasks ⌧1 and ⌧2, where ⌧1 has higher priority than
⌧2. Each edge represents a job that is scheduled after a system
state represented by its source vertex. Each path represents
an ordering of the execution of different jobs. For example,
the path hv1, v2, v4, v5i represents the execution of J1, J6, and
J4 in that specific order. Each vertex vi is associated with an
interval delimited by the earliest and latest finish time of the last
job scheduled on any path that connects v1 to vi. For example,
the earliest and latest finish time of J1 when it is scheduled
after v3 are 4 and 6, respectively. Similarly, the earliest and
latest finish time of J6 when it is scheduled after v2 are also
4 and 6, respectively. The fact that scheduling J1 after v3 and
scheduling J6 after v2 lead to the same state (i.e., vertex) is
essential for searching the space of all possible schedules (i.e.,
it is the result of deliberate search-space pruning).

The graph is explored using a breadth-first approach that
alternates between two phases: expansion and merging. During
the expansion phase, every leaf vertex is expanded by adding an
edge for each of the not-yet-scheduled jobs that can potentially
be scheduled after that leaf vertex by the given JLFP scheduling
policy. For instance, in the example in Fig. 5, at time 0
(represented by the initial vertex v1), jobs J1 and J6 are the
only jobs that can potentially be executed after v1. On the one
hand, if J1 is released at time 0, it will be the highest-priority
ready job and hence will be dispatched, which is represented
with a new vertex v2 that is connected to v1 with an edge
labeled J1. On the other hand, if J1 is not released at time
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Fig. 5: A job set and its equivalent schedule-abstraction graph in the observation window [0, 27].

0 due to experiencing release jitter (note that rmin
1 = 0 and

rmax
1 = 2), then job J6 will be the highest-priority ready job

at time 0. This is recorded by the creation of v3 with a finish-
time interval [3, 4] connected to v1 with an edge labeled J6.
To determine the eligible jobs that can follow a given vertex
during the expansion phase, NPA implements a set of rules
that will be described with more detail in Section IV-C.

During the merge phase (which directly follows the expan-
sion phase), all paths from the initial vertex to leaf vertices of
the expanded graph that include the same set of jobs and have
intersecting time intervals are merged. For example, in Fig. 5(c),
after the expansion of v2, a vertex v02 = [4, 6] connected by
an edge with label J6 will be created. Similarly, after the
expansion of v3, a vertex v03 = [4, 6] connected by an edge
with label J1 will be created. These two new leaf vertices are
collapsed into a single vertex v4 during the merge phase since
the path from v1 to v02 references the same set of jobs (i.e.,
{J1, J6}) as the path from v1 to v03, and the intervals of v02
and v03 intersect. Thanks to the merge phase, at the end of each
busy window, i.e., an interval of time where the processor may
remain continuously busy, the graph has only one leaf vertex.

To summarize, for a given job set, NPA [30] iteratively
explores its schedule-abstraction graph, which represents the
space of all possible schedule. Each job’s earliest- and latest-
possible finish times can be trivially inferred from the graph.

B. Challenges and Open Problems
Extending NPA to Timed C programs presents several

challenges. First, NPA assumes that all jobs are independent;
it is thus oblivious to the precedence constraints among frames
of the same task. The issue appears if, for example, a task
has a relative deadline exceeding its period (i.e., an arbitrary
deadline), or when a job with a soft timing point becomes tardy
or does not even start its execution by its deadline. If such jobs
are falsely assumed to be independent, then the analysis may
choose any of the not-yet-scheduled code segments of a task
to execute next, including code segments whose predecessors
have not yet been completed. As such, the analysis may include
an impossible scenario in the schedule abstraction graph, which
may lead to optimistic and hence possibly unsafe results.

Second, NPA assumes that all jobs run to completion, i.e., it
does not support segment abortion at the boundary of fdelay
timing points in Timed C programs. Clearly, aborting segments
has a large impact on the space of possible schedules.

Third, to the best of our knowledge, prior work has not
yet established a safe finite observation window OW for soft
real-time GMF tasks, without which NPA cannot be applied.

C. Analysis Extensions
We next explain how we extended NPA to include code

abortion and precedence constraints. In Section IV-D, we show
how to obtain a safe observation window for GMF tasks.

1) Supporting Code Abortion:
a) Job eligibility: For each state reachable in the schedule-

abstraction graph and for every incomplete job Ji, NPA
computes the earliest- and latest-possible start times EST i and
LST i, respectively, to determine whether it may be dispatched
next. As in the original analysis [30], a soft-deadline job (i.e.,
a job corresponding to a soft timing point) may be the next
job scheduled if and only if:

EST i  LST i. (1)

Ineq. (1) does not consider the job’s deadline when checking
whether it is eligible for execution. However, a firm-deadline
job (i.e., a job corresponding to a firm timing point) never
commences execution past its deadline. Therefore, a firm-
deadline job Ji may be the next job dispatched on the platform
by the scheduler if and only if Eq. (1) is respected and its
deadline is later than its earliest start time, i.e., EST i < di.
If the latter condition is not respected, then the job cannot be
scheduled since it is not able to start before its deadline.

