
Temporal Property-Based Testing of a Timed C
Compiler using Time-Flow Graph Semantics

Saranya Natarajan
EECS and Digital Futures

KTH Royal Institute of Technology, Sweden
saranyan@kth.se

David Broman
EECS and Digital Futures

KTH Royal Institute of Technology, Sweden
dbro@kth.se

Abstract—The correctness of a real-time system depends both
on it being logically sound and temporally correct. To guarantee
temporal correctness, the development of such systems includes:
(i) developing a model, (ii) formally verifying the model, and
(iii) implementing the verified model using a programming
language. The temporal correctness then depends on correctly
implementing the model using a real-time programming language
and compiling it to a hardware platform. Although the timing
semantics of many real-time programming languages are well
defined, there is no guarantee that the timing semantics of such
programs are correctly translated by the compiler. In this paper,
we propose a new method for temporal property-based testing.
The general method is implemented and evaluated on the Timed
C real-time programming language. We formalize the temporal
core semantics of Timed C and then use this formalization to
specify the properties that are tested by the new property-based
testing tool. More specifically, the tool consist of two parts: (i) a
generator that randomly generates Timed C programs, and (ii)
a property checker that checks whether the language’s timing
semantics are correctly captured in its execution. We evaluate
the method and tool on an embedded Raspberry Pi platform.

I. INTRODUCTION

The correct implementation of a real-time system depends
both on its logical and temporal correctness. In safety-critical
systems with temporal constraints, a failure of not meeting
one of these constraints can lead to severe damage and may
risk human lives. As a consequence, rigorous verification is
an essential part when developing safety-critical systems.

The first step in such verification and development process
typically consists of the development of a model. There exist
many formalisms for modeling dynamic systems, such as
timed automata [1] and timed petri nets [2]. In the second
step, verification tools such as Uppaal [3] and Kronos [4]
are used to formally verify these models. In the third step,
the verified models are implemented using a programming
language. Today, there exist several programming languages—
such as Esterel [5], LUSTRE [6], Ada [7], and RTSJ [8]—
with explicit constructs for real-time programming. In the
fourth and final step, the source code is compiled to the target
machine. However, a compiler is a complex software that
implements many algorithms and procedures. A bug in the
compiler can result in a bug in the compiled code, something

highly unexpected and undesirable. In such scenario, a for-
mally verified system can still fail, even if the original model
was verified as being correct.

Proving the correctness of the functional aspects of a
compiler is not new: formally verified compilers exist for the C
programming language (the CompCert project [9]), functional
languages (the CakeML project [10]), and for synchronous
languages (a compiler for Lustre [11]).

Although formally verified compilers give high confidence
of correctness, the engineering effort of developing a verified
compiler is substantial. An alternative is to follow a more
traditional test-based approach. Compiler testing tools are
widely used when testing compilers and such tools have found
many bugs in frequently used compilers [12]. In recent years,
property-based testing [13] has gained significant attention and
testing tools are available for almost any modern programming
language. In contrast to unit-based testing, massive amounts
of randomly generated tests are checked if they conform
to certain properties. Despite its usefulness, property-based
testing has only recently been used in compiler testing [14].
However, to the best of our knowledge, property-based testing
has so far not been explored in the context of compilers
for languages that support temporal semantics and real-time

programming primitives.
In this paper, we develop a new method for property-based

testing of languages and compilers with temporal constraints.
The work is focused on a recently proposed real-time pro-
gramming language called Timed C [15]. Timed C consists of
a small set of timing primitives added to the C programming
language. Timed C has not been formally specified before and
in the first part of this paper, we formalize the temporal aspects
of a subset of Timed C using time-flow graphs (TFG). We
use TFGs to randomly generate Timed C programs that are
checked against fundamental properties of the TFG semantics.
That is, by using the proposed approach of temporal property-
based testing in combination with TFGs, we show how certain
timing bugs in an open-source compiler for Timed C can be
discovered and resolved. In summary, we make the following
contributions:

• We introduce the concept of time-flow graphs. We define
its high-level operational semantics and use it to describe
the semantics of a subset of Timed C (Section III).978-1-7281-8928-4/20/$31.00 ©2020 IEEE

This is the author prepared accepted version. © 2020 IEEE.
S. Natarajan and D. Broman. Temporal Property-Based Testing of a Timed C Compiler using Time-Flow Graph Semantics.
In the Proceedings of IEEE Forum for Specification and Design Languages (FDL), Kiel, Germany, 2020.
DOI:http://dx.doi.org/10.1109/FDL50818.2020.9232935

© 2020 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

• We present the design and implementation of tempo-

ral property-based testing. This is—to the best of our
knowledge—the first work on temporal property-based
testing of compilers for real-time systems (Section IV).

• We evaluate our temporal property-based tool by testing
the correctness of the KTC compiler, the currently pub-
licly available compiler for Timed C. The evaluation is
performed on Raspberry Pi (Section V).