For example, suppose J1 has a firm deadline in the example
in Fig. 5. As a result, during the expansion phase of vertex v3,
J1 will no longer be a candidate to follow v3 since EST 1 = 3,
which is not strictly less than its deadline d1 = 3.

b) Job completion time: If Ji is the next job scheduled on
the platform, and no job abortion must take place (i.e., if Ji has
a soft deadline), the earliest and latest finish times EFT i and
LFT i, respectively, are simply given by EFT i = EST i+cmin

i

and LFT i = LST i + cmax
i .



In contrast, if Ji has a firm deadline, it will be aborted
by the scheduler when reaching its deadline. Hence, we must
first compute the earliest and latest possible times EAT i and
LAT i at which the job may be aborted because of overshooting
its deadline. Those are respectively computed as EAT i =
di + clmin and LAT i = di + trmax

i + clmax, where clmin

and clmax are the minimum and maximum execution times
of the cleanup and rollback functions called when a job is
aborted, and trmax

i is the maximum delay that may be suffered
by the interrupt triggering the abortion due to, for instance,
the execution of a critical section or timer imprecision.

Consequently, the earliest and latest finish times of a firm-
deadline job Ji are given by the following equations:

EFT i = min
�
EAT i, EST i + cmin

i

 
(2)

LFT i = min {LAT i, LST i + cmax
i } (3)

For example, let J4 have a firm deadline in the example of
Fig. 5 and assume that both clmax and trmax

4 are zero. During
the expansion of vertex v5, we will thus have EST 4 = 8,
LST 4 = 8, EAT 4 = 10 and LAT 4 = 10. Hence, EFT 4 = 9
and LFT 4 = min{10, 8 + 3} = 10, meaning that J4 will
complete at the latest by time 10.

The proof of correctness in [30] transfers to our extensions
as they rely only on the fact that the earliest and latest start
and finish times of the scheduled jobs are indeed lower and
upper bounds on their actual release and completion times.

2) Supporting precedence constraints: Since we must sup-
port precedence constraints to analyze the timing behavior of
Timed C programs, we denote the set of predecessors of a
job Ji by pred(Ji). All jobs in pred(Ji) must complete their
execution before Ji can start executing.

For single-core platforms, extending the analysis to support
precedence constraints is rather straightforward. One must
simply add the following rule to the eligibility conditions
defined in the previous section: a job Ji is eligible for execution
in system state S only if all jobs in pred(Ji) already appear in
the path leading to state S in the schedule abstraction graph.

Since a job appears on a path in the graph if and only if
it has been scheduled in the execution scenario modeled by
that path, the condition boils down to checking that all jobs in
pred(Ji) have already been scheduled.

D. Obtaining a Finite Observation Interval
NPA analyzes the response time of every job that may be

released in a finite observation window that is representative
of the recurrent workload (i.e., infinite job set) in the sense
that analyzing the observation window is sufficient to ensure
temporal correctness in general. However, to the best of our
knowledge, no safe bound on the observation window length
for soft real-time task systems is known form prior work. Since
Timed C programs may contain soft timing points and hence
generate jobs with soft deadlines, we must provide a condition
that indicates when the analysis may safely be stopped.

In this section, we make the following assumptions, which
are met in the context of our toolchain: (1) the analysis is run
with cmin = 0 for all jobs, (2) the hyperperiod H of the task

set is known and, without loss of generality, (3) at least one
task releases a job at time 0.

It is well-known that the job release pattern of a set of
periodic tasks that respects (2) and (3) is periodic with period H
from time Omax onward. Two cases must thus be considered:

1) All jobs released in the hyperperiod finish their execution
by time H + Omax. In that case, there is no workload
carried over from one hyperperiod to the next. Thus,
the worst-case response time of every job in subsequent
hyperperiods (i.e., every interval [Omax + k ·H,Omax +
(k + 1) ·H) with k 2 N) will be lower than or equal to
that in the interval [Omax, H + Omax). Consequently,
the analysis can safely stop after the first hyperperiod
extended by Omax.

2) Some jobs released in the hyperperiod do not finish their
execution by H + Omax. In that case, there is some
workload that is carried over from one hyperperiod to
the next. Hence the analysis must continue since the
system state at the beginning of the second hyperperiod
is different from the system state at the beginning of
the first hyperperiod. Now, let tidle > H +Omax be the
first instant after H +Omax such that the processor is
certainly idle. That is, there is only one system state in
the schedule abstraction graph with no job running at
time tidle and all not-yet-scheduled jobs have an earliest
start time EST i larger than tidle . Then, the analysis can
be safely stopped at time tidle .

Case 2 in the above discussion relies on Assumption (3), that
is, that the analysis is performed with cmin = 0 for all jobs
until time tidle . Since all jobs before tidle may execute for zero
time, the case where the processor is idle is also one of the
possible system states considered in the schedule abstraction
graph for time (tidle �H). Therefore, all system states that
may be reached from the state at tidle can also be reached
from the system states already explored at time (tidle �H).
The analysis can thus safely stop at tidle .

Next, we derive an upper bound on time tidle by extending
the classic notion of busy windows to our model. Specifically,
we bound tidle with the following fixed-point recurrence:

t(0) = 0 (4)

t(1) = min
8Jj2J

{rmax
j } (5)

t(i) = t(i�1) +
X

{Jj | t(i�2)<rmax
j t(i�1)}

cmax
j (6)

The recursion stops if the following condition is satisfied.

(t(i) = t(i�1)) ^ (t(i) � H +Omax) ^
(@Jj , rmin

j  t(i) < rmax
j ) (7)

If at any point, t(i) = t(i�1) but 9Jj , rmin
j  t(i) < rmax

j

or t(i) < H + Omax, then the next t(i) is advanced to the
beginning of a busy window as follows.

t(i) = min{rmax
j | t(i) < rmax

j } (8)



Algorithm 1: Bounding the observation window length
1 tp  0;
2 t min{rmax

j };
3 while t 6= tp do
4 tn  t+

P
{cmax

j | tp < rmax
j  t};

5 if (tn = t) ^
�
9Jj |rmin

j  tn < rmax
j _ tn < H+Omax

�

then
6 tn  min{rmax

j | tn < rmax
j };

7 end
8 tp  t;
9 t tn;

10 if t > tthreshold then
11 Abort;
12 end
13 return t;
14 end

Eq. (8) guarantees that the search for the end of a busy
window continues until t(i) becomes larger than or equal to
H+Omax. Further, if t(i) = t(i�1)^@Jj , rmin

j  t(i) < rmax
j ,

then the processor is certainly idle at t(i) because t(i) = t(i�1)

entails that any job that has been certainly released before t(i)

has certainly completed by t(i), and @Jj , rmin
j  t(i) < rmax

j

entails that there is no job that may be released before or at
time t(i). Hence, when the recursion ends, t(i) is equal to an
instant where the processor is certainly idle in any possible
execution scenario. It thus upper-bounds tidle and hence is a
safe bound on the length of the observation window.

Algorithm 1 summarizes the computation of the fixed-point
iteration to obtain an upper bound on tidle using the equations
derived above. As such fixed point is not guaranteed to exist
(e.g., if the processor is overloaded), Algorithm 1 is aborted
if no fixed point is found before a configurable threshold is
reached and no further analysis of the workload is possible. If
Algorithm 1 terminates before reaching the threshold, then it
returns a valid upper bound on the observation window length.

V. SENSITIVITY ANALYSIS

Our end-to-end toolchain analyzes the sensitivity of the
system w.r.t. each frame’s WCET under weakly hard timing
constraints. A weakly hard real-time task ⌧i is feasible if any ki
consecutive jobs of a task exhibit at most mi deadline misses.3
The toolchain calculates the WCET margins for the strongest
still-satisfied (M,K) specification, where M = m1+ · · ·+mN

and K = {k1 , . . . , kN }. That is, given a window length ki for
each task, it bounds the largest scaling factor �max by which
all WCETs can be scaled so that the sum of the individual
deadline-miss bounds m1, . . . ,mN does not exceed M , where
each mi is determined w.r.t. the given ki.

A. Motivating Example

Consider a GMF task set {⌧1, ⌧2}, where ⌧1 has two frames
with arrival times A1,1 = 10ms and A1,2 = 30ms (and hence
T1 = 40), and ⌧2 has one frame with arrival time A2,1 = 50ms

3Bernat et al. [18] defined an (m, k) weakly hard real-time constraint to
denote that a least m jobs meet their deadlines in any k consecutive executions.
In contrast, we define m to show the number of missed deadlines since it
simplifies the presentation and reasoning about the analysis.

(a)

0 0 0 0 0 0 0 0 0 0

0 0 0 0

⌧1

⌧2 �=1.24
m1 = 0,m2 = 0,M = 0

(b)

0 0 1 0 0 0 0 0 0 0

0 0 0 0

⌧1

⌧2 �=1.71
m1 = 1, m2 = 0, M = 1

(c)

0 0 1 0 0 0 0 1 0 0

1 0 0 0

⌧1

⌧2 �=1.98
m1 = 1, m2 = 1, M = 2

(d)

0 0 1 0 0 0 1 1 0 0

1 0 0 0

⌧1

⌧2 �=2.81
m1 = 2, m2 = 1, M = 3

Fig. 6: The outcome of executing two tasks ⌧1 and ⌧2 as the WCETs
of the two tasks are increased.. A value of 1 denotes a deadline miss.