II. BACKGROUND

In this section, we first discuss the various features of Timed C
and then provide a brief introduction to property-based testing.

A. Timed C

Timed C [15] is a recent language for programming real-time
systems. Timed C extends the C programming language by
introducing temporal and concurrent constructs. The language
is used in an on-board student satellite project [15] and
there exits an open source end-to-end toolchain supporting
measurement-based timing analysis, schedulability analysis,
and sensitivity analysis [16].

Timed C is based on the concept of timing points (TP).
The timing constraints of a Timed C program are specified
using timing points. From a programmer’s viewpoint, time
only elapses at the timing points, i.e., conceptually, executing
the code between timing points takes zero time. Currently,
Timed C supports soft and firm timing constraints specified
using soft timing points (STP) and firm timing points (FTP),
respectively. stp(expr1, expr2, n);

ftp(expr1, expr2, n);

Expressions expr1 and expr2 represent the relative arrival
time and relative deadline of the code fragments succeeding
and preceding the TP, respectively. The unit for the delay
interval is specified using n where the resolution is 10n
seconds. Note that we can also use standard definitions, such
as ms for milliseconds and us for microseconds.

Fig. 1. lists a Timed C program that implements a gener-

alized multiframe (GMF) task [17] and its execution diagram.
The program consist of two frames where the first frame
(lines 2-3) has a relative arrival time of 15 ms and a soft

1 task foo(){

2 while(1){
3 bar();

4 stp(15,10,ms);
5 far();

6 ftp(15,10,ms);
7 }

8 }

0 20

1-3 4 5 6 2-3 5 6

5 10 15 25 30 35 40 45 50 55 60

Fig. 1: A Timed C program implementing a generalized
multiframe task with soft and firm timing points. The black
upward arrows depict arrival times and the red downward
arrows depict the deadlines.

1 void compute(int* a){

2 int b[100];

3 init(a);

4 while(1){
5 improve(b,a);

6 critical{
7 memcpy(a,b,sizeof(int)*100);
8 }

9 }

10 ftp(200,200,ms);
11 }

Fig. 2: A Timed C program implementing an anytime algo-
rithm using the critical construct.

deadline of 10 ms, as specified by the stp on line 4. Similarly,
the ftp on line 6 enforces the second frame (line 5) to have a
firm deadline of 10 ms and has a relative arrival time of 15 ms.

In the timing diagram, task foo starts executing at t = 0
and function bar() completes at t = 8. The stp at line 4
then delays the execution until t = 15. Function far() starts
executing at t = 15 and completes at t = 20. The ftp delays
the next call to bar() until t = 30. In the second iteration
of the while loop, bar() arrives at t = 30. Its absolute
deadline is at t = 40. Note that although bar() arrives at
t = 30 it starts only at t = 32 due to some platform dependent
release jitter. Since this instance has a soft deadline, the stp
permits overrun and bar() completes at t = 46. Note that
although the previous frame overran its execution until t = 46,
the next frame still arrives at t = 45, which is 15 ms since the
arrival of the previous frame, as depicted by the black arrow.
The next instance of far() starts executing at t = 46 and has
not completed at t = 55. The ftp construct enforces a firm
deadline by aborting far() at its absolute deadline t = 55.

In some scenarios, aborting a computation may result in
unexpected behaviour. Timed C’s critical construct is used
to prevent such interruption. We illustrate an example program
using critical in Fig. 2. This code is based on an example
from [15] that implements an anytime algorithm. Anytime
algorithms [18] support approximate computation where the
quality of the solution improves with increasing execution
time. In Fig. 2, function improve() implements an anytime
algorithm and the ftp (line 10) makes it possible to interrupt
it. Note that the function call to init() (line 3) computes
and stores an unoptimized initial solution in a. The function
improve() improves a by computing and storing a new
solution in b. The code on line 7 then copies b to a. To ensure
that this copying is not interrupted by the ftp, the memcopy
is enclosed within the critical construct.

B. Property-based testing

Property-based testing (PBT), also known as Quickcheck [13],
replaces handwritten tests with automatic and random test
generation. It consists of two components: (i) the property

component and (ii) the generator. The property component
captures the specification of the program and the generator

randomly generates arbitrary input. A PBT tool generates
large number of random inputs, and tests these inputs on
a set of specified properties. Consider a simple example of

a function square() that takes as input an integer and
computes its square. For input x the function computes square
using y=x*x and returns y. To test if this function is correct,
we specify a property as square(x) = x*x. The generator
generates random values of type int and the function under
test executes every input. Each test case is tested for the
specified property. Note that each instance is a test case and
a failure results in the generation of a counterexample.

Suppose square() is compiled using two compilers,
A and B. Moreover, assume that A correctly implements
operator precedence while B does not. This results in square
operation evaluated as y=(x*x) and (y=x)*x in A and B,
respectively1. When applying property-based testing, there are
no failures using A, whereas B results in that all tests fail.