(and hence T2 = 50). Both tasks have an offset of zero. Thus,
the observation window of this task set is H = 200 and
includes five instances of ⌧1 (each with two frames) and four
single-frame instances of ⌧2. Suppose we set k1 = k2 = 2 to
gain insight into whether back-to-back misses are possible.

Fig. 6(a) shows the analysis outcome for the observation
window assuming WCETs are scaled up by � = 1.24, where
no deadline misses occur yet. Thus, M = m1 +m2 = 0.

After further increasing the WCETs by a factor of � = 1.71,
we observe a first deadline miss in ⌧1, as indicated in Fig. 6(b).
We thus have m1 = 1 and m2 = 0, yielding M = 1.

Next, in the scenario shown in Fig. 6(c), � has been
increased to 1.98. As a result, in addition to the 3rd job of ⌧1,
its 8th job now also misses its deadline. However, despite the
two deadline misses, we still have m1 = 1 since m1 is the
largest number of deadline misses in any two consecutive jobs
of ⌧1 (recall that k1 = 2). The 1st job of ⌧2 now also misses
its deadline, which implies m2 = 1. Hence, M = 1 + 1 = 2.

Finally, Fig. 6(d) shows an execution scenario in which the
7th instance of ⌧1 also misses its deadline due to a further
increase of all WCETs by a factor of � = 2.81. Now, the
largest number of deadline misses in any two consecutive jobs
of ⌧1 is 2, and therefore M = m1 +m2 = 2 + 1 = 3.

The example highlights how more deadline misses become
possible as WCETs increase. The overall goal of the (M,K)
sensitivity analysis is to report the largest WCET increase (i.e.,
the largest scaling factor �) that does not cause M to exceed
a given threshold. The analysis also yields for each task the
“steps” of its mi value, which allows developers to reason about
the implications of WCET overruns on each individual task.

B. Sensitivity Analysis Overview

Our toolchain performs an (M,K) sensitivity analysis by
computing scaling factors between 0 and an upper bound that
results in a change to M (for a given set K). Fig. 7 illustrates
how M relates to the scaling factor �. For example, around



Algorithm 2: sensitivityAnalysis()
1 Msup  calcMisses(�sup);
2 �min  {�sup | i 2 0..Msup};
3 �min

0  0;
4 �max  {0| i 2 0..Msup};
5 �max

Msup
 �sup ;

6 i 0;
7 while i < Msup do
8 u min({j| i < j < Msup ^�min

j < �sup}[{Msup});
9 (�min ,�max , i) bsearch(�min ,�max , i, u);

10 end

Algorithm 3: bsearch(�min ,�max , l, u)
1 if (�min

u ��max
l < ✏) then

2 return (�min ,�max , u);
3 end
4 else

5 �mid  
�min

u +�max
l

2
;

6 M  calcMisses(�mid);
7 �0min  �min ;
8 �0max  �max ;
9 �0min

M  min
�
{�mid ,�

min
M

 
);

10 �0max
M  max

�
{�mid ,�

max
M

 
);

11 u0  
(
u, l = M

M, l 6= M
;

12 bsearch(�0min ,�0max , l, u0);
13 end

Algorithm 4: calcMisses(�)
1 J 0  J ;
2 c0max  {� · cmax

i | i 2 1..|J 0|};
3 (F 0min , F 0max ) schedulabilityAnalysis(J 0);
4 M  0;
5 foreach i 2 1..|K| do
6 L {d0j � f 0max

j | j 2 1..|J 0|, i = �(j)};
7 M 0  0;
8 foreach j 2 1..|L| do

9 M 0  max

✓
M 0,

j+ki�1P
p=j

(
0, Lf(p) � 0

1, Lf(p) < 0

◆
,

where f(x) =
(x� 1) mod |L|+ 1 and Lf(x) 2 L;

10 end
11 M  M +M 0;
12 end
13 return M ;

� ⇡ 1.5, there is a discontinuity where M increases from 0
to 1. Another “step” from 1 to 2 occurs around � ⇡ 1.8.

To reason about these ranges, we let [�min
x ,�max

x ] denote an
interval such that M = x if � 2 [�min

x ,�max
x ]. For example,

M = 1 as long as � 2 [�min
1 ,�max

1 ]. Conversely, the step
from 1 to 2 occurs for some � 2 (�max

1 ,�min
2 ). The goal of

our sensitivity analysis is to find a close lower bound on �max
x

for each x 2 {0, 1, 2, . . .}, up to some upper bound �sup on
the maximum scaling factor of interest. The �sup value is
computed by considering (i) a user-specified utilization cap on
the acceptable total utilization of the system (100% by default),
(ii) a user-provided limit of interest li for each task ⌧i, which

M
0 1 2 3 4

scaling factor

1.5 1.8 2.1 2.9�min
0 =0 �min

1 �min
2 �min

3 �min
4

�max
0 �max

1 �max
2 �max

3 �sup=3.3

✏ ✏ ✏ ✏

Fig. 7: The relation between M and scaling factor �

The maximum initial upper bound for J * �sup

The total number of deadline misses M
The mapping of misses to its minimum scaling factor �min = {�min