In this paper we present a temporal property-based testing
methodology and use it to test the correctness of KTC—
a Timed C source-to-source compiler. The KTC compiler
compiles Timed C programs to platform specific C code.
The generated C code is then compiled using an off-the-shelf
compiler. The novelty of our method lies in the fact that we
present a PBT method to test KTC with respect to how it
translates the temporal properties of the input program.

III. TIME FLOW GRAPH

In this section, we introduce the concept of time-flow graphs

(TFG), as a way to define the high-level semantics of Timed
C. Note that we need a formal definition of the semantics to
be able to test the correctness of the compiler. Note also that
TFG formalizes only the temporal properties of Timed C and
abstracts away all other details.

A. The TFG Definition

A TFG is a formal representation of a Timed C task2. The TFG
is a directed graph where the vertices of the graph encode the
timing points and code fragments. For instance, Fig. 3(b) is the
TFG of the Timed C task in Fig. 3(a). A definition of TFG
is listed in Fig. 4. It consists of five components: (i) graph

structure, (ii) program properties, (iii) platform dependent

parameters, (iv) states, and (v) evaluation functions. In the
rest of this section, we describe each of these five components.
Graph Structure: In Fig. 3, the TPs and code fragments are
formally defined as P = {p0, p1, p2} and F = {f1, f2}. The
TPs p0, p1, and p2 represent the start of the task at line 1, the
STP at line 4, and the FTP at line 8, respectively. Similarly, the
code fragments f1 and f2 correspond to the code on lines 2-3
and lines 5-7, respectively. As illustrated in Fig. 3, a circle is
a TP and a square is a code fragment. The initial timing point

(p0) that encodes the start of a task has no incoming edge.
This is represented using a filled circle with arrow.
Program Properties: The various timing constraints of real-
time programs are specified using timing parameters. The

1Surprisingly, the latter expression compiles using a modern compiler, such
as GCC, and gives a warning message stating that the result of *x is unused.

2The semantics of Timed C has changed sligtly since the original paper [15]
was published. The semantics described in this paper is based on the compiler
used in the end-to-end toolchain by Natarajan et al. [16].

timing parameters can be broadly divided into (i) platform

dependent and (ii) platform independent. In the definition
of the TFG, we group together platform independent timing
parameters that can be directly derived from the Timed C
program under program properties. For instance, in Fig. 3, the
program properties of the TPs in the TFG are, tA(p0) = 0,
tD(p0) = 0, tA(p1) = 30ms, tD(p1) = 20ms, k(p1) = soft,
tA(p2) = 20ms, tD(p1) = 10ms, and k(p2) = firm.
Platform Dependent Parameters: The functions tj , tr, tB ,
and tW are used to annotate the TFG with platform depen-
dent parameters. These timing parameters cannot be directly
derived from the Timed C code. The release jitter of a
TP can be computed using platform specific tests such as
cyclictest tool for a Linux system. Trigger precision is
defined as the extra time taken to jump out of the critical block.
A measurement-based approach to compute trigger precision,
BCET, and WCET of a code fragment is proposed in [16].
States: As the program executes, it constantly updates its
program state and machine state. The program state contains
information pertaining to the data stored in the various vari-
ables of the program. The machine state, M , of a program
execution contains information about the absolute time elapsed
since the start of the program, the machine’s cache state, etc.
Evaluation Functions: The functions critical , vnext , fnext ,
and execute are the set of evaluation functions in the TFG.
These function are used to define the semantics of the TFG.

The function critical maps a code fragment enclosed within
a critical construct to true. For example in Fig. 3,
critical(f2) is true while critical(f1) is false. The function
fnext takes a code fragment, f , as input and returns a FTP,
p, if there exists a path from f to p such that there exist no
other TP in the path from f to p. Otherwise, it returns ?.

The function execute captures the actual execution of a code
fragment. It takes as input a code fragment f , program state z,
machine state m, and a real time d. Here d is the real time at
which a timer is set to expire. If critical(f) = false a timer
expiry will abort the execution of f . The function returns the
updated program state z0, machine state m0, and the status of
the timer expiry where true indicates timer expiry.

The function delay maps the current program state, machine
state, and next absolute arrival time to a new machine state.
The delay function is responsible for delaying the execution

1 task far(int* a){

2 int b[100];

3 boo(b);

4 stp(30,20,ms);
5 critical{
6 foo(a,b);

7 }

8 ftp(20,10,ms);
9 }

p1

f1

p0

f2

p2

(a) (b)

Fig. 3: A Timed C program with both stp and ftp.

Graph Structure:
• P is the set of timing points.
• F is the set of code fragments.
• V = P [F is the set of vertices where P \F = ?.
• E = V ⇥ V is the set of edges.

Program Properties:
• k : P ! {soft, firm} is a function that maps a TP

to its kind of real-time deadline.
• tA : P ! T maps a TP to its relative arrival time.
• tD : P ! T maps a TP to its relative deadline.