0 , . . . ,�min
M }

The mapping of misses to its maximum scaling factor �max = {�max
0 , . . . ,�max

M }
The number of jobs in observation window for ⌧ L = {L1 , . . . , LN }
The output of the schedulability analysis (Fmin , Fmax )
The maximum permissible error* ✏
The number of consecutive window for ⌧* K = {k1 , . . . , kN }
Function mapping job id to its task id* � : N! N
Set of jobs, in a given observation window* J

Fig. 8: Notation. The four last rows marked with (*) specify
implicit values that are available in all algorithms.

bounds the largest mi value that is of interest to the user (by
default, li = ki), and (iii) by computing an upper limit based
on the slack of the original task set. To speed up this process,
random simulations of the observation window (rather than the
analysis presented in Section IV) are used to estimate a lower
bound on each mi (and hence M ) since determining �sup

is not soundness-critical. The complete sensitivity analysis is
given in Algorithms 2 to 4. Fig. 8 summarizes our notation.

We explain the analysis with the example in Fig. 7, in
which �sup = 3.3. The sensitivity analysis computes the
maximum scaling factor �max

M for each M 2 {0, 1, 2, 3} as
follows. Suppose M = 1 and � 2 [1.5, , 1.8]. For each M ,
the algorithm initializes �max

M to 0 and �min
M to �sup . Since

we already know that the minimum scaling factor for M = 0
is 0 and that the maximal scaling factor for M = 4 is 3.3, the
algorithm updates �min

0 to 0 and �max
4 to 3.3. In the next

step, for each possible value of M 2 {0, 1, 2, 3}, the sensitivity
analysis determines �min

M and �max
M with a binary search.

To compute �max
M , the sensitivity analysis specifies the

search boundaries between the current value of �max
M and

an upper bound that is less than or equal to �sup . Although
the binary search executes between two scaling factors, the
sensitivity analysis specifies the search boundaries in terms
of M , which in turn is used to calculate the boundaries of
the scaling factor, for reasons that will become apparent later
in this section. For instance, to compute �max

0 the algorithm
searches between �max

0 = 0 and �min
4 = 3.3. For the given

search boundaries, the algorithm computes the scaling factor in
the middle, denoted �mid . It computes M from �mid based
on the schedulability analysis results (Section IV), assuming
the WCET of the input is scaled by �mid .

Continuing the example, during its first iteration while
computing �max

0 , the binary search algorithm computes
�mid = (0 + 3.3)/2 = 1.65. From the schedulability analysis,
we obtain that a scaling factor 1.65 results in M = 1. Then
both �max

1 and �min
1 are updated to 1.65. Since M 6= 0 at

�mid , the second iteration executes with updated boundaries 0
and 1 between scaling factors �max

0 = 0 and �min
1 = 1.65. In

the second iteration, �mid is computed as 0.83 = (0+1.65)/2.



5	 6	

35	

677	

2,192	

11	
22	

433	

7,781	
24,908	

1	

10	

100	

1000	

10000	

100000	

4	 8	 12	 16	 20	

Ru
n0

m
e	
(s
)	

Number	of	tasks	

Median	
Average	
.90	Percen0le	
.98	Percen0le	

(a) Runtime

0	

20	

40	

60	

80	

100	

0	 4	 8	 12	 16	 20	

Su
cc
es
s	r
a)

o	

Number	of	tasks	

(b) Success ratio

11	
14	 15	 15	 15	16	

19	
22	

25	 25	

0	

5	

10	

15	

20	

25	

30	

4	 8	 12	 16	 20	

#	
ca
lls
	to

	sc
he

d.
	a
na

ly
si
s	

Number	of	tasks	

Average	 .90	Percentile	 .98	Percentile	

(c) Calls to schedulability analysis

0	

5000	

10000	

15000	

20000	

25000	

0	 4	 8	 12	 16	 20	

	#
	jo

bs
	in
	o
bs
.	w

in
do

w
	

Number	of	task	

(d) Problem size

0	

5	

10	

15	

20	

25	

0	 4	 8	 12	 16	 20	

M
ax
im

um
	sc

al
in
g	
fa
ct
or
	

Number	of	tasks	

(e) Scaling factor vs. number of tasks

0	
2	
4	
6	
8	
10	
12	
14	
16	
18	
20	
22	

0	 0.5	 1	 1.5	

M
ax
im

um
	S
ca
lin

g	
Fa
ct
or
	

Total	U3liza3on	

(f) Scaling factor vs. utilization

Fig. 9: Results of the scalability experiment. Inset (f) shows the maximum scaling factor (�sup) relative to the total utilization of
unscaled task sets. Task sets with a utilization larger than one are scaled down and the maximum scaling factor is thus below one.