Platform Dependent Parameters:
• tj : P ! T maps a TP to its maximal release jitter.
• tr : P ! T maps a TP to its trigger precision.
• tB : F ! T maps a code fragment to its best-case

execution time (BCET).
• tW : F ! T maps a code fragment to its worst-case

execution time (WCET).
States:

• Z is the set of program states.
• M is the set of machine states.

Evaluation Functions
• critical : F ! B maps a code fragment enclosed

within critical block to true and a non-critical
block to false.

• vnext : Z ! V maps a program state to the next TP
or the code fragment the program jumps to during
its execution.

• fnext : F ! {?} [P maps a code fragment to a
TP if there exists a path with no other TP from F
to a FTP and ? if no such path exists.

• execute : F⇥Z⇥M⇥T ! Z⇥M⇥B takes as input
a code fragment, a program state, a machine state,
and the real time. It returns the new program state, a
machine state, and a boolean value that results from
executing F . The boolean value is true if the timer
expired during this execution,

• delay : P⇥M⇥T ! M maps a TP, a machine state,
and real time to a machine state. It is responsible for
delaying the execution of a program.

• tc : M ! T maps machine state to the real time
which is the absolute time elapsed since start.

Fig. 4: Definition of time-flow graphs. Note that we only formalize a high-level abstraction of the semantics, where we abstract
away the functional aspects, such as execution of code in program fragments.

of the program. The delay function returns immediately if the
time elapsed since the start of the program (real time) is greater
than or equal to the specified next absolute arrival. Otherwise,
it delays the execution of the program until the real time and
specified absolute arrival time become equal. The function tc
maps the machine state to the real time. Here, the real time is
total time elapsed since the start of the program.

B. Operational Semantics

In this subsection, we present the semantics of the TFG
using inference rules, as is standard when describing small-
step operational semantics [19]. In Fig. 5 we formally define
the timing semantics of TFGs using the transition relation

(v, z,m, a) �! (v, z,m, a), where v 2 P [V is either a
timing point p 2 P or a code fragment f 2 F , z 2 Z
the program state, m 2 M the machine state, and a 2 T
the absolute arrival time. We define one transition rule for
TP (T-TP) and three different transitions for code fragments
(T-SOFT, T-FIRM1, and T-FIRM2). Note that at any step
only one rule applies. We explain the transition rules using
the example in Fig. 6. In our discussion, we use t to represent
the real time elapsed since the start. We consider the machine
state at t = n to be mn.

Function action() in Fig. 6 implements an example
Timed C program with both STP and FTP. We start the
transition at p0 from state (p0, z,m, 0). The vertex p0 is a
TP and the only rule that applies is T-TP . Rule T-TP has 3
premises. The first premise identifies the outgoing edge from
the TP which is used to determine the next vertex in the
transition. The second premise computes the absolute arrival
time of the TP which is used by the delay function. Finally

the third premise calls delay which delays the execution until
the real time becomes equal to the computed absolute arrival.
In Fig. 6, the only outgoing edge from p0 is (p0, f1). Function
delay returns m0 at t = 0. Hence, applying T-TP updates
the TFG state to (f1, z,m0, 0). Note that the program state
remains unaltered because a TP does not change the value of
any program variable, it only affects the real time encoded in
the machine state.

The next transition from (f1, z,m0, 0) will either apply
T-SOFT, T-FIRM1, or T-FIRM2 because f1 /2 P . In all
these rule we start by computing fnext(f1). Since there exists
a path from f1 to p1 and k(p1) = soft we get fnext(f1) =?.
Hence, the only valid transition rule is T-SOFT. The second
premise of T-SOFT is responsible for the execution of f1
which corresponds to executing line 2 of the Timed C program.
Note that in T-SOFT the execute function is called with 1
which means the timer is set to expire at 1. We specify a
timeout of 1 to encode the non firm timing constraint of
the code fragment. From the execution diagram in Fig. 6 we
see that line 2 completes at t = 8 which implies that the
timer did not expire. Hence, execute returns (z1,m8, false).
In this example, z is updated because of variables in init.
The third premise of T-SOFT computes p1 as the next vertex
and updates the TFG state to (p1, z1,m8, 0). Let us further
look at transition from (p1, z1,m8, 0). Since p1 2 P , we apply
T-TP. The first premise computes the next vertex as f2 and the
second premise computes a0 = 10 (a = 0 and tA(p1) = 10).
As depicted in Fig. 6 the delay function starting at t = 8
delays the execution of the program until t = 10. This updates
the TFG state to (f2, z1,m10, 10).

(v, z,m, a) �! (v, z,m, a)

(p, v) 2 E a0 = a+ tA(p) m0 = delay(p,m, a0)

(p, z,m, a) �! (v, z,m0, a0)
[T-TP]

?= fnext(f) (z0,m0, false) = execute(f, z,m,1) v = vnext(z0)

(f, z,m, a) �! (v, z0,m0, a)
[T-SOFT]

p = fnext(f) d = tD(p) + a (z0,m0, false) = execute(f, z,m, d) v = vnext(z0)

(f, z,m, a) �! (v, z0,m0, a)
[T-FIRM1]

p = fnext(f) d = tD(p) + a (z0,m0, true) = execute(f, z,m, d)

(f, z,m, a) �! (p, z0,m0, a)
[T-FIRM2]

Fig. 5: Transition rules defining the operation semantics of TFGs. See Fig. 4 for the definition of TFGs.

1 task action(int c){

2 init();

3 stp(10,10,ms);
4 if(c){
5 act_one();

6 }

7 else{
8 act_two();

9 }

10 critical{
11 c=next();

12 }

13 ftp(30,30,ms);
14 }

p0

f1

p1

f2

f3 f4

f5

p2

0 40

1-2 3 4-6 10-12

10 20 30 50

Fig. 6: An example Timed C program, its TFG, and its
execution diagram.

For the next transition we have f2 2 F , fnext(f2) = p2,
and k(p2) = firm, Hence, the two potential rules for transi-
tion from (f2, z1,m10, 10) are T-FIRM1 and T-FIRM2. As
discussed previously, the execution of a code fragment with
firm deadline is aborted when it misses its deadline, otherwise
it executes to completion. We capture these two scenarios
using the two transition rules T-FIRM1 (no deadline miss)
and T-FIRM2 (with deadline miss). Additionally, we use a
timer to track the code fragment’s deadline in execute. Hence,
in the second premise (of both T-FIRM1 and T-FIRM2) we
compute the absolute deadline of the code fragment which
in turn defines the real time at which the timer in execute
expires.

IV. TEMPORAL PROPERTY-BASED TESTING

In this section we present the methodology and tool for
temporal property-based testing (TPBT) using TFGs.

A. Design Overview

In this paper, the main objective of the TPBT is to test Timed
C’s source-to-source compiler called KTC. More specifically,

we test the correctness of KTC’s source-to-source compilation
w.r.t. Timed C’s semantic. As discussed previously, property-
based testing consist of a generator and a property component.
In our TPBT, the generator generates TFGs and the property
component basically specifies the transition system listed in
Fig. 5.

The design overview of our TPBT tool is depicted in
Fig. 7. The main idea is to randomly generate many Timed
C programs, compile, execute, and verify its correctness.
The challenges concern how to (i) generate relevant Timed
C programs, and (ii) how to check temporal properties of
programs with real-time constraints. Since TFGs capture the
essential parts of a Timed C program, we use TFGs both for
generating Timed C programs and property specifications. The
TFGs are generated in the TFG generation phase. These ran-
domly generated TFGs are then used to generate instrumented

Timed C code files and property specification code in the
Timed C generation and TFG property code generation phases,
respectively (see Fig. 7). The property specification code is
compiled and executed, which produces the property log that
traces the transition of the TFG. We compile the instrumented
Timed C code using KTC to C code. When this C code is
compiled and executed using an off-the-shelves C compiler,
it produces an execution log that traces the program’s flow
and its temporal aspects. The property checker then takes as
input the property log and the execution log and tests if the
defined semantics are captured in the program execution. In
the following subsections, we discuss these different phases.

B. Random TFG Generation

We have designed and implemented a recursive algorithm
for random TFG generation. The algorithm makes use of
probability distribution tables to enable the configuration of
the random generation. For instance, the user of the tool can
specify the percentage of generated STPs, FTPs, fragments,
if-then-else conditions, loops, etc. The actual algorithm is left
out because of space limitations.

C. Timed C code generation

In this subsection we explain Timed C code generation using
the example in Fig. 8. The Timed C code generation assigns
unique IDs to the TPs and the code fragments. In Fig. 8, these

Random	TFG	
Generator	 TFG	

Property	
Specification	

Code	

Execution	log	
compile	

compile	
execute	

GENERATOR	 PROPERTY	COMPONENT	

	Property	
Checker	

PASS	

FAIL	
Property	

Specification	Code	
Generator	

Timed	C	Code	
Generator	 Timed	C	

Property	log	

execute	

Fig. 7: Overview of the proposed property-based testing tool for Timed C. The tool consists of two main components: a generator and a
property checker.

stp#2

frag#1

stp#0

frag#3

ftp#4

frag#5

frag#6

ftp#7

1 task fun(){ //stp#0
2 cf1(); //frag#1
3 stp(30,30,ms);//stp#2
4 cf2(); //frag#3
5 ftp(20,20,ms);//ftp#4
6 critical{

7 cf3(); //frag#5
8 }

9 cf4(); //frag#6
10 ftp(30,10,ms);//ftp#7
11 }

(a) (b)

Fig. 8: An example TFG and Timed C code with IDs that are
generated by the instrumentation.

IDs correspond to the IDs of nodes in the TFG. For instance,
line 2 in the Timed C code corresponds to frag#1 in the
TFG. The Timed C code generation inserts six different type
of instrumentation instruction: (i) PBT-ID, (ii) PBT-START,
(iii) PBT-END, (iv) PBT-OV, (v) PBT-CRITICAL, and
(vi) PBT-TRIG. These instructions trace the execution and
timing information of the TPs and code fragments in the
execution log using the following format:

• stp#id str fin

• ftp#id str fin ov cr tr

• frag#id

where id is the unique ID, str is the start time of a TP,
fin is the finish time of a TP, cr signals the execution of
a critical section, and tr is the trigger precision of a critical
code fragment.