Suppose that the schedulability analysis indicates M = 0 for
� = 0.83; then �max

0 is updated to 0.83. Note that �min
0 is

not updated since its current value 0 is less than the computed
value 0.83. Since M at �mid is 0, the third iteration executes
with search boundaries 0 and 1. However, since �max

0 was
updated in this iteration, the next step is performed between
scaling factors �max

0 = 0.83 and �min
1 = 1.65. In the third

iteration, �mid is computed as 1.24 = (0.83 + 1.65)/2. If
M = 0 for � = 1.24, then �max

0 is updated to 1.24. Finally,
since �min

1 ��max
0 = 1.65�1.24 = 0.41 is less than ✏ = 0.5,

the algorithm terminates. As the largest observed scaling factor
resulting in M = 0 is �max

0 = 1.24, the end-to-end toolchain
reports 24% as the WCET margin for M = 0.

VI. EVALUATION

We evaluated two aspects. First, in VI-A, we report on an
experiment conducted to evaluate the scalability of the end-to-
end toolchain (w.r.t. the number of tasks). Thereafter, in VI-B,
we present a case study that exhibits how the toolchain provides
useful insights into an application’s temporal robustness.

A. Scalability

Experimental Setup: We ran the end-to-end toolchain within a
Docker environment on an Intel Xeon Gold 6148 CPU clocked
at 2.40 GHz. Timing traces were obtained by executing the in-
strumented Timed C code on a Raspberry Pi 2 Model B, which
features an ARM Cortex A7 CPU clocked at 900 MHz, running
the Raspbian Linux distribution with the PREEMPT RT kernel
patch in place. In all our experiments, we applied the Rate-
Monotonic scheduling policy. Non-preemptive scheduling was
enacted on Raspbian OS by assigning each code fragment a

reserved (i.e., the highest) priority at the start of its execution,
and reverting to its normal priority at the next preemption point.
The system calls necessary for these priority adjustments are
automatically inserted by the Timed C compiler.

Task sets were generated randomly following the period
distribution of an automotive benchmark [25]. Recall that the
period of a GMF task is the sum of the periods of its frames.
The periods were sampled from the set {1, 2, 5, 10, 20, 50,
100, 200, 1000}ms according to the distribution reported by
Kramer et al. [25]. The experiment was carried out for 4 to 20
tasks in increments of 4. In total, we generated 250 different
valid task sets (50 each for N 2 {4, . . . , 20}). A generated
task set was treated as invalid and discarded if �sup is close
to zero (less than epsilon) and some task’s limit of interest is
violated (i.e., mi > li). The number of frames in each task
ranged from 1 to 4. We randomly varied the workload by
repeatedly running selected functions from MiBench [20].

Execution-time estimates were obtained by observing 100
iterations of each task on the target platform. We used Linux’s
cyclictest tool to measure the platform-induced release
jitter on the target platform and observed a maximum jitter
of 356 µs in a 30-minute benchmark. In this evaluation, we
used 0.98 as the utilization cap (leaving 2% of the system’s
capacity for OS overheads), 4 as the limit of interest, 10 as
the window of interest (k), and 0.05 as the epsilon resolution.

Results: Fig. 9a shows the runtime of the end-to-end
toolchain as a function of the number of tasks. Fig. 9b shows
the success rate of the end-to-end toolchain, where a run is
considered successful when a call to the schedulability analysis
completes without timeout (30 minutes). Figs. 9a and 9b show
that task sets consisting of at most 12 tasks could be processed



by the end-to-end toolchain within a few seconds to a few
minutes. They also show that, as the number of tasks increases,
the runtime of the toolchain and number of timeouts increases
considerably, too. Fig. 9c depicts the number of invocations of
the schedulability analysis as a function of the number of tasks.
Though there is only a modest increase in the number of calls of
the schedulability analysis, the time required for each invocation
grows substantially as the problem size increases (see Fig. 9d).
Additionally, the maximum scaling factor computed by the
sensitivity analysis pushes each task set to the limit of its
schedulability, which in turn drastically increases the number
of system states and possible schedules that the schedulability
analysis must explore. As a result, timeouts become more
frequent for larger workloads (Fig. 9b).

Figs. 9e and 9f show the maximum scaling factor as a
function of the number of tasks and the total utilization, respec-
tively. Unsurprisingly, the maximum scaling factor decreases
as the system’s capacity is approached by increasing either
the number of tasks or per-task utilizations, which reflects
that more heavily-loaded systems have less slack, and are thus
temporally less robust (i.e., WCET margins are smaller). A
key contribution of our end-to-end toolchain is to quantify
this effect, and to expose it to the developer in a simple and
actionable manner, as we highlight next with a case study.

B. Case Study
To demonstrate the benefits of the overall methodology, we

constructed a synthetic case study inspired by an autonomous
unmanned aerial vehicle (UAV). The parameters and dependen-
cies of the task graph are based on the Paparazzi project [32].
This case study is synthetic since, although the task set and
its parameters are based on a real project, the actual tasks that
execute on our embedded platform are nonfunctional dummy
tasks for ease of experimentation, and the experiment does not
involve an actual UAV in operation. This simplifying approach
is sufficient for our purposes since only the timing analysis
and the task graph are needed to study how the proposed
methodology and weakly hard sensitivity analysis can be used
to explore the temporal robustness of a realistic task set.