Fig. 9(a) lists an example execution log of Fig. 8. Matching
the lines from the execution logs with the format specified
above, we see that stp#2 starts at t = 20 and finishes at
t = 30. Similarly, ftp#4 starts at t = 41 and finishes at
t = 50. However, we see ftp#7 has a start time of t = 0.
Note that a start time equal to zero indicates an abortion due to
a deadline miss (an overrun). This is further confirmed by the
fact that ftp#7 has an overshot due to execution of a critical
fragment frag#5. Note that due to this overrun frag#6 is

not executed.

D. Property specification code generation

The property specification code generation takes as input a
TFG and generates a property specification code. The property
specification code when compiled and executed results in the
property log. Note that the property log traces the transition
of the TFG using the transition rules depicted in Fig. 5 in the
following format:

• stp#id se-sl fe-fl
• ftp#id se-sl fe-fl
• frag#id

where id is the unique ID of a TP or code fragment, se and
sl are the earliest possible and latest permissible start time of
a TP, respectively. Similarly, fe and fl are the earliest possible
and latest permissible finish time of a TP, respectively.

Fig. 9(b) lists an example property log of Fig. 8. According
to the Timed C semantics, the initial TP stp#0 can start
and finish between 0 and 1. Hence, in line 1 stp#0 has
se=fe=0 and sl=fl=1. Also note that the absolute arrival time
of frag#1 is 0.

Let us consider ftp#4 with relative arrival of 20 ms. Note
that ftp#4 enforces a firm deadline. Hence, if frag#3 tries
to run endlessly, ftp#4 will interrupt its execution at its
absolute deadline t = 50ms. Hence, sl of ftp#4 is 50ms,
which will be checked using the property log. Because ftp#4
does not allow overruns, its fl is equal the absolute arrival time
of frag#5, which is also 50ms.

In summary, the se of a TP is equal to the absolute arrival
time of its previous code fragment and its fe is the absolute
arrival time of next code fragment. Since, a STP allows
overruns, its sl and fl are 1. An FTP does not allow overruns.
Hence, its sl is equal to the absolute deadline of the previous
TP. When the relative deadline is less than the relative arrival
time of an FTP, its fl is equal to the absolute arrival time of
next code fragment. Otherwise, its fl is equal to the absolute
deadline of the previous code fragment.

E. Property Checker

As discussed above, the execution log traces the program flow
along with the start time, the end time, the overshot, and trigger
precision of TPs. By contrast, the property log specifies the
program flow along with the allowed intervals of the start and
end times. As a consequence, the property checker performs

1 stp#0 0 0

2 frag#1

3 stp#2 20 30

4 frag#3

5 ftp#4 41 50 0 0 0

6 frag#5

7 ftp#7 0 80 5 1 5

1 stp#0 0-inf 0-inf

2 frag#1

3 stp#2 0-inf 30-inf

4 frag#3

5 ftp#4 30-50 50-50

6 frag#5

7 frag#6

8 ftp#7 50-60 80-80

(a) (b)

Fig. 9: Examples of (a) an execution log (b) a property log.

testing by comparing the two logs. For example, when str

is not 0 the property checker checks if the str (or fin) in
the execution log is between se(or fe) and sl(or fl) in the
property log. Note that the checking algorithm also includes
cases not shown in the example. For instance, handling of stp
overruns that affect the start time of another ftp. A detailed
explanation has been left out because of space limitations.

V. EVALUATION

This section evaluates the correctness of the KTC compiler,
followed by a correctness evaluation of the TPBT tool itself.

A. Experimental Setup

The TPBT tool generates the TFGs, the Timed C programs,
and property specification codes. We used a random C program
generator tool called CSmith [12] 2.3.0 to generate code for
the code fragments in the Timed C program. We use KTC to
compile the Timed C code to target specific C code and GCC
to compile the generated C code. We generate the execution
log on Raspberry Pi 2 Model B with ARM Cortex A7 CPU
clocked at 900MHz running a Raspbian Linux distribution
with the PREEMPT_RT kernel and Intel i5 CPU running
Ubuntu OS. However, due to space constraint we only show
the results from our experiments on Raspberry Pi. The TPBT
tool runs on an Intel i5 CPU running Ubuntu OS. A key
motivation for using Raspberry Pi in our evaluation is to test
the correctness of KTC on a small microcontroller platform.

B. Correctness of the KTC compiler

We tested if the KTC compiler correctly translates the seman-
tics of timing point delay, STP with overrun, and FTP with
overrun. We generated 1000 arbitrary valid TFGs with STP,
FTP, code fragment, and critical code fragment with proba-
bility distribution of 30%, 30%, 30%, and 10%, respectively.
A valid TFG satisfies all the TFG properties and passes the
KTC static analysis. Note that the C code generated by CSmith
does not always run to completion. Hence, we ran a script to
disallow generation of CSmith functions that ran endlessly.

The results of our experiment is depicted in Fig. 10, where
the blue and red bars indicate the number of TP executed that
pass and fail the TPBT, respectively. In Fig. 11, we observe
that KTC correctly translates all STPs. However, there are
failures in FTP. On analyzing the test inputs we found this
occurs in certain scenario due to, (i) FTP not returning the
correct overshot and (ii) FTP failing to interrupt execution of
code fragment with firm deadline. We fixed this in KTC and

917	

1541	

530	

203	

44	

59	

50	
0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

STP	with	delay	 STP	with	
overrun	

FTP	with	delay	 FTP	with	
overrun	

Crash	

N
um

be
r	

PASS	 FAIL	 CRASH	

Fig. 10: TPBT testing the KTC compiler.

1028	

1609	

545	

332	

7	

50	
0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

STP	with	delay	 STP	with	
overrun	

FTP	with	delay	 FTP	with	
overrun	

Crash	

N
um

be
r	

PASS	 FAIL	 CRASH	

Fig. 11: TPBT testing the fixed KTC compiler.

17	

58	

23	

76	

38	

75	

7	 4	 2	
0	

20	

40	

60	

80	

case#1	 case#2	 case#3	

N
um

be
r	

PASS	 FAIL	 CRASH	

Fig. 12: Testing the correctness of the TPBT tool.

ran the TBPT tool on the same set of inputs. The results with
the fixes are depicted in Fig. 11. We currently do not have fixes
for 7 of the failing inputs in Fig. 11. The crashes in Fig. 10 and
Fig. 11 are test inputs that crashed during runtime. Note that
the execution log is not generated when the program crashes.
Currently we do not know if these crashes are due to KTC
translation of Timed C code or generated CSmith functions.

C. Correctness of the TPBT tool

The TPBT tool like every other software implementation is
prone to bugs. Hence, we evaluate the correctness of the
TPBT tool itself. We achieve this by inserting errors in the
KTC compiler and performing property-based testing on these
buggy implementations. We tested three cases:
Case#1: If the TPs delay the execution of the program for a
time interval less than their relative arrival time, then all inputs
that pass the KTC static analyzer and have more than one TP
(where at least one TP does not overshot) will fail the TPBT.
Case#2: If FTP does not impose a firm deadline then all inputs
that pass the KTC static analyzer and miss a firm deadline will
fail the TPBT tool.
Case#3: If the critical construct allows the FTP to interrupt
the execution of the critical section, then all inputs that pass
KTC static analysis and have a critical code fragment—that
otherwise runs endlessly—will fail the TPBT tool.

We tested the above cases by generating 100 inputs for each
of them. The results are presented in Fig. 12. Case#1 is valid
only for inputs with more than one TP because we do not
decrease the arrival time of the initial TP which means that
the absolute arrival time of first code fragment is t = 0. For
case#1, we modified the KTC compiler to decrease the arrival
time of the TPs by 5 ms. In Fig. 12, we see that 17 cases
passed while 76 failed. On analyzing the results we found all
inputs that passed either had no TPs or all TPs were STP with
overrun. For case#2, we modified the KTC compiler to not
interrupt the execution of a code fragment with firm deadline.
In Fig. 12, we see that 58 passed and 38 failed. On analyzing
the test results, we found that all inputs that passed had no FTP
with overrun. For case#3, we modified the KTC compiler to
interrupt the execution of a critical code fragment. In Fig. 12,
we see that 23 passed and 75 failed. On analyzing the test
result we found that all inputs that passed had no critical code
fragment. In summary, in all these test cases, we found that the
TPBT tool detected the relevant errors which were introduced.

VI. RELATED WORK

Compiler Testing: A large number of tools and methods
for testing compilers has been studied by researchers [12],
[20], [21]. CSmith [12], a tool for generating C programs,
has been used in randomized differential testing of C compil-
ers. A different approach, now called property-based testing,
originally introduced by Claessen and Hughes [13], are now
used in many tools for testing various applications [22], [23].
Midtgaard et al. [14] propose PBT for testing the back-ends
of two OCaml compilers. These different testing tools and
techniques for untimed programming languages have been suc-
cessfully used to find bugs in many production compilers. In
contrast to previous work, we introduce a temporal property-
based testing method to test compilers for timed programming
languages. The main objective of our method is to test whether
the compiler correctly translates the timing semantics of the
programming language. To the best of our knowledge, this the
first work on temporal property-based testing of compilers.

Task Model: Timed automata [1] and the digraph task model
[24] are well-established and widely used for modeling real-
time applications. However, compared to TFGs, these existing
models and formalisms are not close to the semantics of Timed
C, making them hard to use in our setting.