Task set: The Paparazzi UAV is controlled by two 16 MHz
microcontrollers [32]. In this case study, we study a consol-
idated setup where all tasks run on a single 32-bit 80 Mhz
microcontroller, as shown in Figs. 10a and 10b. There are ten
periodic tasks, with task T4 being a multi-frame tasks consisting
of four frames. In comparison to the original Paparazzi task
set, our workload features two additional tasks that estimate
the UAV’s position when GPS signals are not available. Each
task is realized as a separate Timed C task, where task T4
models dependencies among its four subtasks (frames).

Experimental Setup: We obtained the timing traces by exe-
cuting the instrumented Timed C implementation on a ChipKIT
Max32 board with a 80 MHz 32-bit MIPS processor, running
FreeRTOS version 10.2.1, with non-preemptive cooperative
FP scheduling. The sensitivity analysis was performed on a
MacBook Pro with two 3.1 GHz cores and 16 GB memory,
running Docker Desktop Community 2.1.0.3. In our case study,

T2

ID Description Frames Frequency	
T1 Distance	and	LIDAR	sensors 1 4Hz

T2 Particle	filter 1 4Hz

T3	 Receiving	GPS	signals	 1 4Hz

T4 Control	(set	of	subtasks) 4 4Hz

T5 Stabilization 1 20Hz

T6 Reporting	task 1 10Hz

T7 Receive	radio	commands 1 40Hz

T8 Manage	radio	commands 1 40Hz

T9 Check	for	fail-safe	handling 1 20Hz

T10 Transmit	to	servos 1 20Hz

T3

T4

T1

T10
T5

T6
T8T7

T9

Misses WCET Margin
0 1.55456852792
1       1.8654822335
2       2.02093908629
3 2.17639593909
5 2.25412436548
6 2.33185279188
7 2.40958121827

(a) 

(b) 

(c) 

Fig. 10: Task set used in the UAV case study, based on the Paparazzi
UAV project [32]. Edges indicate dependencies among tasks.

the (synthetic) tasks exhibited a total utilization of less than one
on the deployment platform. That is, intuitively, the system has
some slack to cope with WCET increases—but just how much
of a margin for error is there? Our toolchain answers exactly
this question in a developer-friendly, easy-to-understand way.

Results and discussion: Three aspects are of interest: (i) how
much of a WCET margin is there before any of the critical
tasks miss a deadline, (ii) what are the margins of the tasks
that are allowed to experience a limited number of misses,
and (iii) how would the margins change if certain tasks are
optimized and their execution time reduced? To express that
most tasks should not miss their deadlines, we configured the
tool with ki = 1 and the limit of interest li = 1 for all tasks
except for tasks T2 and T6. To ensure that task T2 (particle
filter) does not miss more than 3 deadlines in a row, we set
k2 = 3 and l2 = 3. Configured like this, and with a utilization
cap of 0.98, the toolchain requires less than 7 s of runtime to
report the WCET margins listed in Fig. 10c.

We observe that all WCETs can be scaled by factor of up to
1.5545 (55.45%) without resulting in any misses, which gives
the developer an intuitively meaningful, quantified notion of
the system’s temporal robustness due to the available slack. At
most one miss (M = 1) can occur until the WCET increase
exceeds a factor of 1.8654. By inspecting the per-task tool
output (omitted from Fig. 10c for space reasons), we see that
m1 = 1, which means that the temporal correctness of (only)
task T1 can no longer be guaranteed at this point. Similarly,
we can inspect what tasks are the reasons for different margins.
For instance, the margin until the particle filter incurs up to
m2 = 2 misses within any window of k2 = 3 jobs is 2.2541.

In summary, this brief case study illustrates how an engineer
can use the information provided by the toolchain to optimize
the temporal robustness of a system and gain detailed insights
into which tasks are vulnerable to experience deadline misses,
in which order tasks will experience a degradation in temporal
robustness, how frequent deadline misses become as WCETs



increase, and, perhaps most importantly, how large the margin
of error w.r.t. WCET estimates is before anything goes wrong.
Inarguably, such details are more useful to engineers than a
simple “yes/no” analysis result based on uncertain assumptions.

VII. RELATED WORK

Programming with time: Several programming languages
(such as Esterel [7], Lustre [33], Signal [26], Ada [12], and the
real-time extension to Java, RTSJ [29]) and modeling languages
(such as UML MARTE [1], Modelica [2], and Ptolemy [34])
provide explicit timing constructs. However, most small-scale
embedded systems are programmed in C, which lacks timed
semantics. Adding a notion of time to C programs can be done
by either using APIs provided by operating systems [11] or
language extensions such as Real-Time Concurrent C [17] and
Timed C [31]. Of these, Timed C is an attractive choice for our
purpose since with only a few timing constructs it is general
enough to support various task models such as GMF tasks.

Timing Analysis: There is a rich established literature
on WCET analysis of real-time applications, and many static
timing analysis tools are available (e.g., [4, 6, 10, 15, 24,
28]. However, a major challenge for any of these tools is
the analysis of modern complex hardware architectures. As
a consequence, recent research has also focused on timing-
predictable hardware [41, 48]. In contrast to the state of the art
in timing analysis, the pragmatic measurement-based approach
adopted in this paper is rather simplistic. Timing analysis in
itself is not a contribution of this paper, but the integration
of a timing analysis component is essential to obtaining an
end-to-end toolchain. In future work, it will be interesting to
also incorporate support for static WCET analysis tools as an
alternative to the current measurement-driven approach.

Schedulability Analysis: Despite much prior work on the
schedulability analysis of non-preemptive tasks on uniprocessor
platforms [8, 13, 14, 23, 30, 39, 40, 42, 46], only few
provide exact results. Further, none of these analyses yield
per-job response-time bounds as required for our weakly hard
sensitivity analysis (i.e., they yield task-level bounds, which
are insufficient for (m, k) compliance). The only prior exact
analysis that provides per-job response times [30] supports
neither precedence constraints nor job abortions (due to firm
timing points). We provide the needed extensions in Section IV.

Sensitivity Analysis: Sensitivity analysis of timing param-
eters of real-time tasks, such as deadline, period, WCET, and
offsets, has been studied by many researchers [3, 9, 21, 22,
27, 35–37, 43, 47]. These methods, however, are limited to
the preemptive execution model and do not support weakly
hard timing constraints, job abortion, or multiframe tasks as
they occur in Timed C programs. For systems with limited
preemptions, Regehr [38] proposed a random testing approach
to analyze the sensitivity of schedulability w.r.t. a tasks’ priority,
preemption threshold, and WCET. However, Regehr’s solution
does not consider precedence constraints or firm deadlines. A
system-level sensitivity analysis of WCETs w.r.t. end-to-end
deadlines based on a binary-search approach was later proposed
by Racu et al. [36, 37] and integrated in SymTA/S [21, 36].

VIII. LIMITATIONS, EXTENSIONS, AND CONCLUSION

We have introduced an end-to-end toolchain that inte-
grates (i) a programming language with timed semantics,
(ii) an analysis-aware compiler, (iii) measurement-based timing,
(iv) schedulability, and (v) sensitivity analysis. Besides the
integration aspects, the novel contributions of this paper are
extensions w.r.t. (iv) and the first weakly hard solution for (v).

By design, any of these components can be replaced or
improved individually. First off, our toolchain is based on the
Timed C language and the KTC compiler, but the basic end-to-
end principle is not limited to Timed C in any way. Another
language or compiler may be trivially incorporated as long as it
can generate sufficient instrumentation and metadata for timing
and schedulability analysis; the engineering effort would be
limited to adding support for outputting job sets in the simple
file format used by the schedulability and sensitivity analyses.

A key feature of Timed C is that it is not a new programming
language, but rather a small extension to C with a limited
set of constructs for expressing timing constrains. Hence, a
legacy program written in C without explicit timing constrains
does not have to be translated into Timed C. Instead, the
recommended approach is to view a Timed C program as a
coordination program that defines the task set, including timing
constrains such as periodicity and deadlines. Since the KTC
source-to-source compiler needs to analyze the task set as a
whole, it currently limits the scope of a Timed C program to
one compilation unit. However, existing legacy C functions
(without timing constructs) can simply be compiled separately
and linked in, and then called from Timed C tasks.

The current toolchain relies on a measurement-based ap-
proach to timing analysis, but this is a purely pragmatic
choice motivated by our target platforms and not a conceptual
limitation of the toolchain. However, actually incorporating
support for an off-the-shelf static timing analysis tool will
likely require both significant engineering effort and further
research. In particular, a static analysis of Timed C programs
would need to (i) extract the code fragments between timing
points in a format suitable for static timing analysis, and (ii)
generate sound flow facts for the extracted code fragments.

The sensitivity analysis is currently the primary scalability
bottleneck due to repeated invocations of the underlying
schedulability analysis on difficult problem instances. While
the schedulability analysis is conceptually an easy-to-replace
component, there currently exists no viable alternative because
the weakly hard sensitivity analysis requires per-job response-
time bounds, for which there is little applicable prior work. In
future work, it would be interesting and beneficial to devise a
faster sensitivity analysis that does not rely on binary search
or repeated invocations of the schedulability analysis.

Furthermore, the current schedulability analysis limits our
toolchain to limited-preemptive scheduling and regular job-
release patterns (e.g., GMF tasks). For the targeted small
microcontroller platforms, this is an ideal choice, but for
larger platforms (e.g., powerful multicore platforms) support
for preemptive and/or sporadic tasks will need to be developed.
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