VII. CONCLUSION

In this paper, we first present the concept of time-flow graphs
and use it to formalize a subset of Timed C. We use this
concept to design and implement a temporal property-based
testing tool, to test the correctness of Timed C’s source-to-
source compiler.

ACKNOWLEDGEMENT

We would like to thank Björn B. Brandenburg, Mitra Nasri,
and Geoffrey Nelissen for early discussions on the concept of
TFGs. We would also like to thank Viktor Palmkvist for ideas
on the log generation. This project is financially supported by
the Swedish Foundation for Strategic Research (FFL15-0032).

REFERENCES

[1] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical

computer science, vol. 126, no. 2, pp. 183–235, 1994.
[2] C. Ramchandani, “Analysis of asynchronous concurrent systems by

timed petri nets.” Ph.D. dissertation, Massachusetts Institute of Tech-
nology, 1973.

[3] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” Interna-

tional journal on software tools for technology transfer, vol. 1, no. 1-2,
pp. 134–152, 1997.

[4] S. Yovine, “Kronos: A verification tool for real-time systems,” STTT,
vol. 1, no. 1-2, pp. 123–133, 1997.

[5] G. Berry and G. Gonthier, “The esterel synchronous programming
language: Design, semantics, implementation,” Science of computer

programming, vol. 19, no. 2, pp. 87–152, 1992.
[6] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous

data flow programming language lustre,” Proceedings of the IEEE,
vol. 79, no. 9, pp. 1305–1320, 1991.

[7] A. Burns and A. Wellings, Concurrent and real-time programming in

Ada. Cambridge University Press, 2007.
[8] G. Bollella and J. Gosling, “The real-time specification for java,”

Computer, vol. 33, no. 6, pp. 47–54, 2000.
[9] X. Leroy, “A formally verified compiler back-end,” J. Autom.

Reasoning, vol. 43, no. 4, pp. 363–446, 2009. [Online]. Available:
https://doi.org/10.1007/s10817-009-9155-4

[10] Y. K. Tan, M. O. Myreen, R. Kumar, A. C. J. Fox, S. Owens, and
M. Norrish, “A new verified compiler backend for CakeML,” in Inter-

national Conference on Functional Programming (ICFP), J. Garrigue,
G. Keller, and E. Sumii, Eds. ACM, 2016.

[11] T. Bourke, L. Brun, P.-É. Dagand, X. Leroy, M. Pouzet, and L. Rieg,
“A formally verified compiler for lustre,” in Proceedings of the 38th

ACM SIGPLAN Conference on Programming Language Design and

Implementation, 2017, pp. 586–601.
[12] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding

bugs in c compilers,” in Proceedings of the 32nd ACM SIGPLAN

conference on Programming language design and implementation, 2011,
pp. 283–294.

[13] K. Claessen and J. Hughes, “QuickCheck: a lightweight tool for random
testing of Haskell programs,” ACM SIGPLAN Notices, vol. 46, no. 4,
pp. 53–64, 2011.

[14] J. Midtgaard, M. N. Justesen, P. Kasting, F. Nielson, and H. R. Nielson,
“Effect-driven QuickChecking of compilers,” Proceedings of the ACM

on Programming Languages, vol. 1, no. ICFP, pp. 1–23, 2017.
[15] S. Natarajan and D. Broman, “Timed C: An Extension to the C

Programming Language for Real-Time Systems,” in RTAS, 2018, pp.
227–239.

[16] S. Natarajan, M. Nasri, D. Broman, B. B. Brandenburg, Nelissen, and
Geoffrey, “End-to-end temporal sensitivity analysis using timed c,” in
2019 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2010.

[17] S. Baruah, D. Chen, S. Gorinsky, and A. Mok, “Generalized multiframe
tasks,” Real-Time Systems, vol. 17, no. 1, pp. 5–22, 1999.

[18] S. J. Russell and S. Zilberstein, “Composing real-time systems.” in
IJCAI, vol. 91, 1991, pp. 212–217.

[19] B. C. Pierce, Types and Programming Languages. The MIT Press,
2002.

[20] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” ACM SIGPLAN Notices, vol. 49, no. 6, pp. 216–226,
2014.

[21] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and L. Zhang,
“A survey of compiler testing,” ACM Computing Surveys (CSUR),
vol. 53, no. 1, pp. 1–36, 2020.

[22] T. Arts, J. Hughes, U. Norell, and H. Svensson, “Testing autosar soft-
ware with quickcheck,” in 2015 IEEE Eighth International Conference

on Software Testing, Verification and Validation Workshops (ICSTW).
IEEE, 2015, pp. 1–4.

[23] J. Hughes, B. C. Pierce, T. Arts, and U. Norell, “Mysteries of dropbox:
property-based testing of a distributed synchronization service,” in 2016

IEEE International Conference on Software Testing, Verification and

Validation (ICST). IEEE, 2016, pp. 135–145.
[24] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “The digraph real-time task

model,” in 2011 17th IEEE Real-Time and Embedded Technology and

Applications Symposium. IEEE, 2011, pp. 71–80.

